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ABSTRACT

With the success that the field of bilevel optimization has seen in recent years,
similar methodologies have started being applied to solving more difficult appli-
cations that arise in trilevel optimization. At the helm of these applications are new
machine learning formulations that have been proposed in the trilevel context and,
as a result, efficient and theoretically sound stochastic methods are required. In
this work, we propose the first-ever stochastic gradient descent method for solving
unconstrained trilevel optimization problems and provide a convergence theory
that covers all forms of inexactness of the trilevel adjoint gradient, such as the in-
exact solutions of the middle-level and lower-level problems, inexact computation
of the trilevel adjoint formula, and noisy estimates of the gradients, Hessians, Ja-
cobians, and tensors of third-order derivatives involved. We also demonstrate the
promise of our approach by providing numerical results on both synthetic trilevel
problems and trilevel formulations for hyperparameter adversarial tuning.

1 INTRODUCTION

Multi-level optimization (MLO) is a general class of problems with the goal of optimizing an upper-
level objective while requiring subsets of the considered variables to satisfy optimality principles for
some number of nested sub-problems. Hierarchical in nature, these MLO problems have a variety
of applications that appear in fields such as defense industry|Arguello et al.|(2023)); Lai et al.|(2019);
Yao et al.|(2007); Wu & Conejo|(2017);|Guo et al.| (2023), signal recovery and power control |Liduka
(2011); |Cang & Petrusel (2010), supply chain networks [Xu et al.| (2013); Rahdar et al.| (2018));
Fathollahi-Fard et al.| (2018), and more recently in the field of machine learning [Jiao et al.| (2023));
Choe et al.|(2022); \Guo et al.| (2019); Jiao et al.| (2024)); |[Liu et al.| (2019)); |Giovannelli et al.| (2025);
Jin et al.[(2019). Due to the difficulty of these MLO problems, most of the algorithms have largely
only been developed for solving the bilevel case. However, the trilevel case has recently seen further
interest by applying similar methodologies that have been utilized in the bilevel case. With this
interest comes the aim of developing efficient and theoretically sound first-order stochastic gradient
methods for handling large-scale applications of trilevel optimization problems that arise in the field
of machine learning. As far as we know, this is the first work that addresses the stochastic setting of
a trilevel problem, both theoretically and numerically.

In this paper, we consider the general trilevel optimization (TLO) problem formulation
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The goal of the upper-level (UL) problem is to determine the optimal value of the UL function f7 :
R™ x R™ x R?* — R, where the UL variables x are subjected to UL constraints (z € X), the
middle-level (ML) variables y are subjected to being an optimal solution of the ML problem, and the
lower-level (LL) variables z are subjected to being an optimal solution of the LL problem. In the ML
problem, the ML function f5 : R® x R™ x R* — R is optimized in the ML variables 3, subject to



the ML constraints y € Y (z). Similarly, in the LL problem, the LL function f3 : R x R™ xR?! — R
is optimized in the LL variables z, subject to the constraints z € Z(x,y). In this paper, we will
assume that the ML and LL problems are strongly convex (see Subsection [3.1|below) and that the
UL problem is possibly nonconvex (see Theorem [B.6] below).

1.1 TRILEVEL OPTIMIZATION IN THE LITERATURE

Trilevel and multi-level optimization has been studied as early as the 1980s (see |Blair| (1992); Bard
& Falk| (1982); [Bard! (1984); Ue-Pyng & Bialas| (1986); Benson| (1989)), but in many of the afore-
mentioned fields (e.g., defense industry, supply chain networks, etc.), problem-specific formulations
typically lack general solution methodologies. We mention here a few notable exceptions that do
consider general methodologies. The authors of [Tilahun et al.| (2012) introduced an evolutionary
strategy to update each level sequentially, but without convergence guarantees. In contrast, the au-
thors of [Shafiei et al.| (2024) proposed a proximal gradient method for TLO problems with convex
objective functions, offering convergence guarantees but lacking numerical validation. For thorough
reviews of the development of multi-level optimization, see the surveys Vicente & Calamai| (1994);
Lu et al.|(2016)); [Liu et al.| (2021)); /Chen et al.| (2022a).

Trilevel optimization for machine learning. More recently, TLO (also referred to as trilevel learn-
ing when taking on applications in a machine learning context) and MLO problems have seen uti-
lization in being applied to solving large-scale hierarchical machine learning problems with ap-
plications of hyperparameter tuning, adversarial learning, and federated learning. In Sato et al.
(2021), the authors developed a gradient-based method for solving an approximate formulation
of the general MLO problem, as well as presenting convergence guarantees and numeric results
for their method in the deterministic case. Such a paper builds on pre-existing methods utilized
in [Franceschi et al.| (2017) for the bilevel case that approximate the solution to each of the lower-
level problems with an iterative method. Complimenting this development, the authors of |Choe et al.
(2022) introduced BETTY, an automatic differentiation library for general multi-level optimization,
which has helped facilitate applications like neural architecture search (NAS) with adversarial ro-
bustness |Guo et al| (2019). Trilevel optimization has also been further extended to decentralized
learning environments in|Jiao et al.|(2023;2024)), where the authors aim at developing methods with
convergence guarantees for federated trilevel learning problems. However, it bears mentioning that
all of the aforementioned papers only consider the deterministic setting in their analysis.

1.2 CONTRIBUTIONS OF THIS PAPER

The field of bilevel optimization has seen a rich development of first-order descent methods for
solving large-scale problems that arise in the field of machine learning (e.g., see|Chen et al.| (2022b;
2021); [Liu et al.| (2019); |Giovannelli et al.| (2025} 2024)); Jin et al.| (2019)). However, as we have
seen in the existing literature, no works have yet begun extending the theory and implementation of
stochastic methods to trilevel and higher-level problems. In this paper, we propose TSG, the first
stochastic gradient method for solving trilevel optimization problems, along with an extensive con-
vergence analysis with general nonlinear and nonconvex UL functions. This is done by extending the
concepts and methodologies developed for first-order bilevel optimization methods that utilize the
so-called adjoint gradient (or hyper-gradient) via implicit differentiation, and adapting them to the
trilevel setting. To address the significant difficulties imposed by the presence of second-order and
third-order derivatives in handling these problems, we also propose practical and efficient strategies
for implementing our TSG method and demonstrate its performance on a series of trilevel problems.
The numerical results show that the trilevel formulation we propose for hyperparameter adversarial
tuning consistently yields the most robust performance across all tested datasets, outperforming the
corresponding bilevel formulations for both hyperparameter tuning and adversarial learning.

2 TRILEVEL OPTIMIZATION

In this paper, we will only focus on the unconstrained ML and LL cases of problem ie.,
Y(z) = R™ and Z(z,y) = R!. Since our goal is to propose and analyze a general optimization
methodology for a stochastic TLO, the LL problem is assumed to be well-defined, in the sense of
having a unique solution z(x,y) for all z € R™ and y € R™. Thus, problem is equivalent



to the following bilevel optimization (BLO) problem, which is defined solely in terms of the UL
and ML variables:
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Similarly, problem can be even further reduced to a single-level optimization problem under
the assumption that the lower-level problem in also has a unique solution y(z). In this way,
since y(x) is solely determined by , it is clear that the unique solution z(x, y(z)) is solely deter-
mined by x as well, which we denote simply as z(z). Thus, problemultimately reduces to the
single-level optimization problem given by

grel]iRr}L f(z) = fi(z,y(x), z(z,y(x))) st zeX. (2.1)
We define the trilevel adjoint gradient of f at x as
VI = (Vafi = VL VLL V) = Vo, IV, P (Vi = Vi VSV 1), 22)

where all of the gradient and Hessian terms involved are evaluated at the point (x,y(z), 2(x)).
Notice that this is essentially a classical adjoint gradient calculation applied to problem The
complete statement, along with all term definitions and full derivation, is given by Proposition [A.]

in Appendix [A]
2.1 THE TRILEVEL STOCHASTIC GRADIENT METHOD

The stochastic algorithm developed in this paper proceeds by iteratively updating the LL variables
first, followed by the ML variables, and lastly the UL variables. The iterations corresponding to
the UL, ML, and LL problems are denoted by ¢, j, and k, respectively, with the total number of
iterations denoted as I, .J, and K, respectively. Let {¢°}, {¢%7}, and {¢%7'F} denote sequences of
random variables defined in a probability space (with probability measure independent from z, vy,
and z) such that i.i.d. samples can be observed or generated. Such random variables are introduced
for gradient, Jacobian, and Hessian evaluations, and their realizations can be interpreted as a single
sample or a batch of samples for a mini-batch stochastic gradient (SG). For simplicity, we also adopt
the following terminology throughout this paper: 2% = 2450 zhi+tl = hi+1.0 — g K i —
2800 and 2! = 241,00 = 24 L. K for the LL iterations and 3* = y*% and y' ! = ' +1.0 = 4%/ for
the ML iterations. Most of this terminology is merely notation; however, by letting z'*1 = 2%/ K,
Z0IHl = 203K and ¢t = 4%/, we are saying that the initial iterates for new cycles are the last
ones of the previous corresponding cycles.

