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ABSTRACT

We develop a framework to quantify predictive uncertainty in survival analysis,
providing a reliable lower predictive bound (LPB) for the true, unknown patient
survival time. Recently, conformal prediction has been used to construct such
valid LPBs for type-I right-censored data, with the guarantee that the bound holds
with high probability. Crucially, under the type-I setting, the censoring time is
observed for all data points. As such, informative LPBs can be constructed by
framing the calibration as an estimation task with covariate shift, relying on the
conditionally independent censoring assumption. This paper expands the confor-
mal toolbox for survival analysis, with the goal of handling the ubiquitous general
right-censored setting, in which either the censoring or survival time is observed,
but not both. The key challenge here is that the calibration cannot be directly
formulated as a covariate shift problem anymore. Yet, we show how to construct
LPBs with distribution-free finite-sample guarantees, under the same assumptions
as conformal approaches for type-I censored data. Experiments demonstrate the
informativeness and validity of our methods in simulated settings and showcase
their practical utility using several real-world datasets.

1 INTRODUCTION

Survival analysis is essential in numerous fields, including medicine (Cole & Hudgens, 2010; Selvin,
2008), engineering (Ma & Krings, 2008), and social sciences (Cloyes et al., 2010). The primary
objective is to predict the survival time T—the time-to-event such as death, failure, or relapse—
based on covariates X that may include clinical markers, machine specifications, or sociological
factors. The underlying challenge in survival analysis is that T is not observed for all subjects due
to censoring. In particular, in this paper, we focus on right-censored data, the most common setting
in survival analysis, where the survival event may not occur by the end of the follow-up period. This
means that for some subjects X , the true survival time T is obscured by the censoring time C. As
such, the observed censored survival time is given by T̃ = min(T,C).

To formalize the above data generation process, we assume the triplets (Xi, Ti, Ci), i = 1, . . . , N ,
are sampled i.i.d. from PX,T,C . The observed data, however, include censored observations, where
we consider two possible forms of right-censored survival data.

type-I right censoring: Here, we assume that censoring time C is observed for all subjects, which
typically occurs in studies with a fixed duration, where all subjects are followed until the study ends.
Under this setting, the observed dataset is of the form Dtype-I = {(Xi, T̃i, Ci)}Ni=1.

General right censoring: Unlike the type-I setting, in this more general case, we observe either
C or T for each subject, but not both. For example, in situations where the censorship time is
obscured by early mortality (Candès et al., 2023; Ahmad et al., 2017; Chandrashekar et al., 2014).
Concretely, denote by ei = I{Ti < Ci} a binary indicator variable that gets the value 1 if Ti is
observed; that is, T̃ = T when e = 1 and T̃ = C otherwise. The observed dataset is then given by
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Dgeneral = {(Xi, T̃i, ei)}Ni=1. Due to its greater generality, this setup is applicable for many survival
analysis problems in biomedical research (Klein, 2003; Cole & Hudgens, 2010) and other fields.
Thus, it is the focus of this work.

Given the observed censored data, the learning task is to estimate the distribution of T | X . How-
ever, since we do not fully observe the survival time T for all subjects, we need to impose further
assumptions to make the learning task feasible. Indeed, a common assumption in survival analysis is
that, conditional on the covariates X , the survival time T and the censoring time C are independent.
Formally, this is expressed as follows.
Assumption 1.1 (Conditionally Independent Censoring (Kalbfleisch & Prentice, 2011)).

C ⊥ T | X.

Building on the above assumption and related ones, various machine learning approaches have been
successful in estimating the distribution of T |X (Cox, 1992; Wei, 1992; Lee et al., 2018; Nagpal
et al., 2021b; Katzman et al., 2018). Despite their notable successes, these methods often lack
reliability guarantees for the resulting predictions. This is attributed either to the opaque nature
of modern deep learning algorithms or to the simplified modeling assumptions of more traditional
statistical methods. Yet, such guarantees are of great importance given the harsh consequences
of making erroneous predictions in high-stakes domains, such as healthcare (Navarro et al., 2021;
Obermeyer et al., 2019).

1.1 THE NEED FOR RELIABLE LOWER PREDICTIVE BOUNDS FOR SURVIVAL ANALYSIS

In response to this challenge, we aim to construct a lower predictive bound (LPB) on the survival
time, supporting any given predictive model with distribution-free finite-sample guarantees (Vovk
et al., 2005; Vovk, 2012; Tibshirani et al., 2019; Romano et al., 2019; Candès et al., 2023). Our
goal is to construct an LPB function L̂(·) such that, for a new test instance Xtest with an unknown
true survival time Ttest, the event L̂(Xtest) ≤ Ttest occurs with at least 1− α probability. We refer to
the probability of this event as the coverage rate of the LPB. For example, if the LPB satisfies the
coverage property at level (1− α) = 0.9, then L̂(Xtest) is guaranteed to be lower than the unknown
Ttest at least 90% of the time. To further enhance reliability, we seek to obtain a coverage guarantee
that holds conditional on the observed dataset, in a manner similar to Gui et al. (2024); Park et al.
(2019); Bates et al. (2021); Angelopoulos et al. (2021). To this end, let δ ∈ (0, 1) be a tolerance
level that accounts for the randomness in the realization of the dataset, and define the probably
approximately correct (PAC)-type LPB as follows.

Definition 1.1. Let (Xi, Ti, Ci), i = 1, . . . , N be i.i.d. samples from PX,T,C , with L̂ being a
function of the observed dataset D = Dgeneral = {(Xi, T̃i, ei)

N
i=1}, where T̃i = min(Ti, Ci) and

ei = I [Ti < Ci]. L̂ is a PAC-type LPB at level α ∈ (0, 1) with tolerance δ ∈ (0, 1) if, with
probability at least 1− δ over the realization of D,

P
(
Ttest ≥ L̂(Xtest) | D

)
≥ 1− α,

where the probability is taken with respect to a new data point (Xtest, Ttest) ∼ PX,T .

Recently, conformal prediction methods have been applied to construct valid LPBs for type-I right-
censored data. The key idea is to use holdout samples to calibrate the predictions of a survival analy-
sis model, ensuring the desired coverage level is obtained for new test points. Under the assumption
of conditionally independent censoring, Candès et al. (2023) introduced a conformal method that
constructs valid and informative LPBs in finite samples. This approach was further refined by Gui
et al. (2024), offering more informative LPBs with PAC-type guarantees. Both methods rely on the
availability of the censoring time C for all subjects, which is used to discard early-censored sam-
ples. Intuitively, discarding such samples brings the observed time T̃ closer to the true event time
T , yielding more accurate LPBs. Specifically, leveraging Assumption 1.1, Candès et al. (2023);
Gui et al. (2024) reformulate the LPB construction as an estimation problem under covariate shift.
Notably, the above calibration methods produce LPBs that are doubly robust, meaning they remain
valid if either the predictive model or the estimation of the covariate shift likelihood ratio is accurate.

In the general right-censored setting, however, the literature is less developed, and existing methods
lack such strong validity guarantees. This is primarily because the censoring time C is not available
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for all subjects, making the calibration process more challenging. Qi et al. (2024) suggest imputing
the value of T with a ‘best guess’ to calibrate the estimated survival distribution. Naturally, the va-
lidity of the method is affected by the quality of the imputation, and our experiments show that their
method often fails to achieve the desired coverage in finite-sample. Concurrently with our work, Qin
et al. (2024) and Meixide et al. (2024) proposed distribution-free methods for constructing LPBs in
the general right-censored setting, but their bootstrap-based approaches rely solely on asymptotic
validity under certain regularity conditions. As a result, finite-sample calibration remains elusive.
This is especially concerning because small sample sizes are common in biomedical and psycho-
logical research, often undermining the validity and reproducibility of statistical findings (Errington
et al., 2021; Nosek et al., 2022; Button et al., 2013; Nüesch et al., 2010).

1.2 OUR CONTRIBUTIONS

We build on the foundations of Gui et al. (2024) and propose the first method for constructing
finite-sample valid LPBs for general right-censored survival analysis data. To produce informative
LPBs, we leverage the event indicator e and introduce a novel approach to selectively discard certain
censored examples in a data-driven manner, bringing the censored event time T̃ closer to the true
event time T . Crucially, although the calibration cannot be directly formulated as a covariate shift
problem, our approach forms doubly robust, valid LPBs under the same conditional independence
assumption 1.1 of conformal methods for the type-I setting. Additionally, unlike Meixide et al.
(2024); Qi et al. (2024); Qin et al. (2024), our methods’ validity relies on accurate estimation of the
fully observed e, rather than the partially observed T or C. We validate our theory and assess the
applicability of the proposed methods using synthetic data, and further demonstrate their effective-
ness on real breast cancer data. A Python implementation of our methods is provided in our github
repository.

2 BACKGROUND AND RELATED WORK

Denote by qτ (x) the true τ -th quantile of T | X = x, and define the oracle LPB for Ttest as the α-th
conditional quantile function, i.e., L(Xtest;α) = qα(Xtest). While this oracle LPB is guaranteed to
attain 1 − α coverage by definition, in practice we do not have access to the true qα(x), rendering
this approach infeasible. As a way out, one could use survival analysis tools to estimate the con-
ditional quantile function, which we denote by q̂τ (x), and form a heuristic LPB for Ttest by setting
L̂(Xtest;α) = q̂α(Xtest). This heuristic approach, however, may not attain the desired coverage,
unless the quantile estimates are accurate.

