
What Really is a Member? Discrediting Membership
Inference via Poisoning

Neal Mangaokar∗† Ashish Hooda∗‡¶ Zhuohang Li§ Bradley A. Malin§
Kassem Fawaz‡ Somesh Jha‡ Atul Prakash† Amrita Roy Chowdhury†

† University of Michigan, Ann Arbor ‡ University of Wisconsin-Madison § Vanderbilt University

Abstract

Membership inference tests aim to determine whether a particular data point was
included in a language model’s training set. However, recent works have shown
that such tests often fail under the strict definition of membership based on exact
matching, and have suggested relaxing this definition to include semantic neighbors
as members as well. In this work, we show that membership inference tests are
still unreliable under this relaxation — it is possible to poison the training dataset
in a way that causes the test to produce incorrect predictions for a target point.
We theoretically reveal a trade-off between a test’s accuracy and its robustness to
poisoning. We also present a concrete instantiation of this poisoning attack and
empirically validate its effectiveness. Our results show that it can degrade the
performance of existing tests to well below random.

1 Introduction

A central question in the machine learning (ML) community is whether a model was trained on a
particular data point [1]. While this question has long been of academic interest, the recent surge
in large language models (LLMs) has made it more relevant across new practical contexts. For
instance, these models are often trained on massive web-scraped datasets [2], which may include
copyrighted content. This has sparked high-profile legal disputes between model providers and
creative professionals (e.g., authors) [3, 4, 5], centered on whether the disputed content was part of
the training data. In another example, recent legal regulations worldwide have mandated auditing
of ML models [6, 7]. In such cases, model owners may need to demonstrate that specific data
points—such as those from the minority class—were indeed used during training, in order to support
claims of fairness or regulatory compliance [8].

Currently, membership inference (MI) testing is the de facto approach for answering this question.
Existing tests employ a variety of heuristics to analyze the loss landscape of the model, and output
a “membership score” — a high score typically indicates membership. However, a growing body
of research has questioned the reliability of these tests [9, 10, 11]. A key concern is the ambiguity
surrounding the definition of what it means for a data point to be a “member.” For instance, if “Harry
Potter drew his wand” appears in the training data, should its paraphrase “The wand was drawn by
Harry Potter” also be considered a member? To address this, recent works have suggested relaxing the
definition of membership to a neighborhood-based one—where all semantic neighbors of a training
point are also treated as members [9, 12, 13].

In this work, we show that even under the relaxed, neighborhood-based definition, membership
inference remains unreliable. We demonstrate this through a new lens — a dataset poisoning attack.
Specifically, we consider a realistic threat model in which an honest model owner trains an LLM
using data scraped from the internet. Despite the owner’s honest intentions, the internet remains a

∗Indicates equal contribution. ¶Now at Google DeepMind.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

fundamentally untrustworthy environment, where anybody can introduce poisoned data into public
sources (for instance, by editing Wikipedia articles or posting on Reddit). Indeed, recent work has
shown that such poisoning attacks are not merely hypothetical, but are feasible in practice [14].
Building on this threat model, we consider an adversary who poisons the training2 dataset of the
model with the goal of causing an MI test to produce incorrect predictions. Note that this is distinct
from traditional poisoning attacks, which typically aim to trigger undesirable behavior in the model
itself during downstream use (e.g., denial-of-service or jailbreaking [15]). In contrast, our attack
targets the MI test which is a separate classifier that operates on the model outputs/loss values.

In a nutshell, we establish that currently MI tests are not robust to dataset poisoning attacks. To this
end, our contributions are two-fold.

1. First, we theoretically demonstrate the inherent difficulty of designing a robust MI test by iden-
tifying a fundamental trade-off between the test’s accuracy on clean data and its robustness to
poisoning.

2. Second, we provide a concrete instantiation of a novel poisoning attack, PoisonM, that effectively
exploits this trade-off in practice.

Our attack works as follows: for a target point xt with ground truth membership label c, the adversary
substitutes some points in the training dataset with carefully crafted poisoned ones that (1) preserve
the true membership label c under the definition of neighborhood-based membership, but (2) cause
the MI test to flip its prediction to 1− c. Consequently, the attack discredits the test’s predictions.

Revisiting our earlier usecases of MI tests, we highlight real-world motivations of such attacks.
Consider the case of copyright enforcement. An honest model owner may ensure that their training
dataset, under a mutually agreed-upon neighborhood definition, contains no points related to the new
Larry Lobster novels. However, a disgruntled author could plant a poison outside this neighborhood
that still triggers a (false) positive prediction, potentially enabling a baseless copyright lawsuit.
Similarly, in the example of a fairness audit, an adversary could plant poisons within the neighborhood
of minority class points, causing the MI test to falsely predict non-membership (false negative),
thereby undermining the model owner’s credibility.

Intuitively, the attack is possible due to the misalignment between superlevel sets of the MI test
(points that when trained upon elicit high test scores, i.e., indication of membership) and the existing
notions of neighborhood (see Figure 1). We provide a concrete implementation of the poisoning
attack, PoisonM, for four popular notions of neighborhood: n-gram overlap, embedding similarity,
edit distance, and exact matching (i.e. the traditional notion of membership). PoisonM is MI test
agnostic, can target multiple points simultaneously, and highly efficient (only substituting a single
clean point with a poison is sufficient to induce false negatives). We evaluate PoisonM against
several MI tests across different datasets and model sizes, and find that it consistently flips test
predictions and degrades performance well below random. Thus, our results highlight a disconnect
between how MI tests operate and how their outputs are interpreted to determine membership in
practice, calling for a re-evaluation of what it truly means for a point to be a member.

2 Background

MI tests typically rely on thresholding model loss or its variants, such as LOSS [16], Min-K%[17]
(loss on least likely tokens), zlib[18] (loss-to-entropy ratio), perturbation-based tests (loss differences
with perturbed inputs [19]), and reference-based tests (loss ratio to another model [18]).
Unreliability of Membership Inference. Recent work has already begun to highlight concerns
regarding MI testing. For example, many works evaluate performance of tests on datasets that exhibit
distribution shifts, which is flawed because members can be separated from non-members without
even using the model [9, 11, 20]. Other work discusses how a dishonest model owner can refute the
predictions of an MI test by providing a certificate that a model could be obtained without training on
a specific point [21]. More recent work has also touched on how poisoned models can surprisingly
amplify MI test results for finetuning data [22]. We differ from these works in that we show how
MI tests can be manipulated to provide entirely wrong predictions.
Neighborhood-Based Membership Inference. The premise of an MI test relies upon the definition
of membership, which traditionally labels a text sequence as a member if it is exactly matches a

2While our theoretical results are general and apply to both pre-training and fine-tuning, our empirical
evaluation focuses on the latter.

2

Figure 1: MI tests are not robust to membership invariant perturbations (e.g., substitution). By leveraging the mis-
alignment between the membership neighborhood and the test’s superlevel set, one can alter a dataset—without
changing the ground truth label of a target xt—by substituting non-neighbors with worst-case non-neighbors
to cause the test Tγ to mispredict xt as a member. Conversely, replacing a neighbor with a worst-case neighbor
can make a true member appear as a non-member.

sequence in the training set. However, this definition poses two key problems. First, training and non-
training texts often overlap substantially, making exact-match definitions of membership ambiguous
and leading to unreliable performance for MI tests [9, 10]. For example, suppose copyrighted text is
removed from the training set. These tests may still flag them as members simply because the training
set includes related content (e.g., from online discussions) [10]. Second, the standard definition
of membership, as exact presence in the dataset, is too narrow if it is used to measure whether a
model is leaking training data. For example, a privacy leak can happen even if the model outputs
a rephrased version of a sensitive medical record. Indeed, recent work has shown that language
models can often complete sequences that they were not explicitly trained upon or even share n-grams
with [13]. To address these concerns, recent works have advocated for a shift towards more flexible,
neighborhood-based definitions for LLMs where membership is determined by semantic or lexical
similarity [9, 12]. The key contribution of this work is to show that membership inference is still
unreliable under these relaxed definitions.