Given the current iterate (2%,y"/, 27'F), the update direction that is used for the LL problem is
simply the stochastic gradient of the LL objective function f3, denoted as gi’gj’k and given by
g}jk = V. fs(a?,y", 257k €53F) Letting 7; € (0, 1] denote the step size for the LL prob-
lem at the UL iteration i, the update of the LL variables is given by z»3F+1 = 05k _~, g};k . The
SG algorithm used to obtain the approximate solution 2"/ *1 ~ z(z?, y*7) is stated by Algorithm

The exact gradient for the ML problem is computed via the following standard adjoint gradient (by
combining equations equation and equation in Appendix [A):

Vyf(@,y) = Vyfo— Vi, sV f5 'V fo, (2.3)

where all gradients and Hessians are evaluated at the point (z, y, z(z,y)). However, since we solve
the LL problem inexactly to obtain an approximate solution 2/ ~ z(z* /), the ML adjoint
gradient equation now becomes “inexact”. Thus, given the current iterate (z?,y"7, 2%771), the
update direction that is used for the ML problem is the inexact stochastic gradient of the function f,

denoted as gj}; and given by
35 = Vf(at ) = Y, — V2 VR V. o, 2.4)

where all gradients and Hessians are evaluated at the point (z?,y*7, z2571; £47). We highlight this
slight abuse of notation, since f is a function of (z,y) and not (x,y, z), as we are utilizing the



approximation 24/t~ z(w, y”) in computing the gradient V,, f. It is for this reason that we
adopt the notation g to denote an “inexact” SG (as opposed to simply g», which would denote the
“exact” SG V f(x%,y"7)). Letting 3; € (0, 1] denote the step size for the ML problem at the UL
iteration i, the update of the ML variables is given by y*/+!1 = ¢ — BZ”’J The bilevel SG

algorithm that is used to obtain the approximate solution y**1 ~ y(x?) is stated by Algorithm
It bears mentioning that after every ML iteration, we will perform another LL update to obtain an
approximation 2**1 to z(x%, 3 1),

Algorithm 2 Bilevel SG (ML Problem)
— Input: Initial y*9, 3; 1 1
Input: Initial z”*o, v € (0,1]. nput: Initial 4", §; € (0, 1], 7 € (0,1]
Fork=012. ,K—1d For j =0,1,2,...,J —1do
ork="44 iy 0 1. Compute 2t yia Algorlthml
L Compute an SG g s 2. Compute an approximation g% f
2. Update Shdiktl — Ligk Vi 95 ], 3, Update yl g1 y” B3 ng
Return 25+l = 63K Return (yit! = yi7, 2i7).

Algorithm 1 SG (LL Problem)

Now, recall that the exact gradient
for the UL problem is computed via
the trilevel adjoint gradient given by
equation equation 2.2]  Since we
only solve the ML problem inex-
actly to obtain an approximate solu-

Algorithm 3 Trilevel Stochastic Gradient (TSG)

Input: Initial (2%, 4%, 2999, «; € (0,1], B; €

tion y* ! ~ y(z?), the trilevel adjoint (0,2], 7 € (0,1].
gradient equation [2.2] also becomes Fori:=10,1,2,...,1 —1do
“inexact”. Notice that the inexactness 1. Compute 3'*! = 5/ and 2%70 via Algo-
here comes from two sources: one rithm 2]
related to the inexactness of the LL 2. Compute 2+ = 247K via Algorithmll}
variables and the other to the inexact- 3. Compute an approximation g;;l,
ness of the ML vanables. The first 4. Update i1 = 2t — o §} -
source of inexactness arises from the 7
Return 2.

two Hessian terms of the true ML
problem, i.e., tyf and Vyyf L
due to them being evaluated at the approximate solution 2! instead of z(z%,y(z*)). The sec-
ond source of inexactness comes from all of the terms involved being evaluated at the approximate
solution 31 instead of y(z*). Thus, given the current iterate (x?,3**1, 2¢*1), the update direction
that is used for the UL problem is the inexact stochastic gradient of f, denoted as g;l and given by

95, = VI y'th 2. 2.5)
We again highlight this slight abuse of notation, since f is a function of (x) and not (x, y, z), as we
are utilizing the approximations y**! ~ y(z%) and 2'™! ~ z(z%, y(z%)) in computing the gradient
f. It is again for this reason that we adopt the notation g; to denote an “inexact” SG (as opposed to
simply g1, which would denote the “exact” SG V f(z?%)). Letting o; € (0 1] denote the step size for
the UL problem in the UL iteration 7, the update of the UL variables is given by 2'+! = 2' —;§’ -

Finally, the schema of the resulting trilevel stochastic gradient (TSG) algorithm developed in this
paper is given by Algorithm 3]

3 CONVERGENCE ANALYSIS OF THE TSG METHOD

Throughout this section, to simplify notation when there are no ambiguities, we will write func-
tions, gradients, Jacobians, and Hessians by omitting their arguments (z, y, z). When dealing with
stochastic estimates, we will replace the arguments (z, y, z; ) with an {-superscript. For example,
we denote szfg = V2, f3(z,y, 2;€). It also bears mentioning that in the following assumptions,
we will omit the iterates (7, j, k) for the evaluated point (z, y, z) and the iterate 7 for the step sizes «,
B, and -y, as the results are required to hold true for any iterate. For convenience throughout the
analysis, we utilize the following composite step-size:

0; = «;Bvi (orf := «fy in the general case). 3.1



Further, we define the expectations to be taken over o-algebras generated by the sets of the relevant
random variables. For simplicity, we define a general o-algebra F¢ that includes all the events up
to the generation of a general point (z,y, z), before observing a realization of . Further, E[-| F¢]
denotes the expectation taken with respect to the probability distribution of £ given F¢. We will also
use [E[-] to denote the total expectation, i.e., the expected value with respect to the joint distribution of
all the random variables. For a full description of all o-algebras used in the analysis, see Section|[B.T]

of Appendix

3.1 ASSUMPTIONS ON THE TRILEVEL PROBLEM

We now provide all of the assumptions that are required for the convergence analysis of Algorithm|[3]
It bears mentioning that throughout this paper, we use || - || to denote the ¢5-Euclidean norm when
dealing with vectors and the spectral norm when dealing with matrices. We begin by imposing
Assumption [3.1] below which ensures that the functions of interest are differentiable and satisfy
appropriate smoothness requirements on the functions, gradients, Jacobians, Hessians, and tensors
of third-order derivatives involved in problem [TLO]

Assumption 3.1 (Differentiability and Lipschitz continuity) The function f, is once continu-
ously differentiable, f- is twice continuously differentiable, and f3 is thrice continuously differ-
entiable. Further, the functions fi, ¥V f1, fo, Vfa, V2fa, Vfs, V2f3, and V3 f3 are Lipschitz
continuous with constants Ly, Ly, Ly,, Lvy,, Ly2f,, Ly, Ly2g,, and Lysy,, respectively.

To ensure that problem [TLO|is well-defined, Assumptions below require that the LL func-
tion f3 as well as the true ML function f are strongly convex. These kind of assumptions are standard
in the stochastic approximation literature (e.g., see Ghadimi & Wang|(2018))) and will guarantee the
existence and uniqueness of the ML and LL optimal solutions y(x) and z(x), respectively, for any
fixed value of x. Further, the constants u and ji,, defined in these assumptions are positive.

Assumption 3.2 (Strong convexity of fs5 in z) For any fixed x and vy, fs is p.-strongly convex in
zoie, f3(x,y,21) > fa(x,y,22) + Vo fa(@,y,22) T (21 — 22) + & [|21 — 22||% for all (21, 22).