In this paper, we alleviate this issue by building on conformal prediction—a general framework to
calibrate the estimated LPB. The appeal of conformal prediction is that it allows us to work with any
predictive model and guarantee the desired 1−α coverage at test time. The key idea is to modify the
LPB function L̂(x; τ) by rigorously tuning a hyperparameter τ ∈ R using holdout calibration data
Ical to attain the desired coverage rate. We denote the tuned hyper-parameter as τ̂ , and the resulting
LPB as L̂(X; τ̂).

2.1 FIRST STEPS: NAIVE CONFORMALIZED SURVIVAL ANALYSIS

Before presenting our method, we first outline a naive conformal prediction approach for tuning τ .
In addition to using this approach as a baseline method in our experiments, it introduces the core
principles of LPB calibration and motivates the need for more powerful solutions.

The key observation here is that T̃ ≤ T by definition, and therefore a valid LPB for T̃ is also a
valid (but conservative) LPB for T . As such, a naive approach to tune τ̂ is to discard the information
provided by the event indicator ei and construct a valid LPB for T̃ using the calibration points
{(Xi, T̃i)}i∈Ical . In more detail, we define the LPB function as L̂(X; τ) = q̂τ (X), which is tightly
connected to the methods by Chernozhukov et al. (2021); Gui et al. (2024).1 Then, we formulate
a (conservative) empirical estimator of the true miscoverage rate α(τ) = P(T < q̂τ (X)) for each

1There are other possible design choices for L̂(X; τ), such as the conformalized quantile regression (CQR)
approach (Romano et al., 2019) used by Candès et al. (2023).
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choice of q̂τ (·), τ ∈ [0, 1], defined as follows:

α̂naive(τ) =
1

|Ical|
∑
i∈Ical

I
{
T̃i < q̂τ (Xi)

}
. (1)

Above, we use the indicator function I(·) to count the events where T̃i < q̂τ (Xi), and so α̂naive(τ)

is an unbiased estimator of αnaive(τ) = P(T̃ < q̂τ (X)). Since T̃ ≤ T we get that αnaive(τ) ≥ α(τ),
implying that the empirical quantity α̂naive(τ) is anticipated to overestimate the miscoverage rate, on
average. Finally, we define τ̂naive as the smallest value of τ for which α̂naive(τ) meets the user-defined
miscoverage level α, i.e.,

τ̂naive = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂naive(τ

′) ≤ α
}
. (2)

In turn, the resulting calibrated LPB is given by L̂(X; τ̂naive) = q̂τ̂naive(X). Notably, this L̂(X; τ̂naive)

is a PAC-type LPB on T̃ , and thus also a PAC-type LPB on T , since T̃ ≤ T . While this result is not
novel, for completeness, we present Theorem A.1 in the Appendix, which proves its validity.

2.2 UTILIZING TYPE-I CENSORED DATA FOR POWERFUL CALIBRATION

Recall that α̂naive from Equation 1 is an overly conservative miscoverage estimator, particularly
when early censoring occurs. This is because α̂naive counts the events in which either Ci < q̂τ (Xi)
or Ti < q̂τ (Xi) hold. To form a less conservative estimator, Gui et al. (2024) suggest discarding
the samples for which Ci < q̂τ (Xi), a strategy that is inline with Candès et al. (2023). Under
Assumption 1.1, it can be shown that such a selection rule induces a covariate shift. In turn, Gui
et al. (2024) introduced the following miscoverage estimator:

α̂type-I(τ) =

∑
i∈Ical

ŵtype-I
τ (Xi) · I{q̂τ (Xi) ≤ Ci} · I{T̃i < q̂τ (Xi)}∑
i∈Ical

ŵtype-I
τ (Xi) · I{q̂τ (Xi) ≤ Ci}

,

where the weights ŵtype-I
τ (x), approximating 1/P (q̂τ (X) ≤ C | X = x), rigorously account for the

covariate shift induced by the selection rule I{q̂τ (Xi) ≤ Ci}. Notably, α̂type-I(τ) differs from
α̂naive(τ) from Equation 1 in that the latter uses all the samples for calibration, i.e., the selection
rule indicator is always set to 1. Armed with α̂type-I(τ), the hyper-parameter τ̂type-I can be tuned
analogously to Equation 2. Finally, the LPB of a new test point is given by L̂(X; τ̂type-I) = q̂τ̂type-I(X).

The advantage of the estimator α̂type-I(τ) is that it is mostly less conservative compared to α̂naive(τ),
resulting in more informative LPBs. However, for general right-censored data, using α̂type-I(τ) is
not feasible as the censorship time Ci is not available for some subjects. Our work addresses this
knowledge gap, showing how to rigorously utilize the event indicator ei = I{Ti < Ci} to construct
not only valid but also useful LPBs, as detailed in the next section.

3 PROPOSED METHODS

An intuitive adaptation of the miscoverage estimator proposed by Gui et al. (2024) to general right-
censored data would be to examine only calibration points for which ei = 1. The challenge with this
selection rule is that the distribution shift it induces cannot be formulated as a covariate shift. This is
because, even under Assumption 1.1, we expect statistical dependence between T and e conditional
on X . Furthermore, without careful adjustments, estimating the miscoverage using only uncensored
subjects jeopardizes the LPB’s validity as the survival times of uncensored subjects are generally
lower than the ones of the general population.

Nevertheless, in this section, we show that with a proper weighting scheme, the above set of ideas can
be formalized into a valid calibration method. Concretely, we propose two calibration techniques.
Our first method, called focused calibration, only uses uncensored subjects for LPB construction.
We prove the validity of this method and show that, while it can lead to more informative LPBs than
the naive approach, it remains conservative to some extent. This observation drives the proposal
of our second approach, which builds upon and further improves the first. Our key idea is to reduce
conservativeness by including certain censored examples—in addition to the uncensored subjects—
when calibrating the LPB. We term this method fused calibration, as it utilizes both censored and
uncensored samples while maintaining the theoretical guarantees.
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3.1 FOCUSED CALIBRATION

In what follows, we formally introduce our focused calibration method, then provide an intuitive
explanation for its correctness, and finally characterize the condition under which it leads to LPBs
that are more informative than those produced by the naive method. Following Gui et al. (2024),
we use the LPB function L̂(X; τ) = q̂τ (X), but we tune the hyper-parameter τ by utilizing the
special structure of the general right-censored setting.

In more detail, we calibrate the LPB using samples with ei = 1, i.e., those for which T̃i = Ti. With
this selection rule in place, we define the resulting miscoverage estimator as

α̂focus(τ) =

∑
i∈Ical

ŵ(Xi) · I{ei = 1} · I{T̃i < q̂τ (Xi)}∑
i∈Ical

ŵ(Xi) · I{ei = 1}
, (3)

where the weights ŵ(x) approximate 1/P (e = 1 | X = x). Later, we explain the rationale behind
the use of ŵ(x) in detail. For now, we remark that: (i) the estimation of P(e = 1 | X = x)
can be done by fitting any binary classifier to the training pairs (X, e); and (ii) in Section 3.3, we
characterize the effect of the estimation error on the resulting coverage.

Next, the tuned τ̂focus is defined as the smallest τ such that α̂focus(τ) passes the user-specified mis-
coverage level α, i.e.

τ̂focus = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂focus(τ

′) ≤ α
}
.

Finally, the LPB for a new test point is given by L(Xtest; τ̂focus) = q̂τ̂focus(Xtest). For ease of reference,
the algorithm summarizing our focused calibration procedure is in Appendix B.3.

Building upon the foundations of Gui et al. (2024), we establish a double robustness result for the
validity of our method. This result implies that the LPBs are approximately valid if either (i) the
weights ŵ(x) are well approximated; or (ii) the estimated quantiles q̂τ (x), τ ∈ (0, 1) of the condi-
tional distribution T | X are accurate. Additionally, if (ii) is satisfied, the LPBs are approximately
valid conditional on Xtest. The theorems formalizing the validity of the focused method is post-
poned to Section 3.3, as this procedure is actually a specific instance of the fused calibration
method, which is presented in the next section.

Having presented the algorithm, we turn to discuss why the use of the oracle weight w(x) =
1/P(e = 1 | X = x), estimated by ŵ(x), conservatively accounts for the distribution shift in-
duced by the selection rule from Equation 3. Our analysis follows Gui et al. (2024), providing
an upper bound for the true miscoverage rate α(τ) obtained by the quantile estimator q̂τ for some
τ ∈ (0, 1):

α(τ) = P
(
T < q̂τ (X)

)
= E [P(T < q̂τ (X) | X)] (4)

= E [P(T < q̂τ (X) | X) · P(e = 1 | X) · w(X)]

≤ E [P(T < q̂τ (X), e = 1 | X) · w(X)] (5)
= E [I {T < q̂τ (X), e = 1} · w(X)] (6)

= E
[
I{T̃ < q̂τ (X)} · I {e = 1} · w(X)

]
= αfocus(τ). (7)

Above, steps 4 and 6 hold by the tower property, and the inequality in step 5 is due to Lemma
B.1, provided in the Appendix. Importantly, the above derivation shows that, while we do not
have direct access to the true α(τ), we can upper bound it using a weighted average of observed
quantities, as revealed by step 7. In turn, the miscoverage upper bound αfocus(τ) provides the basis
for constructing its empirical estimator α̂focus(τ) from Equation 3, with the denominator serving to
normalize the weighted average.