3 Neighborhood Membership Inference: A General Framework

Notation. Let X be the space of token sequences over vocabulary V . Model parameters θ of an
LLM are learned via algorithm L on dataset D ∈ P(X), i.e., θ = L(D), where P denotes the power
set. Let D denote the distribution over the datasets. We define the symmetric difference between
datasets D1 and D2 as D1∆D2.

For a given text sequence x ∈ X , its neighborhood is formally defined as follows:
Definition 3.1 (Neighborhood). Let d : X × X → R≥0 be a distance metric on the space of input
sequences X . For a given x ∈ X and radius r ≥ 0, the neighborhood Nr : X → P(X) defines a ball
of radius r centered at x and is given by: Nr(x) = {x′ ∈ X | d(x, x′) ≤ r}.

We will refer to points in Nr(x) as “neighbors” of x, and the complement N r(x) of the neighborhood
is then simply all points that are “non-neighbors” of x, i.e., N r(x) = X \Nr(x). If a model is trained
on a point x, we would like to treat its neighbors Nr(x) as approximate members. Instantiating a
neighborhood with a radius of r = 0 recovers the traditional exact-matching notion of membership.
Using this, we denote neighborhood-based membership:

x ∈Nr
D ⇐⇒ ∃ x′ ∈ D s.t. x′ ∈ Nr(x) and x /∈Nr

D ⇐⇒ ∀ x′ ∈ D,x′ /∈ Nr(x). (1)

In light of this, the score assigned by an MI test to a point x should be interpreted as a signal that at
least one of its neighbors was used to train the model instead of an indication that x exactly matches
a sequence from the training set. Following the formalism from [10], we define an MI test as follows:
Definition 3.2 (γ-Thresholded Membership Inference). Given a neighborhood Nr, an MI test is
a mapping Tγ : X × Θ → R≥0, which, for any data point x and model parameters θ, returns a
“membership score” for testing the null hypothesis that x ̸∈Nr

D. Scores above a threshold γ ∈ R≥0
suggest membership: 1[Tγ(x, θ) ≥ γ] ≈ x ∈Nr

D.

3

When is a Membership Inference Test Sound? Here, we adapt the standard metrics—sensitivity
(true positive rate) and specificity (true negative rate)—to the pointwise setting as follows:
Definition 3.3 (Pointwise Membership Sensitivity (True Positive Rate)). The sensitivity of an MI test
Tγ for a point x with respect to a neighborhood Nr is the probability that the test correctly identifies
a sequence as a member:

Sens(Tγ , x) = Pr
D∼D

θ=L(D)

(Tγ(x, θ) ≥ γ | x ∈Nr
D) .

Definition 3.4 (Pointwise Membership Specificity (True Negative Rate)). The specificity of an
MI test Tγ for a point x with respect to a neighborhood Nr is the probability that the test correctly
identifies a sequence as a non-member:

Spec(Tγ , x) = Pr
D∼D

θ=L(D)

(Tγ(x, θ) < γ | x /∈Nr
D) .

Intuitively, the more separable the score distributions of a membership test for models trained/not-
trained on any neighbors, the more powerful the test. The following result connects the specificity
and sensitivity to the separability of the membership test scores under both hypotheses:
Lemma 3.5. (Advantage of an MI test). For a point x, the advantage of a test Tγ is given by the
difference between the expected membership scores under the null and the alternative hypotheses:

∞∫
γ=0

(
Sens(Tγ , x) + Spec(Tγ , x)− 1

)
dγ

︸ ︷︷ ︸
Advantage over random guess

= E
D∼D

θ=L(D)

(Tγ(x, θ) | x ∈Nr D)

︸ ︷︷ ︸
Expected score under the alternative

− E
D∼D

θ=L(D)

(Tγ(x, θ) | x /∈Nr D)

︸ ︷︷ ︸
Expected score under the null

.

The proof is in Appendix A.2. The integrand on the left is commonly known as Youden’s J statis-
tic [23], and captures the difference between the true positive rate and false positive rate, i.e., the
advantage over a random guess. Later in Section 5, we build upon this result to show the difficulty of
designing robust MI tests.

4 A Robustness Perspective on Membership Inference

We begin by defining a family of membership-invariant perturbations to the dataset, i.e., perturbations
to the dataset that do not change the membership label for some point:
Definition 4.1 (Membership Invariant Dataset Perturbation). Given an original dataset D ∼ D, a
dataset perturbation operator Pert: P(X) → P(X) is membership-invariant w.r.t a point x if:

x /∈Nr
D =⇒ x /∈Nr

Pert(D) and x ∈Nr
D =⇒ x ∈Nr

Pert(D).

In other words, a point’s membership label should remain unchanged under perturbations—members
stay members, and non-members stay non-members. Ideally, a membership test should be robust to
such perturbations. We focus on a specific type of perturbation via substitution: replacing neighbors
(or non-neighbors) of x with other neighbors (or non-neighbors). We denote such a perturbed dataset
to lie in the expansion of the original dataset D.
Definition 4.2. (Dataset Expansions Under Substitution) The b-neighborhood expansion of a dataset
D around point x (for some notion of neighborhood Nr) is the set of all datasets that can be made by
only substituting b points (from D) that lie in Nr(x) with other points from Nr(x). Similarly, the
b-non-neighborhood expansion arises by substituting points that lie in N r(x) with other points in
N r(x)

3. Concretely, with S ∈ {Nr(x),N r(x)}, these expansions are given by:

Bb(D,S) = {D′ ⊆ X
∣∣ |D′| = |D|, D′ \ S = D \ S, |D′∆D| ≤ 2b}.

In this paper, we explore the problem of constructing worst-case datasets from the expansion of
an original dataset D—that is, perturbed datasets in which x remains a non-member (since only
non-neighbors were substituted with other non-neighbors), yet the test incorrectly classifies it as
a member. Conversely, one can also construct examples where x remains a member, but the test
incorrectly predicts it to be a non-member. An illustration of this phenomenon is provided in Figure 1.

3Without loss of generality, we assume there are b such sequences in D to begin with.

4

Such worst-case datasets are interesting because they contend with the reliability of a test — if a
test can be arbitrarily made to fail on a point, despite the ground truth (i.e., membership label) being
unchanged, is the test still useful? Furthermore, such worst-case datasets have practical, real-world
implications under a poisoning threat model.

Threat model. In our setting, the adversary can be anyone capable of planting poisoned data on the
web, such as through poisoning publicly available sources like Wikipedia backups [14].

Formally, such scenarios can be characterized as a game between a challenger C, an adversary A, and
an arbiter J . Here, the adversary A’s goal is for the test to assign incorrect membership predictions:

1. Adversary A chooses a target point xt ∈ X and sends xt to the challenger C.
2. Challenger samples the training set DI such that xt ∈Nr

DI , and DO such that xt /∈Nr
DO, and

sends (DI , DO) to adversary A.
3. Adversary A poisons DI with budget b to obtain Dp

I ∈ Bb(DI ,Nr(xt)), and poisons DO to
obtain Dp

O ∈ Bb(DI ,N r(xt)). Poisoned datasets (Dp
I , D

p
O) are sent back to challenger C.4

4. Challenger C flips a random bit c and trains model parameters as θ = L(Dp
I) if c = 0 and

θ = L(Dp
O) if otherwise. Challenger then sends (xt, θ) to arbiter J .

5. Arbiter J leverages a membership test to output a prediction bit as ĉ = Tγ(xt, θ).
6. Adversary A wins if ĉ ̸= c.

Note that, in a departure from typical security games, we introduce an additional arbiter J to capture
the fact that the goal of the poisoning is to mislead the membership test as evaluated by an arbitrary
third-party. This is also reflected in the real-world motivating examples discussed earlier, where the
arbiter may be a judge ruling on a copyright violation case or an auditor assessing a model’s fairness.