Assumption 3.3 (Strong convexity of finy) For any fixed x, f is y-Strongly convex in y, i.e.,
Flxyn) > fla,ye) + Vyf(@,y2) T (n1 = yo) + 5llyr — well, for all (y1, o).

The assumption that the second level is strongly convex is prevalent throughout the bilevel optimiza-
tion literature (e.g., see|Ghadimi & Wang (2018);\Ji et al.|(2020); Liu et al.|(2021); |Chen et al.| (2021}
2022bza)); (Giovannelli et al.|(2024;2025)). In practice, f will be strongly convex when f is strongly
convex in (y, z) and z(x,y) is an affine function in (z,y). Hence, assuming strong convexity of f
covers cases where the LL problem is a QP problem or even certain special cases of polynomial
functions of even order, such as the squared norm of a quadratic function (see equation [F.16] in
Subsection [4.2)).

Next, as is standard in the stochastic approximation literature, we require that all stochastic estimates
be unbiased with bounded variances and that all random variables that are sampled are independent
and identically distributed, stated in Assumption below. This ensures that the stochastic terms
that are used to approximate the gradients, Hessians, Jacobians, and third-order tensors are reliable
approximations of their corresponding deterministic counter-parts. In applications of empirical risk
minimization like machine learning, such an assumption can easily be satisfied in practice by taking
larger sample sizes when approximating these terms.

Assumption 3.4 (Stochastic estimates) The stochastic derivatives V f+, V f§, V25, V f5, V2[5,
and V3f§ are unbiased estimators of V f1, ¥V fa, V2 fa, V f3, V2 fs, and V3 fs, respectively. Fur-
ther, the variances of the stochastic derivatives are bounded by constants 02v o 02v o 02V2 fa? azv o
0%2 far and Uzvg fa? respectively. Further, all of the random variables & that are sampled are inde-
pendent and idententically distributed (i.i.d.).

Although Assumptions ensure that the Hessian sub-matrices V2, f3 and Viy f are bounded
away from singularity, we also require that their stochastic estimates be bounded away from singu-
larity, stated as Assumption [3.5]below, which ensures that these estimates provide a robust measure
of the curvature of the functions f3 and f.



Assumption 3.5 (Uniform bound on inverted stochastic Hessians) The stochastic principal sub-
matrices [V2, f§]_1 and [Viy f€1=1 are upper-bounded in norm at all points by the positive con-
stants b, and by, respectively.

In the stochastic gradient literature concerning second-order derivatives, it is common to assume
that a Hessian matrix, stochastic or not, is uniformly bounded below [Bollapragada et al.| (2018),
implying that its inverse is uniformly bounded above. The motivation is that, if the Hessian matrix
is not uniformly bounded below, a regularization term can be added to such a matrix to ensure it is
non-singular.

Lastly, Assumption below is imposed to ensure that the bias of the inverted stochastic esti-
mates [V2_f5]~! and [V2,f¢]~" approach zero on the order O(f). It is known that such an as-
sumption can be satisfied 1n practice, e.g., by utilizing a truncated-Neumann series (see Ghadimi &
Wang| (2018)) and incrementally increasing the number of samples used when approximating the
terms V2, f3 and Vf/y f (the authors in|Chen et al.| (2021)) utilize such a property to establish a simi-
lar bound; though they do not state it as an assumption, but instead leave the number of samples as
a parameter in their analysis that they choose to yield their desired convergence result).

Assumption 3.6 (Bounded bias of inverted stochastic Hessians) The stochastic principal sub-
matrices [V2, f5]~" and (V2,171 are estimators of [V, fs] " and [V, f]~*, respectively, with
biases that are bounded on the order of O(0), i.e., there exist positive constants W, and W, such
that [[[V2. fs) 7' = E[[VL£5] 71 Felll < Wb and ||[V5, /17" = E[[V5, F) 7Pl < Wb,
respectively.

3.2 CONVERGENCE OF THE TSG METHOD

To derive our analysis of TLO methods, we introduce the following Lyapunov-type function
V= faf) + lly = y(@)? + 12" = 2P + (|2 = 2, 4%, (3.2)

which is telescopically summed over all iterates (see Appendix[B). The first two terms in (3.2)) were
used in the analysis of |Chen et al.| (2021) for bilevel optimization. While carrying out our analysis,
we realized that adding the third term was not enough for TLO, and the need for the fourth term
arises from the inexact LL error relative to the ML variables. We now present an overview of the
primary convergence result of Algorithm |3 in which we consider the general case where the true
UL function f is possibly nonconvex. Further, for the full description and proof of this theorem, see
Theorem B.5]and Appendix [C.3] respectively.

Convergence of TSG — Nonconvex f (Theorem[B.5). Under Assumptions[3.TH3.6] when choosing
the step-sizes «;, (;, and ~; to incorporate problem-specific information, a convergence rate of
1 Zi[;ol E[||V f(2%)||?] = O(1/V/T) can be obtained. This result does not require lower-bounds on
the UL or ML variables I and J, but requires K > O(J*I).

We state this theorem as our primary convergence result since it matches the tightest known bound
derived for general nonconvex bilevel optimization problems under similar assumptions |Chen et al.
(2021). However, we also include another less-tight convergence rate of O(J/v/T) (see Theo-
rem that provides a more intuitive choice of step-sizes that directly impact algorithmic im-
plementability, requiring K > O(J3I). We highlight that the J present in the numerator of this
alternative rate can be thought of as the extra J that is present in the iteration complexity on K in
Theorem [B.5|(i.e., K > O((J x J*)I).

Notice that both Theorems and share a common constraint: the LL iterations K must scale
linearly in I and polynomially in J. We argue that such a requirement follows intuitively, as the
accuracy of the LL solution directly impacts the inexactness of the bilevel adjoint gradient for the
ML problem. Further, this constraint reveals the hierarchical interplay within trilevel problems,
i.e., more LL iterations are required to obtain a higher accuracy in the ML problem than in the
UL problem. This implies that the trilevel adjoint gradient V f tolerates more inexactness from the
ML problem than the bilevel adjoint gradient V,, f does from the LL problem. Such a relationship
underscores how errors in the LL propagate upward through the levels: greater accuracy at any
sub-upper level necessitates significantly higher precision in the LL solution. Whether this pattern
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Figure 1: Quadratic problem, deterministic Figure 2: Quartic problem, deterministic case.
case.

extends to all sup-upper levels in general multi-level problems or entirely shifts the computational
burden to the lowest level remains an open question for future research.

4 NUMERICAL EXPERIMENTS

The experimental results were obtained on a desktop workstation with 128GB of RAM, an Intel(R)
Core(TM) 19-13950HX processor (24 cores, 32 threads) running at 2200 MHz under Windows 11.

4.1 OUR PRACTICAL TSG METHODS

A major difficulty in the adjoint gradient equation is the need for second-order derivatives of f
(a challenge that also arises in the adjoint gradient of a BLO problem), and, in particular, the pres-
ence of third-order derivative tensors in V. f and V, f in equation and equation [A.2 due
to equation [A.5] and equation respectively. We consider two approaches to address this issue
(see Appendix [FI)), leading to two practical versions of the TSG method, referred to as TSG-N-FD
and TSG-AD. In the numerical experiments, we are mainly interested in testing these two practical
implementations (Algorithmsand[7)in Appendices[F-2Jand[F.3] respectively) rather than the method
we refer to as TSG-H, which uses the true Hessians and third-order derivative tensors (Algorithm E]
in Section[2)).

The first algorithm we propose, TSG-N-FD, is based on the adjoint equation approach and involves
solving any adjoint system arising in equation [2.2] and equation [F.2] by using the linear CG method,
where each Hessian-vector product is approximated via a finite-difference (FD) scheme. When
using TSG-H, we will apply the linear CG method to solve any adjoint system arising in equa-
tion[2.2]and equation [F.2]until non-positive curvature is detected. The second algorithm we propose,
TSG-AD, is based on the truncated Neumann series approach and consists of approximating each
Hessian-vector product by using automatic differentiation (AD). Note that TSG-H is not suited for
practical optimization problems, but we include it in the experiments for completeness. For very
large problems, one must use TSG-N-FD or TSG-AD.

