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ABSTRACT

Controlled fusion energy is deemed pivotal for the advancement of human civ-
ilization. In this study, we introduce LPI-LLM, a novel integration of Large
Language Models (LLMs) with classical reservoir computing paradigms tailored
to address a critical challenge, Laser-Plasma Instabilities (LPI), in Inertial Con-
finement Fusion (ICF). Our approach offers several key contributions: Firstly, we
propose the LLM-anchored Reservoir, augmented with a Fusion-specific Prompt,
enabling accurate forecasting of LPI-generated-hot electron dynamics during im-
plosion. Secondly, we develop Signal-Digesting Channels to temporally and spa-
tially describe the driver laser intensity across time, capturing the unique charac-
teristics of ICF inputs. Lastly, we design the Confidence Scanner to quantify the
confidence level in forecasting, providing valuable insights for domain experts to
design the ICF process. Extensive experiments demonstrate the superior perfor-
mance of our method, achieving 1.90 CAE, 0.14 top-1 MAE, and 0.11 top-5
MAE in predicting Hard X-ray (HXR) energies emitted by the hot electrons in
ICF implosions, which presents state-of-the-art comparisons against concurrent
best systems. Additionally, we present LPI4AI, the first LPI benchmark based
on physical experiments, aimed at fostering novel ideas in LPI research and en-
hancing the utility of LLMs in scientific exploration. Overall, our work strives to
forge an innovative synergy between AI and ICF for advancing fusion energy.

1 INTRODUCTION

“...human society remains at a Type 0, a primitive form of civilization...”
− The Kardashev scale (Kardashev, 1964)

After National Ignition Facility (NIF) achieving ignition in December 2022 (Abu-Shawareb et al.,
2024), the focus of current inertial confinement fusion (ICF) research shifts to exploring high gain
schemes required to make fusion a practical and sustainable energy source for humankind. Fusion
represents a potential key enabler for advancing humanity towards a Type I civilization on the Kar-
dashev scale (Zhang et al., 2023), offering a virtually limitless and clean energy source that could
power our civilization globally. This advancement could potentially resolve numerous crises we
currently face — e.g., economic recessions and climate change — by eliminating the need for finite
resources like fossil fuels.

Direct-drive ICF has potentially higher gains due to more efficient driver-target coupling but faces
many challenges (Betti & Hurricane, 2016). The optimization of ICF designs to achieve reliable
high-gain ignition faces formidable constraints (Betti & Hurricane, 2016; Craxton et al., 2015) due
to laser-plasma instabilities (LPI) (Gopalaswamy et al., 2024; Radha et al., 2016). Efficient and
symmetrical driving of the target, vital for ICF, is impeded by LPI phenomena such as stimulated
Raman and Brillouin backscatterings (SRS and SBS), which can disrupt implosion symmetry and
reduce efficiency through cross-beam energy transfer (CBET) (Smalyuk et al., 2008a; Goncharov
et al., 2008). Hot electrons, a byproduct of LPI processes like SRS and Two-Plasmon-Decay (TPD),
can both hinder (Smalyuk et al., 2008a; Goncharov et al., 2008; Craxton et al., 2015; Radha et al.,
2016) and assist (Betti et al., 2007; Perkins et al., 2009; Shang et al., 2017) ignition, showcasing
the importance of LPI. Despite efforts to measure and simulate hot electron generation, obtaining
predictive scaling laws remains challenging due to the dynamic nature of laser/plasma conditions
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and computational limitations (Klimo et al., 2010; Riconda et al., 2011; Yan et al., 2014; Shang
et al., 2017; Li et al., 2020), highlighting the current gap in establishing a predictive capability based
on first principles that aligns with experimental data. These constraints highlight the need for an
innovative approach to overcome these obstacles.

Hot Electron 
Energy

LLM-anchored Reservoir

Laser 
Intensity

Signal-Digesting 
Channels

Large Language 
Model

Figure 1: The overview of LPI-LLM.

Currently, Large Language Models (LLMs) ex-
hibit versatile capabilities across diverse disci-
plines (e.g., robotics (Lin et al., 2022; Szot et al.,
2021; Yao et al., 2023; Huang et al., 2022), med-
ical health (Li et al., 2023; Singhal et al., 2023;
Thirunavukarasu et al., 2023; Moor et al., 2023),
agriculture (Rezayi et al., 2022; Tzachor et al.,
2023)), adeptly capturing intricate patterns in mul-
timodal data. Due to their success in other do-
mains (Kojima et al., 2022; Zheng et al., 2023; Liu
et al., 2023), we are convinced that LLMs may
also potentially excel in generalizing to plasma
physics, particularly in forecasting the behavior of
hot electrons generated during implosion in the real-world, physics experiments. Leveraging their
vast pre-trained knowledge base, LLMs could optimize ICF designs by efficiently evaluating numer-
ous scenarios, aiding researchers in identifying promising approaches expediently, and generating
insights to enhance our understanding and control of the fusion process.

In light of this perspective, we intend to harness the power of LLMs to overcome the barrier to the
vertical advancement of the next stage of human civilization: fusion energy. This science problem
manifests as two sub-problems in a unique and challenging setup: ❶ how to tailor pre-trained LLMs
in order to accurately predict the behavior of hot electrons based on laser intensity inputs? and ❷
how to evaluate the trustworthiness of the LLM’s predictions in order to guide the ICF design?

We conceptualize LLMs as a computational reservoir to unlock their potential for robust domain
adaptation and generalization for ICF task, titled LPI-LLM (see Fig. 1). In order to address
question ❶, we propose the LLM-anchored Reservoir, augmented with a fusion-specific prompt,
to facilitate the interpretation of plasma physics. The incorporated prompts encompass domain-
specific knowledge, instructional cues, and statistical information, thereby enabling the LLMs to
accommodate the specific demands of the given task. Additionally, we develop the Signal-Digesting
Channels to capture the distinctive characteristics of ICF inputs. It features a temporal encoder to
better align the laser signals with the pre-trained, time-series space, and a spatial encoder to provide
a global description of the input landscape. To tackle question ❷, we introduce the Confidence
Scanner to assess the trustworthiness in predictions. Specifically, we couple the gradient saliency in
prediction head and token entropy in LLM outputs to obtain the model’s confidence scores.

Overall, this study aims to provide an exciting synergy between the domain of AI and plasma science
for fusion energy development. The core contributions of this paper can be summarized as follows:
• We represent a pioneer investigation into the use of LLMs for analyzing hot electron dynamics

in ICF. LLMs offer a cost-effective alternative compared to both ICF experiments and plasma-
physics simulations. Empirical evidence (see §3/S3) showcases the efficacy of the application of
LLM for LPI study, which directly benefits the practical design of ICF.

• We construct an LLM-anchored reservoir computing framework to predict the hot electron dy-
namics in ICF implosions. Compared to prior arts in reservoir computing (Li et al., 2024; Gau-
thier et al., 2021) and time-series-based LLM (Jin et al., 2023), our approach requires less data
(see Table 2d) and shorter training schedule (see Table 2e), while achieving superior performance.

• We develop the first LPI benchmark — LPI4AI (see §3.1) based on physical experiments, to
facilitate new ideas in LPI research and the use of LLMs in scientific exploration.

