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Abstract

This paper presents NT-Java-1.1B2, an open-source specialized code language
model built on StarCoderBase-1.1B3, designed for coding tasks in Java program-
ming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base
model and majority of other models of similar size on MultiPL-E (Cassano et
al., 2022 [1]) Java code benchmark. While there have been studies on extending
large, generic pre-trained models to improve proficiency in specific programming
languages like Python, similar investigations on small code models for other pro-
gramming languages are lacking. Large code models require specialized hardware
like GPUs for inference, highlighting the need for research into building small
code models that can be deployed on developer desktops. This paper addresses
this research gap by focusing on the development of a small Java code model,
NT-Java-1.1B, and its quantized versions, which performs comparably to open
models around 1.1B on MultiPL-E Java code benchmarks, making them ideal for
desktop deployment. This paper establishes the foundation for specialized models
across languages and sizes for a family of NT Models.

1 Introduction

The state-of-the-art code models, capable of understanding and generating code in numerous pro-
gramming languages, are revolutionizing the way enterprises approach software development. With
the ability to understand and generate code across a vast array of programming languages, these
code models offer a significant boost in productivity. However, the one-size-fits-all approach of
these generic multi-lingual code models often falls short in meeting the nuanced requirements of
project-level coding tasks in an enterprise, which tend to be language-specific. This has led to
the development of Narrow Transformers (NTs), specialized models further trained on a particular
programming language, offering a more efficient solution for enterprises. These NTs are designed to
optimize performance for a specific programming language, balancing the trade-offs between model
size, inferencing cost, and operational throughput. As demand for tailored solutions grows, we can
expect a surge in NT development, providing the precision and efficiency required by enterprise
projects.
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However, in practice, the substantial economic cost associated with training and fine-tuning large
code models renders language model experiments prohibitively expensive for most researchers
and organizations. Additionally, deploying these massive models in everyday scenarios, such as
on personal computers, proves either inefficient or unfeasible. These challenges emphasize the
importance of shifting focus to explore Narrow Transformer approach on powerful yet smaller code
language models (code SLMs). Consequently, we developed a Narrow Transformer for Java within a
smaller parameter range (i.e., 1.1B), suitable for desktop deployment and democratizing code model
experiments.

2 Related Work

Codex-12B (Chen et al., 2021 [2]) was built by extending pre-training of GPT, with 159 GB of unique
Python files, from public software repositories hosted on GitHub. Codex exhibits its highest profi-
ciency in Python; however, it also demonstrates competence in over twelve additional programming
languages. CodeGen-Mono-350M/2.7B/6.1B/16.1B (Nijkamp et al., 2023 [3]) were built by further
pretraining CodeGen-Multi-350M/2.7B/6.1B/16.1B with the mono-lingual dataset BIGPYTHON
that contains public, non-personal, permissively licensed Python code from GitHub. CodeGen-Mono
outperformed CodeGen-Multi on Python as per the HumanEval benchmark. StarCoder-15.5B (Li
et al., 2023 [4]) was built by extending pre-training of StarCoderBase-15.5B (which was trained
with multi-lingual datasets comprising code from 80+ programming languages) with a Python subset
of 35B tokens from the StarCoderBase training data. StarCoder outperformed StarCoderBase on
Python as per the HumanEval benchmark. In the evaluation of StarCoder and StarCoderBase on 19
programming languages with MultiPL-E datasets, StarCoder outperformed StarCoderBase on Python,
underperformed on 9 programming languages, and despite being further trained only on Python,
it still outperformed StarCoderBase on 9 other programming languages. CodeLlama-PYTHON-
7B/13B/34B/70B (Baptiste et al., 2023 [5]) were built by extending pre-training of CodeLlama-
7B/13B/34B/70B (which were trained on 500B tokens of code data, except CodeLlama-70B, which
was trained on 1T tokens) on 100B tokens of python heavy dataset. CodeLlama-PYTHON outclasses
CodeLlama on Python on MultiPL-E benchmarks, but it is not consistent on rest of the languages.
While extending pretraining of multi-lingual code models with a specific language dataset doesn’t
guarantee improvement in performance in other languages, it guarantees improvement in that lan-
guage. Enterprises are adopting these generic or Python-trained multi-lingual models to enhance
coding tasks, with AI-mature enterprises fine-tuning them using their own codebases. However, if a
pre-trained model is already specialized in the required language, further training on the project’s
codebase yields better results. Given Java’s widespread use in enterprise projects, this paper illustrates
the development of such a pre-trained code model specialized on Java.