To determine the ML and LL iterations J and K, we used an increasing accuracy strategy inspired
by |Giovannelli et al.| (2025)): the number of ML iterations increases by one when the change in f;
between two consecutive UL iterations drops below 10~2, and the number of LL iterations increases
similarly when the change in f, between two consecutive ML iterations drops below 1071,

4.2 NUMERICAL RESULTS FOR SYNTHETIC TRILEVEL PROBLEMS

We first report results for two synthetic trilevel problems that differ in their LL problem formulations
(see Appendix [F4). In the first, all levels have quadratic objective functions, leading to a quadratic
trilevel problem (with zero third-order derivatives). In the second, the UL and ML objective func-
tions are quadratic, while the LL objective is quartic (resulting in non-zero third-order derivatives).
For simplicity, we refer to the second trilevel problem as quartic.

Figures and E] compare the sequences of f(z%) values obtained by TSG-H, TSG-N-FD,
and TSG-AD over UL iterations and running time. In the stochastic case, we computed the stochastic
gradients and Hessians by adding Gaussian noise with mean zero to the corresponding deterministic
quantities. We did not add noise to the third-order tensors, as these are not used in the practical
algorithms TSG-N-FD and TSG-AD. All figures involving stochasticity include 95% confidence
intervals computed using the t-distribution over 10 runs.
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Figure 3: Quadratic problem, stochastic case (low noise: two left plots; high noise: two right plots).
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Figure 4: Quartic problem, stochastic case (low noise: two left plots; high noise: two right plots).

For the quadratic problem, Figureﬂ] shows that TSG-H, which uses Hessians and third-order tensors,
outperforms TSG-N-FD and TSG-AD in terms of both UL iterations and time in the deterministic
case. Figure [3 shows the plots for the stochastic case. Note that TSG-N-FD and TSG-AD are not
affected by the noise in the Hessians of f> and f3, as they rely only on first-order derivatives. TSG-H
is highly sensitive to the standard deviation of the Hessian of f3 (which appears in the trilevel adjoint
gradient equation [2.2), and its performance deteriorates significantly when this value exceeds 0.1.
Such behavior aligns with the well-known fact that stochastic Hessians require lower noise levels
(i.e., larger mini-batch sizes when noise arises from sampling finite-sum Hessians in SG contexts)
than stochastic gradients to perform well (Bottou et al.l 2018, Section 6.1.1). For this reason, we
omit TSG-H from the two right plots. As noise levels increase, the performance of TSG-N-FD
deteriorates, whereas TSG-AD remains more robust. The most critical source of noise for TSG-
N-FD is that added to V f3, which is used to approximate the matrix-vector products involving
the Hessian of f3 via the FD scheme in equation Note that such an FD scheme affects the
computation of both equation[F.3|and equation

For the quartic problem, in the deterministic case, Figure[2]shows that TSG-H is the least competitive
algorithm in terms of time, as the computation of third-order tensors slows it down. In the stochastic
case, shown in Figure [d increasing noise levels lead to performance deterioration for both TSG-N-
FD and TSG-H, whereas TSG-AD remains the most robust. We can conclude that when third-order
derivatives are non-zero, the FD approximations used in TSG-N-FD become less accurate.

4.3 NUMERICAL RESULTS FOR TRILEVEL HYPERPARAMETER ADVERSARIAL TUNING

In the TLO formulation we propose for hyperparameter adversarial tuning (see problem [FI8] in
Appendix [F5] for the rigorous formulation), the UL problem minimizes the validation loss over a
regularization parameter used in the training loss, the ML problem minimizes the training loss over
the model parameters, and the LL problem is posed on the variables that perturb the data in a worst-
case fashion. In the formulation proposed in|Sato et al.[(2021)), the ML and LL problems are swapped
compared to our formulation in equation We adopt equation because it more accurately
reflects the original minimax formulation for adversarial training equation and indeed leads to
improved performance (see Appendix [F5.1)). We will also evaluate BLO formulations obtained by
removing either the UL or LL problem from equation[F.18] Removing the UL problem yields a BLO
problem similar in spirit to the original minimax formulation of adversarial learning, while removing
the LL problem gives a BLO problem for hyperparameter tuning without adversarial learning.

The BLO problems obtained from equation are solved using corresponding bilevel algorithms
(denoted as BSG-AD) derived from TSG-AD. Such algorithms are essentially equivalent to the
well-known StocBiO Ji et al.| (2020). In this section, we will not test TSG-H, as it requires second
and third-order derivatives, which are impractical to compute in applications involving large-scale
datasets. Similarly, we will not test the trilevel algorithm proposed in [Sato et al.| (2021)), as it is
designed specifically for the deterministic setting. When using equation [F.18] TSG-N-FD does not
perform well and is therefore excluded from further analysis (see Appendix [F.5.1]for a discussion).
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Figure 5:  Adversarial learning formula-  Figure 6:  Adversarial learning formula-
tion equation [F.18] red wine quality dataset. tion equation [F.18] white wine quality dataset.

For the experiments, we consider three popular tabular datasets: the red and white wine quality
datasets [Cortez et al.|(2009) and the California housing dataset |Pace & Barry|(1997). To assess the
performance of the algorithms and formulations on these datasets, we compute the test MSE after
adding Gaussian noise (with a standard deviation of 5) to the features of the test data, averaged
over 100 realizations of the noise. The optimal solution obtained from the trilevel formulation equa-
tion [F.18)is expected to yield a model robust to such noise.

The results for our TLO formulation in equation along with those for the BLO formulations
obtained by removing the UL and LL problems from equation [F.18] are shown in Figures The
TLO formulation in equation proves to be the most consistently effective for hyperparameter
adversarial tuning, with the BLO variants demonstrating competitive runtime but greater sensitivity
to the nature of the dataset, reflected in the contrasting dependencies observed across the datasets.
In fact, the superior performance of BSG-AD (without LL) over BSG-AD (without UL) on the red
and white wine datasets is an indication of the reliance of these datasets on hyperparameter tuning,
whereas the inverted performance of the BSG algorithms on the California housing dataset is a
symptom of this dataset’s dependence on adversarial learning. Overall, TSG-AD, which leverages
both adversarial and hyperparameter tuning components during model training, consistently yields
the most robust performance across all the tested datasets and will likely deliver further performance
improvements in settings where both components are jointly critical.

5 CONCLUSION

In this paper, we proposed the first stochas-
tic first-order method for trilevel optimization

X " 01 | —— TSG-AD 301 | —— TSG-AD
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within the trilevel adjoint gradient, such as the R
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inexact solutions of the middle and lower-level

problems, inexact computation of the trilevel  Fjoyre 7: Adversarial learning formulation equa-

adjoi.nt formula}, and noigy estimates of the (jon [F-18] California housing dataset.
gradients, Hessians, Jacobians, and tensors of

third-order derivatives involved. Our experi-

ments demonstrate that the proposed TLO formulation can be more robust than the BLO formu-
lations corresponding to its UL and ML (i.e., hyperparameter tuning without adversarial learning),
or its ML and LL (i.e., the original minimax adversarial training), as well as the TLO formulation
in|Sato et al.|(2021), where the ML and LL are swapped compared to ours. A natural direction left
for future research lies in thoroughly exploring how the accuracy at any given intermediate level
relates to the precision required at lower levels within general multi-level optimization problems.
Specifically, such an investigation would seek to clarify whether increasing the accuracy at a partic-
ular level necessitates higher precision at all subsequent lower levels, or if the computational burden
entirely shifts to the lowest level. Following directions similar to those emerging in the BLO liter-
ature, an additional avenue for future work is to relax the strong convexity assumptions on the ML
and LL objective functions by exploring penalization techniques that allow for non-convex objec-
tives at lower levels.
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A DERIVATION OF THE TRILEVEL ADJOINT GRADIENT

This appendix contains the formal statement and derivation of the trilevel adjoint gradient given by

equation equation [2.2]

Proposition A.1 (Trilevel adjoint gradient) Under assumptions that will ensure all terms are well-
defined (specifically, Assumptions 3.3, we define the adjoint gradient of f as (referenced

as equation[2.2)

Vi = (Voft = Vo sV 5V 1) = Vo, IV Yy L = Vo f3V2. f5 'V f1),

where all of the gradient and Hessian terms of fi1 and fs on the right-hand side are evaluated

at (x,y(x), 2(x)). Further, the f terms are evaluated at (z,y(z)) where

- 0
Ve f@y)= Vi fot+ Vo, foVaz! + 55 Vo2 Velal, (A.1)
- 0
Ve, f@y) = Vo, fo+ Vo, f2V,2" + B V2V, fa] (A.2)
with
Vez(z,y)' = =V2, f5'V2, fs, (A3)
Vya(z,y) = =V, f5 V2, fs, (A4)
0 _ _
%[vyZVZfQ] = _[vizxf?) + vzzzf?)vlz—r - v?/zfi))vizfii l(vgzx‘fé + vizzf3v$z—r)]v§zf3 1v2f2
0 _ _
gy (VueVafal = IV s+ Ve sV = Vo [V (Ve fs+ Ve [V 2 DIVE V. fo
— VsVt (V2 fa+ V2 f2V,2 ). (A.6)

Notice that all of the gradients and Hessians of fo and the gradients, Hessians, and tensors of third-
order derivatives (which we denote by V3 || of f3 in equation equation@are evaluated at the

point (z,y, z(x,y)) and all of the V z terms are evaluated at the point (x,y).

