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Abstract

Robotic learning for navigation in unfamiliar environments needs to provide poli-
cies for both task-oriented navigation (i.e., reaching a goal that the robot has
located), and task-agnostic exploration (i.e., searching for a goal in a novel setting).
Typically, these roles are handled by separate models, for example by using subgoal
proposals, planning, or separate navigation strategies. In this paper, we describe
how we can train a single unified diffusion policy to handle both goal-directed nav-
igation and goal-agnostic exploration, with the latter providing the ability to search
novel environments, and the former providing the ability to reach a user-specified
goal once it has been located. We show that this unified policy results in better over-
all performance when navigating to visually indicated goals in novel environments,
as compared to approaches that use subgoal proposals from generative models,
or prior methods based on latent variable models. We instantiate our method by
using a large-scale Transformer-based policy trained on data from multiple ground
robots, with a diffusion model decoder to flexibly handle both goal-conditioned and
goal-agnostic navigation. Our experiments, conducted on a real-world mobile robot
platform, show effective navigation in unseen environments in comparison with
five alternative methods, and demonstrate significant improvements in performance
and lower collision rates, despite utilizing smaller models than state-of-the-art
approaches.

1 Introduction

Robotic learning provides us with a powerful tool for acquiring multi-task policies that, when
conditioned on a goal or another task specification, can perform a wide variety of different behaviors.
Such policies are appealing not only because of their flexibility, but because they can leverage data
from a variety of tasks and domains and, by sharing knowledge across these settings, acquire policies
that are more performant and more generalizable. However, in practical settings, we might encounter
situations where the robot doesn’t know which task to perform because the environment is unfamiliar,
the task requires exploration, or the direction provided by the user is incomplete. In this work, we
study a particularly important instance of this problem in the domain of robotic navigation, where the
user might specify a destination visually (i.e., via a picture), and the robot must locate this destination
by searching its environment. In such settings, standard multi-task policies trained to perform the
user-specified task are not enough by themselves: we also need some way for the robot to explore,
potentially trying different tasks (e.g., different possible destinations for searching the environment),
before figuring out how to perform the desired task (i.e., locating the object of interest). Prior works
have often addressed this challenge by training a separate high-level policy or goal proposal system
that generates suitable exploratory tasks, for example using high-level planning (1), hierarchical
reinforcement learning (2), and generative models (3). However, this introduces additional complexity
and often necessitates task-specific mechanisms. Can we instead train a single highly expressive
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policy that can represent both task-specific and task-agnostic behavior, utilizing the task-agnostic
behavior for exploration and switching to task-specific behavior as needed to solve the task?

In this paper, we present a design for such a policy by combining a Transformer backbone for
encoding the high-dimensional stream of visual observations with diffusion models for modeling
a sequence of future actions and instantiate it for the particular problem of visual exploration and
goal-seeking in novel environments. Our main insight is that such an architecture is uniquely suited
for modeling task-specific and task-agnostic pathways since it provides high capacity (both for
modeling perception and control) and the ability to represent complex, multimodal distributions.

The main contribution of our work is NoMaD, a novel architecture for robotic navigation in pre-
viously unseen environments that uses a unified diffusion policy to jointly represent exploratory
task-agnostic behavior and goal-directed task-specific behavior in a framework that combines graph
search, frontier exploration, and highly expressive policies. We evaluate the performance of NoMaD
on both undirected and goal-conditioned navigation experiments across challenging indoor and
outdoor environments, and report improvements over the state-of-the-art, while also being 15× more
computationally efficient. To the best of our knowledge, NoMaD is the first successful instantiation
of a goal-conditioned action diffusion model, as well as a unified model for both task-agnostic and
task-oriented behavior, deployed on a physical robot.

2 Related Work

Exploring a new environment is often framed as the problem of efficient mapping, posed in terms
of information maximization to guide the robot to new regions. Some prior exploration methods
use local strategies for generating control actions for the robots (4; 5; 6; 7), while others use global
strategies based on the frontier method (8; 9; 10). However, building high-fidelity geometric maps
can be hard without reliable depth information. Inspired by prior work (1; 11; 12), we factorize
the exploration problem into (i) learned control policies that can take diverse, short-horizon actions,
and (ii) a high-level planner based on a topological graph that uses the policy for long-horizon
goal-seeking.