2 METHODOLOGY

2.1 PRELIMINARY

Figure 2: The ICF pipeline.
The ICF Overview. ICF is one of the two major branches of
fusion energy research. The main idea of ICF is using intense

2

Mingkai Chen
Highlight



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

  

For the laser intensity given for ... 
<seq_len> steps, forecast the X-ray...
with <pred_len> steps  in total to ...
Take the phase plate and target ...
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Figure 3: LPI-LLM framework. (a) Fusion-specific prompts structure domain textual prompts
with context, task and input descriptions (see §2.2.1 for details). (b) Signal-digesting channels
comprise a pre-trained temporal encoder to extract time-series features of laser signals, and a spatial
encoder to encode critical landscapes of the inputs (see §2.2.2 for details). For simplicity, we skip
some architectural modules. We provide implementation details in appendix (see §S2).

drivers to compress the target and maintain the fusion fuel at fusion densities and temperatures with
its own inertia, which facilitates the occurrence of fusion reactions. The process of a conventional
direct drive ICF is depicted in Fig. 2. Laser beams are directed towards a target filled with
fuel , rapidly heating its surface to create a plasma envelope . The target surface will eventually
blow off, causing the target shell to implode toward the center via the rocket effect. The kinetic
energy of the shell will be converted into thermal energy of the fuel, which sustains the fuel at high
densities (more than twenty times that of lead) and temperatures (approximately 100,000,000◦C),
thus initiating fusion reactions. Throughout this process, laser plasma instabilities (LPIs) could
take energy from the laser and generate hot electrons, which may prematurely heat the target and
emit Hard X-Rays (HXR) via bremsstrahlung radiation as they interact with the surrounding
plasma. HXR diagnostics have been extensively applied in experiments at OMEGA (Smalyuk et al.,
2008b; Yaakobi et al., 2000; Stoeckl et al., 2003; Yaakobi et al., 2005) and NIF (Rosenberg et al.,
2018; 2020; Solodov et al., 2020) to determine the hot electron energy and temperature. It is worth
noting that conducting these experiments is expensive (around $1m for one successful NIF shot).
Having a predictive tool will not only improve our understanding of hot electron physics, but also
benefit the design of ICF.

Experiment and Data Collection. The HXR data were collected from 100 shots conducted on
the OMEGA platform. Detailed configurations, including the target size, the phase plate shape for
laser smoothing, and the input laser profile, were available. HXR signals were recorded from four
diagnostic channels, enabling the calculation of the total energy and temperature of the electrons.
In this study, we focus on forecasting HXR signals with given laser intensity profiles throughout the
shot. This data is indispensable for physicists to design new ICF experiments.

2.2 LPI-LLM

In this section, we introduce LPI-LLM, a novel approach for predicting LPI and hot-electron gener-
ation in ICF. Illustrated in Fig. 3, the inputs comprise fusion-specific prompts and the time series of
input laser intensity, which are processed through LLM for feature extraction. Subsequently, the out-
put module makes predictions of hot-electron energy along with confidence scores. Our approach is
characterized by three core modules: LLM-anchored Reservoir, which establishes a reservoir foun-
dation using LLMs to comprehend the dynamic impact of laser intensity on hot-electron energy
emission; Signal-Digesting Channels is responsible for encoding the time series of input laser inten-
sity, capturing the temporal characteristics of sequential details, and spatial distinctiveness of data
landscapes; and Confidence Scanner, tasked with estimating prediction confidence for each shot,
thereby providing trustworthy guidance for practical experimental design of the ICF.

3

Mingkai Chen
Highlight

Mingkai Chen
Highlight



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2.1 LLM-ANCHORED RESERVOIR

In classic reservoir computing (RC), a fixed, randomly generated reservoir (e.g., RNN) transforms
input data into a high-dimensional representation. A trainable output layer then maps this represen-
tation to the desired output. RC has gained popularity in the scientific community due to its ability
to enable efficient processing of sequential data with simple training methods. Following the RC
convention, we construct a reservoir using LLM with a shallow prediction head (see §S2). Due to
the extensive pre-training, LLMs are equipped with robust generalization capabilities for in-context
reasoning and time-series forecasting. To leverage the physics knowledge embedded in LLMs, we
design fusion-specific prompts (FSP) that strategically connect the LLM’s vast knowledge base to
the specific nuances of the ICF domain. Our LLM-anchored reservoir can be defined by:

s[t+ 1] = f(s[: t], Elas,
∗∗ Prompt), (1)

where s[t] denotes the state of the reservoir at time step t and Elas represents input laser intensity.

The ∗∗Prompt specifically denotes the structured FSP, comprising three descriptors (see Fig. 3a)
designed with particular focus: ➤ Context descriptor provides a detailed overview of the ICF pro-
cess, highlighting the nature, sources, and characteristics of the data. It elaborates on the experimen-
tal procedures (see §2.1) used in data collection, emphasizing principles and methodologies specific
to ICF. This descriptor enhances the LLMs’ comprehension of the experimental context. ➤ Task
descriptor outlines explicit instructions for the prediction tasks, including the format and expected
length of the output. It guides the inference and forecasting process by specifying imperative con-
siderations, ensuring that the forecasting aligns with domain-specific insights. ➤ Input descriptor
presents a concise statistical summary of the input data, offering insights into its distribution and
key characteristics such as minimum, maximum, and median values. This descriptor is vital for in-
forming the LLMs about the underlying statistical properties of the input signals. Collectively, this
prompting strategy facilitates the LLMs’ ability to mine intricate input signals and produce predic-
tions that are scientifically robust and contextually coherent within the phase space of the reservoir.

In general, our LLM-based design expands the applications and capabilities of reservoir computing,
offering two significant advantages in leveraging artificial intelligence for scientific exploration:

• Adaptability for fusion. The utilization of LLMs in ICF forcasting exhibits notable adaptability
in confronting the pivotal scientific challenge – modeling LPI and hot electron generation. Later,
we will present empirical evidence to substantiate the systemic efficacy (see §3.1). The success of
this methodology is poised to provide a generic alternative for other adjacent scientific domains in
pursuit of LLM-based solutions.

• Efficiency for data scarcity. Gratitude is extended for the extensive pre-trained knowledge base
and the precise delineation of prompt descriptors. Leveraging these assets, the LLM-based system
mitigates data dependency to the K-shot level — 80 shots in our experiments — exemplifying the
advantageous efficiency in addressing the persistent challenge of data scarcity in scientific inquiry.

2.2.2 SIGNAL-DIGESTING CHANNELS

With the establishment of the LLM-based approach described in §2.2.1, robust predictions can be
immediately attained (see Table 2c). Due to the uniqueness of the ICF data, the input HXR signal
exhibits its time-series, temporal landscape. Recognizing the sensitivity of LLMs to input data (Sclar
et al., 2023; 2024), we introduce Signal-Digesting Channels (SDC), conceptually aligned with our
design, to capture crucial input characteristics and further augment the performance of LLMs.

For the ICF process, the hot electron energy emitted during the initial and terminal phases is char-
acterized by relatively uniform values, in contrast to the target impact phase, where peak values are
observed. This laser intensity signal landscape exhibits significant discrepancies between the uni-
formity of the plain phase and the peaks of the impact phase. This physics insight guides our design
(see Fig. 3b), which comprises two components: a temporal encoder to align the laser intensities
with the pre-trained time-series space, and a spatial encoder to delineate the landscape of input data.

➤ Temporal encoder is designed to extract time-series features using a windowing mechanism that
constructs consistent signal patches across sequential time steps. It employs a set of Transformer
layers (Woo et al., 2024) to capture time-series distributions over the forecast horizon. This process
is formulated as ftmp : (Xt−l:t+h, Yt−l:t) 7→ ψ̂, where X and Y represent the input data and target
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data spanning time windows of length l and h at time t. The encoder is pre-trained on a large-scale
time-series dataset (see §S2 for details) and is optimized using the log-likelihood of the forecast:

argmax
θ

E(X,Y )∼p(D) log p(Yt:t+h|ftmp(Xt−l:t+h, Yt−l:t)),

where p(D) represents the data distribution from which the time-series samples are drawn. During
fine-tuning on the target-domain ICF data, all pre-trained parameters are frozen, except for the last
linear layer. The temporal encoder is utilized for feature extraction over the input laser signals I ,
producing temporal tokens denoted as Etmp = ftmp(I) for subsequent processing.