Proof. One arrives at the adjoint formula equation by first applying the multivariate chain rule

to f1(x,y(x), z(x,y(x))) in the following manner:
ofy  dydfi d

Vi = hle)ele) = g+ P ey

of:
0z’

“To clarify the notation for third-order derivatives, consider the following example: given an m X ¢ X n
tensor ngmfg and a ¢t x t matrix szfgl, the product Vizmﬁ,Vif;l yields an m X t X n matrix. Left-
multiplying a t-dimensional vector V f2 by Vim faV2, fs ! results in an m x 1 X m matrix (or m x n, for

brevity).
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where
0z dy oz

d

%Z(%y(l‘)) = o + = dz 0y’
Thus, we have

oft  dydfi dz dydz 0fr
or + dx Jy +(8x + dac@y) 0z
= V.fi+ vyvyfl + (sz + Vyvyz) V.fi

Vacfl + vxzvzfl + Vy (vyfl + vyzvzfl) . (A7)

Vf =

The Jacobian of (), i.e., Vy(x) " € R™*", can be computed from the first-order necessary opti-
mality conditions of the ML problem, defined by V,, f(x, y(z)) = 0. In particular, taking the deriva-
tive of both sides with respect to z, utilizing the chain rule and the 1mpl1c1t function theorem (Wthh
ensures y(-) to be continuously differentiable Rudin (1953)), we obtain V2 At v, f fVy(z)T =0
(where all Hessians are evaluated at (x, y(z))), which yields

Vy(z)" = =V, flz,y(2) "' Vi, f(z,y(z)). (A.8)

Since

Vyf(x, y) = vyfg(l', Y, Z(I7 y)) + vyszfQ(xv Y, Z(Iv y))7 (A9)
taking the derivative of both sides with respect to z and y and utilizing the chain rule, we obtain the
expressions for Vix f(z,y) and ng f(z,y) in equation and equation respectively.

Similarly, we can derive expressions for both of the Jacobians of z(z,y), i.e., V z(z,y) " € R¥*"
and Vyz(z,y)" € R™™, respectively, from the first-order necessary optimality conditions of the
LL problem, defined by VZ fa(z,y, z(x,y)) = 0. In particular, taking derivatives of both sides with
respect to = will yield V2, f3(x,y, z(x, )) —i—VZng(x y, (x y))V z(x,y)T = 0, whereas taking
derivatives with respect to y will yleld szfg x y, )+ szfg z,y,2(x,y))Vyz(z,y) T =

0. Solving these two equations for both V 2(x,y) a z(x,y) T, respectively, we obtain the

nd V
expressions for V,z(z,y) " and V, z(z,y) " in equatl and equatlw respectively. Now,

substituting equation @ equation @ and equation [A 4] o equation [A.7] we obtain the adjoint
gradient defined by equation[2.2]

It remains to derive equation [A.5]and equation [A.6] Using the property that the derivative of the
inverse of a matrix K (g(x)) with respect to x, where g is a vector-valued function of z, is given by

SR 00) ! = <K (o)™ | 22K (o) | K (o)

and applying the product rule twice, it follows that the last term in equation[A.T|can be written as

0 0

% [VyZVZfQ] = % [_V;?;zf3v§zf?>_lv2f2]

9 0
=- (wvizfs) ViS5 Vafe = Vi fs (Vizfglvzﬁ)

== (aaxvifs) V2. f5'Vafa = Vi f3 [( 215 )szz +Vi St ( 0 v f2>} ,

(A.10)
where
8 9 2 2 T
yzfg = yzxf3+vyzzf3v Z(:C y) %vzfz = vzgjfz +vzzf2vfl'z(x5y)
8 _ _ 0
%visz) b= f3 ( f3> vizf3 1’ ) szf3 = vgzxf3 + Vizzfgvmz(x,y)T

(A.11)

Substituting these equations into equation [A.10]and simplifying, we obtain equation [A-3] Through
a similar process, we obtain that the right-most term of equation[A-2]is given by equation[A.6] [
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B DISCUSSION ON THE CONVERGENCE ANALYSIS OF THE TSG METHOD

In this appendix, we outline the convergence analysis for the TSG method (Algorithm [3) and high-
light all of the relevant results and notation involved. For simplicity of the convergence analysis, we
utilize the Lyapunov function[3.2] which we restate here for ease of reference:

Vii= @)+ lly = y@)? + 112" = 2@ + |2 = 2, )
There is no particular property that is required from Lyapunov functions for our analysis. Rather,
equation is defined to allow for appropriate telescoping cancellations in the proofs of Theo-
rems (which is an extension of the methodology utilized in [Chen et al.| (2021)) for bilevel

problems). Further, the difference between two consecutive Lyapunov evaluations can by quantified
as

Vi—‘rl _ Vl
= f@) = f@) + T =y @) =y —y(@)])?
Lemma[B1] Lemmal[B4]
+ 2 = 2@ =l = 2@+ 2 = 2@y I - 12— ()]

Lemma[B2l Lemmal[B3]
(B.1)

Notice that this consists of four differences: the first difference measures the amount of descent
that is achieved in the UL problem, the second and third differences correspond to the error present
in the ML and LL problems, respectively, and the fourth difference is an auxiliary term that cor-
responds to the inexact LL error relative to the ML variables. Further, it bears mentioning that
Appendix [C] contains the proofs of Lemmas[B.1 and Theorems and Appendix [D]con-
tains the statements and proofs of intermediary results that are required for the arguments used in
Appendix [C} Lastly, Appendix [E] includes auxiliary lemmas proving Lipschitz continuity proper-
ties for the following functions, gradients, and Jacobians: z(x), z(z,y), y(z), Vy f, V2, f, V>, f,
Vf, Vz, and Vy. For ease of reference, Table[T| below compiles all the relevant constants utilized
throughout the theory which are not defined in Lemmas|B.IHB.4

Table 1: Reference table of constants associated with derived bounds.

Descriptions Constants References
Bounds on bias & variance Ug, Uy, Upy, Uyy, Vg, Viyy Lemmas[D.1]-[D-2]
Bounds on UL inexactness w, T, ( Lemmas|D.3|-|D.4
Bounds on ML inexactness w, 7, T Lemmas|D.5|-|D.6
Derived Lipschitz properties Lok Ley Ly Ly Li- L, Equations [E.1|—|E.13

LFz’ LV?/T]‘T’ ng?/f’ LF’ LFyZ’ LVy 1 _ .

B.1 DESCRIPTIONS OF 0-ALGEBRAS

We denote three auxiliary sets ¥;, 3J; ;, and ¥; ; 1., each corresponding to the set of iterates generated
by Algorithm [3] for the UL update, ML update, and LL update, respectively. We define these sets
explicitly in the following way:

i = {alyl, 2 | Vi€ {0,1,...}},
Sij o= {ah, "7, 29 | Vi€ {0,1,...,i} and Vj € {0,1,...,j}},

Sk = {atyl, 2k Vi€ {0,1,....i} and ¥j € {0,1, ..., 5} and Vk € {0,1, .., k}}.
Now, we define the corresponding o-algebras generated as F; := o (3; U {y"™, 2""1}),
Fij =0 (% U{z"T1Y}), and F; j 1 := 0 (3jx), respectively. Further, we will use the expres-
sions E [-|F;], E [|F; ;], and E [-|F; ; x] to denote the conditional expectations taken with respect to

the probability distributions of £%, %9, and £49% given F;, F; ;, and F; ; 1, respectively. Recalling
from the beginning of Section |3} we also define a general sigma-algebra ¢ that includes all the
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events up to the generation of a general point (x, y, z), before observing a realization of &; similarly,
E[-|F¢] denotes the expectation taken with respect to the probability distribution of ¢ given Fp.
We also use E[-] to denote the fotal expectation, i.e., the expected value with respect to the joint
distribution of all the random variables.