In order to characterize the success of such an adversary, we extend the performance metrics from
Definitions 3.3 and 3.4 to account for the effects of poisoning:
Definition 4.3 (Pointwise Robustness). The robust sensitivity of a test Tγ for a point x w.r.t neigh-
borhood Nr is defined as the probability that, after substituting b neighbors with their worst-case
neighbors, the test still correctly classifies x as a member:

RSensb(Tγ , x) = Pr
D∼D


 min

D′∈Bb(D,Nr(x))

θ=L(D′)

Tγ(x, θ)

 ≥ γ

∣∣∣∣∣∣∣ x ∈Nr D

 . (2)

Similarly, for robust specificity:

RSpecb(Tγ , x) = Pr
D∼D


 max

D′∈Bb(D,Nr(x))

θ=L(D′)

Tγ(x, θ)

 < γ

∣∣∣∣∣∣∣ x /∈Nr D

 . (3)

In Equation 2 above, the inner minimum represents the adversary’s replacement of the original dataset
D (of which x is a member: x ∈Nr

D) with a carefully chosen dataset D′ such that it decreases the
membership signal for x in the trained model, while maintaining x’s member status, i.e., x ∈Nr

D′.
Concretely, this dataset is obtained by substituting b neighbors of x with other carefully selected
neighbors of x such that the test’s output score is minimized. Similar observation holds true for
Equation 3, except we are now trying to maximize the test score.
Note. The above measures of robustness are similar in spirit to those employed for the widely studied
concept of adversarial robustness [24] (e.g., robust accuracy). However, our setting introduces a key
distinction: worst-case analysis is instead performed over perturbations of the training dataset, rather
than perturbations of the individual point, i.e., b-expansions of D instead of lp norm of x.

5 PoisonM: Poisoning Membership Inference

In this section, we propose PoisonM, a concrete instantiation of a dataset poisoning attack on MI tests.
We begin with an overview and follow with implementation details.

4For generality, we allow the adversary to poison both datasets. However, the adversary could just as well
poison only one of the datasets without altering rest of the game.

5

Overview. To construct a poisoned dataset for a target point xt, the adversary A must provide:

xpoison ∈
{

argmax
D′∈Bb(D,N r(xt))

θ=L(D′)

Tγ(xt, θ), argmin
D′∈Bb(D,Nr(xt))

θ=L(D′)

Tγ(xt, θ)
}
.

W.l.o.g, let’s consider the case where the adversary wants to induce a false positive, i.e., the target xt
is originally not a member. The goal is to substitute “clean” non-neighbors of xt with worst-case, i.e.,
“poisoned” non-neighbors such that the membership test Tγ incorrectly assigns high membership
scores to xt (see Figure 1). The key insight of PoisonM is that, to find such a poisoned non-neighbor,
one can (1) sample an actual neighbor xsample, and then (2) “map” this neighbor back to a non-
neighbor that is Tγ-equivalent to xsample—meaning that training on either point causes Tγ to assign
the same score to xt. This mapped non-neighbor xpoison is thus the poison. If a model is trained on
xpoison, the MI test should ideally produce the same output on xt as it would if xsample had been in
the training set instead. The success of PoisonM can be formalized as follows:

PoisonM(xt,D)(xsample, S) = argmin
xpoison∈S

|Tγ(xt,L(D ∪ {xpoison}))− Tγ(xt,L(D ∪ {xsample})|︸ ︷︷ ︸
Denoted by δ

(xt,D)
xsample

, (4)

where S ∈ {N r(xt),Nr(xt)} is the domain of the mapping in which the poison should lie, and
δ
(xt,D)
xsample is the mapping error, i.e., how much the poison differs in Tγ’s score for xt as compared to
xsample. Extending this to find b poisons, we define:

PoisonMb(xt,D)({x1, ..., xb}sample, S) =
argmin

(x1,...,xb)poison∈S

|T(xt,L(D ∪ {x1, ..., xb}poison))− T(xt,L(D ∪ {x1, ..., xb}sample)|.

and the mapping error is given by δ
(xt,D)
(x1,...,xb)sample

. Here b is referred to as the budget of the attack.
We now provide a result that demonstrates the difficulty of obtaining a robust MI test.
Theorem 5.1. (Tradeoff of Membership Inference Under PoisonM). Let xt be a target point. The
advantages of a test Tγ with and without poisoning are at odds with each other:

∞∫
γ=0

(
RSensb1(Tγ , xt) + RSpecb2(Tγ , xt)− 1

)
dγ

︸ ︷︷ ︸
Advantage with poisoning (robustness)

+

∞∫
γ=0

(
Sens(Tγ , xt) + Spec(Tγ , xt)− 1

)
dγ

︸ ︷︷ ︸
Advantage without poisoning

≤ δ∗,

where δ∗ = E
D∼D

(x1,··· ,xb1
)∼D ∩ Nr(xt)

(x1,··· ,xb1
)sample∼N r(xt)

D′=D\{x1,··· ,xb1
}

b1=|D∩Nr(xt)|

δ
(xt,D

′)
(x1,··· ,xb1

)sample

︸ ︷︷ ︸
Expected mapping error for poisoned neighbors

+ E
D∼D

(x1,··· ,xb2
)∼D ∩ N r(xt)

(x1,··· ,xb2
)sample∼Nr(xt)

D′=D\{x1,...,xb2
}

b2=|v∩Nr(xt)|,v∼D

δ
(xt,D

′)
(x1,··· ,xb2

)sample

︸ ︷︷ ︸
Expected mapping error for poisoned non-neighbors

.

The proof is in Appendix A.7. The R.H.S represents the expected mapping error δ∗, while the L.H.S
captures the total advantage (over random guessing) of the MI test, both in the presence and absence
of poisoning. When PoisonM’s mapping error δ∗ is small—i.e., the attack is successful–the theorem
above implies a surprising insight: the advantage of the membership test can be turned against itself.
Specfically, the better the test performs (as measured by Youden’s J statistic) on clean points, the
more vulnerable it becomes to our poisoning attack. To build intuition, consider a scenario where
the adversary aims to induce a false negative by constructing a poisoned neighbor. In the ideal case
where δ∗ = 0, the poisoned neighbor has the same effect as a clean non-neighbor to Tγ . As a result,
Tγ assigns to xt the same (low) score as it would assign if trained on the clean non-neighbor. This
effectively fools Tγ into making an incorrect prediction, exploiting its own strength in distinguishing
members from non-members. Thus, the above result delineates a fundamental trade-off for an MI test:
strong performance on clean data comes at the cost of robustness to poisoning attacks. This is also
empirically validated in Section 6.

A natural question arises: for a given xt ∈ X , do such low-error poisons actually exist? In practice,
they often do—this stems from a misalignment between the “balls” defined by the generic notions
of neighborhood, and the actual superlevel sets of the test, which define regions that trigger high

6

Table 1: Details of the PoisonM attack for different definitions of neighborhood (fθ represents the LLM).
Distance Metric Definition Poisoned Neighbor Loss Poisoned Non-Neighbor Loss

n-gram Neighbors share a com-
mon n-gram

− n-gram(xpoison, xt) −
fθ(xpoison) · fθ(xt)

||xpoison||||xt||
+ λ· n-gram(xpoison, xt)

Embedding Neighbors have cosine
similarity ≥ c under a se-
mantic embedding func-
tion E

−
E(xpoison) · E(xt)

||E(xpoison)||||E(xt)||
−
fθ(xpoison) · fθ(xt)

||xpoison||||xt||
+λ ·

E(xpoison) · E(xt)

||E(xpoison)||||E(xt)||

Edit Distance Neighbors have normal-
ized edit distance ≤ l

edit(xpoison, xt) −
fθ(xpoison) · fθ(xt)

||xpoison||||xt||
− λ· edit(xpoison, xt)

Exact Match Only point itself is con-
sidered a neighbor

N/A since neighborhood
radius is 0

−
fθ(xpoison) · fθ(xt)

||xpoison||||xt||

Algorithm 1 PoisonM Attack
1: Input: Target point xt, NeighborhoodNr , Pretrained model θ;
2: Output: Poison point xpoison;
3: S = N r(xt) (Flipping a member to a non-Member) OR S = Nr(xt) (Flipping a non-Member to a member)
4: xsample ∼ S

5: xpoison ← xsample

6: while xpoison ∈ S do
7: i ∼ Uniform({1, · · · , |(xpoison|})
8: Substitutei(xpoison, min(LossS(i, xpoison, θ, xt)))▷Substitute ith token to minimize loss
9: end while
10: return xpoison

membership scores for xt. This is illustrated in Figure 1 — poisons exist in the small gaps between
the contours of the test’s superlevel sets and the actual neighborhood boundary. This phenomenon is
reminiscent of adversarial examples in classification, where there is a well known gap between lp
balls and the superlevel sets of the classifiers (or decision boundaries) [25].