➤ Spatial encoder is designed to analyze the input signals by providing a qualitative overview
of the input landscape. Specifically, it is structured to characterize the spatial patterns of
laser intensity signals throughout the ICF process. We utilize the projection block from the
LLM, fLLM , to project sets of critical contexts into spatial features, denoted as Espt =
{fLLM (“pulse”), fLLM (“peak”), ..., fLLM (“trailing”)}. In practice, Espt is further processed by
a cross-attention layer with temporal features Etmp. This step couples the contextual description
to the actual signal distribution within the ICF, enabling the LLM to better capture the observed
physical phenomena for predictions.

After acquiring the features from both the temporal and spatial encoders, we concatenate them Ė =
[Etmp;Espt] to form the output of DSC. Here, we use Ė as augmented inputs to replace the vanilla
Elas in Eq.1. Fundamentally, DSC introduces a novel method for input encoding in reservoir com-
puting, which enhances overall system performance. This design offers the following advantages:

• Discernment for temporal pattern. With the pre-trained temporal encoder, SDC adeptly captures
crucial time-series features of laser signals that correlate with HXR outputs. This merit enables the
LLM to recognize distinct patterns across various time steps, representing an improvement over
strong reservoir models (see Table 2c), which struggle to manage ICF’s temporal patterns.

• In-context reasoning in signal processing. SDC tackles the complexity of processing signals with
diverse attributes, such as those found in the uniform and peak phases within ICF. Through the
integration of contextual disciplinary knowledge, SDC, equipped with in-context reasoning, sig-
nificantly boosts the effectiveness of LLM backbone (see Table 2c). This enhancement enables
robust performance even in the face of inherent fluctuations (i.e., uniform vs. peak in ICF).

2.2.3 CONFIDENCE SCANNER LLM-anchored 
Reservoir
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Figure 4: Pipeline of Confidence Scanner. We re-calibrate
token confidence to align with the energy-prediction head.

Trustworthiness is pivotal for AI in
science. Under-confident predic-
tions may lead to misguided conclu-
sions or improper actions. Some ap-
proaches (Lin et al., 2023; Huang
et al., 2023) directly utilize the en-
tropy observed in the output tokens
of the LLMs to gauge the confi-
dence. However, these methods en-
counter a challenge in our study of
ICF whereby the entropy of LLM’s
output tokens does not consistently reflect confidence of prediction at each time step. This discrep-
ancy arises due to the non-linear transformation undertaken by the multi-layer perception within the
prediction head, which alters the embedding of token counterparts, thereby distorting the relation
between tokens and their corresponding confidence estimations.

To this end, we propose Confidence Scanner that incorporates a confidence reweighing mechanism
to assess the confidence level of each prediction systematically. Concretely, our approach redis-
tributes confidence across tokens to implicitly reflect their actual influence on predictions.

As shown in Fig. 4, we extract the embedding Ek = {en−k, . . . , en} for the last layer of LLM,
which specifically analyze the embedding of the last k tokens. The confidence level H is then
formulated as:

H = [h(en−k), . . . , h(en)] , (2)
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Figure 5: Qualitative results of 2 hot electron prediction cases. We plot Ground Truth and the
predictions of Ours, Autoformer, Time-LLM and LSTM. Y and X axes denote hot electron energy
in voltage, and time steps with step length of 0.025 nanosecond respectively.

where h(·) map the embedding to word probabilities, which are subsequently used to calculate the
entropy. Furthermore, we derive a reweigh matrix S from the task prediction head Htask(·) by
performing a forward process to predict hot-electron energy by P = Htask(Ek). The matrix S is
then obtained through saliency, reflecting the contribution to the i-length of predictions:

S =

[
σ

(
∂P0

∂Ek

)
, . . . , σ

(
∂Pi

∂Ek

)]
, (3)

where the σ is the softmax function to normalize the saliency scale. Finally, entropy H is combined
with reweigh matrix S to produce the confidence score C = −H × S for the hot electron energy
predictions. Through our design, we align the entropy derived from LLM embeddings with the hot
electron energy forecasting. This alignment allows us to directly obtain a confidence level that can
serve as a trustworthiness indicator for our system. We provide empirical evidence in Fig. 6.

3 EMPIRICAL FINDINGS

3.1 MAIN RESULTS

Dataset. We develop a new benchmark, LPI4AI, to support AI research in ICF. This benchmark
consists of 40,000 LPI samples containing 100 shot sequences with 400 time steps/shot. Each shot
is documented with key parameters such as target size, laser intensity, and energy of hot electrons
(see §2.1). The dataset has been systematically divided into 80/10/10 for train/val/test splits
respectively. We will release this dataset upon acceptance to advance research for the fusion reaction.

Baselines. We choose a classic physics-based Particle-In-Cell (PIC) simulation method (Cao et al.,
2022), a number of classic AI models (i.e., LSTM (Hochreiter & Schmidhuber, 1997), Auto-
former (Wu et al., 2021)), reservoir computing models (i.e., HoGRC (Li et al., 2024), RCRK (Dong
et al., 2020), NGRC (Gauthier et al., 2021)), and concurrent time-series LLM-based models (i.e.,
GPT4TS (Zhou et al., 2023) and Time-LLM (Jin et al., 2023)) as baseline models for performance
comparison on proposed LPI4AI dataset.

Experimental Setup. Our experiments are trained with 100 epochs and a batch size of 5, which
is adequate to achieve convergence based on our empirical findings. In addition, we utilize a fixed
learning rate of 0.0004 and the Adam optimizer (Kingma & Ba, 2015). A loss function defined by
the cumulative absolute error across each time-steps floss(Y,G) =

∑pred len
n=1 |yn− gn| is used, where

Y and G represent the sequences of predictions and ground truths, respectively, yn and gn denote
the values at the n-th time-step, and pred len is the length of prediction. For all other counterpart
methods, we follow their original settings and training configurations to reproduce the results.

Metric. We employ cumulative absolute error (CAE) as our primary metric. The sole distinction
in its implementation involves nullifying values that are less than 0.03 of the predicted value. In
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Figure 6: Visualization of confidence score and prediction error.

addition, we incorporate two supplementary metrics: top-1 and top-5 MAE, which represent
mean absolute error focusing exclusively on the top one percent or five percent errors, respectively,
thereby highlighting the performance where the highest errors are observed.

Table 1: Quantitative results on LPI4AI test split for hot electron en-
ergy predictions (see §3.1 for details). Refer to the metrics section for
details of CAE, top-1 and top-5 MAE.