B.2 STATEMENTS OF DESCENT AND ERROR BOUND RESULTS

We now provide the statements of Lemmas d Theorems below, that bound the

terms in the Lyapunov difference given by equation|B. 1} and which are ultimately required to prove
the main convergence results of Algorithm 3] presented in Theorems [B:53HB.6] The proofs of such
lemmas and theorems are provided in Appendix [C] They required a non-trivial adaptation of the
proofs in|Chen et al|(2021)), which were specific for bilevel problems.

Lemma B.1 (Descent of the true trilevel UL problem) Recalling §' 5= E[g" %, | Fil, under As-
sumptions 3.6| the sequence of iterates {x'};>( generated by Algorlthmlsatzsﬁes

Bl ] - Bl ] < ~FEIVAIR - (5 - 25 ) Bllgh 1)+ Go?
v, (Elly) -y I+ Ell) - ), B2)

where & is given by equation[C_1|in Appendix[C.1]

Lemma B.2 (Error bounds of the trilevel LL problem) Suppose that Assumptions hold.

Then, choosing the LL step-size y; such that v; < Ly there exists the positive constant py,,

given by equation[C.3)in Appendix[C.2] and a positive quantity k;, such that

Ef™*! = 2(2))?] <
Ef = 2(")?] <

B[] — 2(")?] < (HzmW)E[Hfﬂ—z(xw?]

2 L§ Ly. 2 —i |12 2

1—yips,) B[]z — 2(2))|]P] + Ko, (B.3)

(
(1 —yips,) M E[||2" — 2(2")|?] + JK~20% (B.4)

Vz) ra?. (B.5)

Lemma B.3 (Auxiliary error bounds of the trilevel LL problem) Suppose that  Assump-
tions hold. Then, choosing the LL step-size ~y; such that ~v; < , there exist

positive quantities 1; and 7); such that

1
pztLvyfg

ij N K iJ i -
Efl™F1 = 2(a', g™ I < (1= vipp)" +m)Elll2™ — 2(2',y"™)|P] + 0 L2, Y57 + Knfogy,,

(B.6)
E[l27% =2, g1 < (0= ipg) " Ell2 = 22, y) P + Kvfody, (B.7)
Ef«" — 2(a",y")1%] < (=) Ell" = (2, y")IP) + TEA7 0%, (B.8)
Efle™! — 2™y DIP] < 2Bz — 2(a,y")IIP] + 4L2, of (Ellgy, [I°] + 1) + 2J°TLE, 57,

(B.9)
E[ll2574 = 22,y < (L= ipg) Bl = 2(a',y™)[*] + Kriody,. (B.10)

Lemma B.4 (Error bounds of the trilevel ML problem) Suppose that Assumpttons B.IH3.6] hold.

Then, choosing the ML step-size (3; such that 5; < o +L - and B; < 55 2+1 as well as choosing
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1

the LL step-size v; such that v; < o eyt

there are positive quantities v; and ¢; such that

Elly* oI < (- i) Bl o)+ (14 50— DAL, ) o0

K i i J+1
(1= i) TEI = 2(a’, )P+ o TRk, (B

2
B[y -y < (1+2@+L'“g“i<) Elly !~ y(e)|?)

2 L2 L 2 2 2 LVy 2

where p is given by equation|[C.7|in Appendix Specifically, v; is a function of 0; given by equa-

tion|[C.7in Appendix

Theorem B.5 (V1. Convergence of TSG - Nonconvex f) Under Assumptions define the
constants

1
N
a mm{ 2Ly +AL2 + Lyy + AL2 + Ly. + 8L2 )}’

Zay
_ 2JT _ _
Qo = —, a3 = JV KA,
2L%  +16L3 + Lyyaig
_ 1 p 1
with =min{ 1, y = and Y1 :=minq 1, ——— ¢,
h { py+ Ly 2w2+1} " { uz+Lw3}

where 1’ is a positive constant given by equation @ in Appendlx@ and py, was introduced in
Lemma(B.2] Choose the step-sizes

ao} 4 — 2L%, +16L; JerydlCa- . o(J, K)
\/j ) 2 2JF (2] 7 J\/ﬁ

where ¢ : (J, K) — R is defined by equation|C.46|in Appendix|C.5| Then, for any I € {1,2,...},
J € {1,2,..}, and K > O (J*I) as defined by equation the iterates {x'};>0 generated by

Algorithm 3] satisfy
I—
1 1
i; 1961 = 0(77)-

Theorem B.6 (V2. Convergence of TSG — Nonconvex f) Under Assumptions[3.1H3.6] choose the

o; = min{o‘q,dz,ds,

step-sizes
[ S O T
K3 \/j? 1 \/j 19 ’YZ \/j\/E ('
Then, the iterates {x'};>o generated by Algorithmsatisﬁz
I—
1 J
LS Ev s = 0 ()
I = VI

when choosing any I € N, J € N, and K € N, such that

s<J, w<l, E(I,J)=0(*I) < K
where ¢ € Ry is defined by equation w € Ry is defined by equation and =(1,J) :
N4 x Ny — Ry is defined by equation|[C. 101} all in Appendix[C.6]

C CONVERGENCE THEORY PROOFS

This appendix contains the proofs of Lemmas [B.THB 4] (which are utilized to bound the terms in the
Lyapunov function given by equation as well as the proofs of Theorems|B.5HB.6
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C.1 PRroOF OF LEMMA[B1I

Proof. From the Lipschitz property of V f (equation equation[E.TT)), taking expectation conditioned
on J;, and letting gy = IE[gf | 73], we have

E[f (o) F] ~ Bl @)IF] < BV @ — 2|7+ ZEE]la* — 2f|P| 7]
= (V)T (@~ augh, — 2| F]+ B[t — g, —a'|*IF
= V() g, + S o?Elgh, I,
Using the fact that 2a " b = ||a||? + ||b]|? — ||a — b||? twice, with a and b real-valued vectors, yields
Ef (o) F] ~ B ) F] <~ S0P — Llg 12 + S0 5) - g 12 + 2R o?E]lgh, 1217
= —SHVIEIIE = Shah, 12 + SV A ) - g, 1
+ L0 (53,) g, — 152 + 115, — 5 1717
= —SHVIEII = Shah, 12 + SV A ) - g, 1
+ L g )+ 2 B, — g 1L

Utilizing Lemmaand realizing that E[||g}, [1*|Fi] = |19, ||2, we have

TLFa
2

oy Lpa

L/ IFI-EL 1] < - S9-S5 -

Q; 2
= EE g 24 5 I )~ P+

Further, we decompose the gradient bias term by adding and subtracting V f (2%, y* ™1, 2iT1), using
the fact that ||a + b||? < 2||al|? 2, with a and b real-valued vectors, yielding

IVf(a') = g5, |17 < 2| V(' y(a), z(2') = V(@' y ™ 2|12+ 2|V f(a', ' 27 — g3 |7
<2L% N(y(a'), 2(a") — (v, 2 H|1* + 20267
<2L%, (ly(z') =y P + [l2(2”) = 2FH)) + 20as,

where the second inequality follows from equation mand Lemma [D.3] and the last inequality

follows from the fact that 6, = a;8;7; < o and 0 < of < a; < 1. Putting this all together, we
have

E[f(a"Y)|F] - E[f (") |F]

a; Lpa? i i i ~
< -SIVHOIR - (5 = 252 ) Igh 12 + il (lyle") = 1P + a(a") = 250117) + G
L
where & := ( +T2F) .1
Taking total expectation, we obtain the final bound, completing the proof. (]

C.2 PROOF OF LEMMA[B.2|

Proof. To derive the error bound defined by equation [B3] we start by decomposing the error of the
LL variables by adding and subtracting z(z*) in the following way:

Efle"* = 2(a"N?) = E[l|l="*" - 2(a")[?] + E[[l2(2") — 2(="*1)|1%]
A(ll) A;l)
+2E[(27! — 2(2") T (2(2%) — 2(2'T))]. (C2)

17




(Analysis of A{")): To derive an upper-bound on A{" in equation recall that z/+1 = 2100 =
255K and g};k = V. fs(at,y"I, 250k ¢83F) - Further, notice that there will be a total of JK
updates to the LL variables starting from 2% to obtain z‘*!. Thus, in general, taking expectation

conditioned on F; ; ., we have
E[| 274 — o)) P Figal = Elll2"* = viggl* — 2(2")|P1 Fi i)
= [ = 2(@)|? = 23i(="7* = 2(@) TV S5+ Bl P Fl,

where the last equality follows from the unbiasedness of the stochastic estimates (Assumption [3.4).
Using the fact that Var[X|Y] = E[X?|Y] — E[X|Y]?, where X and Y are random variables, along
with Assumption [3.4] we have