Small Language Models (SLMs) will shift the AI community’s focus in enterprise and consumer
solutions due to their ability to run on personal devices without a GPU, enabling large-scale deploy-
ment while maintaining data privacy and security. Significant examples in the present scenario of
code SLMs include SantaCoder-1.1B (Ben Allal et al., 2023 [6]), Phi-1 (Gunasekar et al., 2023 [7]),
DeciCoder-1B4, StarCoderBase-1.1B, WizardCoder-1B-V1.0 (Luo et al., 2023 [8]), DeepSeek-Coder-
1b-base (Guo et al., 2024 [9]) and Refact-1.6B5. All these state-of-the-art models around 1B size are
multi-lingual code models, indicating that no considerable work has been done towards extending
training of multi-lingual code SLMs in building language-specific code SLMs.

3 Datasets

The foundation model for our experiment was StarCoderBase-1.1B. Enterprise projects shortlist
candidate models for coding tasks based on factors like licensing and training data. Using any dataset
beyond StarCoderBase for extending its pretraining would complicate the adoption of NT-Java-1.1B
due to licensing concerns. Therefore, we used a subset of StarCoderData6, the curated dataset from
The Stack v17 used to train StarCoderBase, to build NT-Java-1.1B.

4https://huggingface.co/Deci/DeciCoder-1b
5https://huggingface.co/smallcloudai/Refact-1_6B-fim
6https://huggingface.co/datasets/bigcode/starcoderdata
7https://huggingface.co/datasets/bigcode/the-stack
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The Java dataset from StarCoderData was used for training NT-Java-1.1B. The Java dataset is around
22B tokens.

4 Model Training

4.1 Data Preprocessing

For data preprocessing, we employed the Megatron-LM framework for data preprocessing. The
NT-Java-1.1B employs the StarCoderBase GPT2BPETokenizer with a 49,152-token vocabulary,
without additions. The Java dataset (87 parquet files) was merged into one file and processed through
Megatron to generate .bin and .idx files for training. The pre-processing also tokenizes and appends
an <EOD> token to each Java sample.

4.2 Model Architecture

NT-Java-1.1B, similar to StarCoderBase-1.1B, is a decoder-only Transformer model with Multi-Query
Attention (Shazeer, 2019 [10]), which uses FlashAttention. This speeds up the attention computation
and reduces the training time of the model. The hyper-parameters for the architecture can be found in
Table 1.

Table 1: Model architecture of NT-Java-1.1B.

Hyperparameter NT-Java

Hidden size 2048
Intermediate size 8192
Max. position embeddings 8192
Num. of attention heads 16
Num. of hidden layers 24
Attention Multi-query

Num. of parameters ≈ 1.1B

4.3 Training Details

NT-Java-1.1B was trained using the Megatron-LM Framework8. The training began with
StarCoderBase-1.1B, serving as the initial checkpoint, to build its Java variant. In our experi-
ments, we utilized a context length of 8192 tokens for tasks involving the Next token prediction and
the Fill-in-the-Middle (FIM) (M Bavarian, 2022 [11]) objective. The PyTorch Distributed framework
was employed, with data parallelism strategy. We chose bf16 precision and the Adam optimizer
(Kingma & Ba, 2015 [12]) with β1 = 0.9, β2 = 0.95, and ϵ = 10−8, along with a weight decay of 0.1.

Experimental Settings

In this study, we delve into the impact of extending pretraining of StarCoderBase-1.1B for Java using
two key objectives: Next token prediction and Fill-in-the-Middle.

Experiment 1 - Next token prediction objective: We conducted training over 100,000 steps
(equivalent to 5 epochs) with a batch size of 1 million tokens. The learning rate commenced at
4×10−4 and underwent cosine decay, reaching a minimum of 4×10−6 with 1,000 iterations of linear
warmup. A global batch size of 180 facilitated the training process, which spanned 12 days. Model
checkpoints were saved every 1,000 steps for subsequent evaluation.

Experiment 2 - Fill-in-the-Middle: We repeated Experiment 1 along with FIM training objective.
The FIM rate was set to 50%. The FIM dataset was evenly split into two components, SPM (Suffix-
Prefix-Middle) and PSM (Prefix-Suffix-Middle).

Observation from Experiment 1 & 2: Without FIM training objective, the model’s infilling
capability diminished significantly, with FIM scores approaching nearly zero (Table 2), despite the

8https://github.com/Infosys/Megatron-LM#nt-java-11b-extending-pretraining
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base model’s inherent infilling capability. While training with FIM objective, we observed a minor
decrease in MultiPL-E metrics (approximately 0.7%) compared to the model trained without FIM
objective, but the model retained its proficiency in infilling tasks. The comparative performance of
the models throughout the training are illustrated in Figure 1.

Table 2: Experimental results with and without FIM.

Model FIM HumanEval-FIM (Java) MultiPL-E (Java)

NT-Java-1.1B (Experiment 1) No 0.01 19.6
NT-Java-1.1B (Experiment 2) Yes 0.67 18.9

Figure 1: MultiPL-E Scores of NT-Java-1.1B trained with and without FIM.

Experiment 2.1 - Fill-in-the-Middle: We extended training from Experiment 2 for 20,000 steps
(1 epoch) more as the evaluation scores were in an upward trend. The learning rate commenced at
4×10−6 and underwent cosine decay, reaching a minimum of 4×10−7 with 1,000 iterations of linear
warmup. We did not intend to continue further training as the model converged with no significant
decrease in loss.