Implementing PoisonM for Different Neighborhoods. PoisonM involves solving the discrete
optimization in Equation 4, tailored to the chosen neighborhood. Our general method, outlined in
Algorithm 1, follows a greedy coordinate descent approach inspired by Zou et al.[26]. Given a target
xt, we sample a neighbor or non-neighbor, then iteratively (1) select a random token and (2) replace
it with one that minimizes a neighborhood-specific poisoning loss. For poisoned non-neighbors, we
maximize distance while preserving model activations to mimic the sampled point’s influence on xt.
For poisoned neighbors, we minimize the neighborhood distance and stop once the point qualifies as
a neighbor. The losses for four popular choices of neighborhood are in Table 1. Notably, PoisonM is
MI-test agnostic—given a neighborhood definition, a single poisoning strategy is effective across all
evaluated MI tests, and the adversary needs no knowledge of which specific test will be employed.

6 Evaluation
6.1 Experimental Setup

Models and Training. We use the Pythia models [2], primarily the 6.9B variant, with ablations on
2.7B and 12B. All models are fine-tuned (for 1 epoch) on poisoned data using AdamW (lr = 2e-5,
batch size = 16). We focus on finetuning setting, i.e., the adversary poisons the finetuning dataset.
Datasets. Following [27], the model is finetuned on a mixture of a “canary” and a “background”
dataset, where we will run membership inference on the canaries. We use Wikitext-103 as background
and AI4Privacy/AGNews as canary datasets, injecting 500 canaries into 100K background points
and holding out another 500 canaries for evaluation. Membership labels are assigned based on a
neighborhood definition: although only 500 canaries are in the training set, points from the hold-out
dataset may also be considered members if they have neighbors in the training dataset. For each
definition of neighborhood, we construct a single poisoned dataset in which we generate poison
neighbors with budget b1 = 1 for members, and poison non-neighbors with b2 = 10 for the rest. The
resulting model should flip membership status—predicting members as non-members and vice versa.
Metrics. We select 5 popular tests: LOSS [16], Min-K% Prob [17] with K = 0.2, zlib [18],
perturbation-based [28], and reference-based [18]. For perturbation and reference-based tests, we

7

Table 2: Natural and robust AUC scores of MI tests on the AI4Privacy and AGNews canary datasets.

Nr MI
Test

AI4Privacy AGNews

Natural Token
Dropouts

Casing
Flips Chunk PoisonM Natural Token

Dropouts
Casing
Flips Chunk PoisonM

7-gram

LOSS 0.587 0.380 0.451 0.570 0.252 0.617 0.345 0.393 0.621 0.208
kmin 0.561 0.471 0.496 0.556 0.408 0.574 0.478 0.489 0.574 0.417
zlib 0.564 0.453 0.490 0.557 0.375 0.585 0.391 0.428 0.589 0.300
perturb 0.600 0.420 0.547 0.586 0.274 0.625 0.374 0.468 0.635 0.243
reference 0.647 0.250 0.398 0.618 0.089 0.623 0.325 0.373 0.637 0.174

Exact Match

LOSS 0.548 0.087 0.075 0.072 0.043 0.577 0.063 0.067 0.064 0.036
kmin 0.516 0.280 0.279 0.270 0.233 0.529 0.340 0.345 0.351 0.337
zlib 0.521 0.186 0.168 0.169 0.115 0.525 0.104 0.108 0.109 0.069
perturb 0.570 0.098 0.098 0.098 0.059 0.585 0.060 0.068 0.058 0.031
reference 0.625 0.044 0.036 0.037 0.022 0.614 0.047 0.051 0.051 0.026

Embedding

LOSS 0.552 0.456 0.560 0.454 0.390 0.582 0.492 0.602 0.491 0.371
kmin 0.512 0.485 0.517 0.462 0.454 0.559 0.509 0.564 0.519 0.427
zlib 0.562 0.513 0.567 0.513 0.484 0.542 0.481 0.556 0.481 0.402
perturb 0.586 0.510 0.596 0.535 0.424 0.589 0.503 0.608 0.479 0.378
reference 0.632 0.422 0.649 0.428 0.281 0.645 0.534 0.662 0.532 0.403

Edit Distance

LOSS 0.572 0.549 0.523 0.478 0.430 0.592 0.587 0.576 0.495 0.389
kmin 0.542 0.536 0.522 0.496 0.502 0.540 0.533 0.514 0.490 0.432
zlib 0.539 0.529 0.517 0.492 0.470 0.542 0.538 0.529 0.474 0.411
perturb 0.590 0.570 0.612 0.492 0.447 0.595 0.600 0.596 0.523 0.418
reference 0.642 0.594 0.539 0.446 0.337 0.619 0.614 0.603 0.506 0.381

Table 3: Natural and robust p-values of dataset inference on the AI4Privacy dataset. M(↓) and NM(↑) indicates
that the test should be outputting low p-values for members and high p-values for non-members; successful
poisoning should instead elicit high p-values for members and low p-values for non-members.

Nr
Natural Token Dropouts Casing Flips Chunking PoisonM

M (↓) NM (↑) M (↓) NM (↑) M (↓) NM (↑) M (↓) NM (↑) M (↓) NM (↑)

7-gram 0.007 0.952 0.197 <1e-3 0.019 0.003 0.003 0.397 0.999 <1e-3
Exact Match 0.129 0.999 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3
Embedding 0.031 0.995 0.227 0.516 0.003 0.996 0.007 0.276 0.967 0.072

evaluate all configurations from Maini et al. [20] and present the setting that performs the best
for membership inference for each neighborhood definition. Metrics include AUC and TPR@1%
FPR. We also evaluate dataset inference [20], a test providing p-values for aggregated membership
prediction. We use 4 neighborhood definitions, with fixed parameters: k = 7 for n-grams, c = 0.9
for cosine similarity 5, l = 0.48 for normalized edit distance, and exact match.
Baselines. As a baseline for generating poisoned non-neighbors, we adapt Liu et al’s [13] recent work
on three techniques for forcing completion on sequences not trained upon. These are: (a) dropping
tokens at regular intervals, (b) flipping the case of characters probabilistically, and (c) inserting chunks
into a sequence of random tokens (also similar to [31]). To maximize the performance of baselines,
we further perform a hyperparameter search for each approach to select the least destructive parameter
values (e.g., drop rate, flipping probability, chunk size) that still maintain non-neighbor status. For
generating poisoned neighbors, to the best of our knowledge there are no existing baselines.