E[ "5 — 2() P Fige] < N2 = 2(2'))? = 23 (2" = 2(2") VL f570 + R IV f5 P+ 0%,

Now, utilizing (Nesterov} 2018, Theorem 2.1.12), which follows from the strong convexity and
Lipschitz continuity of f5 (Assumptions[3.1]and[3.2] respectively), we have

Efl2"7 5 — 2(2) %1 Fi.4.0]

. , Ly . , 1 . .
< Zz,_],k:_z 2t 2_2 ) Mz f3 Zz,_],k:_z 2t 2+ \v4 2,7,k (2 + 2 \V/ 2,7, 2+ 20.2
< (P 2 (L2 P+ o IV ) IV 2o,
2%'Nszfz> i ok NP ( 2 > ik 2 | 2 2
= ([1-———— 1277 —2(@") "+ v (7 — Vo7 )+ o
(1 2ot ) ot st 2 e (i = o ) IV 220
< (L =7ipg) 1277 = 2(2")|P +fo%y,,
where the last inequality follows from the assumption that v; < ﬁ and by letting
z 3
2p-Lv s,
Pfy, = ————. (C.3)
fd /LZ—’_LVfg

Using induction over K and taking total expectation, we obtain the bound equation[B.3]

At this point, there would be an update in the ML variables 1y, i.e.,
(28, yhd, 200 KY (2 y?I L 249K However, since this upper-bound is not dependent on
y, we can use induction over all J iterations (each consisting of K iterations), which yields the
bound equation[B.4} These results follow by ensuring that 0 < 1 — v;ps, < 1, which is satisfied by

. 1 . ops
the assumption ; < TS = and recalling that «y; and py, are positive.

(Analysis of Agl) ): Taking expectation conditioned on F; and applying equation yields
Ell|2(z") = 2" )|*|F] < LIE[lla* — «™Y*|F] = LIaTE[||g}, |I°|Fi-
Adding and subtracting g = E[g}, | ;] followed by using the fact that [|a-+b[|* < 2 ([|al|* + [|6]1?),
with a and b real-valued vectors, along with Lemma we have
E[|lz(a") = 2(«" )| F] < LIFE[|g}y, — gy, + 35 |P1F] < 2L2a? (E[llg}, |1*1F] +7) -
Lastly, taking total expectation, we obtain the bound
Efll2(2") — 2(z")IIP] < 2L2a3(E[lg}, %] + 7).

(Analysis of Aél)): Taking expectation conditioned on F; followed by adding and subtracting
AT (il i\ : .
Voz (¢') (2" — 2') in the following way:
E[(=" = 2(2")) T (2(2") — 2(a"*1))|Fi]
= —E[(z" — 2(2")) T (Voz(z") T (@' = 2") + 2(2"™) = 2(2) = Vaz(a) T (@ — 2))|F]

Vaz(
—E[(2" — 2(2") " (Voz(a') " (2" — 2))|F]

B
—E[(z*T — z(xi))T(z(xiH) — z(z%) — sz(xi)—r(x”l — )| F]. (C.4)
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(Analysis of B{"): Utilizing the update 2/+! = 27 — a;g}, , the fact that E[X| = E[E[X Y]], along
with the Cauchy-Schwarz inequality, yields
1 i i T =i
Bl < aB[ll™ — 2@ Vaz(a®) gy, |17
a; LE[[|"* = 2(2)|l|gh, 7]

IN

a2
% i Lz
RE[l] 27T — 2(2") 1P| F] + E[Ilgfl 1271,

IN

where the second inequality comes from equation [EI] and the last inequality comes from using
Young’s inequality (i.e., ab < i + ¥ for e > 0), where ¢ = 2k; for some «; > 0, and where
a= 2" — z(2")|| and b = aiL. Hgf1 I

(Analysis of Bél) ): Now, we can bound the term Bél) in equation|C.4|by using the Cauchy-Schwarz
inequality and applying the Lipschitz property of equation(i.e, 2@ ) —2(2") —Vz(2?) (2 —
z') < Eg= |2+t — 27||?) to obtain:

—E[(z"" = 2(2") T (2(a™F) = 2(2") = Voz(a") T (2 — 2))|F]

L ) ) ) ) ) .
< E[ET = 2@l - 2l - o) F).

Further, using Young’s inequality with a = [|zi*1 — z( Bl ||:1:i+1 — %l and b = ||z*T! — 2¢|| such
that ab < % 5 + 22, along with the update '™ = 2’ — a;§}, and the fact that E[X] = E[E[X[Y]],
we have

—E[(z" = 2(a)) T (2(a"") = 2(a") = Vaz(a") T (2" — ")) | F]

LVz i i i i 1 i i

< s (2 2+ <z>2||x“x2|m+E[||x“x||2|ﬂ1)
LVZO%ZC i i LVZ (6%

< Loy _ oe)2iF) + LR g, 1217)

LVZ Lo=0% g1g%. 171 7:] + 7).

where the second inequality follows by applying Lemmal]ﬂfl and the last follows by applying the
definition of variance along with Lemma[D.3]

LVzaz‘QC i %
< —Elll= 2?1 F] +

Substituting these bounds for B{l) and Bél) back into equation and taking total expectation, we
obtain the bound on the term Agl) as

B[+ - 2() T (=(a') — 2(a*1))
< (m+ 2 Y Bt — o)+ (2 +ngai)E[||g;l||2]+Tsza3.

Finally, substituting these bounds for A(l), A(l) and A; () back into equation [C.2| we obtain the
desired upper-bound on E[||z/+! — z(2#+1)||? ] completlng the proof. O

C.3 PROOF OF LEMMA B3]

Proof. To derive the error bound defined by equation recall that 2/t = 2100 — i, /K
and g bik — 7 fa(xt,yid, 213k, €43F) and notice that there will be a total of K updates to the

LL varlables starting from z*/ to obtain 27+, Further, following the exact same steps utilized in
Lemmato derive bound equatlonm (only with z(z*) replaced with z(z¢, y*9+1)), we have

E[llz"7+ — 2@,y P < (1= mipp) " 1277 = (@', y TP + Knfod .
Now, adding and subtracting z(%, y"7) in the norm, followed by using the fact that ||a + b||* =

llal|? + ||b]|% 4 2a T b, with a and b real-valued vectors, the Cauchy-Schwarz inequality, and the fact
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that (1 — y;p f3)K < 1 which is satisfied by our choice of ; < 1 we have

= ,le+LVf3 s
E[fl2"7F = 22,y 7]
< (L=3ipp) " 1277 = 2@y )P+ (L= yipg) ™ 2@, y™) = 2(2%, D2 + Kfogy,
+ 2128 = 2@ty )2 y) = 22ty )|
< (L=mipg) " 1257 = 2@ ™)1+ (1= yipg) ™ l2(a®y™) = 22,y )P + Koy,

+ i1z = 22",y )P + ;HZ(IZ, yI) — z(a’, y |
T

IN

K2

2

K K ~
= (L=7pp)" +m)lz" = 2(z",y™)|* + <(1 —%ipgs)" + n) L2 N1y — Bigy] —y™
K3
+ Kﬁo%h
< (M =7ipp)" +m)llz™ — 22, y™)|1* + 0 L2 B3|

where the second inequality follows from applylng Young s inequality (i.e., ab < € + b* - fore > 0)

with € = ; for some 7; > 0 (notice thata = |2/ —z(z*, y*7)| and b = || z(a? ,y”) (x yHIt)||
here), the third inequality follows from applying equation @ and the last inequality follows from
the fact that 0 < 1 —;py, < 1 (where we define 7; := 1+ ) Lastly, taking total expectation and

using the fact that E[X] = E[E[X|Y]], we will obtain the bound equation
E[|]z"7F = 22",y )]
< (U= vp)™ + )2 = 2(,y") 1) + 5 L2, BRIE(57 111 Fig)) + Kfo%y,
< (X =ip)™ +m)E[l2" — 2(2®,y™9)|?] + 0 L2 B2Y + KyZod
where the last inequality follows by applying Lemma[D.6]