Method CAE↓ top-1 MAE↓ top-5 MAE↓
PIC Simulation 2.88 0.20 0.13

LSTM 5.82±0.06 0.35±0.01 0.35±0.01

Autoformer 5.79±0.04 0.35±0.01 0.34±0.01

HoGRC 4.20±0.79 0.25±0.05 0.22±0.02

RCRK 4.31±0.46 0.28±0.04 0.22±0.01

NGRC 4.28±0.68 0.27±0.04 0.23±0.02

GPT4TS 3.34±0.58 0.18±0.05 0.14±0.04

Time-LLM 3.48±0.72 0.18±0.05 0.15±0.05

LPI-LLM (Gemma-2-9B) 2.04±0.21 0.14±0.01 0.12±0.01

LPI-LLM (OLMo-7B) 1.97±0.28 0.14±0.01 0.12±0.01

LPI-LLM (Llama-2-7B) 2.15±0.26 0.14±0.01 0.12±0.01

LPI-LLM (Llama-3-8B) 1.90±0.33 0.14±0.01 0.11±0.01

Performance Comparison.
The primary challenge in
forecasting for LPI lies
in developing a robust yet
flexible predictive model. We
integrated four wellk-known
open-sourced LLMs with
our apporach, including
Gemma-2 (Team, 2024),
OLMo (Groeneveld et al.,
2024), Llama-2 (Touvron
et al., 2023b), and Llama-
3 (AI, 2024). As shown in
Table 1, empirical results
demonstrate the effectiveness
of our method in predicting hot electron energy output in ICF, consistently outperforming all
baseline models across all evaluation metrics. Notably, our approach over Llama-3 achieves the
best performance and surpasses PIC simulation model (Cao et al., 2022) by 0.98 in terms of CAE.
Additionally, compared to classic AI methods, our approach outperforms LSTM (Hochreiter &
Schmidhuber, 1997) and Autoformer (Wu et al., 2021) by 3.92 and 3.89, respectively. Our margins
in CAE over three other reservoir computing methods, HoGRC (Li et al., 2024), RCRK (Dong et al.,
2020), NGRC (Gauthier et al., 2021), are 2.30, 2.41, and 2.38, respectively. Moreover, our method
outperforms concurrent LLM-based approaches GPT4TS (Zhou et al., 2023) and Time-LLM (Jin
et al., 2023) by 1.44 and 1.58 on CAE, respectively, while maintaining comparable speed. Detailed
analysis is supplemented in §S3.

These results underscore the efficacy and efficiency of our LLM-based solution in predicting hot
electron dynamics in ICF. By extending LLM’s successful adaptability to the new and exciting
domain of fusion energy, our empirical findings represent just the beginning of the innovative op-
portunities presented by applying LLM algorithms to challenging subjects in scientific exploration.

We further present qualitative results in Fig. 5, aligning with our quantitative findings that our
method surpasses all comparative baselines in predictive accuracy. Additionally, Fig. 6 illustrates
the confidence scores associated with our predictions. The visualization elucidates a clear corre-
lation between predictive error and confidence scores, indicating high confidence corresponding to
low errors and conversely. Notably, our approach consistently demonstrates a heightened level of
confidence, particularly in forecasting peak values across the sequence, a critical phase in ICF.

3.2 DIAGNOSTIC EXPERIMENT

This section ablates LPI-LLM’s systemic design on val split of LPI4AI. All experiments use the
Llama 3 8B variant. Appendix §S3 has more experimental results.

Key Component Analysis. We first investigate the two principal modules of LPI-LLM, specifi-
cally, Fusion-Specific Prompt and Signal-Digesting Channels. We construct a baseline model with
generic dummy prompts which only provide broad, non-specific instructions regarding fusion, and
a rudimentary encoder composed of a single linear layer. As shown in Table 2a, the baseline model
achieves 3.57 CAE. Upon applying Fusion-Specific Prompt to the baseline, we observe significant
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improvements for CAE from 3.57 to 2.59. Furthermore, after incorporating Signal-Digesting Chan-
nels into the baseline model, we achieve significant gains of 1.56 CAE. Finally, by integrating both
core techniques, our LPI-LLM delivers the best performance of 1.19 CAE. These findings affirm
that the proposed Fusion-Specific Prompt and Signal-Digesting Channels operate synergistically,
and validate the effectiveness of our comprehensive model design.

Table 2: A set of ablative studies evaluated on val split.
Algorithm Component CAE↓
BASELINE 3.57
+ Fusion-Specific Prompt 2.59
+ Signal-Digesting Channels 2.01
OURS (both) 1.19

(a) Key Component Analysis

# of samples Ours HoGRC NGRC Time-LLM
80 1.19 3.80 3.73 3.60
60 1.73 3.87 3.84 3.69
40 2.56 4.01 4.08 3.94
20 3.47 4.35 4.19 4.10

(d) Different # of Samples

Prompt Type CAE↓
BASELINE 2.01
+ Discipline-related Prompt 1.46
+ Input Statistics 1.58
OURS (both) 1.19

(b) Fusion-specific Prompt

# of epochs Ours HoGRC NGRC Time-LLM
100 1.19 3.80 3.73 3.60
50 1.19 3.99 3.83 3.60
20 1.56 4.12 4.35 4.01
10 2.79 5.23 5.50 4.52

(e) Different # of Epochs

Algorithm Component CAE↓
BASELINE 2.59
+ Temporal Encoder 2.47
+ Spatial Encoder 1.41
OURS (both) 1.19

(c) Signal-digesting Channels

Head Dim. # Params CAE↓ top-5 MAE↓
256 102.4 K 1.23 0.12
128 51.2 K 1.19 0.11
64 25.6 K 1.34 0.11
32 12.8 K 1.57 0.13

(f) Different Head Dimension

Fusion-Specific Prompt.
We next study the impact of
our Fusion-Specific Prompt
by contrasting it with a
constructed baseline. This
baseline incorporates Signal-
Digesting Channels and
employs generic prompts
that provide broad, nonspe-
cific instructions unrelated
to the process of fusion.
As shown in Table 2b, the
baseline yields a performance
measure of 2.01 in terms of
CAE. Upon substituting the
generic prompt with one that
integrates discipline-specific
information, including back-
ground knowledge, task
instructions, etc, there is an observable enhancement in performance, achieving an improvement
of 0.55 in CAE over the baseline. Additionally, a further analysis involving the integration of
input statistics, containing the maximum and minimum values, etc, of the input time series,
demonstrates superior performance, outperforming the baseline by 0.43 in CAE. The most notable
enhancement is recorded when employing our Fusion-Specific Prompt, which amalgamates both
the discipline-related information and input statistics, culminating in a peak performance of 1.19
CAE. This outcome highlights the essential function of the Fusion-Specific Prompt within our
approach, significantly impacting the performance of the overall model.

Signal-Digesting Channels. We then examine the influence of Signal-Digesting Channels in Ta-
ble 2c. For the baseline, we use a basic approach comprising solely a single linear layer. Under
this setting, the baseline model achieves 2.59 in terms of CAE. Integration of either the Temporal
Encoder or the Spatial Encoder independently results in performance improvements of 0.12 and
1.18 above the baseline respectively. Conversely, the integration of both Encoders in SDC substan-
tially surpasses all alternative counterparts, achieving a CAE of 1.19. These results substantiate the
hypothesis that the proposed Signal-Digesting Channels augment the capability of our approach to
more accurately interpret input time series data.

Reservoir and LLM Comparison. To thoroughly explore the training effectiveness of our method-
ology under conditions of limited sample availability, we perform a comparative analysis using a
variable number of training samples with two concurrent reservoir methods (Li et al., 2024; Gau-
thier et al., 2021) and one LLM-based method (Jin et al., 2023) in Table 2d using CAE. The empiri-
cal findings demonstrate that our approach consistently outperforms all competing strategies across
various sample configurations. Notably, this superior performance and training effectiveness are
evident even with as few as 20 samples. Such robust efficacy is critical in scientific AI applications,
where datasets are often constrained in size.

In addition, we study the training efficiency of our approach in contrast to the above strong base-
lines (Li et al., 2024; Gauthier et al., 2021; Jin et al., 2023) in Table 2e, across various training
epochs. The experimental outcomes illustrate that our approach not only outperforms its counter-
parts but also demonstrates superior efficiency. Specifically, our method is capable of achieving
comparable or superior performance in a significantly reduced training duration. For instance, our
model requires only 10 epochs to achieve better performance than other methods that require 100
epochs. This enhanced efficiency in training is particularly significant, as it demonstrates the po-
tential of our approach to deliver robust performance swiftly, thereby facilitating more expedient
research in practical scenarios.
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Prediction Head Dimension. Lastly, we conduct additional experiments to evaluate the impact
of varying dimensions in the prediction head. As shown in Table 2f, our approach demonstrates an
enhancement in CAE, reducing from 1.57 to 1.34, concomitant upon augmenting the head dimension
from 32 to 64. This improvement continues, culminating in a CAE of 1.19 at a head dimension of
128, where it stabilizes, indicating this as the optimal head dimension for balancing effectiveness
and parameter-efficiency. We therefore select the dimension of 128 as the default setting.