Several prior works have proposed learning-based approaches for robotic exploration by leveraging
privileged information in simulation (13; 14; 15; 16) or learn directly from real-world experience (17).
These policies have been trained with reinforcement learning to maximize coverage, predicting
semantically rich regions, intrinsic rewards (13; 18; 14; 19), or by using planning in conjunction
with latent variable and affordance models (20; 17; 21). However, policies trained in simulation
tend to transfer poorly to real-world environments (16; 22), and our experiments reveal that even the
best exploration policies trained on real-world data perform poorly in complex indoor and outdoor
environments.

The closest related work to NoMaD is ViNT, which uses a goal-conditioned navigation policy in
conjunction with a separate high-capacity subgoal proposal model (3). The subgoal proposal model
is instantiated as a 300M parameter image diffusion model (23), generating candidate subgoal images
conditioned on the robot’s current observation. NoMaD uses diffusion models differently: rather than
generating subgoal images with diffusion and conditioning on these generations, we directly model
actions conditioned on the robot’s observation with diffusion. Empirically, we find that NoMaD
outperforms the ViNT system by over 25% in undirected exploration. Furthermore, since NoMaD
does not generate high-dimensional images, it requires over 15× fewer parameters, providing a more
compact and efficient approach that can run directly on the less powerful onboard computers (e.g.,
NVIDIA Jetson Orin).

A key challenge with predicting sequences of robot actions for exploration is the difficulty in
modeling multimodal action distributions. Prior work has addressed this by exploring different action
representations, such as autoregressive predictions of quantized actions (24; 25; 26; 27), using latent
variable models (17; 21), switching to an implicit policy representation (28), and, most recently,
using conditional diffusion models for planning and control (29; 30; 31; 32; 33; 34). State- or
observation-conditioned diffusion models of action (30; 31) are particularly powerful, since they
enable modeling complex action distributions without the cost and added complexity of inferring
future states/observations. NoMaD extends this formulation by additionally conditioning the action
distribution on both the robot’s observations and the optional goal information, giving the first
instantiation of a “diffusion policy” that can work in both goal-conditioned and undirected modes.
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3 Preliminaries
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Figure 1: Model Architecture. NoMaD uses two EfficientNet encoders ψ, ϕ to generate input tokens to a
Transformer decoder. We use goal masking to jointly reason about task-agnostic and task-oriented behaviors
through the observation context ct. We use action diffusion conditioned on the context ct to obtain a highly
expressive policy that can be used in both a goal-conditioned and undirected manner.

Our objective is to design a control policy π for visual navigation that takes the robot’s current
and past RGB observations as input ot := ot−P :t and outputs a distribution over future actions
at := at:t+H . The policy may additionally have access to an RGB image of a goal og, which can
be used to specify the navigation task. When a goal og is provided, π must take actions that make
progress towards the goal, and eventually reach it. In an unseen environment, the goal image og may
not be available, and π must explore the environment by taking safe and reasonable navigation actions
(e.g., avoiding obstacles, following hallways etc.), while providing sufficient coverage of the valid
behaviors in the environment. To facilitate long-horizon exploration and goal-seeking, we follow
the setup of ViKiNG (35) and pair π(ot) with a topological memory of the environment M, and a
high-level planner that encourages the robot to explore the environment by navigating to unexplored
regions.

Visual goal-conditioned policies: To train goal-conditioned policies for visual inputs, we follow
a large body of prior work on training high-capacity policies based on the Transformer architec-
ture (36; 37; 38; 3). Specifically, we use the Visual Navigation Transformer (ViNT) (3) policy as the
backbone for processing the robot’s visual observations ot and goal og . ViNT uses an EfficientNet-B0
encoder (39) ψ(oi) to process each observation image i ∈ {t− P, . . . , t} independently, as well as
a goal fusion encoder ϕ(ot, og), to obtain observation and goal tokens. These tokens are processed
using a sequence of multi-headed attention layers f(ψ(oi), ϕ(ot, og)) to obtain a sequence of context
vectors that are concatenated to obtain the final context vector ct. The context vector is then used
to predict future actions at = fa(ct) and temporal distance between the observation and the goal
d(ot, og) = fd(ct), where fa, fc are fully-connected layers. The policy is trained using supervised
learning using a maximum likelihood objective, corresponding to regression to the ground-truth
actions and temporal distance. While ViNT shows state-of-the-art performance in goal-conditioned
navigation, it cannot perform undirected exploration and requires another learned model for subgoal
proposal. NoMaD extends ViNT to enable both goal-conditioned and undirected navigation.