While being conservative, our experiments show that the LPBs derived from the focused method
tend to be more informative than those produced by the naive approach from Section 2.1. To
better understand when this is the case, we now present a condition under which αfocus(τ) is less
conservative than αnaive(τ).
Proposition 3.1. Under Assumption 1.1, the relation αfocus(τ) < αnaive(τ) holds when

P(T̃ < q̂τ (X) | X = x, e = 1) < P(T̃ < q̂τ (X) | X = x, e = 0) ∀x ∈ X . (8)
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The proof is given in Appendix B.2. To highlight the practical implications of the above proposition,
we recall the definition of T̃ = min(T,C) and e, and re-write Condition 8 as follows:

P(T < q̂τ (X) | X = x, e = 1) < P(C < q̂τ (X) | X = x, e = 0) ∀x ∈ X .
As such, our focused method is anticipated to outperform the naive approach when the proba-
bility of early survival time for subjects with e = 1 is smaller than the probability of early censorship
time for subjects with e = 0. Such a phenomenon can occur in medical trials, where early censor-
ing is prevalent due to factors such as non-compliance (Zhou et al., 2020), withdrawal of consent
(Wilson et al., 2021), and loss to follow-up (Fontana et al., 2018; Gill et al., 2018; Monfared et al.,
2021).

With that said, Proposition 3.1 also reveals that the naive approach from Section 2.1 may produce
tighter LPBs than the focused method. Specifically, this occurs for samples that do not satisfy
the inequality in Equation 8. This insight naturally brings the idea of detecting such samples and
leveraging them to mitigate the conservativeness of α̂focus(τ). Indeed, this is the key principle behind
our fused calibration method, described hereafter.

3.2 FUSED CALIBRATION

Following the above discussion, we show how to fuse the naive calibration approach with the
focused calibration method to enhance statistical efficiency, making better use of available data.
In addition to using all the uncensored points for calibration, we aim to selectively include in the
calibration set the censored subjects that violate the inequality in Equation 8. The oracle selection
criterion is thus formally stated as

sτ (x) =

{
1, if P(T̃ < q̂τ (X) | X = x, e = 0) < P(T̃ < q̂τ (X) | X = x, e = 1),

0, otherwise.

Observe that we cannot compute sτ (x) in practice as we do not have access to the conditional
distribution T̃ | X, e. However, this indicator sτ (x) can be estimated using a single classifier, as
follows. First, train a binary classifier with (Xi, ei) as input, predicting the label I{T̃i < q̂τ (Xi)}.
Then, use this classifier to compare the estimated probabilities of the label given (X = x, e = 0)
and (X = x, e = 1). We refer to the fitted estimator of sτ (x) as ŝτ (x). Crucially, inaccurate
estimation of ŝτ does not impact the validity of the calibration procedure, however it can affect the
gain in statistical efficiency.

With ŝτ (x) in place, we formulate the fused selection rule, which uses the calibration point (Xi, T̃i)
for miscoverage estimation if either ei = 1 or ŝτ (Xi) = 1:

ζτ (Xi, ei) =

{
1, if ŝτ (Xi) = 1,

ei, otherwise.
(9)

Next, the fused miscoverage estimator is formulated as follows:

α̂fused(τ) =

∑
i∈Ical

ŵτ (Xi) · I{ζτ (Xi, ei) = 1} · I{T̃i < q̂τ (Xi)}∑
i∈Ical

ŵτ (Xi) · I{ζτ (Xi, ei) = 1}
,

where the weights ŵτ (x) approximate wτ (x) = 1/P(ζτ (x, e) = 1 | X = x). We note that since
ŝτ (Xi) is deterministic given Xi, we have that

wτ (Xi) =

{
1, if ŝτ (Xi) = 1,

1/P(ei = 1 | Xi), otherwise.

Continuing with the same rationale as in focused calibration, we define τ̂fused as

τ̂fused = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂fused(τ

′) ≤ α
}
,

and set the LPB for a new test point as L̂(Xtest; τ̂fused) = q̂τ̂fused(Xtest).

For ease of reference, the fused calibration method is presented in Algorithm 3. Notably, we use
training data (independent from the calibration points) to fit the estimated quantile functions q̂τ (x),
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the classifiers ŝτ (x), and the weights ŵτ (x); these models serve as inputs to the fused calibration
algorithm.

We remark that Algorithm 3 reduces to the focused approach with the choice of ŝτ (x) := 0 for
all x, and to the naive approach when ŝτ (x) := 1 for all x. For this reason, we argue that the
fused method can be viewed as an interpolation between two valid calibration strategies, with
the optimal interpolation hyperparameter being estimated by ŝτ (x). Indeed, our theory shows that
the fused method is valid regardless of how accurately the model ŝτ (x) estimates sτ (x). This is
because any selection rule, determined by the model ŝτ (x), yields a conservative estimate of the
miscoverage; see Appendix D.1 as well as the formal results given in the next section. Although
validity is maintained, we may lose power when using an inaccurate ŝτ (x). To see this, imagine
an extreme case where for any τ the focused calibration approach is less conservative than the
naive approach, i.e., sτ (x) = 0 for all x, and yet our estimate ŝτ (x) always predicts the (incorrect)
value 1. In such a case, the fused method reduces to the naive approach, resulting in power loss,
but maintaining validity.

3.3 THEORETICAL GUARANTEES

Our theoretical framework builds on the work by Gui et al. (2024) and adapts their double robustness
result to our proposed methods for general right-censored data. Concretely, our first validity result
states that if the weights are well-estimated, i.e., ŵτ (x) ≈ wτ (x), then the resulting coverage is
approximately higher than 1 − α conditional on the training data Dtr = {(Xi, T̃i, ei)}i∈Itr and
the holdout calibration data Dcal = {(Xi, T̃i, ei)}i∈Ical , where D = Dtr ∪ Dcal. In particular, this
guarantee holds even when the estimated conditional quantiles q̂τ are inaccurate. Further, following
Theorem 3.1 below, we can see that the guaranteed coverage rate gets closer to the desired level as
(i) ŵτ gets closer to wτ ; and (ii) the size of the calibration set |Ical| increases.
Theorem 3.1 (Approximate calibration with accurate weights). Fix any α, δ ∈ (0, 1). Given that
q̂τ (x) is non-decreasing and continuous in τ , and that there exists some constant γ̂τ > 0 such that
ŵτ (x) ≤ γ̂τ for PX -almost all x. Under Assumption 1.1, with probability at least 1 − δ over the
draw of D, the LPB L̂ produced by either Algorithm 2 or by Algorithm 3 satisfies

P
[
T ≥ L̂(X)|D

]
≥ 1− α−∆w,

where

∆w := sup
τ∈[0,1]

E
[∣∣∣∣ ŵτ (Xi)

wτ (Xi)πτ
− 1

∣∣∣∣ ∣∣∣∣Dtr

]
+

√√√√1 +
γ̂2
τ

π2
τ
+max

(
1,

γ̂2
τ

π2
τ
− 1
)2

0.4 |Ical|
ln

1

δ

 ,

and πτ := E
[
ŵτ (X)
wτ (X) |Dtr

]
.

The proof is given in Appendix D.2.

The next result states a stronger, approximated conditional coverage guarantee that holds even when
the weights are inaccurate. In essence, this result holds under a stronger assumption that the condi-
tional quantiles are well-estimated, i.e., q̂τ (x) ≈ qτ (x). This is stated formally in assumption (b).
Before formalizing this intuition, we define the smallest estimated quantile level to bound T with
probability at least β, as

τ(β) = sup {τ ′ ∈ [0, 1] : P (T < q̂τ ′(X) | Dtr) ≤ β} .
Theorem 3.2 (Approximate calibration with accurate conditional quantiles). Assume the same con-
ditions as Theorem 3.1 and assume further that the distribution of T | X is continuous and its
density is upper bounded by a constant B > 0, and that there exists a constant r > 0 such that

(a) For PX -almost all x: supξ∈[τ(α),τ(α+r)+ψ] wξ(x) ≤ γ and supξ∈[τ(α),τ(α+r)+ψ] ŵξ(x) ≤
γ̂ for some constants γ, γ̂, ψ ≥ 0

(b) supβ∈[α,α+r] supx∈X

{
max(B, 1)|q̂τ(β)(x)− qβ(x)|+ γ̂γ

√
log(1/δ)
0.4|Ical|

}
≤ r, where qβ(x)

is the β-quantile of the distribution of T | X = x.
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Then, under Assumption 1.1, with probability at least 1− δ over the draw of D, the LPB L̂ produced
by either Algorithm 2 or by Algorithm 3 satisfies that for PX -almost all x,

P
[
T ≥ L̂(X)|D, X = x

]
≥ 1− α−∆q,

where ∆q = supβ∈[α,α+r] supx∈X
{
2B ·

∣∣q̂τ(β)(x)− qβ (x)
∣∣}+ γ̂γ

√
1

0.4|Ical| log
1
δ .

The proof is deferred to Appendix D.3.

4 EXPERIMENTS

4.1 SIMULATION STUDIES

We follow the experimental protocol outlined by Candès et al. (2023) and Gui et al. (2024) to eval-
uate the performance of our methods across various simulated scenarios. Notably, since real-world
data lack the true survival time T for all test points, synthetic data experiments are important to
verify the correctness of our theory.

Base predictive models In all experiments, we utilize the DeepSurv method (Katzman et al.,
2018), as the base predictor to estimate the conditional quantiles q̂τ . We also fit Random Forest
classifiers to estimate the weights ŵτ and indicator ŝτ for our calibration methods. For more details,
see Appendix F.

Data We test our calibration methods on six simulated settings designed to mimic real-world clin-
ical trials, as in Candès et al. (2023); Gui et al. (2024). Refer to Appendix E.1 for a details.

Methods and performance metrics To evaluate our approach, we compare our method to the
base model, applied without calibration, and to the CSD calibration method proposed by Qi et al.
(2024). In all simulation studies, we set the desired coverage level 1 − α to 90% and evaluate both
the coverage rate and the average LPB over the test set.