4 RELATED WORK AND DISCUSSION

AI for Science. AI has increasingly become a vital tool in advancing scientific discovery, playing
a central role in recent breakthroughs across various fields (Jumper et al., 2021; LeCun et al., 2015;
Reichstein et al., 2019; Ali et al., 2024). The trajectory of AI’s involvement in scientific research
began with elementary data analysis techniques, such as rule-based systems (Breiman, 2001; Safa-
vian & Landgrebe, 1991), Bayesian methods (Frank et al., 2000), analogy-based approaches (Hearst
et al., 1998; Jain et al., 1999; Tenenbaum et al., 2000), evolutionary algorithms (Kennedy & Eber-
hart, 1995; Dietterich, 2000), and connectionist models (Weisberg, 2005; LeCun et al., 2015). These
methods laid the foundation for AI’s contributions to scientific exploration, and have since evolved
into sophisticated models, including deep learning (He et al., 2016), transformers (Vaswani et al.,
2017), and foundation models (Dosovitskiy et al., 2021; Bommasani et al., 2021). These advance-
ments have empowered scientists to tackle complex problems with greater accuracy and efficiency.

Distinct from traditional AI approaches in scientific exploration, our work represents a one of the
first efforts to empower a crucial scientific domain in ICF with LLMs, which has previously relied
on traditional computational techniques. Despite lacking explicit first-principle rules, our LLM-
based models exhibit remarkable predictive accuracy on real-world data, offering a promising alter-
native to traditional simulations and costly experimental data collection. Specifically, our method
demonstrates the potential to revolutionize processes such as ICF, by providing reliable, data-driven
insights that guide experimental setups with reduced reliance on conventional computation methods.

Plasma Physics for Fusion. LPI is an important area of study within plasma physics for fusion
due to its potential to decrease the efficiency of the implosion process. Stimulated Raman scattering
(SRS) and stimulated Brillouin scattering (SBS) can cause the reflection of laser beams (Kirkwood
et al., 1999). Cross-beam energy transfer (CBET) can adversely influence the symmetry of implo-
sion (Igumenshchev et al., 2010). Two-plasmon decay (TPD) can effectively generate hot electrons,
which can preheat the target, increase the shell entropy, and diminish the implosion efficiency. (Sma-
lyuk et al., 2008a; Goncharov et al., 2008; Craxton et al., 2015; Radha et al., 2016). In shock ig-
nitions (Betti et al., 2007; Perkins et al., 2009), hot electrons can also deposit their energy in the
compressed shell, thereby enhancing the ignition shock and aiding ignition processes. Understand-
ing LPI physics and establishing predictive models for hot electron generation in direct drive ICF
are crucial. In response to these issues and challenges, extensive experiments and simulations (Sma-
lyuk et al., 2008a; Goncharov et al., 2008; Craxton et al., 2015; Radha et al., 2016; Betti et al., 2007;
Perkins et al., 2009) are necessary, which are both costly and time-consuming.

To address these challenges, our AI-based approach offers a promising alternative. By implementing
a streamlined LLM pipeline, our model acts as a Computational Reservoir for time-series forecast-
ing, capturing domain-specific knowledge and generalizing within the ICF task. This enables LLMs
to assist in ICF design, reducing reliance on costly experiments and simulations. Empirical results
(see §3) suggest that LLMs could revolutionize predictive modeling in plasma physics, providing
rapid, cost-effective insights based on generalizable knowledge.

Notably, our LPI-LLM for predicting hot electron-induced hard X-rays would provide a useful
framework for predicting other experimental data, such as neutron yields, with different but equally
intricate underlying physics. Through these applications, LPI-LLM has the potential to become
ICF-LLM, significantly advancing fusion research, paving the way for new insights and advance-
ments in sustainable energy production.

Reservoir Computing. Traditional machine learning techniques (Sutton, 1988; Arel et al., 2010;
Ahmed et al., 2010; Williams & Rasmussen, 2006; Samuel, 1959; Sapankevych & Sankar, 2009;
Kadous, 1999) for scientific data often rely on transforming temporal inputs into high-dimensional
state spaces using nonlinear mappings. RC introduced through key advancements like Echo State
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Networks (Jaeger, 2007; Lukoševičius, 2012) and Liquid State Machines (Maass, 2011; Zhang et al.,
2015), offers a compelling alternative to these traditional methods. RC operates by employing a
fixed, untrained dynamic system—the reservoir—which processes input signals into rich represen-
tations. A notable advantage of RC is that only the readout layer is trained, drastically reducing
computational overhead and simplifying the learning process. This efficiency makes RC particu-
larly suited for large-scale scientific applications, where the volume and complexity of data demand
scalable and low-cost solutions (Nakajima & Fischer, 2021; Schrauwen et al., 2007; Gauthier et al.,
2021; Lukoševičius & Jaeger, 2009).

Our study proposes a paradigm shift by integrating LLMs into the RC framework, advancing beyond
the limitations of traditional RNN-based reservoirs (Gauthier et al., 2021; Lukoševičius & Jaeger,
2009). Unlike standard reservoirs that may struggle with highly dynamic or noisy data, our method
leverages the pre-trained knowledge and adaptive reasoning of LLMs, significantly enhancing RC’s
capacity to handle complex scientific datasets like LPI. This integration not only improves the
system’s ability to capture intricate temporal patterns but also minimizes the need for extensive
parameter tuning. As a result, our approach offers a more powerful, adaptable, and efficient solution
for scientific tasks, setting a new benchmark for RC-based methodologies.

Time-series Forecasting. In various scientific fields, time-series data plays a pivotal role, in-
cluding ICF, where the temporal evolution of laser intensity significantly impacts target behavior
and hot electron emission. Traditional methods for time-series analysis (Sutton, 1988; Arel et al.,
2010; Williams & Rasmussen, 2006; Samuel, 1959; Sapankevych & Sankar, 2009; Kadous, 1999)
typically involve the transformation of temporal inputs into high-dimensional spaces. However,
these methods frequently encounter limitations when dealing with highly dynamic and complex
data (Ahmed et al., 2010). Recently, transformer-based models for time-series forecasting, such
as Temporal Fusion Transformers (TFT) (Lim et al., 2021), Informer (Zhou et al., 2021) and Aut-
oformer (Wu et al., 2021), have demonstrated significant improvements by effectively capturing
long-term dependencies and scaling to large temporal datasets. These models employ attention
mechanisms that enhance accuracy, particularly in forecasting long-horizon data sequences. With
the rise of large-scale models, the use of LLMs for time-series forecasting has emerged as a promis-
ing approach. For instance, Time-LLM (Jin et al., 2023) and GPT4TS (Zhou et al., 2023) have
leveraged the vast pre-trained knowledge bases of LLMs to model complex temporal patterns more
efficiently than previous methods. These LLM-based approaches benefit from their ability to handle
varied, intricate time-series data with minimal task-specific fine-tuning, offering a flexible solution
that adapts to diverse forecasting scenarios.

Conceptually different than these prior arts, our method introduces a novel architecture that syn-
ergistically combines multiple components to address the unique challenges of LPI forecasting in
ICF. The Fusion-Specific Prompts strategically connect the LLM’s vast knowledge base to ICF-
specific nuances, enhancing the model’s ability to interpret plasma physics phenomena. Our Signal-
Digesting Channels, comprising temporal and spatial encoders, are specifically designed to capture
the complex temporal patterns and critical landscape features of laser intensity signals in ICF. This
multi-faceted approach allows LPI-LLM to more precisely model the intricate dynamics and un-
certainties inherent in LPI data. By integrating these components, our framework achieves superior
adaptability and robustness in time-series forecasting for ICF applications, overcoming limitations
of previous methods in handling high-dimensional, volatile data scenarios typical in plasma physics.