6.2 Experimental Results

Overview. We present the full ROC curves of tests before and after poisoning on the AI4Privacy
and AGNews datasets in Figure 2, with AUC scores presented in Table 2. Since we have trained
the model on both poisoned neighbors (to make members look like non-members), and poisoned
non-neighbors (to make non-members look like members), we expect the AUC to considerably reduce.
Indeed, we observe that PoisonM is nearly always able to reduce AUC below random. In many
cases, it can be reduced considerably below random, or even close to 0 (e.g., n-gram neighborhood
with reference-based test). While the baselines are effective in some cases, PoisonM consistently
outperforms them since they were not designed to manipulate membership testing. This advantage
likely stems from two key factors: (1) PoisonM’s ability to generate poisons for both neighbors and
non-neighbors, and (2) the greater effectiveness of its poisoned non-neighbors, as shown in the exact
match setting—where all methods are limited to poisoning non-neighbors only.
We also observe a general trend that aligns with Theorem 5.1 — the tests that perform the best
naturally are also the lowest/rank low in terms of robust AUC. For example, the reference-based test

5Embeddings are computed using Microsoft’s Multilingual E5 Large text embedding model [29], which
currently ranks highly on the Massive Text Embedding Benchmark [30].

8

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

FPR

T
PR

LOSS
Standard Token Dropouts Casing Flips Chunking PoisonM

0 0.20.40.60.8 1
FPR

kmin

0 0.20.40.60.8 1
FPR

zlib

0 0.20.40.60.8 1
FPR

perturb

0 0.20.40.60.8 1
FPR

reference

Figure 2: ROC curves for MI tests using the n-gram (k=7) neighborhood on AI4Privacy.

ranks the highest naturally, and the lowest under poisoning across all AI4Privacy settings, and in
many settings in AGNews. We also present the TPR@1% FPR in Table 6 of Appendix B, where we
find that again, PoisonM is able to reduce performance.

Dataset Inference. Dataset inference extends MI testing to whole datasets by (1) ensembling existing
tests via a linear model and (2) using a T-test to compare scores from a suspect set to a reference set
of known non-members [20]. We test whether poisoning affects this method by evaluating it on

models fine-tuned with poisoned data (Table 3). The results show that dataset inference fails under
poisoning, yielding incorrect predictions. This aligns with intuition: if individual tests are driven
below random, so is their ensemble—mirroring how ensembling weak defenses fails for adversarial
examples [32].

Impact of Neighborhood Radius. We examine how changing the neighborhood radius
r affects poisoning, focusing on the LOSS test with n-gram neighborhoods on AI4Privacy
for k ∈ [5, 7, 9, 11] (Figure 3). As expected, larger radii (smaller k) reduce vulner-
ability to poisoned non-members but increase it for poisoned members, and vice versa.

4 8 12
0

0.2

0.4

n-gram size

M
et

ri
c

va
lu

e
PoisonM (TPR)
PoisonM (FPR)

Figure 3: TPR and FPR of the LOSS test
after poisoning using n-gram neighborhood
definitions ∈ [5, 7, 9, 11] on AI4Privacy.

Impact of Model and Dataset Size. We also study how
model size affects poisoning success by repeating our n-
gram (k = 7) experiments on AI4Privacy using Pythia
2.7B and 12B. PoisonM consistently reduces test perfor-
mance across all sizes (see Table 7 of Appendix B). The
2.7B model shows slightly lower natural accuracy and
slightly higher robustness, aligning with Theorem 5.1. In
Table 8, we repeat our experiments with a larger back-
ground dataset size of 1M WikiText points, and find that
PoisonM continues to be effective.

Filtering as a Defense. PoisonM is designed to be a
strong, general-purpose attack and can adapt to defenses by incorporating filtering criteria — such as
a perplexity filter — directly into its loss function. To demonstrate this, Table 4 considers a setting
in which a perplexity filter is employed (threshold selected to ensure low FPR of 1%), and shows
PoisonM can adapt to this setting and remain effective against all considered MI tests.

Poison Transferability. Even under a more restrictive setting where query access to the target model
is prohibited, an attacker can optimize against a surrogate model, with the expectation that the poison
will transfer to the target model. In Table 5, we experiment with an OLMO2 7B [33] model trained
on poisons computed against itself (as is typical), and then on poisons computed against a surrogate
Pythia 6.9B model. We find that PoisonM is still effective against MI tests even in this completely
blind setting, without query access to the target model.

7 Conclusion and Discussions

We have studied the reliability of membership inference against LLMs under poisoning attacks.
Although the shift from exact matching to neighborhood-based definition aims to enhance reliability
of MI tests, we reveal fundamental flaws remain even under this relaxed definition, calling into
question what it truly means for a data point to be considered a member. Moreover, the wide
applicability of our attack across common neighborhood definitions highlights inherent difficulties in
designing a generic yet meaningful notion of membership. One possible way forward is to consider

9

Table 4: Natural and robust AUC scores for
MI tests using the n-gram (k=7) neighborhood
on AI4Privacy with perplexity filtering.

MI Test Natural PoisonM
(w/o Filter → w/ Filter)

LOSS 0.587 0.252 → 0.322
kmin 0.561 0.408 → 0.444
zlib 0.564 0.375 → 0.420
perturb 0.600 0.274 → 0.340
reference 0.647 0.089 → 0.143

Table 5: Natural and robust AUC scores for MI tests
using the n-gram (k=7) neighborhood on AI4Privacy
for OLMO2 7B.

MI Test Natural PoisonM
(w/ OLMO2 7B)

PoisonM
(w/ Pythia 6.9B)

LOSS 0.567 0.276 0.313
kmin 0.542 0.412 0.433
zlib 0.554 0.386 0.410
perturb 0.587 0.303 0.334
reference 0.590 0.255 0.298

model-dependent or context-aware definitions that better align with how MI tests actually operate.
Finally, although we primarily focused on textual data, we expect our analysis to generalize beyond
the language domain. For example, while approximate membership definitions for image data may
consider transformations such as rotation, cropping, and filtering, such definitions are likely to suffer
from similar robustness issues.

Limitations. One limitation is that our attack for generating poison non-neighbors requires multiple
poisons, i.e., b2 = 10. Future work may improve upon this. We also focus our experiments on specific
settings, and larger-scale evaluations with more models/datasets/neighborhoods can help towards
evaluating what it truly means for a point to be a member. We also do not evaluate the pre-training
setting due to the computational costs, although it has been shown to be viable [34].

8 Acknowledgements

This work is supported by National Science Foundation Graduate Research Fellowship Grant No.
DGE 1841052. Any opinion, findings, and conclusions or recommendations expressed in this material
are those of the authors(s) and do not necessarily reflect the views of our research sponsors.

References
[1] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference Attacks

against Machine Learning Models. In Proc. of IEEE S&P, pages 3–18. IEEE, 2017.

[2] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia:
A Suite for Analyzing Large Language Models Across Training and Scaling. In Proc. of ICML, 2023.

[3] The New York Times. The Times Sues OpenAI and Microsoft Over A.I. Use of Copyrighted Work. https:
//www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-
lawsuit.html, 2023. Accessed: 05/15/2025.

[4] The Guardian. US authors’ copyright lawsuits against OpenAI and Microsoft combined in New
York with newspaper actions. https://www.theguardian.com/books/2025/apr/04/us-
authors-copyright-lawsuits-against-openai-and-microsoft-combined-in-new-york-
with-newspaper-actions, 2025. Accessed: 05/15/2025.

[5] Reuters. Publisher Ziff Davis sues OpenAI for copyright infringement. https://www.reuters.com/
business/publisher-ziff-davis-sues-openai-copyright-infringement-2025-04-24/,
2025. Accessed: 05/15/2025.

[6] isaca.org. Understanding the EU AI Act: Requirements and Next Steps. https://www.isaca.org/
resources/white-papers/2024/understanding-the-eu-ai-act, 2024. Accessed: 05/15/2025.

[7] Ben Chester Cheong. Transparency and accountability in AI systems: safeguarding wellbeing in the age of
algorithmic decision-making. Frontiers in Human Dynamics, 6:1421273, 2024.

[8] Sabina Lacmanovic and Marinko Skare. Artificial intelligence bias auditing–current approaches, challenges
and lessons from practice. Review of Accounting and Finance, (ahead-of-print), 2025.

[9] Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia
Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do Membership Inference Attacks Work on
Large Language Models? In Proc. of COLM, 2024.