Results The performance metrics for the synthetic experiments are presented in Figure 1. Fol-
lowing the top panel in that figure, we can see that the naive, focused, and fused calibration
methods achieve valid coverage in all six settings. This stands in contrast to both the uncalibrated
base model and the CSD methods which produce LPBs that do not obtain the desired coverage level
in settings 1, 3, and 4. Notably, our fused method tends to be less conservative than the focused
and naive approaches, highlighting the advantage of the fused approach. Settings 2 and 6 further
stress the advantage of the fused method, where one can see that (i) the focused approach is less
conservative than the naive approach, suggesting a violation of Equation 8; and (ii) the fused
method is more powerful than the focused and naive methods.

Turning to LPB comparisons, the bottom panel of Figure 1 illustrates that the fused method gener-
ates the most informative lower bounds out of all the methods with finite sample guarantees (higher
is better). This statistical gain is in line with the tighter coverage rate of the fused method. The
uncalibrated baseline and CSD calibration methods produce the highest LPBs, but these LPBs are
often invalid.

Additional synthetic experiments, demonstrating the robustness of our method to varying censor-
ship rates, are given in Appendix G. Experiments demonstrating the effect of the sample size on
the performance of our methods are presented in Appendix H. An ablation study, showing the ro-
bustness of our methods to changes in key hyperparameters of the underlying predictive models, is
detailed in Appendix I.

4.2 APPLICATION TO REAL DATA

We demonstrate the practical utility of our methods by applying them to six real-world datasets:
The Northern Alberta Cancer Dataset (NACD) (Haider et al., 2020), Rotterdam & German Breast
Cancer Study Group (GBSG), Molecular Taxonomy of Breast Cancer International Consortium
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Figure 1: Performance of the different calibration methods for each of the six simulated settings.
Top: empirical coverage rate, with a red dashed line indicating the nominal 90% level. Bottom:
relative LPB, defined as the LPB obtained by each method divided by the naive method’s median
LPB. A higher relative LPB is better. The reported performance metrics are evaluated on 50 inde-
pendent trials, each consisting of newly sampled train, validation, calibration, and test sets of sizes
600, 200, 1000, and 200, respectively. The notably large proportion of calibration samples is inten-
tionally chosen to ensure that the CSD method has sufficient data, as advised by Qi et al. (2024).

(METABRIC), Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUP-
PORT) (Kvamme et al., 2019; Katzman et al., 2018), a user churn dataset (Fotso et al., 2019–
present), as well as The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) multi-
modal dataset collection (Tomczak et al., 2015). The datasets’ description are detailed in Appendix
E and the TCGA-BRCA dataset’s acquisition and preprocessing are detailed in Appendix F. Cen-
sorship rates for all datasets are detailed in Table 3.

In contrast with the synthetic experiments, here it is not possible to rigorously verify that the desired
coverage level is achieved in practice—we do not have access to ground truth survival times. Yet, our
theory indicates that the naive method should attain a conservative coverage level under minimal
assumptions. Further, under well-approximated estimation of the weights or quantiles, the proposed
focused and fused methods should produce less conservative and approximately valid LPBs.

To evaluate how the various methods perform in practice, we present in Figure 2 their correspond-
ing average LPB values. Among the methods that provide finite-sample guarantees, the fused
approach achieves LPB values comparable to the stronger-performing method between the naive
and focused. Furthermore, the fusedmethod outperforms both the naive and focusedmeth-
ods, albeit to a limited extent, on the METABRIC dataset; this is reminiscent of settings 2 and 6 in
the synthetic experiments. Finally, we note that while there are datasets for which the uncalibrated
base model and the CSD approach yield higher LPB values, our synthetic experiments highlighted
that there are cases where these methods fail to achieve the desired coverage in practice.

5 DISCUSSION

We introduced a flexible uncertainty quantification framework with finite-sample LPB coverage
guarantees for general right-censored survival analysis data. The validity of the proposed calibration
methods relies on the conditionally independent censoring and i.i.d. assumptions, which may not
hold in all real-world cases. It is therefore of great importance to study the effect of violations of
these assumptions both to understand the practical limitations of our methods and to further enhance
their robustness. In particular, the work by Oliveira et al. (2024) may serve as a valuable starting
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Figure 2: Real-world data experiments: comparison of the average LPB obtained by different cal-
ibration methods. For each dataset, base models are trained once using randomly selected training
and validation sets, comprising 60% and 15% of the dataset, respectively. The remaining dataset
(25%) forms the calibration (10%) and test (15%) sets. LPBs are calculated over 100 random cali-
bration/test splits.

point to move beyond the i.i.d. assumption; and the work by Feldman & Romano (2024) can be
further utilized to build robustness to imperfect training data.

We should also emphasize that our methods may fail to generate valid LPBs in cases where the
weights ŵτ (x) are poorly estimated. Stressing this point, the estimation of ŵτ (x) can be particularly
challenging when the censoring rate is high, resulting in imbalanced training data. A related issue
is handling extreme ŵτ (x), where one possible remedy is bound the estimate of P(e = 1 | X) in a
manner similar to Gui et al. (2024). It would be of great interest to offer more principled solutions
to the above challenges, possibly by following the ideas of Li et al. (2018); Cheng et al. (2022); Elze
et al. (2017).
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Eveline Nüesch, Sven Trelle, Stephan Reichenbach, Anne WS Rutjes, Beatrice Tschannen, Dou-
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A NAIVE METHOD’S ALGORITHM AND PROOF OF VALIDITY

A formal description of the algorithm for the naive calibration method is given by Algorithm 1.

Algorithm 1 Conformalized survival analysis for general right-censored data: naive calibration

Input: desired miscoverage level α; calibration data Dcal = {(Xi, T̃i, ei)}i∈Ical ; estimated quantiles
of T | X ,

{
q̂τ (·)

}
τ∈[0,1]

.
Procedure:

1: for τ in a grid over [0, 1] do
2: Compute the fused miscoverage estimator:

α̂naive(τ) =
1

|Ical|
∑
i∈Ical

I{T̃i < q̂τ (Xi)}

3: end for
4: Calibrate the hyperparameter τ :

τ̂naive = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂naive(τ

′) ≤ α
}

5: Return: The calibrated LPB: L̂(·) := L̂(·; τ̂naive) = q̂τ̂naive(·)

Theorem A.1 (PAC-type validity of the naive LPB). Fix any α, δ ∈ (0, 1). Assume that q̂τ (x) is
non-decreasing in τ . With probability at least 1 − δ over the draw of D, the LPB produced by the
naive calibration method from satisfies

P
[
T ≥ L̂(X; τ̂naive)|D

]
≥ 1− α−∆n,

where ∆n :=
√

1
|Ical| ln

1
δ .

Proof. For the proof we denote the smallest estimated quantile to bound T with probability at least
β, conditional on the training data, as

τ(β) = sup {τ ′ ∈ [0, 1] : P (T < q̂τ ′(X) | Dtr) ≤ β} .
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As in the proof for theorem 3 in the work by Gui et al. (2024), proving that 1 − δ ≤
P [τ̂naive ≤ τ (α+∆n) | Dtr] is sufficient for proving the theorem. Analyzing the naive miscover-
age estimator, we get that

P [α̂naive (τ (α+∆n) + ϵ) ≤ α | Dtr]

= P

[∑
i∈Ical

I
{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}
≤ |Ical|α

∣∣∣∣Dtr

]

= P

[∑
i∈Ical

(
I
{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}
− α

)
≤ 0

∣∣∣∣Dtr

]

≤ E

[
t exp

(∑
i∈Ical

(
α− I

{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}))∣∣∣∣Dtr

]
(10)

where the first transition is by the definition of α̂naive, and the last by the Markov inequality. Further
conditioning on (Xi)i∈Ical

, since pτ(α+∆n)+ϵ (Xi)− I
{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}
is 1

4 -sub-gaussian,
we can use Hoeffding’s lemma we get that

E

[
t exp

(∑
i∈Ical

(
pτ(α+∆n)+ϵ (Xi)− I

{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}))∣∣∣∣ (Xi)i∈Ical
,Dtr

]

≤ exp

(
t
∑
i∈Ical

E
[
pτ(α+∆n)+ϵ (Xi)− I

{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

} ∣∣∣∣ (Xi)i∈Ical
,Dtr

]
+
t2

8

∑
i∈Ical

12

)

= exp

(
t
∑
i∈Ical

(
pτ(α+∆n)+ϵ (Xi)− P

{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

} ∣∣∣∣ (Xi)i∈Ical
,Dtr

]
+
t2 |Ical|

8

)
.

Since T̃i ≤ Ti by definition, we have that

pτ(α+∆n)+ϵ (Xi)− P
{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}
≤ 0,

and so by the law of total expectation, we get that

E

[
t exp

(∑
i∈Ical

(
pτ(α+∆n)+ϵ (Xi)− I

{
T̃i < q̂τ(α+∆n)+ϵ (Xi)

}))∣∣∣∣Dtr

]

≤ exp

(
|Ical| t2

8

)
.

Combining with 10, we get that

P [α̂naive (τ (α+∆n) + ϵ) ≤ α | Dtr]

≤ exp

(
|Ical| t2

8

)
E

[
t exp

(∑
i∈Ical

(
α− pτ(α+∆n)+ϵ (Xi)

))∣∣∣∣Dtr

]
.