5 CONCLUSION

Fusion energy stands as a pivotal pathway toward advancing human civilization to a Type I status
on the Kardashev scale (Kardashev, 1964). The key to realizing this potential lies in mastering In-
ertial Confinement Fusion, where understanding laser-plasma instabilities is paramount. To address
this challenge, we present LPI-LLM, a groundbreaking framework merging LLMs with reservoir
computing. Our approach not only provides a cost-effective solution but also emerges as a top-
tier contender in forecasting hot electron dynamics, offering invaluable insights for plasma scien-
tists in refining ICF designs. Beyond its immediate impact on ICF, employing LLMs for scientific
exploration holds promise for cross-domain applications, potentially catalyzing advancements in AI-
driven scientific endeavors.
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6 ETHICS

In our paper, which involves a new dataset, we will establish comprehensive ethical safeguards to
mitigate potential misuse and ensure responsible utilization, as outlined in the detailed protocols
in the final release of models and datasets. These protocols include strict usage guidelines, access
restrictions, integration of safety filters, and monitoring mechanisms. We conduct thorough risk
assessments to identify potential misuse scenarios, developing tailored mitigation strategies such as
robust data governance frameworks. Although not all research may require stringent safeguards,
we adhere to best practices, promoting ethical awareness encouraging researchers to consider the
broader impacts of their work and maintain detailed documentation for transparency and account-
ability. These efforts demonstrate our commitment to upholding the highest standards of ethical
conduct in scientific inquiry, aiming to safeguard the interests and privacy of all people involved.

7 REPRODUCIBILITY

LPI-LLM is implemented in PyTorch (Paszke et al., 2019). Experiments are conducted on two
NVIDIA A100-40GB GPUs. To guarantee reproducibility, we fully describe our approach in §2
and implementation details in Appendix §S2. Our full implementation of code, model weights, and
test split of the dataset are also submitted with this paper for reproduction, which can be accessed
via the anonymous link: https://anonymous.4open.science/r/LPI-LLM.
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Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3):127–149, 2009.

Wolfgang Maass. Liquid state machines: motivation, theory, and applications. Computability in
context: computation and logic in the real world, pp. 275–296, 2011.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelli-
gence. Nature, 616(7956):259–265, 2023.

Kohei Nakajima and Ingo Fischer. Reservoir computing. Springer, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

L. J. Perkins, R. Betti, K. N. LaFortune, and W. H. Williams. Shock ignition: A new approach to
high gain inertial confinement fusion on the national ignition facility. Physical Review Letters,
103:045004, 2009.

PB Radha, M Hohenberger, DH Edgell, JA Marozas, FJ Marshall, DT Michel, MJ Rosenberg,
W Seka, A Shvydky, TR Boehly, et al. Direct drive: Simulations and results from the national
ignition facility. Physics of Plasmas, 23(5):056305, 2016.

Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno Car-
valhais, and fnm Prabhat. Deep learning and process understanding for data-driven earth system
science. Nature, 566(7743):195–204, 2019.

Saed Rezayi, Zhengliang Liu, Zihao Wu, Chandra Dhakal, Bao Ge, Chen Zhen, Tianming Liu, and
Sheng Li. Agribert: Knowledge-infused agricultural language models for matching food and
nutrition. In IJCAI, 2022.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our ICLR 2025 submis-
sion: Inertial Confinement Fusion Forecasting via Large Language Models, organized as follows:

• §S1 contains Glossary.

• §S2 provides Implementation Details.

• §S3 reports more Quantitative Results with Runtime Analysis.

• §S4 shows more Qualitative Results.

• §S5 summarizes Impact of Prompt Descriptors
• §S6 analyzes Failure Case.

• §S7 conducts Confidence Analysis.

• §S8 discusses the Social Impact & Limitation of our research.

• §S9 supplies Data License for the methods we used for comparison.

S1 GLOSSARY

Given that this paper presents our work in the field of AI for Physics, it inevitably involves numerous
specialized terms originating from both physics and AI. To ensure that audiences from both domains
can benefit from our work, we have compiled key terms from each field, along with their definitions,
to facilitate readers’ understanding.

• Attention Mechanism: A technique in neural networks that allows the model to focus on
different parts of the input data with varying levels of importance when making predictions,
improving accuracy for tasks like translation and text summarization.

• Cross-Beam Energy Transfer (CBET): Exchange of energy between intersecting laser
beams in plasma, driven by scattering processes. It affects energy delivery in inertial con-
finement fusion, influencing implosion efficiency and uniformity.

• Embedding: A way to represent data like words or signals as numerical vectors in contin-
uous space, capturing relationships and enabling analysis.

• Entropy: A measure of uncertainty in a model’s predictions, with high entropy indicating
more randomness and low entropy indicating greater confidence.

• Few-shot Learning: The ability of AI models to perform tasks using only a small number
of examples, allowing efficient learning in situations with limited data.

• Fine-tuning: A process of adapting a pre-trained model to a specific task or dataset by
continuing its training, improving performance on specialized applications.

• Hard X-Rays (HXR): High-energy X-ray radiation emitted when hot electrons interact
with plasma. It is the primary diagnostics for hot electrons.

• Hot Electrons: Energetic electrons generated during laser-plasma interactions that can
degrade fusion performance.

• Inertial Confinement Fusion (ICF): A type of fusion energy research where fuel targets
are compressed by intense drivers to achieve fusion conditions.

• Large Language Models (LLMs): AI systems trained on vast datasets to understand and
generate human-like content, excelling in tasks such as answering questions and reasoning.

• Laser-Plasma Instabilities (LPI): Physical phenomena that occur when intense laser light
interacts with plasma, potentially disrupting the fusion process.

• Neural Network: A computing system inspired by biological brains, consisting of inter-
connected nodes organized in layers that can learn patterns from data through training.

• Particle-In-Cell (PIC) Simulation: A first-principle computational method for simulating
plasma physics by tracking particles and fields.
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• Reservoir Computing: A framework that processes input through a fixed, random network
(reservoir) to generate high-dimensional representations, useful for analyzing time-series
and dynamic data.

• Token: A fundamental unit of text or data processed by a model, such as a word, subword,
or character, used in tasks like text generation or analysis.

• Transformer: A neural network architecture that uses self-attention mechanisms to pro-
cess sequential data, enabling efficient handling of context and relationships in sequences.

• Two-Plasmon Decay (TPD): A plasma instability in which an electromagnetic wave splits
into two plasma waves, leading to the production of hot electrons. These electrons can
preheat the target, elevate the shell entropy, and reduce the efficiency of the implosion.

S2 IMPLEMENTATION DETAILS

The overall pipeline of LPI-LLM is shown in Fig. 3. Experiments are conducted on two NVIDIA
A100-40GB GPUs. For our approach, we keep all parameters of the LLMs and most of the SDC
frozen during the fine-tuning. Only parameters pertaining to the Prediction Head and partial Spatial
Encoder are trainable. The codes and dataset shall be publicly released upon paper acceptance.
• LPI-LLM is built from Llama 2 7B (Touvron et al., 2023a), Llama 3 8B (AI, 2024),
Gemma 2 9B (Team, 2024) and OLMo (Groeneveld et al., 2024) to construct reservoir without
tuning.

• Fusion-specific prompts structure the textual prompts with three descriptors: context descriptor,
task descriptor, and input descriptor. Each descriptor is initialized with specialized tokens for
indication (e.g., < |begin of text| >, < |eot id| >, < |start header id| >, etc) and input scalars
as context descriptions (e.g., <seq len>, <pred len>, <phase plate>, etc). These prompts are
subsequently concatenated and input into the projection layer from LLMs for feature embedding.