10

https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.theguardian.com/books/2025/apr/04/us-authors-copyright-lawsuits-against-openai-and-microsoft-combined-in-new-york-with-newspaper-actions
https://www.theguardian.com/books/2025/apr/04/us-authors-copyright-lawsuits-against-openai-and-microsoft-combined-in-new-york-with-newspaper-actions
https://www.theguardian.com/books/2025/apr/04/us-authors-copyright-lawsuits-against-openai-and-microsoft-combined-in-new-york-with-newspaper-actions
https://www.reuters.com/business/publisher-ziff-davis-sues-openai-copyright-infringement-2025-04-24/
https://www.reuters.com/business/publisher-ziff-davis-sues-openai-copyright-infringement-2025-04-24/
https://www.isaca.org/resources/white-papers/2024/understanding-the-eu-ai-act
https://www.isaca.org/resources/white-papers/2024/understanding-the-eu-ai-act

[10] Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Position: Membership Inference Attacks
Cannot Prove that a Model Was Trained On Your Data. arXiv preprint arXiv:2409.19798, 2024.

[11] Debeshee Das, Jie Zhang, and Florian Tramèr. Blind Baselines Beat Membership Inference Attacks for
Foundation Models. arXiv preprint arXiv:2406.16201, 2024.

[12] Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr. What Does
it Mean for a Language Model to Preserve Privacy? In Proc. of FAccT, 2022.

[13] Ken Ziyu Liu, Christopher A Choquette-Choo, Matthew Jagielski, Peter Kairouz, Sanmi Koyejo, Percy
Liang, and Nicolas Papernot. Language Models May Verbatim Complete Text They Were Not Explicitly
Trained On. In Proc. of ICLR, 2025.

[14] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning Web-scale Training Datasets is
Practical. In Proc. of IEEE S&P, pages 407–425. IEEE, 2024.

[15] Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini, Florian
Tramèr, and Daphne Ippolito. Persistent Pre-Training Poisoning of LLMs. In Proc. of ICLR, 2025.

[16] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk in Machine Learning:
Analyzing the Connection to Overfitting. In Proc. of CSF, 2018.

[17] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, and
Luke Zettlemoyer. Detecting Pretraining Data from Large Language Models. In Proc. of ICLR, 2024.

[18] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee,
Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting Training Data from Large
Language Models. In Proc. of USENIX Security, 2021.

[19] Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan, and
Taylor Berg-Kirkpatrick. Membership Inference Attacks against Language Models via Neighbourhood
Comparison. In Proc. of ACL, 2023.

[20] Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. LLM Dataset Inference: Did you
train on my dataset? In Proc. of NeurIPS, 2024.

[21] Amrita Roy Chowdhury, Zhifeng Kong, and Kamalika Chaudhuri. On the Reliability of Membership
Inference Attacks. In Proc. of SaTML, 2025.

[22] Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geiping, Tom Goldstein, and Nicholas Carlini. Privacy
Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models. In Proc. of NeurIPS,
2024.

[23] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks. In Proc. of ICLR, 2018.

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing Properties of Neural Networks. In Proc. of ICLR, 2014.

[26] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal and
transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

[27] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced
Membership Inference Attacks against Machine Learning Models. In Proc. of CCS, 2022.

[28] Filippo Galli, Luca Melis, and Tommaso Cucinotta. Noisy Neighbors: Efficient membership inference
attacks against LLMs. In Proc. of the Fifth Workshop on Privacy in Natural Language Processing, 2024.

[29] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilingual E5
Text Embeddings: A Technical Report. arXiv preprint arXiv:2402.05672, 2024.

[30] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive Text Embedding
Benchmark. In Proc. of EACL, 2023.

11

[31] Michael-Andrei Panaitescu-Liess, Pankayaraj Pathmanathan, Yigitcan Kaya, Zora Che, Bang An, Sicheng
Zhu, Aakriti Agrawal, and Furong Huang. PoisonedParrot: Subtle Data Poisoning Attacks to Elicit
Copyright-Infringing Content from Large Language Models. In Luis Chiruzzo, Alan Ritter, and Lu Wang,
editors, Proc. of NAACL, 2025.

[32] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial Example Defense:
Ensembles of Weak Defenses are not Strong. In Proc. of USENIX WOOT, 2017.

[33] Evan Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu,
Shengyi Huang, Matt Jordan, Nathan Lambert, et al. 2 OLMo 2 Furious (COLM’s Version). In Proc. of
COLM, 2025.

[34] Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini, Florian
Tramèr, and Daphne Ippolito. Persistent Pre-Training Poisoning of LLMs. In Proc. of ICLR, 2025.

12

A Proofs

Lemma A.1. (Expectation using survival function). Let X be a random variable such that P (X ≥
0) = 1, then we have

E[X] =

∫ ∞
s=0

P (X > s) ds.

Proof.

E[X] =

∫ ∞
x=0

xP (X = x)dx

=

∫ ∞
x=0

P (X = x)

∫ x

s=0

ds dx

=

∫ ∞
s=0

∫ ∞
x=s

P (X = x) dx ds

=

∫ ∞
s=0

P (X > s) ds

Lemma A.2. (Restatement of Lemma 3.5). The advantage of a membership inference test is given by

E
D∼D

θ=L(D)

(T(x, θ) | x ∈Nr
D)− E

D∼D
θ=L(D)

(T(x, θ) | x /∈Nr
D) =

∞∫
γ=0

(Sens(T, x)dγ + Spec(T, x)dγ − 1).

Proof. Using Lemma A.1, we get

E
D∼D

θ=L(D)

(Tγ(x, θ) | x ∈Nr
D)− E

D∼D
θ=L(D)

(Tγ(x, θ) | x /∈Nr
D)

=

∫ ∞
γ=0

P
D∼D

(Tγ(x, θ) > γ | x ∈Nr
D)dγ −

∫ ∞
γ=0

P
D∼D

(Tγ(x, θ) > γ | x /∈Nr
D)dγ

=

∫ ∞
γ=0

P
D∼D

(Tγ(x, θ) > γ | x ∈Nr
D)dγ +

∫ ∞
γ=0

P
D∼D

(Tγ(x, θ) ≤ γ | x /∈Nr
D)dγ − 1

=

∞∫
γ=0

(Sens(Tγ , x)dγ + Spec(Tγ , x)dγ − 1)

Definition A.3. (Targeted Expansion) The targeted b−neighborhood expansion (around a point x)
of a dataset D ∈ P(X) from a set S to a set S′ is the set of all datasets that can be made by only
substituting at most b sequences (from D) that lie in S with points in S′:

Bb(D,S,S ′) = {D′ ⊆ X | |D′| = |D|, D′ ∩ S ⊆ D ∩ S,D ∩ S ⊆ D′ ∩ S, |D′∆D| = 2b}.

Lemma A.4. Upper bound on MI score under neighbor poisons.

min
D′∼Bb(D,Nr(x))

θ=L(D′)

Tγ(x, θ) ≤ E
D′∼Bb(D,Nr(x),N r(x))

θ=L(D′)

Tγ(x, θ) + E
x1,...xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)
.