By the definition of τ (α+∆n), we have that

P
[
T < q̂τ(α+∆n)+ϵ (X) | Dtr

]
≤ α+∆n,
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and so,

P [α̂naive (τ (α+∆n) + ϵ) ≤ α | Dtr]

≤ exp

(
|Ical| t2

8

)
E

[
t exp

(∑
i∈Ical

(
P
[
T < q̂τ(α+∆n)+ϵ (Xi) | Dtr

]
−∆n − pτ(α+∆n)+ϵ (Xi)

))∣∣∣∣Dtr

]
≤ exp

(
|Ical| t2

8
− t∆n |Ical|

)
,

where the last inequality follows from the 1
4 -sub-gaussianity of

pτ(α+∆n)+ϵ (Xi)− P
[
T < q̂τ(α+∆n)+ϵ (Xi) | Dtr

]
.

Taking

t = 4∆n,

we get that

P [α̂naive (τ (α+∆n) + ϵ) ≤ α | Dtr] ≤ exp
(
−2 |Ical| (∆n)

2
)
.

Since
(
−2 |Ical| (∆n)

2
)
≤ −

|Ical|·

E

| ŵ(X)
w(X)

−π|
∣∣∣∣Dtr

−π∆n

2

π2+γ̂2+γ̃2 , we get that

P [α̂naive (τ (α+∆n) + ϵ) ≤ α | Dtr] ≤ δ,

where the last inequality follows from the definition of ∆n. Taking the limit as ϵ→ 0, we get that

1− δ ≤ P [α̂naive (τ (α+∆n)) > α | Dtr] ≤ P [τ̂naive < τ (α+∆n) | Dtr] ,

as needed.

B FURTHER DETAILS REGARDING THE FOCUSED CALIBRATION METHOD

B.1 FOCUSED CALIBRATION LEMMA

Lemma B.1. Suppose that x ∈ X , q : X → R+. If P(T < q(X) | X = x) > 0 and under
Assumtion 1.1,

P (e = 1, T < q(X) |X = x ) ≥ P (e = 1 |X = x )P (T < q(X) |X = x ) ,

where the probability is taken over P(X,C,T ).

Proof. Suppose x ∈ X . All derivations in this proof are conditional on X = x, and so we denote
Px(·) = P(· | X = x) and q = q(X).

We begin by developing Px(T < C | T < q):

Px(T < C | T < q) = Px(T < C | T < q,C ≥ q)Px(C ≥ q) + Px(T < C | T < q,C < q)Px(C < q)

= 1 · Px(C ≥ q) +
Px(T < C, T < q,C < q)

Px(T < q,C < q)
Px(C < q)

= Px(C ≥ q) +
Px(T < C, T < q,C < q)

Px(T < q) · Px(C < q)
Px(C < q)

= Px(C ≥ q) +
Px(T < C, T < q,C < q)

Px(T < q)

= Px(C ≥ q) +
Px(T < C,C < q)

Px(T < q)
,
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where the first transition is by the law of total probability and the third is by Assumption 1.1.

We now develop Px(T < C):

Px(T < C) = Px(T < C,C < q) + Px(T < C,C ≥ q)

By subtraction the two quantities, we get

Px(T < C |T < q)− Px(T < C)

= Px(C ≥ q) +
Px(T < C,C < q)

Px(T < q)
− (Px(T < C,C < q) + Px(T < C,C ≥ q))

= (Px(C ≥ q)− Px(T < C,C ≥ q)) + (
Px(T < C,C < q)

Px(T < q)
− Px(T < C,C < q))

= Px(T ≥ C,C ≥ q) +

(
1

Px(T < q)
− 1

)
Px(T < C,C < q) ≥ 0,

and so, multiplying by Px(T < q) we get that

Px(T < C, T < q)− Px(T < C)Px(T < q) ≥ 0.

That is,
Px(T < C, T < q) ≥ Px(T < C)Px(T < q).

B.2 FOCUSED CALIBRATION INFORMATIVENESS CONDITION

In this section, we prove Proposition 3.1.

Proof. By looking at 5, we have that

αfocus(τ) = E [P(T < q̂τ (X), e = 1 | X) · w(X)] = E
[
P(T̃ < q̂τ (X) | X, e = 1)

]
.

Analogously, we can re-write αnaive(τ) as

αnaive(τ) = P(T̃ < q̂τ (X)) = E
[
P(T̃ < q̂τ (X) | X)

]
.

Therefore, αfocus(τ) < αnaive(τ) when

P(T̃ < q̂τ (X) | X = x, e = 1) < P(T̃ < q̂τ (X) | X = x) ∀x ∈ X .

Which, by the law of total probability, can be stated as

P(T̃ < q̂τ (X) | X = x, e = 1) < P(T̃ < q̂τ (X) | X = x, e = 0) ∀x ∈ X .

B.3 FORMAL DESCRIPTION OF THE FOCUSED CALIBRATION ALGORITHM

A formal description of the focused calibration algorithm is given in Algorithm 2.

Note that the theorems for the validity of this algorithm in Section 3.3 are valid under the definition
∀τ ∈ [0, 1], wτ := w, ŵτ := ŵ.

C PSEUDO-CODE DESCRIPTION OF THE FUSED CALIBRATION METHOD

A formal description of the fused calibration method is presented in Algorithm 3.

17
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Algorithm 2 Conformalized survival analysis for general right-censored data: focused calibration

Input: desired miscoverage level α; calibration data Dcal = {(Xi, T̃i, ei)}i∈Ical ; estimated quantiles
of T | X ,

{
q̂τ (·)

}
τ∈[0,1]

; weights ŵ(x) approximating 1/P(e = 1 | X = x).

Procedure:
1: for τ in a grid over [0, 1] do
2: Compute the fused miscoverage estimator:

α̂focus(τ) =

∑
i∈Ical

ŵ(Xi) · I{ei = 1} · I{T̃i < q̂τ (Xi)}∑
i∈Ical

ŵ(Xi) · I{ei = 1}

3: end for
4: Calibrate the hyperparameter τ :

τ̂focus = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂focus(τ

′) ≤ α
}

5: Return: The calibrated LPB: L̂(·) := L̂(·; τ̂focus) = q̂τ̂focus(·)

Algorithm 3 Conformalized survival analysis for general right-censored data: fused calibration

Input: desired miscoverage level α; calibration data Dcal = {(Xi, T̃i, ei)}i∈Ical ; estimated quantiles
of T | X ,

{
q̂τ (·)

}
τ∈[0,1]

; weights ŵτ (x) approximating 1/P(ζτ (X, e) = 1 | X = x), with the
corresponding selection rule ζτ : X × {0, 1} → {0, 1} defined in Equation 9.
Procedure:

1: for τ in a grid over [0, 1] do2

2: Compute the fused miscoverage estimator:

α̂fused(τ) =

∑
i∈Ical

ŵτ (Xi) · I{ζτ (Xi, ei) = 1} · I{T̃i < q̂τ (Xi)}∑
i∈Ical

ŵτ (Xi) · I{ζτ (Xi, ei) = 1}

3: end for
4: Calibrate the hyperparameter τ :

τ̂fused = sup
{
τ ∈ [0, 1] : sup

τ ′≤τ
α̂fused(τ

′) ≤ α
}

5: Return: The calibrated LPB: L̂(·) := L̂(·; τ̂fused) = q̂τ̂fused(·)

D PROOFS FOR FUSED CALIBRATION DOUBLE ROBUSTNESS

D.1 FUSED CALIBRATION THEORETICAL DERIVATION AND LEMMA

The derivation for the fused calibration method is very similar to that of focused calibration,
with ζτ (X, e) replacing e:

α(τ) = P
(
T < q̂τ (X)

)
= E [P(T < q̂τ (X) | X)] (11)

= E [P(T < q̂τ (X) | X) · P(ζτ (X, e) = 1 | X) · w(X)]

≤ E [P(T < q̂τ (X), ζτ (X, e) = 1 | X) · w(X)] (12)
= E [I {T < q̂τ (X), ζτ (X, e) = 1} · w(X)] (13)

= E
[
I{T̃ < q̂τ (X)} · I {ζτ (X, e) = 1} · w(X)

]
= αfocus(τ).

2Observe that the values of τ that lead to a change in α̂(τ) correspond to those for which T̃i = q̂τ (Xi), for
i ∈ Ical. Consequently, the grid is defined over the τ values that satisfy this equality, with τ = 0 included.
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Where this time w(x) = 1/P(ζτ (X, e) = 1 | X = x) = min(1/P(e = 1 | X = x), sτ (X)),
steps Equation 11 and Equation 13 hold by the tower property, and step Equation 12 holds by the
following lemma -

Lemma D.1. Let s : X → {0, 1}, and ζτ : X × {0, 1} → {0, 1} as defined in Equation 9. Then
Under Assumtion 1.1, ∀x ∈ X , q : X → R+,

P[ζτ (X, e) = 1, T̃ < q(X) |X = x ]− P[ζτ (X, e) = 1 |X = x ]P[T < q(X) |X = x ] ≥ 0.

Proof. We’ll prove this lemma by separating the cases into the two possible values of ŝτ (X), which
is constant given X = x. Suppose that x ∈ X satisfies ŝτ (x) = 0. We have that

P[ζτ (X, e) = 1, T̃ < q(X) |X = x ]

= P[e = 1, T̃ < q(X) |X = x ]

= P[e = 1, T < q(X) |X = x ],

and

P[ζτ (X, e) = 1 |X = x ]P[T < q(X) |X = x ]

= P[e = 1 |X = x ]P[T < q(X) |X = x ].

And so, by Lemma B.1, we have that

P[ζτ (X, e) = 1, T̃ < q(X) |X = x ]− P[ζτ (X, e) = 1 |X = x ]P[T < q(X) |X = x ]

= P[e = 1, T < q(X) |X = x ]− P[e = 1 |X = x ]P[T < q(X) |X = x ] ≥ 0.