Exploration with topological maps: While goal-conditioned policies can exhibit useful affordances
and collision-avoidance behavior, they may be insufficient for navigation in large environments that
require reasoning over long time horizons. To facilitate long-horizon exploration and goal-seeking
in large environments, we follow the setup of ViKiNG (35) and integrate the policy with episodic
memory M in the form of a topological graph of the robot’s experience in the environment. M is
represented by a graph structure with nodes corresponding to the robot’s visual observations in the
environment, and edges corresponding to navigable paths between two nodes, as determined by the
policy’s goal-conditioned distance predictions. When navigating large environments, the robot’s
visual observations ot may not be sufficient to plan long-horizon trajectories to the goal. Instead,
the robot can use the topological map M to plan a sequence of subgoals that guide the robot to
the goal. When exploring previously unseen environments, we construct M online while the robot
searches the environment for a goal. Beyond undirected coverage exploration, this graph-based
framework also supports the ability to reach high-level goals G, which may be arbitrarily far away
and specified as GPS positions, locations on a map, language instructions, etc. In this work, we focus
on frontier-based exploration, which tests the ability of NoMaD to propose diverse subgoals and
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search unseen environments. We largely follow the setup of prior work (35), swapping the learned
policy with NoMaD.

4 Method

Unlike prior work that uses separate policies for goal-conditioned navigation and open-ended explo-
ration (3), we posit that learning a single model for both behaviors is more efficient and generalizable.
Training a shared policy across both behaviors allows the model to learn a more expressive prior over
actions at, which can be used for both conditional and unconditional inference. In this section, we
describe our proposed NoMaD architecture, which is a goal-conditioned diffusion policy that can
be used for both goal-reaching and undirected exploration. The NoMaD architecture has two key
components: (i) attention-based goal-masking, which provides a flexible mechanism for conditioning
the policy on (or masking out) an optional goal image og; and (ii) a diffusion policy, which provides
an expressive prior over collision-free actions that the robot can take. Figure 1 shows an overview of
the NoMaD architecture, and we describe each component in detail below.

4.1 Goal Masking

In order to train a shared policy for goal-reaching and undirected exploration, we modify the
ViNT architecture described in Section 3 by introducing a binary “goal mask” m, such that ct =
f(ψ(oi), ϕ(ot, og),m). m can be used to mask out the goal token ϕ(ot, og), thus blocking the
goal-conditioned pathway of the policy. We implement masked attention by setting the goal mask
m = 1, such that the downstream computation of ct does not attend to the goal token. We implement
unmasked attention by setting m = 0, such that the goal token is used alongside observation tokens
in the downstream computation of ct. During training, the goal mask m is sampled from a Bernoulli
distribution with probability pm. We use a fixed pm = 0.5 during training, corresponding to equal
number of training samples corresponding to goal-reaching and undirected exploration. At test time,
we set m corresponding to the desired behavior: m = 1 for undirected exploration, and m = 0 for
reaching user-specified goal images. We find that this simple masking strategy is very effective for
training a single policy for both goal-reaching and undirected exploration.

4.2 Diffusion Policy

While goal masking allows for a convenient way to condition the policy on a goal image, the
distribution over actions that results from this, particularly when a goal is not provided, can be very
complex. For example, at a junction, the policy might need to assign high probabilities to left and
right turns, but low probability to any action that might result in a collision. Training a single policy
to model such complex, multimodal distributions over action sequences is challenging. To effectively
model such complex distributions, we use a diffusion model (23) to approximate the conditional
distribution p(at|ct), where ct is the observation context obtained after goal masking.