13

Proof. For x′1, ..., x
′
b ∼ N r(x), we know,

|Tγ(x, L(D ∪ {x′1, ..., x′b}))− Tγ(x, L(D ∪ {PoisonMapb(x,D)((x
′
1, ..., x

′
b),Nr(x))}| = δ

(x,D)
(x′

1,...,x
′
b)

Now, to extend this for dataset substitutions, for x1, ..., xb ∼ Nr(x) ∩D and D′ = D \ {x1, ...xb},
we have:

|Tγ(x, L(D′∪{x′1, ..., x′b}))−Tγ(x, L(D′∪{PoisonMapb(x,D′)((x
′
1, ..., x

′
b),Nr(x))}| = δ

(x,D′)
(x′

1,...,x
′
b)

Taking expectation over points, we get:

E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

∣∣Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

− Tγ(x, L(D′ ∪ {PoisonMapb(x,D′)((x
′
1, . . . , x

′
b),Nr(x))}))

∣∣
= E

x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Using Jensen’s Inequality:

| E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, ..., x′b}))

− E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {PoisonMapb(x,D′)((x
′
1, ..., x

′
b),Nr(x))}))|

≤ E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Taking one side of the absolute value:

E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ
(
x, L(D′ ∪ {PoisonMapb(x,D′)((x

′
1, . . . , x

′
b),Nr(x))})

)

≤ E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

+ E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

14

Then,

min
x1,...,xb∈Nr(x)∩D
x′
1,...,x

′
b∈Nr(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

≤ E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

+ E
x1,...,xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Simplifying:

min
D′∼Bb(D,Nr(x))

θ=L(D′)

Tγ(x, θ) ≤ E
D′∼Bb(D,Nr(x),N r(x))

θ=L(D′)

Tγ(x, θ)) + E
x1,...xb∼Nr(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Lemma A.5. Lower bound on MI score under non-neighbor poisons.

max
D′∼Bb(D,N r(x))

θ=L(D′)

Tγ(x, θ) ≥ E
D′∼Bb(D,N r(x),Nr(x))

θ=L(D′)

Tγ(x, θ))− E
x1,...xb∼N r(x)
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)
.

Proof. For x′1, ..., x
′
b ∼ Nr(x), we know,

|Tγ(x, L(D ∪ {x′1, ..., x′b}))− Tγ(x, L(D ∪ {PoisonMapb(x,D)((x
′
1, ..., x

′
b),N r(x))}| = δ

(x,D)
(x′

1,...,x
′
b)

Now, to extend this for dataset substitutions, for x1, ..., xb ∼ N r(x) ∩D and D′ = D \ {x1, ...xb},
we have

|Tγ(x, L(D′∪{x′1, ..., x′b}))−Tγ(x, L(D′∪{PoisonMapb(x,D′)((x
′
1, ..., x

′
b),N r(x))}| = δ

(x,D′)
(x′

1,...,x
′
b)

Taking expectation over points, we get

E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

∣∣Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

− Tγ(x, L(D′ ∪ {PoisonMapb(x,D′)((x
′
1, . . . , x

′
b),N r(x))}))

∣∣
= E

x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Using Jensen’s Inequality:

15

∣∣ E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

− E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

Tγ
(
x, L(D′ ∪ {PoisonMapb(x,D′)((x

′
1, . . . , x

′
b),N r(x))})

)∣∣
≤ E

x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Taking one side of the absolute value:

E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

Tγ
(
x, L(D′ ∪ {PoisonMapb(x,D′)((x

′
1, . . . , x

′
b),N r(x))})

)

≥ E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

− E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Then,

max
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼N r(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

≥ E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

Tγ(x, L(D′ ∪ {x′1, . . . , x′b}))

− E
x1,...,xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

Simplifying:

max
D′∼Bb(D,N r(x))

θ=L(D′)

Tγ(x, θ) ≥ E
D′∼Bb(D,N r(x),Nr(x))

θ=L(D′)

Tγ(x, θ))− E
x1,...xb∼N r(x)∩D
x′
1,...,x

′
b∼Nr(x)

D′=D\{x1,...,xb}

δ
(x,D′)
(x′

1,...,x
′
b)

16

Lemma A.6. Advantage of MI under poisoning.
∞∫

γ=0

(
Sensitivityb1(Tγ , x) dγ + Specificityb2(Tγ , x) dγ − 1

)
≤ E

D∼D
D′∼B̃b1

(D,Nr(x),N r(x))

θ=L(D′)

(
Tγ(x, θ) | x ∈Nr

D
)
− E

D∼D
D′∼B̃b2

(D,N r(x),Nr(x))

θ=L(D′)

(
Tγ(x, θ) | x /∈Nr

D
)

+ E
x1,...,xb1

∼Nr(x)

x′
1,...,x

′
b1
∼N r(x)

D′=D\{x1,...,xb1
}

δ
(x,D′)
(x′

1,...,x
′
b1

) + E
x1,...,xb2

∼N r(x)

x′
1,...,x

′
b2
∼Nr(x)

D′=D\{x1,...,xb2
}

δ
(x,D′)
(x′

1,...,x
′
b2

)

Proof. Using Lemma A.1, we get

E
D∼D

 min
D′∼Bb1

(D,Nr(x))

θ=L(D′)

Tγ(x, θ)

∣∣∣∣∣∣∣ x ∈Nr
D


=

∫ ∞
γ=0

PD∼D

 min
D′∼Bb1

(D,Nr(x))

θ=L(D′)

Tγ(x, θ) > γ

∣∣∣∣∣∣∣ x ∈Nr
D

 dγ

=

∫ ∞
γ=0

Sensb1(Tγ , x) dγ

Similarly,

E
D∼D

 max
D′∼Bb2

(D,N r(x))

θ=L(D′)

Tγ(x, θ)

∣∣∣∣∣∣∣ x /∈Nr
D



=

∫ ∞
γ=0

PD∼D

 max
D′∼Bb2

(D,N r(x))

θ=L(D′)

Tγ(x, θ) ≤ γ

∣∣∣∣∣∣∣ x /∈Nr
D

 dγ − 1

=

∫ ∞
γ=0

(
1− Specb2(Tγ , x)

)
dγ

Now, using Lemma A.4 and Lemma A.5,

∫ ∞
γ=0

(
Sensb1(Tγ , x) + Specb2(Tγ , x)− 1

)
dγ

= E
D∼D

 min
D′∼Bb1

(D,Nr(x))

θ=L(D′)

Tγ(x, θ)

∣∣∣∣∣∣∣ x ∈Nr
D

− E
D∼D

 max
D′∼Bb2

(D,N r(x))

θ=L(D′)

Tγ(x, θ)

∣∣∣∣∣∣∣ x /∈Nr
D


≤ E

D∼D
D′∼B̃b1

(D,Nr(x),N r(x))

θ=L(D′)

(
Tγ(x, θ) | x ∈Nr

D
)
− E

D∼D
D′∼B̃b2

(D,N r(x),Nr(x))

θ=L(D′)

(
Tγ(x, θ) | x /∈Nr

D
)

+ E
x1,...,xb1

∼Nr(x)

x′
1,...,x

′
b1
∼N r(x)

D′=D\{x1,...,xb1
}

δ
(x,D′)
(x′

1,...,x
′
b1

) + E
x1,...,xb2

∼N r(x)

x′
1,...,x

′
b2
∼Nr(x)

D′=D\{x1,...,xb2
}

δ
(x,D′)
(x′

1,...,x
′
b2

)

17

Theorem A.7. (Restatement of Theorem 5.1). For a point x, the advantages of a test Tγ with and
without poisoning are at odds with each other, as given by:

∞∫
γ=0

(
Sensb1(Tγ , x) + Specb2(Tγ , x)− 1

)
dγ +

∞∫
γ=0

(
Sens(Tγ , x) + Spec(Tγ , x)− 1

)
dγ ≤ δ∗,

where, δ∗ = E
x1,...xb1

∼Nr(x)

x′
1,...,x

′
b1
∼N r(x)

D′=D\{x1,...,xb1
}

b1=|D∩Nr(x)|

δ
(x,D′)
(x′

1,...,x
′
b1

) + E
x1,...xb2

∼N r(x)

x′
1,...,x

′
b2
∼Nr(x)

D′=D\{x1,...,xb2
}

b2=|v∩Nr(xt)|,v∼D

δ
(x,D′)
(x′

1,...,x
′
b2

).

Proof. For b1 = |Nr(x) ∩D|, we get,

E
D∼D

D′∼B̃b1
(D,Nr(x),N r(x))

θ=L(D′)

(Tγ(x, θ) | x ∈Nr
D) = E

D∼D
θ=L(D)

(Tγ(x, θ) | x /∈Nr
D)

Similarly, for b2 = |v ∩Nr(xt)|, v ∼ D, we get,

E
D∼D

D′∼B̃b2
(D,N r(x),Nr(x))

θ=L(D′)

(Tγ(x, θ) | x /∈Nr
D) = E

D∼D
θ=L(D)

(Tγ(x, θ) | x ∈Nr
D)

Applying this to Lemma A.6, we get the result.