For x ∈ X with ŝτ (X) = 1, we have that

P[ζτ (X, e) = 1, T̃ < q(X) |X = x ]

= P[T̃ < q(X) |X = x ],

And

P[ζτ (X, e) = 1 |X = x ]P[T < q(X) |X = x ]

= P[T < q(X) |X = x ].

And so, since by definition T̃ ≤ T , we have that ∀x ∈ X :

P[ζτ (X, e) = 1, T̃ < q(X) |X = x ]− P[ζτ (X, e) = 1 |X = x ]P[T < q(X) |X = x ]

= P[T̃ < q(X) |X = x ]− P[T < q(X) |X = x ] ≥ 0.

D.2 FUSED CALIBRATION WITH APPROXIMATELY ACCURATE WEIGHTS

In this section we prove Theorem 3.1, relying on the proof of (Gui et al., 2024, Theorem 3).

Proof. Here, we provide a single proof for the validity of both the focused and fused, using the
appropriate notations for each method. For the focused method, we consider α̂(·) := α̂focused(·),
τ̂ := τ̂focused, and ζλ(Xi, ei) = ei. For the fused method, we denote α̂(·) := α̂fused(·), τ̂ := τ̂fused,
and ζλ(Xi, ei) = I{sλ(Xi) = 1 or ei = 1}. Importantly, in both cases, the weights are defined as
wτ (x) := 1/P(ζλ(X, e) = 1 | X = x). We remark that all our claims hold for each of the two
choices of these terms.

We define the error term by:

∆ := sup
λ∈[0,1]

E
[∣∣∣∣ ŵλ(X)

wλ(X)πλ
− 1

∣∣∣∣∣∣∣∣Dtr

]
+

√√√√1 +
γ̂2
λ

π2
λ
+max

(
1, γ̂λπλ

− 1
)2

0.4|Ical|
· log

(
1

δ

)
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Recall that the oracle quantity is formulated as:

τ(α+∆) = sup {λ ∈ [0, 1] : P (T < q̂λ(X) | Dtr) ≤ α+∆} .

The outline of this proof builds on the proof of (Gui et al., 2024, Theorem 3). First, if 1−δ ≤ P(τ̂ ≤
τ(α+∆) | Dtr), then the event {τ̂ ≤ τ(α+∆)} holds with probability at least 1− δ. Therefore:

P(T ≥ q̂τ̂ | D)

≥P(T ≥ q̂τ(α+∆)(X) | D)

≥1− α−∆.

Above, the first inequality is due to the monotonicity of q̂τ and the second one follows from the
left-continuity of P(T ≥ q̂τ (X) | D) in τ . In what follows, we focus on showing 1 − δ ≤ P(τ̂ ≤
τ(α+∆) | Dtr). Suppose that ε > 0. For simplicity, we denote λ := τ(α+∆) + ε. Following the
definition of α̂(τ), we get:

P(α̂(τ(α+∆) + ε) ≤ α | Dtr)

=P(α̂(λ) ≤ α | Dtr)

=P

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)I{T̃i < q̂λ(Xi)}∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
≤ α

∣∣∣∣Dtr

)

=P

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)I{T̃i < q̂λ(Xi)} ≤ α
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)

∣∣∣∣Dtr

)

=P

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
I{T̃i < q̂λ(Xi)} − α

]
≤ 0

∣∣∣∣Dtr

)

=P

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
α− I{T̃i < q̂λ(Xi)}

]
≥ 0

∣∣∣∣Dtr

)

(14)

Next, we apply Markov’s inequality for any t > 0, and have:

14 ≤ E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
α− I{T̃i < q̂λ(Xi)}

]) ∣∣∣∣Dtr

)

= E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
α+ pλ(Xi)− pλ(Xi)− I{T̃i < q̂λ(Xi)}

]) ∣∣∣∣Dtr

)
.

(15)

Above pλ(x) := P(T < q̂λ(X) | X = x,Dtr). We now conditioning on (Xi, ei)i∈Ical

E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

]) ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)
(a)

≤ exp

(
tE

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

] ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)
+
t2
∑
i∈Ical

(2ŵλ(Xi))
2

8

)
(b)

≤ exp

(
tE

(∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

] ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)
+

|Ical|t2γ̂2λ
2

)

≤ exp

(
tE

(∑
i∈Ical

ŵλ (Xi)
[
ζλ(Xi, ei)pλ(Xi)− ζλ(Xi, ei)I{T̃i < q̂λ(Xi)}

] ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)
+

|Ical|t2γ̂2λ
2

)
(c)

≤ exp

(
t

(∑
i∈Ical

ŵλ (Xi)E
[
ζλ(Xi, ei)pλ(Xi)− ζλ(Xi, ei)I{T̃i < q̂λ(Xi)}

∣∣∣∣Dtr, Xi, ei

])
+

|Ical|t2γ̂2λ
2

)
,

(16)
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where step (a) uses Hoeffding’s inequality; step (b) follows from the boundness of ŵ; step (c) is
due to the independence assumption between the samples. We now turn to develop the expectation
inside the sum.

E
[
ζλ(Xi, ei)pλ(Xi)− ζλ(Xi, ei)I{T̃i < q̂λ(Xi)} | Dtr, Xi, ei

]
=E [ζλ(Xi, ei) | Dtr, Xi, ei]E [pλ(Xi) | Dtr, Xi, ei]− E

[
ζλ(Xi, ei)I{T̃i < q̂λ(Xi)} | Dtr, Xi, ei

]
=P [ζλ(Xi, ei) = 1 | Dtr, Xi, ei]E [pλ(Xi) | Dtr, Xi, ei]− P

[
ζλ(Xi, ei) = 1, T̃i < q̂λ(Xi) | Dtr, Xi, ei

]
=P [ζλ(Xi, ei) = 1 | Dtr, Xi, ei]E [pλ(Xi) | Dtr, Xi, ei]− P

[
ζλ(Xi, ei) = 1, T̃i < q̂λ(Xi) | Dtr, Xi, ei

]
=P [ζλ(Xi, ei) = 1 | Dtr, Xi, ei]P(Ti < q̂λ(Xi) | Dtr, Xi, ei)

− P (ζλ(Xi, ei) = 1 | Dtr, Xi, ei)P
(
T̃i < q̂λ(Xi) | Dtr, Xi, ei

)
=P [ζλ(Xi, ei) = 1 | Dtr, Xi, ei]

[
P(Ti < q̂λ(Xi) | Dtr, Xi, ei)− P

(
T̃i < q̂λ(Xi) | Dtr, Xi, ei

)]
≤ 0

The last inequality holds since T̃i ≤ Ti. By plugging this in we get: 16 ≤ exp
(

|Ical|t2γ̂2
λ

2

)
. We now

condition 15 on {Xi, ei}i∈Ical :

E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
α+ pλ(Xi)− pλ(Xi)− I{T̃i < q̂λ(Xi)}

]) ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

=E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

]
+ t

∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei) [α− pλ(Xi)]

)∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

=E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

])

· exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei) [α− pλ(Xi)]

)∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

=E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei)
[
pλ(Xi)− I{T̃i < q̂λ(Xi)}

]) ∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

· E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei) [α− pλ(Xi)]

)∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

≤ exp

(
|Ical|t2γ̂2λ

2

)
· E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei) [α− pλ(Xi)]

)∣∣∣∣Dtr, (Xi, ei)i∈Ical

)

By the law of total expectation, we get:

15 ≤ exp

(
|Ical|t2γ̂2λ

2

)
· E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) ζλ(Xi, ei) [α− pλ(Xi)]

)∣∣∣∣Dtr

)
(17)
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We now condition on {Xi}i∈Ical and by the sub-gaussianity of ζλ(Xi, ei)− wλ(Xi)
−1 we get:

E

(
exp

(
t
∑
i∈Ical

ŵλ (Xi) (ζλ(Xi, ei)− wλ(Xi)
−1) [α− pλ(Xi)]

)∣∣∣∣Dtr, {Xi}i∈Ical

)

≤ exp

(
t2

8

∑
i∈Ical

ŵλ (Xi)
2
[α− pλ(Xi)]

2

)

≤ exp

(
t2γ̂2λ|Ical|

8

)
We plug the above in 17 and bound it as follows:

17 ≤ exp

(
5|Ical|t2γ̂2λ

8

)
· E

(
exp

(
t
∑
i∈Ical

ŵλ(Xi)

wλ(Xi)
[α− pλ(Xi)]

)∣∣∣∣Dtr

)
(18)

By combining all of the above, and by following the derivations in the proof of (Gui et al., 2024,
Theorem 3) we get

18 ≤ exp

(
5|Ical|t2

8

(
π2
λ + γ̂2λ + γ̃(λ)2

)
+ |Ical|t

(
E
[∣∣∣∣ ŵλ(X)

wλ(X)
− πλ

∣∣∣∣∣∣∣∣Dtr

]
− πλ∆

))
(19)

By taking

t :=

4
5

(
∆πλ − E

[∣∣∣ ŵλ(X)
wλ(X) − πλ

∣∣∣∣∣∣Dtr

])
π2
λ + γ̂2λ + γ̃(λ)2

,

we have

19 ≤ exp

−
0.4|Ical|

(
πλ∆− E

[∣∣∣ ŵλ(X)
wλ(X) − πλ

∣∣∣∣∣∣Dtr

])2
π2
λ + γ̂2λ + γ̃(λ)2

 ≤ δ,

where the last inequality follows from the definition of ∆. Therefore,

1− δ ≤ P(α̂(τ(α+∆) + ε) > α | Dtr) ≤ P(τ̂ < τ(α+∆) + ε | Dtr)

By taking ε → 0, and by the continuity of the probability measure, we obtain 1 − δ ≤ P(τ̂ <
τ(α+∆) + ε | Dtr), which concludes the proof.