We sample a sequence of future actions aKt from a Gaussian distribution and perform K iterations
of denoising to produce a series of intermediate action sequences with decreasing levels of noise
{aKt ,aK−1

t , . . . ,a0t}, until the desired noise-free output a0t is formed. The iterative denoising process
follows the equation

ak−1
t = α · (akt − γϵθ(ct,a

k
t , k) +N (0, σ2I)) (1)

where k is the number of denoising steps, ϵθ is a noise prediction network parameterized by θ, and
α, γ and σ are functions of the noise schedule.

The noise prediction network εθ is conditioned on the observation context ct, which may or may not
include goal information, as determined by the mask m. Note that we model the conditional (and
not joint) action distribution, excluding ct from the output of the denoising process, which enables
real-time control and end-to-end training of the diffusion process and visual encoder. During training,
we train εθ by adding noise to ground truth action sequences. The predicted noise is compared to the
actual noise through the mean squared error (MSE) loss.
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Figure 2: Visualizing the task-agnostic (yellow) and goal-directed pathways for two goal images (green, blue)
learned by NoMaD. NoMaD predicts a bimodal distribution of collision-free actions in the absence of a goal,
and snaps to a narrower distribution after conditioning on two different goal images.

4.3 Training Details

The NoMaD model architecture is illustrated in Figure 1. We train NoMaD on a combination of GNM
and SACSoN datasets, large heterogeneous datasets collected across a diverse set of environments
and robotic platforms, including pedestrian-rich environments, spanning over 100 hours of real-world
trajectories (40; 41). NoMaD is trained end-to-end with supervised learning using the following loss
function:

LNoMaD(ϕ, ψ, f, θ, fd) = MSE(εk, εθ(ct,a
0
t + εk, k)) + λ ·MSE(d(ot, og), fd(ct)) (2)

where ψ, ϕ correspond to visual encoders for the observation and goal images, f corresponds to the
Transformer layers, θ corresponds to the parameters of the diffusion process, and fd corresponds to
the temporal distance predictor. λ = 10−4 is a hyperparameter that controls the relative weight of the
temporal distance loss. During training, we use a goal masking probability pm = 0.5, corresponding
to an equal number of goal-reaching and undirected exploration samples. The diffusion policy is
trained with the Square Cosine Noise Scheduler (42) and K = 10 denoising steps. We uniformly
sample a denoising iteration k, and we also sample a corresponding noise ϵk with the variance defined
at iteration k. The noise prediction network, ϵθ, consists of a 1D conditional U-Net (29; 31) with 15
convolutional layers.

We use the AdamW optimizer (43) with a learning rate of 10−4 and train NoMaD for 30 epochs with
a batch size of 256. We use cosine scheduling and warmup to stabilize the training process and follow
other hyperparameters from ViNT (3). For the ViNT observation encoder, we use EfficientNet-B0 (39)
to tokenize observations and goals into 256-dimensional embeddings, followed by a Transformer
decoder with 4 layers and 4 heads.

5 Evaluation

We evaluate NoMaD in 6 distinct indoor and outdoor environments, and formulate our experiments
to answer the following questions:

Q1. How does NoMaD compare to prior work for visual exploration and goal-reaching in
real-world environments?

Q2. How does a joint task-agnostic and task-specific policy compare to the individual behavior
policies?

Q3. How important is the choice of visual encoder and goal masking to the performance of
NoMaD?
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5.1 Benchmarking Performance

Figure 3: Visualizing rollouts of NoMaD deployed in challenging indoor (top) and outdoor (bottom) environ-
ments on the LoCoBot platform, showcasing successful exploration trajectories. Future action samples from the
undirected mode are shown in yellow, and the action selected by the high-level planner is shown in blue. The
predicted actions follow implicit navigational affordances, such as following hallways, and become multimodal
at decision points, such as intersections in the hallway.

Towards understanding Q1, we compare NoMaD to six performant baselines for exploration and
navigation in 6 challenging real-world environments. We follow the experimental setup of ViNT (3)
and evaluate the methods on their ability to (i) explore a novel environment effectively in search
of a goal position, or (ii) reach a goal indicated by an image in a previously explored environment,
where the robot uses the policy to create a topological graph as episodic memory. All baselines are
trained on a combination of GNM and SACSoN datasets for 20 epochs, and we perform minimal
hyperparameter tuning to ensure stable training for each baseline. We report the mean success rate
for each baseline, as well as the mean number of collisions per experiment.