B Additional Results

Table 6: Natural and robust TPR @1% FPR of MI tests on the AI4Privacy and AGNews canary datasets.

Nr MI
Test

AI4Privacy AGNews

Natural Token
Dropouts

Casing
Flips Chunk PoisonM Natural Token

Dropouts
Casing
Flips Chunk PoisonM

7-gram

LOSS 0.104 0.044 0.046 0.093 0.004 0.069 0.012 0.018 0.085 0.000
kmin 0.089 0.085 0.087 0.083 0.065 0.007 0.014 0.016 0.007 0.014
zlib 0.097 0.061 0.080 0.099 0.034 0.034 0.021 0.027 0.039 0.005
perturb 0.104 0.040 0.061 0.089 0.004 0.041 0.009 0.021 0.067 0.000
reference 0.108 0.046 0.051 0.123 0.004 0.069 0.009 0.021 0.087 0.000

Exact Match

LOSS 0.030 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.000
kmin 0.008 0.008 0.008 0.004 0.002 0.006 0.006 0.006 0.004 0.002
zlib 0.024 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000
perturb 0.048 0.000 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.000
reference 0.062 0.000 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.000

Embedding

LOSS 0.039 0.031 0.047 0.035 0.022 0.036 0.008 0.024 0.006 0.005
kmin 0.038 0.036 0.038 0.014 0.042 0.010 0.002 0.008 0.005 0.002
zlib 0.042 0.042 0.047 0.033 0.022 0.014 0.010 0.011 0.008 0.003
perturb 0.069 0.038 0.071 0.053 0.016 0.038 0.016 0.024 0.003 0.006
reference 0.080 0.025 0.097 0.042 0.017 0.027 0.008 0.024 0.003 0.005

Edit Distance

LOSS 0.046 0.046 0.037 0.029 0.027 0.058 0.054 0.050 0.023 0.006
kmin 0.050 0.039 0.029 0.044 0.031 0.006 0.006 0.008 0.006 0.004
zlib 0.033 0.039 0.031 0.023 0.015 0.037 0.033 0.033 0.029 0.006
perturb 0.058 0.064 0.052 0.058 0.017 0.045 0.072 0.062 0.023 0.004
reference 0.087 0.054 0.046 0.021 0.000 0.068 0.050 0.054 0.019 0.000

Table 7: Natural and robust membership inference
test AUC scores using n-gram (k=7) neighborhood
definition across different Pythia model sizes for
2.7B / 6.9B / 12B parameters on AI4Privacy.

MI Test Natural PoisonM

LOSS 0.568 / 0.587 / 0.587 0.353 / 0.252 / 0.257
kmin 0.560 / 0.561 / 0.563 0.472 / 0.408 / 0.423
zlib 0.554 / 0.564 / 0.564 0.443 / 0.375 / 0.379
perturb 0.583 / 0.600 / 0.603 0.380 / 0.274 / 0.286
reference 0.624 / 0.647 / 0.645 0.175 / 0.089 / 0.089

Table 8: Natural and robust AUC scores for MI tests
using the n-gram (k=7) neighborhood on AI4Privacy
with a larger background dataset of 1M WikiText points.

MI Test Natural PoisonM

LOSS 0.568 0.396
kmin 0.556 0.478
zlib 0.552 0.467
perturb 0.572 0.401
reference 0.604 0.232

18

C Additional Details About PoisonM

Neighborhoods. We consider the following popular neighborhood definitions:

N-gram(n=k): For a given sequence of x = x1, · · · , xn, let n-gram(x, k) = {xi : xi+k}n−ki=1
denote the set of all k-grams of x. Then, the n-gram neighborhood yields the set of all
sequences that share an k-gram with x: {x′ ∈ X | n-gram(x′, k) ∩ n-gram(x, k) ̸= ∅}.
Embedding(cosine_sim=c): Let E : X → Rd denote an embedding function that maps
sequences to d-dimensional representations that capture their “semantics”. Then, for a given sequence
of x, the embedding similarity neighborhood yields the set of all sequences with embeddings of
cosine similarity at least c to x: {x′ ∈ X | E(x′)·E(x)

||E(x)|| ||E(x′)|| ≥ c}.
ExactMatch: For a given sequence x, the exact matching neighborhood yields the singleton
comprising the sequence itself, i.e., {x}.
EditDistance(distance=l): For a given sequence x, the edit distance neighborhood yields
the set of all sequences that are within a normalized Levenshtein distance l from x: {x′ ∈ X |
lev(x,x′)
|x|+|x′| ≤ l}.

Finding Poison Non-Neighbors. We sample an actual neighbor as xt itself, and then:
1. N-gram(n=k): Iteratively (a) select a token uniformly at random, (b) replace it with a token
from the vocabulary such that last-layer activations of resulting sequence have maximum cosine
similarity with activations of xt, where activations are computed using model that will be trained on
the poison, and (c) repeat until n-gram overlap between the current poison and xt is less than k. Here
we can set λ = 0 since replacing tokens automatically breaks up n-grams for free.
2. Embedding(cosine_sim=c): Iteratively (a) select a token uniformly at random, (b) pick
the token that both maximizes activation cosine similarity and also minimizes (weighted by factor of
λ = −1.5) cosine similarity of the embedding (from E) of the resulting sequence with that of xt.
3. EditDistance(distance=l): Same procedure as that for embeddings, except we now
maximize the edit distance (λ = 1.5) instead of minimizing embedding cosine similarities.
4. ExactMatch: Same procedure as that for n-grams, but only a single iteration.

Finding Poison Neighbors. We sample an actual non-neighbor as a random text from any auxiliary
dataset, and then:
1. N-gram(n=k): Inject a k-gram from x at random index (shortest k-gram in characters).
2. Embedding(cosine_sim=c): Iteratively (a) select a token uniformly at random, and (b)
replace it with a token from vocabulary that maximizes cosine similarity of the embedding (under E)
of the resulting sequence with xt’s embedding. (c) repeat until cosine similarity exceeds c.
3. EditDistance(distance=l): Iteratively (a) randomly insert, delete, or substitute charac-
ters (b) greedily keep the mutation only if it decreases edit distance. (c) repeat until edit distance
drops below l.
4. ExactMatch: Worst-case neighbors do not exist under exact matching, since the neighbor-
hood ball holds a radius of 0.

D Societal Impacts

This work presents a novel poisoning vulnerability that could be used by a real-world adversary
to manipulate the outcome of a high-stakes membership inference test. This could have legal and
reputation-related implications. However, we believe it is important to release our findings so that (a)
auditors and other entities that may wish to use membership testing may be made aware of its pitfalls,
(b) the community can work towards better defining membership.

E Compute

We run all experiments on a machine with 4 NVIDIA H100 GPUs, 40 Intel(R) Xeon(R) Silver 4410T
CPUs, and 126GB of RAM. Finetuning models typically took 2 hours, and generating poisoned
datasets took between a few minutes to at most 2 hours, depending on choice of neighborhood.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction capture the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed limitations in Section 7 of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

20

Justification: We have listed the assumptions for all theoretical results, and included the
proofs in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have discussed this in Section 6.1 of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]
Justification: Code in supplementary material and datasets are public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details provided in Section 6.1 of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to computational difficulties we cannot do several runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of compute are presented in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and conform to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed societal impacts in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

23

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited assets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

24

paperswithcode.com/datasets

Answer: [NA]

Justification: This paper does involve releasing new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no crowdsourced experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

25

Justification: Not applicable per the policy.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Neighborhood Membership Inference: A General Framework
	A Robustness Perspective on Membership Inference
	PoisonM: Poisoning Membership Inference
	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Discussions
	Acknowledgements
	Proofs
	Additional Results
	Additional Details About PoisonM
	Societal Impacts
	Compute