4.4 Post Training

The NT-Java-1.1B model, with bf16 precision, is 2.27 GB in size. To create more compact models
for desktop use without major accuracy loss, quantized versions of model in GGUF9 format were
developed for CPU-based frameworks like Ollama10, GPT4ALL11, and LM Studio12. The quantized
versions of the models (NT-Java-1.1B-GGUF13), ranging from 2-bit to 8-bit, reduce the model size
from 511 MB to 1.32 GB.

4.5 Compute

NT-Java-1.1B was trained with 6 A100 80 GB GPUs on a single-node GPU cluster. The training
process remained stable overall, with only a few restarts.

9https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
10https://github.com/ollama/ollama
11https://github.com/nomic-ai/gpt4all
12https://github.com/lmstudio-ai
13https://huggingface.co/infosys/NT-Java-1.1B-GGUF
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5 Evaluation

This section presents evaluation of our proposed coding SLM to assess its capabilities in code
generation and infilling tasks.

5.1 MultiPL-E

In our initial assessment, we evaluated the NT-Java-1.1B model (Experiment 2.1) on Java code
generation tasks using the MultiPL-E benchmark and the BigCode Eval Harness14, adhering to Big
Code Models Leaderboard15 norms. NT-Java-1.1B achieved a higher pass@1 score than its base
model and 3B variant, as shown in Table 3.

Table 3: Pass@1 results on MultiPL-E.

Model Java

StarCoderBase-1.1B 14.2
StarCoderBase-3B 19.25
NT-Java-1.1B 20.2

5.2 Fill-in-the-Middle Benchmark

Subsequently, we evaluated the model’s performance on single-line code infilling using the Santa-
Coder benchmark, which measures ‘line exact match’ accuracy on Java code within HumanEval
solutions. Our model showed results comparable to StarCoderBase-1.1B, as detailed in Table 4.

Table 4: HumanEval-FIM scores.

Model Java

StarCoderBase-1.1B 0.71
NT-Java-1.1B 0.67

5.3 Computational Capabilities

Furthermore, we also assessed the model’s efficiency and resource utilization. As shown in Table
5, NT-Java quantized models strike an optimal balance between accuracy and resource use, making
them ideal for resource-constrained environments. The MultiPL-E scores for the quantized variants
were computed using the ‘load in 4-bit’ and ‘load in 8-bit’ parameters in the BigCode Eval Harness.

Table 5: Accuracy and resource utilization.

Model Pass@1 (Java) Size (GB)

StarCoderBase-1.1B 14.2 ≈ 2.27
NT-Java-1.1B_Q4 15.1 0.76
NT-Java-1.1B_Q8 17.7 1.23
StarCoderBase-3B 19.25 ≈ 6.1
NT-Java-1.1B 20.2 2.27

6 Limitations

NT-Java-1.1B is currently limited to Java and does not support other programming languages, which
necessitates the development of separate models for each language. To ensure a fair comparison, we
have focused on evaluating the model’s performance against models of similar sizes (1.1B & 3B) in
same family (StarCoderBase) only.

14https://github.com/bigcode-project/bigcode-evaluation-harness
15https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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7 Conclusion

In this technical report, we outlined the rationale and training approach used to develop NT-Java-1.1B,
a small language model trained specifically on Java code. We evaluated NT-Java-1.1B on coding
tasks and found it to be competitive with, or outperforming, other similarly sized models for Java
programming.

This study demonstrates the successful achievement of its objective of enhancing the efficiency of a
code SLM for a particular programming language by training it further with a subset of its dataset for
that language. While the research employed the StarCoderBase-1.1B model and its Java language
dataset, other SLMs and their associated programming language datasets can yield comparable
experimental outcomes.

The release of NT-Java-1.1B and its variants aims to democratize code foundation models, making
them accessible for deployment in memory-constrained environments such as developer desktops and
laptops. By adhering to the principles of the OpenRAIL-M16 and by open-sourcing the corresponding
scripts on GitHub, we hope to enable both the research and developer communities to experiment
and adopt code SLMs.
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Guidelines:
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limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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section, it can be reproduced.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced the data and code . Currently not added as reference to
maintain anonymity.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting are provided in training details subsection under model
training section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As the experiments are performed, statistical information of the experiments is
provided in experimental settings subsection.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to compute subsection in model training section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research has not scraped any data and no crowdsourcing is done. The
information of datasets is provided for reference to validate the process followed by the
original owners.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The introduction section also discusses the impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We have shortlisted base model and datasets that adheres to responsible
practices with necessary safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Owner of assets are properly credited in references and footnotes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have open-sourced all assets, but they are not currently referenced to
maintain anonymity.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was done during the data collection.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines: This study does not involve humans.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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