VIB: We use the authors’ implementation of a latent goal model for exploration (17), which uses a
variational information bottleneck (VIB) to model a distribution of actions conditioned on observa-
tions.

Masked ViNT: We integrate our goal masking with the ViNT policy (3) to flexibly condition on the
observation context ct. This baseline predicts point estimates of future actions conditioned on ct,
rather than modeling the distribution.

Autoregressive: This baseline uses autoregressive predictions over a discretized action space to better
represent multimodal action distributions. Our implementation uses a categorical representation of
the action distribution, goal masking, and the same visual encoder design.

Subgoal Diffusion: We use the authors’ implementation of the ViNT system (3) that pairs a goal-
conditioned policy with an image diffusion model for generating candidate subgoal images, which
are used by the policy to predict exploration actions. This is the best published baseline we compare
against, but uses a 15× larger model than NoMaD.

Random Subgoals: A variation of the above ViNT system which replaces subgoal diffusion with
randomly sampling the training data for a candidate subgoal, which is passed to the goal-conditioned
policy to predict exploration actions. This baseline does not use image diffusion, and has comparable
parameter-count to NoMaD.

Table 1 summarizes the results of our experiments in 5 challenging indoor and outdoor environments.
VIB and Masked ViNT struggle in all the environments we tested and frequently end in collisions,
likely due to challenges with effectively modeling multimodal action distributions. The Autoregressive
baseline uses a more expressive policy class and outperforms these baselines, but struggles in complex
environments. Furthermore, the deployed policy tends to be jerky and slow to respond to dynamic
obstacles in the environment, likely due to the discretized action space (see supplemental video for
experiments). NoMaD consistently outperforms all baselines and results in smooth, reactive policies.
For exploratory goal discovery, NoMaD outperforms the best published baseline (Subgoal Diffusion)
by over 25% in terms of both efficiency and collision avoidance, and succeeds in all but the hardest
environment. For navigation in known environments, using a topological graph, NoMaD matches the
performance of the best published baseline, while also requiring a 15× smaller model and running
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Exploration Navigation
Method Params Success Coll. Success

Masked ViNTm 15M 50% 1.0 30%
VIB (17) 6M 30% 4.0 15%
Autoregressivem 19M 90% 2.0 60%
Random Subgoals (3) 30M 70% 2.7 90%
Subgoal Diffusion (3) 335M 77% 1.7 90%
NoMaD 19M 98% 0.2 90%

Table 1: NoMaD paired with a topological graph consistently outperforms all baselines for the task of exploration
in previously unseen environments, and navigation in known environments. Most notably, NoMaD outperforms
the state-of-the-art (Subgoal Diffusion) by 25%, while also avoiding collisions and requiring 15× fewer
parameters. mThese baselines that use goal masking.

Method Params Undirected Goal-Conditioned

Diffusion Policy (31) 15M 98% ✗
ViNT Policy (3) 16M ✗ 92%
NoMaD 19M 98% 92%

Table 2: Despite having comparable model capacities, NoMaD matches the performance of the best individual
behavior policies for undireced exploration adn goal-conditioned navigation.

entirely on-the-edge. Figure 3 shows example rollouts of the NoMaD policy exploring unknown
indoor and outdoor environments in search for the goal.

Analyzing the policy predictions across baselines (see Figure 4), we find that while the Autoregressive
policy representation can (in principle) express multimodal distributions, the predictions are largely
unimodal, equivalent to the policy learning the average action distribution. The Subgoal Diffusion
baseline tends to represent the multiple modes well, but is not very robust. NoMaD consistently
captures the multimodal distribution, and also makes accurate predictions when conditioned on a goal
image.

5.2 Unified v/s Dedicated Policies

GoMaD (Ours) Subgoal Diffusion† Random Subgoals† Autoregressive

Goal 1 (left) Goal 2 (right)

Figure 4: Examples of action predictions from NoMaD and baselines in undirected mode (yellow) and goal-
directed mode with two different goal images (blue towards left, green towards right). Only NoMaD can
consistently represent multimodal undirected predictions while avoiding collisions with pillars or walls, as well
as correctly predicting the goal-conditioned action predictions for the two goals. †Note that Subgoal Diffusion
and Random Subgoals baselines only represent point estimates when conditioned on a goal image.