D.3 FUSED CALIBRATION WITH APPROXIMATELY ACCURATE QUANTILES

Following (Gui et al., 2024), instead of proving Theorem 3.2 directly, we provide a more general
theorem that implies Theorem 3.2. Our proof relies on the proof of (Gui et al., 2024, Theorem 5).
Theorem D.2. Fix any δ, α ∈ (0, 1). Under the same conditions of Theorem 3.1, assume further
that there exists a constant r > 0 such that:

1. For PX -almost all x: supξ∈[τ(α),τ(α+r)+ψ] wξ(x) ≤ γ and supξ∈[τ(α),τ(α+r)+ψ] ŵξ(x) ≤
γ̂ for some constants γ, γ̂, ψ ≥ 0

2. for any η ∈ [0, r], for any β ∈ [α, α+ r], and for PX -almost all x:

P(T < qβ(X) + η | X = x) ≤ β +Bη,

P(T < qβ(X)− η | X = x) ≥ β −Bη.

for some family of oracle functions {qτ (·)}τ∈[0,1], and some constant B > 0.

3. supβ∈[α,α+r] supx∈X

{
max(B, 1)|q̂τ(β)(x)− qβ(x)|+ γ̂γ

√
log(1/δ)
0.4|Ical|

}
≤ r.

Then with probability at least 1− δ over the draw of D, the LPB produced by either Algorithm 3 or
by Algorithm 2 satisfies that for PX -almost all x:

P(T ≥ L̂(x) | D, X = x) ≥ 1− α− sup
β∈[α,α+r]

sup
x∈X

{
2B|q̂τ(β)(x)− qβ(x)|

}
− γ̂γ

√
log(1/δ)

0.4|Ical|
.

22



Published as a conference paper at ICLR 2025

Proof. Similarly to Appendix D.2, the following proof guarantees the validity of both the focused
and fused. For each method, we embrace its appropriate notations as follows. For the focused
method, we use α̂(·) := α̂focused(·), τ̂ := τ̂focused, and ζλ(Xi, ei) = ei. For the fused method, we
consider α̂(·) := α̂fused(·), τ̂ := τ̂fused, and ζλ(Xi, ei) = I{sλ(Xi) = 1 or ei = 1}. Notice that in
both settings, the weights are formulated as wτ (x) := 1/P(ζλ(X, e) = 1 | X = x). As in the proof
in Appendix D.2, our claims hold for each choice of method and its corresponding terms.

We begin by defining the error terms:

E = sup
β∈[α,α+r]

sup
x∈X

{
|q̂τ(β)(x)− qβ(x)|

}
, ∆ = BE + γ̂γ

√
log(1/δ)

0.4|Ical|
. (20)

For simplicity, we also denote λ := τ(α+∆)+ε for some ε > 0. We further adopt the definition of
pa(x) := P(T ≤ q̂a(X) | X = x) from (Gui et al., 2024). The rest of the proof follows from (Gui
et al., 2024, Theorem 5), except for substituting f̂ by q̂, I{Ci ≥ f̂λ(Xi)} by ζ(Xi, ei), I{Ci ≥
f̂λ(Xi) > Ti} by I{ζ(Xi, ei) = 1, f̂λ(Xi) > T̃i}, and I{Ti < f̂λ(Xi)} by I{T̃i < f̂λ(Xi)}. All
derivations from the proof of (Gui et al., 2024, Theorem 5) apply to our setting except for the upper
bound of the following term, which we develop next.

E

[
exp

{
t
∑
i∈Ical

ŵλ(Xi)

wλ(Xi)

(
pλ(Xi)− I{T̃i < q̂λ(Xi)}

)∣∣∣∣∣Dtr, {Xi}i∈Ical

}]

≤ exp

{
t2

2

∑
i∈Ical

ŵλ(Xi)
2

wλ(Xi)2
+ t

∑
i∈Ical

ŵλ(Xi)

wλ(Xi)
E
[(
pλ(Xi)− I{T̃i < q̂λ(Xi)}

)∣∣∣Dtr, {Xi}i∈Ical

]}

≤ exp

{
t2

2

∑
i∈Ical

ŵλ(Xi)
2

wλ(Xi)2
+ t

∑
i∈Ical

ŵλ(Xi)

wλ(Xi)

[
P(Ti < q̂λ(Xi)|Dtr, Xi)− P(T̃i < q̂λ(Xi)|Dtr, Xi)

]}

≤ exp

{
t2

2
|Ical|γ̂2

}
Above, the first inequality follows from Hoeffding’s inequality and the last one holds since T̃i ≤ Ti,
and due to the upper bounds of the weights ŵλ(·). We plug in this bound in the derivations of (Gui
et al., 2024) and get that

P(α̂(τ(α+∆) + ε) > α | Dtr) ≤ exp

{
−|Ical|t(∆−BE)

γ
+

5|Ical|γ̂2t2

8

}
Therefore, we take t = 4

5γγ̂2 (∆−BE) we get

P(α̂(τ(α+∆) + ε) > α | Dtr) ≤ exp

{
−0.4|Ical|

1

γ2γ̂2
(∆−BE)2

}
≤ δ

where the last inequality follows from the definition of ∆ from Equation 20. Therefore, we get that
with probability 1−δ over the draw of D: P(α̂(τ(α+∆)+ε) > α). This implies τ(α+∆)+ε > τ̂ ,
and thus:

P(τ(α+∆) + ε > τ̂) ≥ 1− δ.

As in (Gui et al., 2024), we take ε → 0, and by the continuity of the probability measure, we get
that τ(α+∆) + ε > τ̂ holds with probability at least 1− δ, which concludes the proof.

E DATASET DETAILS

E.1 SYNTHETIC DATASETS

In all six simulated datasets from Section 4.1, the covariates X are drawn from a uniform distribu-
tion, X ∼ U [0, 4]p. The base conditional survival time Tbase | X follows a lognormal distribution,
as in Candès et al. (2023); Gui et al. (2024):

Tbase | X ∼ exp(N (µ(X), σ2(X))),
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where N (µ(X), σ2(X)) is the normal distribution with mean µ(X) and standard deviation σ(X)
defined in Table 1 for each setting, along with the dimension p of X . To simulate patients with
random early mortality, we choose 5% of subjects, and assign them the parameters µ = ln 0.1 and
σ = 0.2 instead. For the remaining 95% event time is defined as T = Tbase.

The censorship time C | X is designed to mimic real-world censorship scenarios commonly en-
countered in clinical trials (Zhou et al., 2020; Wilson et al., 2021):

• End-of-trial censorship: All settings impose censorship at time 10.
• Early censorship: For 12% of subjects with X[0] ∈ [0, 0.5], very early censorship is

applied at C = 0.1, representing scenarios such as early loss to follow-up, treatment non-
compliance, or withdrawal of consent.

• Parametric follow-up censorship: The remaining subjects are censored based on the para-
metric distribution Cfollow-up(x), described in Table 1, which simulates loss to follow-up
over time.

Table 2 summarizes the overall censorship rates across different settings, ranging 30%-71.6%.

Table 1: Parameters specifying the distribution of survival time T |X and censoring time C|X in the
six simulated data sets.

Setting p µ(x) σ(x) Cfollow-up(x)

1 4
√
x1 1 Exp(5)

2 4 (2−√
x4) · I{x2 > 2}+√

x4 · I{x2 ≤ 2} 2 Exp(10)

3 10 (2−√
x5) · I{x1 > 2}+ x4 · I{x1 ≤ 2} 1.5 Exp

(
1

0.01+
4−x1
50

)
4 10 3 · I{x1 > 2}+ 1.5x4 · I{x1 ≤ 2} 1.5 lognormal

(
2 + 2−x1

50 , 1.5
)

5 20 0.126(x1 +min(x3x5, x2x4)) 2 Exp
(

1
x4
40 +

x1
40

)
6 20 0.126(x1 +

√
x3x5) + 1 x2+2

2 Exp
(

1
x10
40 + 1

20

)

Table 2: Censorship rates for each simulation setting.

Setting 1 2 3 4 5 6

Censorship Rate (%) 64.6% 40.5% 30.0% 71.6% 45.3% 52.6%

E.2 REAL-WORLD DATASETS

What follows are descriptions for the datasets used in the experiments of Section 4.2

The Northern Alberta Cancer Dataset (NACD), as presented by Haider et al. (2020), includes data
on 2,402 patients diagnosed with a range of cancers, such as lung, colorectal, head and neck,
esophageal, stomach, and other types. After excluding patients with negative or zero survival times,
the dataset is reduced to 2,396 patients.

The Rotterdam & German Breast Cancer Study Group (GBSG) dataset combines information from
two sources: the Rotterdam tumor bank Foekens et al. (2000) and the German Breast Cancer Study
Group Schumacher et al. (1994). The Rotterdam dataset includes records for 1,546 patients with
node-positive breast cancer, while the GBSG dataset provides complete data for 686 patients.

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, de-
tailed by Curtis et al. (2012), provides survival data for breast cancer patients. It incorporates a wide
array of features, including clinical traits, gene expression profiles, copy number variation (CNV)
profiles, and single nucleotide polymorphism (SNP) genotypes. These features are derived from
breast tumor samples collected during the METABRIC study.
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The Study to Understand Prognoses, Preferences, Outcomes, and Risks of Treatment (SUPPORT)
dataset, as described by Knaus et al. (1995), includes data from 9,105 participants. It was designed
to investigate survival outcomes and clinical decision-making processes for critically ill hospitalized
patients.

The customer churn prediction dataset (Churn) is designed to predict customer attrition (Fotso et al.,
2019–present). For analysis, individuals censored at time 0 are excluded.