• Signal-digesting channels are composed of two components, temporal encoder and spatial en-
coder. The former one, which incorporates 24 Transformer layers and a linear layer, captures
temporal features over the input laser signal. This module has been pre-trained on the Large-scale
Open Time Series Archive (LOTSA) dataset (Woo et al., 2024), which covers nine varied domains
and compiles over 27 billion timestamped instances. The spatial decoder first uses a projection
block from LLMs to encode the context description of the input signal, followed by a leaner trans-
formation. Outputs are fed into a cross-attention layer, where Key and Value are derived from
the contextual embedding and query stems from temporal features, to generate the final spatial
features. We concatenate the spatial and temporal features before feeding them into a linear layer
to produce the final, augmented input signals.

• Confidence scanner has been described in §2.2.3 and it has no consumption of parameters. The
default number of tokens k used in confidence calculation is set to 50 in the implementation.

• Prediction head consists of two layers: a convolution layer with the kernel size of 32 and stride of
32, followed by batch normalization and GELU activation, connected to LLM, then fed to a linear
layer with the input dimension of 128 that produces the final prediction.

S3 QUANTITATIVE RESULTS

This section elaborates on a detailed analysis of quantitative results in Table S1, focusing specif-
ically on in-context learning (Brown et al., 2020) performance and a runtime assessment of the
models under investigation. Initially, we present supplementary in-context learning results obtained
directly from various LLMs (i.e., Llama 2 (Touvron et al., 2023b), Llama 3 (AI, 2024), and Claude
3 Opus (Anthropic, 2024)). These findings indicate that, even without an additional fine-tuning
process, the LLMs exhibit substantial proficiency in the in-context learning scheme within the ICF
task. For instance, Claude 3 Opus (Anthropic, 2024) achieves CAE scores of 12.19, 10.67, and 9.46
for the 1-shot, 2-shot, and 3-shot scenarios, respectively. It is amply demonstrated that the vanilla
LLM has the ability to make inferences and predictions on empirical scientific data even if it is not
fine-tuned at all. This underscores that our approach, leveraging these LLMs, represents a notable
advancement, particularly in forecasting the energy dynamics of hot electrons.

Furthermore, it is pertinent to emphasize the economic and operational advantages of our com-
putational approach over traditional physical experiments. Specifically, conducting a single ICF

18

Mingkai Chen
Highlight

Mingkai Chen
Highlight



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table S1: Quantitative results on LPI4AI test split for hot electron energy forecasting (see §3.1
for details). Train Time refers to training for the designated task, and Infer Time refers to the amount
of time used to predict one case. Note that 3-shot experiments could not be performed on Llama
series of models due to the limitation of the context window.

Method # Params Train Time Infer Time CAE↓ top-1 MAE↓ top-5 MAE↓
PIC Simulation - - > 10 hrs 2.88 0.20 0.13

LSTM 81.6K ∼5 mins < 1 s 5.82 0.35 0.35
Autoformer 120.4K ∼8 mins < 1 s 5.79 0.35 0.34

GPT4TS 1.5 B ∼22 mins ∼2 s 3.34 0.18 0.14
Time-LLM 7 B ∼20 mins ∼3 s 3.48 0.18 0.15

Llama 2 (1-Shot) 7 B - ∼3 s 471.22 15.80 14.92
Llama 2 (2-Shot) 7 B - ∼5 s 30.33 0.95 0.91
Llama 2 (1-Shot) 70 B - ∼7 s 20.63 0.64 0.63
Llama 2 (2-Shot) 70 B - ∼8 s 16.42 0.51 0.50
Llama 3 (1-Shot) 8 B - ∼4 s 583.14 17.70 16.97
Llama 3 (2-Shot) 8 B - ∼6 s 26.66 0.83 0.81
Llama 3 (1-Shot) 70 B - ∼14 s 72.35 1.02 1.15
Llama 3 (2-Shot) 70 B - ∼19 s 13.62 0.40 0.39

Claude 3 Opus (1-Shot) 137 B - ∼12 s 12.19 0.39 0.39
Claude 3 Opus (2-Shot) 137 B - ∼17 s 10.67 0.38 0.37
Claude 3 Opus (3-Shot) 137 B - ∼20 s 9.46 0.37 0.36

RCRK 106 K ∼2 mins < 1 s 4.31 0.28 0.22
HoGRC 394 K ∼4 mins < 1 s 4.20 0.25 0.22

NGRC 157 K ∼2 mins < 1 s 4.28 0.27 0.23
LPI-LLM (Gemma-2) 9 B ∼30 mins ∼4 s 2.04 0.14 0.12

LPI-LLM (OLMo) 7 B ∼30 mins ∼3 s 1.97 0.14 0.12
LPI-LLM (Llama-2) 7 B ∼30 mins ∼3 s 2.15 0.14 0.12
LPI-LLM (Llama-3) 8 B ∼30 mins ∼4 s 1.90 0.14 0.11

Figure S1: Predictions of LLMs with In-Context Learning. We plot Ground Truth and the predic-
tions of Claude 3 Opus (3-shot) and Llama 3 70B (2-shot) with the comparison of trained methods
LSTM and Autoformer. Y and X axes denote energy and time steps.

experiment typically incurs costs upwards of one million US dollars. Conversely, computational
simulations such as a 150µm PIC simulation (Cao et al., 2022) require extensive computational re-
sources, amounting to the utilization of 19,584 cores of CPU over a period of 10 hours. In stark
contrast, our model necessitates significantly less computational time and resources, requiring only
30 minutes on 2 NVIDIA A100 GPUs for training and only 3∼4 seconds for inference with much
higher predictive accuracy compared to the PIC simulation. This comparison not only underscores
the cost-effectiveness of our approach but also its efficiency and practicality in other scientific ap-
plications where computational resource constraints are a critical factor.

S4 MORE QUALITATIVE RESULT

This section expands to include more qualitative results that help to understand the capabilities and
effectiveness of this model. Initially, we release all visualized prediction results of our model LPI-
LLM on test split of our dataset LPI4AI in Fig. S2. From these qualitative results, it can be
found that our model achieves accurate predictions on all unseen data, especially conforming to the
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Figure S2: Visualization of hot electron prediction in test split. We plot Ground Truth and the
predictions of Ours, Time-LLM, LSTM and Autoformer. Y and X axes denote energy and time
steps, respectively.

temporal and spatial characteristics of the predicted targets, which is crucial for physicists to apply
our model as a tool in the design of real-world ICF shots.

Recall that we describe in §S3, the direct prediction of ICF tasks by vanilla LLM use in-context
learning method without fine-tuning on our data is not as good as fine-tuned methods in terms of
the quantitative value of metric, but it can in fact predict more meaningful patterns than traditional
methods such as LSTM (Hochreiter & Schmidhuber, 1997) and Autoformer (Wu et al., 2021). As
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illustrated in Figure S1, the LLM without fine-tune can infer approximate predictions with reference
to the 1 to 3 examples provided, as compared to LSTM (Hochreiter & Schmidhuber, 1997) and
Autoformer (Wu et al., 2021) which can only predict straight lines close to 0 with patterns. This
proves that the vanilla LLMs themselves already contain the capability to infer specific empirical
scientific data, which is the core reason we chose LLMs as the reservoir of our LPI-LLM.

S5 IMPACT OF PROMPT DESCRIPTORS

Table S2: A full set of ablative studies of
Fusion-specific Prompt on val split.