With the flexibility that a policy with task-specific and task-agnostic capabilities offers, Q2 aims to
understand the impact of goal masking on the individual behaviors learned by the policy. Specifically,
we compare the performance of the jointly trained NoMaD model to the best-performing goal-
conditioned and undirected models. We report the mean success rate for each baseline.
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Visual Encoder Success # Collisions

Late Fusion CNN 52% 3.2
Early Fusion CNN 68% 1.5
ViT 32% 2.5
NoMaD 98% 0.2

Table 3: The performance of our flexibly conditioned diffusion policy depends on the choice of visual encoder
and goal masking strategy. The ViNT encoder with attention-based goal masking outperforms all alternatives.

Diffusion Policy: We train a diffusion policy (31) with the same visual encoder as NoMaD and m =
0. This is the best exploration baseline, outperforming both VIB and IBC.

ViNT Policy: We use the authors’ published checkpoint of the ViNT navigation policy (3), which
predicts point estimates of future actions conditioned on observations and a goal. This is the best
navigation baseline.

Comparing the unified NoMaD policy to the above, we find that despite having comparable model
capacities, the unified policy trained with goal masking matches the performance of ViNT policy
for goal-conditioned navigation and DP for undirected exploration. This suggests that training for
these two behaviors involves learning shared representations and affordances, and a single policy can
indeed excel at both task-agnostic and task-oriented behaviors simultaneously.

5.3 Visual Encoder and Goal Masking

We explore variations of the visual encoder and goal masking architectures to understand Q3. We
consider two alternative visual encoder designs based on CNN and ViT backbones, and implement
goal masking in different ways. We report the mean success rate for each baseline, as well as the
mean number of collisions per experiment.

Early/Late Fusion CNN: We use convolutional encoders followed by an MLP to encode the
observation and goal images, and use dropout on the goal embeddings followed by another MLP
block to flexibly condition the observation context ct on the goal. ct obtained after dropout is used
for conditioning the diffusion model in the same manner as NoMaD. We use a straight-through
estimator (44) for propagating gradients to the observation and goal encoders during training. The
goal can be combined with the observations either before or after the final MLP layers.

ViT: We divide the observation and goal images into 6× 6 patches, and encode them using a Vision
Transformer (45) into observation context ct. For flexible conditioning, we use attention masks to
block the goal patches from propagating information downstream.

We find the choice of visual encoder to be crucial for training diffusion policies, as summarized in
Table 3. NoMaD outperforms both the ViT- and CNN-based architectures, successfully reaching the
goal while avoiding collisions. CNN with early fusion outperforms late fusion, confirming similar
analysis in prior work (38; 3), but struggles to effectively condition on goal information. Despite it’s
high capacity, the ViT encoder struggled learn a good policy, likely due to optimization challenges in
training end-to-end with diffusion.

6 Discussion

We presented NoMaD, the first instantiation of a goal-conditioned diffusion policy, that can perform
both task-agnostic exploration and task-oriented navigation. Our unified navigation policy uses a
high-capacity Transformer encoder with masked attention approach to flexibly condition on the task,
such as goal images for navigation, and models the actions conditioned on observations using a
diffusion model. We study the performance of this unified model in the context of long-horizon
exploration and navigation in previously unseen indoor and outdoor environments, demonstrating
over 25% improvements in performance over the state-of-the-art in previously unseen settings, while
also requiring 15× fewer computational resources.

8



While our experiments provide a proof of concept that unified policies can provide more effective
navigation in new environments, our system has a number of limitations that could be addressed
in future work. The navigation tasks are specified via goal images which, though quite general,
are sometimes not the most natural modalities for users to employ. Extending our approach into a
complete navigation system that can accommodate a variety of goal modalities, including language
and spatial coordinates, would make our approach more broadly applicable. Additionally, our
exploration method uses a standard frontier-based exploration strategy for high-level planning,
leveraging our policy to explore at the frontier. Intelligently selecting which regions to explore, such
as strategies based on semantics and prior knowledge, could further improve performance. We hope
that these directions would lead to even more practical and capable systems, enabled by our policy
representation.
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