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) multi-modal dataset collec-
tion (Tomczak et al., 2015) is also used, and includes various clinical features such as age, cancer
grade, and tumor size, along with pathological biomarkers, genetic data, and visual biopsy samples.
To effectively estimate the conditional survival times from such diverse features, we designed ded-
icated preprocessing and training procedures for this data. These include the use of the GigaPath
foundation model (Xu et al., 2024) to extract features from the visual biopsy samples, extraction of
cancer grade from patients’ medical reports, and more.

A detailed description of the entire processing pipeline can be found in Appendix F.

Table 3 summarizes the overall censorship rates across the different datasets.

Table 3: Censorship rates for each real-world dataset.

Setting TCGA SUPPORT METABRIC churn NACD GBSG

Censorship Rate (%) 86.6% 32.0% 42.1% 53.4% 36.6% 43.2%

F EXPERIMENTAL SETUP

In all experiments, the dataset was split into four parts: 60% for training, 20% for calibration, 10%
for validation (used for early stopping), and 10% for testing to evaluate performance. Synthetic
data was generated through distribution simulations, as outlined in Table 1, while the process for
acquiring the TCGA data is described in Section F.3. The synthetic data generation function and the
processed TCGA-BRCA dataset are available in the github repository. The TCGA-BRCA dataset
was further normalized and imputed using the dataset pre-processing code by Ketenci et al. (2023),
utilizing the pre-processing of Nagpal et al. (2021a) for data imputation and normalization.

In all experiments, we approximated the distribution of T | X using the DeepSurv method (Katz-
man et al., 2018), implemented in the pycox package (Kvamme et al., 2019), implemented using
a PyTorch MLP regressor with ReLU activation, early stopping (triggered after 5 epochs without
improvement), and a training cycle of 1000 epochs. The Adam optimizer optimized the model with
parameters lr = 1e− 3, β1 = 0.9 and β2 = 0.999, a batch size of 256, dropout layers with a rate of
p = 0.1, batch normalization layers, and varying configurations of hidden layers, detailed in Table 4.
These configurations were selected to be similar to those found in the PyCox notebooks, with the
real-world datasets getting a deeper model to account for their more complex and interconnected
nature.

Additionally, we employed scikit-learn (Pedregosa et al., 2011) to train a Random Forrest Classifiers
with a max depths of 4 and 2, to estimate the weights ŵτ and the indicator ŝτ respectively. The higher
max depth for estimating ŵτ is meant to make conditional calibration more accurate, promoting
validity. In comparison, the lower max depth of ŝτ is there to reduce potential overfitting, that might
lead to overly conservative estimators.

F.1 MACHINE SPECIFICATIONS

The hardware and OS used for the experiments are as follows.

• CPU: AMD EPYC 7443 24-Core Processor
• GPU: NVIDIA RTX A6000
• OS: Ubuntu 20.04
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Table 4: Parameters specifying the number of hidden layers of the MLP regressor employed for the
DeepSurv survival analysis model in the synthetic and TCGA settings.

Setting Hidden layers

Synthetic settings [5]

TCGA-BRCA [32, 32]

F.2 COMPUTATIONAL EFFICIENCY

Note that the values of τ that cause a shift in α̂(τ) are those for which T̃i = q̂τ (Xi), for i ∈ Ical.
As a result, to compute the miscoverage estimator one need only check these values and τ = 0. As
such, the computational complexity of the calibration is O(|Ical|), and so the brunt of computing is
allocated towards the model training, both for the quantile and weight estimation.

F.3 TCGA ACQUISITION AND PREPROCESSING DETAILS

The TCGA-BRCA cohort is accessible through the GDC portal. To create a dataset suitable for
DeepSurv, we exclude patients without clinically relevant Estrogen Receptor (ER) status or scanned
biopsies. We then merge several tables and select the following clinically significant features for
model training, imputing the Progesteron Receptor (PR) value with the ER value, and the rest of the
features with the value value −1:

• ER status ∈ {0, 1}
• PR status ∈ {0, 1}
• Her2 status ∈ {0, 1}
• Presence of infiltrating ductal carcinoma ∈ {0, 1}
• Presence of infiltrating lobular carcinoma ∈ {0, 1}
• PGR gene expression ∈ [0, 1]

• ESR1 gene expression ∈ [0, 1]

• ERBB2 gene expression as defined by Desmedt et al. (2008) ∈ [0, 1]

• Gender ∈ {0, 1}
• Age ∈ {26, · · · , 90}
• Tamoxifen drug sensitivity ∈ [0, 1]

• Lapatinib drug sensitivity ∈ [0, 1]

Additionally, we incorporate the cancer grade of each patient by combing through their written
medical reports. Finally, we process a single whole-slide H&E biopsy image for each patient, which
can vary significantly in size, typically around 300,000 pixels. To identify the tissue regions, we
apply Otsu’s segmentation method. After segmentation, we use the GigaPath foundation model
from Xu et al. (2024) to generate compact embedding vectors that capture the essential features
of each biopsy. These embeddings are then further reduced to 3 dimensions using PCA (Principal
Component Analysis). All of the above features are concatenated to create a covariate vector X of
size 19. The survival time T is defined as the time to mortality, with the censored time T̃ , and event
indicator e given by the dataset.

G STUDYING THE EFFECTS OF CENSORSHIP RATE CHANGE ON THE
CALIBRATION METHODS’ PERFORMANCE

In this section, we examine the performance of the proposed calibration methods under varying
levels of censorship. We test all three of our methods on Setting 3 from Section 4.1 for a vari-
ety of end-of-trial times. Figure 3 presents the empirical coverage rate and LPB obtained by each
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technique. This ablation study demonstrates the superiority of the fused calibration method as com-
pared to the focused and naive methods. We can see that in this setting the fused method archives a
relatively tight, yet valid, LPB regardless of the censorship rate, while the focused method’s perfor-
mance depends much more on the censorship rate, and is similar to that of the fused method only
with minimal censorship. The naive method underperforms throughout.

This hierarchy in performance teaches us important lessons about each method’s reactivity to
changes in censorship:

• The naive method has stable performance across the varied end of trial times since it cali-
brated the estimator to the 0.1-th quantile of T̃ . Since we changed only the upper quantiles
of T̃ by bounding C’s value, the lower quantiles remain unchanged, and so the calibration
output remains unchanged.

• The focused method on the other hand, calibrated the estimator to the 0.1-th quantile of
T̃ | e = 1, i.e. T | e = 1. As the end of trial time increases, more and more high values
of T with e = 1 get included in our calibration set, and so all quantile levels get higher,
making the focused method less conservative.

• The fused method manages to avoid the dichotomy of T̃ and T̃ | e = 1 by selectively
choosing examples that make it less conservative. The degree to which it succeeds in this
task is surprising, and motivates the authors to delve deeper into the reasons for this success
in future work.

Figure 3: Performance of the naive, focused, and fused calibration methods as a function of end
of trial time. Top: Censorship rate change. Middle: Empirical coverage rate, with a red dashed
line indicating the nominal 90% level. Bottom: LPB. Higher is better. The reported performance
metrics are evaluated on 10 independent trials, each consisting of newly sampled train, validation,
calibration, and test sets of sizes 600, 200, 1000, and 200, respectively.

H RELATIVE PERFORMANCE OF THE METHODS AS A FUNCTION OF THE
NUMBER OF SAMPLES

We demonstrate the effect of varying sample sizes in Setting 3 from Section 4.1 on the naive, fo-
cused, and fused calibration schemes. The coverage rate and LPB constructed by each method are
presented in Figure 4. This figure indicates that all methods attain a valid coverage rate even when
used with a small sample size.

We can see that when we use up to 800 samples using a 50% calibration set, both the focused
and fused methods show relatively high uncertainty, although their performance is still superior to
that of the naive method, and they maintain validity. Above the 800 sample range, all methods
perform about the same with a high sample number as they do with a lower sample number. We

27



Published as a conference paper at ICLR 2025

can infer from these results that the validity of the calibration methods is unaffected by varying the
number of samples, but the variance of the LPBs generated by the focused and fused methods, which
don’t always utilize all the calibration samples, gets predictably lower when calibrated using more
samples.

Figure 4: Performance of the naive, focused, and fused calibration methods as a function of sample
size. Top: empirical coverage rate, with a red dashed line indicating the nominal 90% level. Bottom:
LPB. A higher LPB is better. The reported performance metrics are evaluated on 10 independent
trials, each consisting of newly sampled train, validation, calibration, and test sets which consist of
30%, 10%, 50%, and 10% proportions of the dataset, respectively.

I ABLATION STUDY: ROBUSTNESS TO WEIGHT AND QUANTILE ESTIMATION
HYPERPARAMETERS

For weight estimation, we test the methods detailed in the paper using either a shallow random forest
classifier (max depth 2) or a deeper one (max depth 6), and for conditional quantile estimation, we
test the methods using either a shallow network (1 hidden layer) or a deeper network (3 hidden
layers).

We analyze the performance of the proposed calibrations under this ablation, and display the cover-
age rate and LPB in Figure 5. This figure shows that our methods are robust to arbitrary selection
of these hyperparameters in terms of both coverage validity and informativeness, and reinforce the
superiority of the fused calibration method, which manages to perform on par or better than both the
focused and the naive methods.
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Figure 5: Performance of the naive, focused, and fused calibration methods for each combination of
hyperparameters. Top: empirical coverage rate, with a red dashed line indicating the nominal 90%
level. Bottom: LPB. A higher LPB is better. The reported performance metrics are evaluated on 10
independent trials, each consisting of newly sampled train, validation, calibration, and test sets of
sizes 600, 200, 1000, and 200, respectively.
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