Descriptors CAE↓
BASELINE 2.01
w/ Context Descriptor 1.52
w/ Task Descriptor 1.49
w/ Input Descriptor 1.58
w/ Context + Task Descriptors 1.46
w/ Context + Input Descriptors 1.34
w/ Task + Input Descriptors 1.33
OURS (all three) 1.19

To assess the effects of individual and combined
prompt descriptors (context, task, and input), futher
experiments in addtion to those present in Table 2b
were conducted to evaluate performance with each
individual descriptors and pairwise combinations.
As present in Table S2, the results showed that all
individual descriptors significantly improved base-
line from 2.01 in terms of CAE. The task descrip-
tor achieved the best individual performance with a
CAE of 1.49, closely followed by the context de-
scriptor at 1.52. The input descriptor, though slightly
less impactful alone, still provided notable improve-
ment with a CAE of 1.58.

Pairwise combinations demonstrated synergistic ef-
fects, with context + input and task + input achieving

CAE scores of 1.34 and 1.33, respectively, outperforming single-descriptor setups. The combination
of context + task yielded a CAE of 1.46, showing balanced improvement. The full integration of
all three descriptors (context, task, and input) resulted in the best performance, with a CAE of 1.19.
These findings highlight the complementary nature of the descriptors, with the input descriptor play-
ing a crucial role when paired with others, and the fusion-specific prompt design proving essential
for optimal system performance.

S6 FAILURE CASE ANALYSIS

Figure S3: The Qualitative result of Shot
80937. We plot Input Laser Intensity, Ground
Truth and Prediction. Y axis denotes laser in-
tensity / hot electron energy, and X axis de-
notes time step.

In this section, we examine a significant outlier
with the largest error forecasts generated by the
LPI-LLM on the test split. This particular
instance serves as a critical case study for un-
derstanding the limitations and challenges faced
by our model. Fig. S3 illustrates that the shot
markedly deviates from the typical scenarios. No-
tably, this shot exhibits an exceptionally low peak
hot electron energy, registering less than 0.15,
whereas the majority of other cases yield values
ranging between 0.25 and 0.5 under a comparable
input laser profile. This anomaly categorizes this
shot as an out-of-distribution (OOD) instance. The
limited volume of training data available for LPI-
LLM is a plausible explanation for the model’s di-
minished performance on this OOD data. In sce-
narios where training data is sparse, the model’s
capability to generalize to new, especially atypical,
data points is inherently restricted. Consequently,
this case highlights the importance of enhancing the dataset’s diversity and volume for ICF tasks.
We hope the community can share more data points to improve and enlarge LPI4AI dataset (§3.1)
together.

S7 CONFIDENCE ANALYSIS
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Figure S4: Qualitative results of confidence score and prediction error. Comparison between our
LPI-LLM (first row) and Time-LLM (second row).

Figure S5: Qualitative results of correlation
between confidence scores and errors of our
model’s prediction.

In this section, we provide a comprehensive dis-
cussion and analysis of the confidence scores asso-
ciated with the LPI-LLM. As elaborated in §2.2.3,
our confidence scores offer per-step evaluations,
thereby aiding physicists to gain deeper insights
into the reliability across various segments of pre-
dictions. This functionality is particularly vital for
understanding the model’s performance dynamics
within specific contexts of its predictive output.

To visually represent the relationship between pre-
diction errors and confidence scores, Figure S4
compares the performance of our LPI-LLM with
that of the baseline Time-LLM model. The fig-
ure shows the prediction errors and correspond-
ing confidence scores for four test sets, revealing
a clear pattern: confidence scores decline noticeably during intervals where errors are higher. For
LPI-LLM, this decline is smoother and more localized, reflecting a consistent ability to adapt to
challenging phases. In contrast, the baseline Time-LLM exhibits a more volatile confidence pro-
file, with sharper fluctuations and a pronounced drop during critical peak energy periods. This
suggests that Time-LLM struggles to maintain reliable predictions during high-stakes moments,
whereas LPI-LLM demonstrates greater stability. This difference underscores several advantages
of our approach. By integrating domain-specific enhancements, such as a tailored prompt structure
and signal-digesting channels designed to handle the temporal and spatial complexities of ICF data,
LPI-LLM maintains a more robust performance under pressure. In comparison, the baseline lacks
these refinements, resulting in less stable confidence levels and weaker reliability when precise pre-
dictions matter most. Overall, Figure S4 highlights the value of our model’s confidence scores not
just as uncertainty estimates, but as a diagnostic tool for pinpointing intervals where predictions may
require closer scrutiny—an essential capability for high-stakes predictive tasks.

Building on this analysis, Figure S5 quantifies the observed relationship between confidence scores
and prediction errors, demonstrating a clear negative correlation across the test split. Lower con-
fidence scores consistently coincide with higher prediction errors, validating the reliability of the
LPI-LLM’s confidence scores as uncertainty estimates for the ICF task. This underscores the impor-
tance of confidence scores as a diagnostic tool, highlighting intervals where the model’s predictions
are potentially less reliable. By mapping these confidence scores to the corresponding prediction
errors, physicists can identify specific phases within the prediction and temporal sequence where
the model’s forecasting should be interpreted with caution. This capability not only enhances the
trustworthiness of the LPI-LLM but also provides critical feedback for further refinement of the
model in the future research.

Moreover, the integration of confidence scores into the model’s predictive framework offers a robust
mechanism for assessing the model’s performance in real-time applications. By continuously mon-
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itoring these scores, physicists can make informed decisions about the reliability of the predictions,
ensuring that critical assessments and subsequent actions are based on the most credible forecasting.

S8 SOCIAL IMPACTS AND LIMITATIONS

The introduction of LPI-LLM represents a significant advancement in integrating LLMs with classi-
cal reservoir computing paradigms to enhance predictive capabilities in Inertial Confinement Fusion.
This novel approach not only meets but exceeds several existing state-of-the-art models in perfor-
mance benchmarks. From a societal perspective, the implications of LPI-LLM are profoundly ben-
eficial, as our approach provides a valuable tool for advancing our understanding and capabilities
in harnessing fusion energy — a potential key to long-term sustainable energy solutions. How-
ever, it is imperative to acknowledge and critically assess the potential drawbacks associated with
this technology. Similar to other predictive models, LPI-LLM faces challenges when dealing with
out-of-distribution data or scenarios that have not been previously encountered. This limitation un-
derscores the need for ongoing research and refinement, particularly in its application to real-world
ICF scenarios where unpredictable behaviors might emerge. Therefore, while the model demon-
strates promising applications, its deployment in practical settings must be approached with caution,
ensuring continuous evaluation and adaptation to maintain reliability and safety in its prediction.

S9 LICENSES FOR EXISTING ASSETS

All the methods we used for comparison are publicly available for academic usage. PIC Simulation
is implemented based on the reproducing by osiris-code/osiris with AGPL-3.0 license.
We use huggingface/transformers for the implementations of Autoformer (Wu et al.,
2021) under Apache-2.0, Llama 2 (Touvron et al., 2023b) under Llama 2 Community License,
Llama 3 (AI, 2024) under Llama 3 Community License, Gemma 2 (Team, 2024) under Gemma
Terms of Use and OLMo (Groeneveld et al., 2024) under Apache-2.0. We used the official
repositories DAMO-DI-ML/NeurIPS2023-One-Fits-All (GPT4TS (Zhou et al., 2023)),
KimMeen/Time-LLM (Jin et al., 2023), rubenohana/Reservoir-computing-kernels
(RCRK (Dong et al., 2020)), CsnowyLstar/HoGRC (Li et al., 2024) and
quantinfo/ng-rc-paper-code (NGRC (Gauthier et al., 2021)) for our comparison
experiments, where Time-LLM (Jin et al., 2023) is licensed under Apache-2.0, HoGRC (Li et al.,
2024) and NGRC (Gauthier et al., 2021) are licensed under MIT.
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