+K7120-2Vf3a

Now, to derive results equation [B.7] equation [B.8] and equation [B.9] we start by decomposing the
expected error of the LL variables by adding and subtracting z(x?, y") followed by using the fact
that ||a + b||? < 2(||a||* + ||b]|?) with a and b real-valued vectors:

Efl2! = 2(2™, P < 2E[||2" — 2(a’,y")|?] +2E[[l2(a",y') — 2(«", 5 )]

A(12) A;2)
(C.5)

(Analysis of A( )) To derive an upper-bound on A( ) in equation we can follow the exact
same steps that were utilized in Lemmato derive bound equation (only with z(z?) replaced
with z(x*,y*)), which will yield the bound equation Further, using induction over J (each

consisting of K iterations) will yield the following bound on Agg) in equation (which is the
bound equation@. Notice that this induction result again follows by ensuring that 0 < 1—~;pr, <

1, which is satisfied by the assumption ~; < ﬁ and recalling that «y; and py, are positive.
z 3

(Analysis of Ag)): Now, the upper-bound on Ag) in equation can be derived by taking total
expectation, using the fact that E[X] = E[E[X|YT]], applying equation and recursively using

the fact that y"/+" = y"I — 3,97 J (while recalling that '+ = y*“ and x“rl =z’ — a;g}):
E[|z(z",y") — 2(a™, g+ ]<L2 Eflla’ — 2™ Y% + L2, E[E[lly’ — v %I F )]

Zzry

= L2, ofElg7, I°] + L2, E[E[lly" - Z Bigs) = v 17 1F4]]

< L2, ofElllgy, [I”) +JL§M52Z1E (137 1217411
7=0
< L2, ofEllgy, "] + YL 57,
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where the second inequality follows from using the fact that || 320 | a;[|2 < NSOV Jlag||® (for

some a € RY) and the last inequality follows from applying Lemma ID.6| Now, using the fact

that E[X] = E[E[X|Y]], adding and subtracting g% in the norm, followed by using the fact that
b3

la+bl|> <2 (||la]|* + [|b]|?), and applying Lemma|D.3| we have
Ell=(at, ) — (e, y ) = 12, o2B[E]Ig5, 121 + T2, 62
< 2L7 o} (Ellgy, [I°] +7) + J*TLZ 57
Notice in the inequality that E[||g}, [*] = E[E[|g}, [I?|Fi]] = [|g%, [|* since g}, is deterministic.

Finally, substituting these bounds for Ag2) and Agz) back into equation , we can obtain the
desired upper-bound on E[[| 2"+ — z (T, ™) ||?] defined by equation |B.9)

Lastly, to derive the upper-bound equation [B:T0| we can follow the exact same steps that were
utilized in Lemma to derive bound equation (only with z(z*) replaced with z(x*, y*7)).
Notice that this induction result again follows by ensuring that 0 < 1 —;py, < 1, which is satisfied

by the assumption of v; < m and recalling that ; and py, are positive. ([

C.4 PROOF OF LEMMA [B4]

Proof. To derive the error bound defined by equation |B.12| we start by decomposing the expected
error of the LL variables by adding and subtracting y(z*) in the following way:

Eflly™ —y(@*IP) = Elly"™" — y(=")II°] + Ellly(=") —y(="")]%]
A(13) A(23)
+2E[(y" " — (")) (y(a') — y(@™))]. (C.0)

AP

(Analysis of A{*)): To derive an upper-bound on A'*) in equation recall that ¢! = y%/ and

g;j =V, f(z!,y"7, 253+ €49). Further, notice that there will be a total of .J updates to the ML

variables starting from y° to obtain . Thus, in general, taking expectation conditioned on F; ;
and applying Lemma[D.6 we have

E(lly"7 " — y(@)|?|1Fig] = Ellly™ — Big}y! — y(a))?|1Fisl

ly™7 = y(a*)|* = 2B;(y™ — y(a') "5} + 187

ly™7 = y(a")1? + Y87 — 2Bi(y" — y(a)) TV, f(ah,y"™)
= 28;(y" — y(=") " (g} — Vy fa',y")),

IN

where the last equality follows from adding and subtracting V,, f(z%, ") to the g}’j term in the

_ 2
cross-product. Now, under the strong convexity of f (Assumption@ and the Lipschitz continuity
of V, f in y (equation equation , we can utilize (Nesterov, 2018}, Theorem 2.1.12), yielding

Eflly™* = y(@)I*1Fis] < lly™ — @) + 157

-2, (P (e + IV )
+28ly"7 — y(a") Py, — Vo f(at g™, 2|2
+ 28|y = y@)IVy [ty 27 =V, fat, g™,

where the last two added terms come from adding and subtracting V,, f(z? y»7, 249+ to the g}j —

Vy f(z%,y*7) term in the cross product followed by applying the Cauchy Schwarz inequality. Now,
utilizing the Lipschitz continuity of V,, f in z (equation equation [E.8)), the bound on the biasedness
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of gy, (Lemma , and the fact that iﬁL -||V, f(z%,y*7)||? is non-negative, we have
Efly™* —y(@")?|Fi )

2uy Ly 7 y , - , o S
- (1_5 ( T _2°°29?>)y”—y<$’>l2+2ﬂilly“—y(xl)ll|zw+1—z<xz,ym||+mz
l‘y+va

20y Lo 7 o ) o L

< (18 (s 2 =) 10—y 90 ot )+ T
Hy +va

= (1=iB) g™ —y(@)|> + |27 = 2(2, 4™ |* + 157,

where the last inequality follows from the fact that 2ab < a? + b? (a and b positive scalars) where

2uyLy 7
v = p—20°%02 —B; and p = M. (C.7)
My + va
Taking total expectation and using bound equation [B.10|from Lemma [B.3] we have
Eflly"" = y(a)’] (C8)

< (1= viB) Ellly™ — y(@")|?] + 87 + (1 - %‘Pfs)K Efll2"7 — 2(a*, y")II°] + K~fogy,

< (1—iB)  Ellly' — y(=))?] + (1 — vipg) ZEHzJ 2@,y )2 + JYBE + TR o,

(C.9)

where the last inequality follows by using induction over J. Notice that this result follows by
ensuring that 0 < 1 — ¢;8; < 1, which holds when choosing (; such that 5; < and B; <

In other words, to show that 0 < 1 — ;3;, we have

Hy +L F
_p
2071
(hy + Ly 7)?
where the first inequality follows by observing that —2026023; — 7 < 0, the second inequality
follows by choosing (5; < along with the definition of p, and the third inequality follows

ViBi = Bi(p — 20°07 — B;) < Bip < <1

)

= Hy +L
from the fact that 2ab < (a+b)?, w1th a and b positive scalars. Notice that showing that 1 —1; 8; < 1
is equivalent to showing that 1/’1‘ > 0, i.e., using the fact that 0 < 62 < 6; < 1 along with §; =
a;Bivi < Bi, we have

~202 2 1%
P20 —fi20 = 2Wh+hisp = Bisgm
Now looking at the Z E[||z%7 — z(z%,y%)||?] term in equation and defining ©; :=

Tﬁf + Knjog,,, we have

ZEIIZ’J 22ty
=E[IIZ”O 2@’y )P+ Ellle — 2y DIP - + BT = 22y )
=E[||2" - 2(a", )H ]

+E[" = 2y

+E[2"2 - 22", y")[?]

(< (=) + B — (e g+ ©)
(S o) 2y 4 260)

Bl = 2@y O — (S (= 7ipp)" 4 m) Bl = 2@ )P+ (- 1)6:)
J—1 J—
<E[l2" = 22, y) 12 + D (1= vipg,) +m)El|2" — 2, y")[1P) + ©: Y 5, (C.10)
=1 =
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where the intermediate inequalities follow from applying equation equation [B-6] from Lemma [B23]
repeatedly while choosing n; such that 7; < 1 — (1 —yp fg)K (which will ensure that
0<(1- ’szfS)K + 771 < 1 when considering the fact that 0 < (1 — %%)K < 1 which is satisfied

by our choice of v; < MT and recalling that +y;, py,, and 7); are positive). Now, looking at the

ijl ((1- ’Yipf3) + ;)7 term in equation , we have

N %’Pfs)K + 1) — (1 — %‘Pfg)K +m)’\ (=]
Z: e +m)—< 1= ((L=ips)" +m) >_<1—&)’

where the last equality follows by using the geometric series Z -1 Lai = “l’aJ when a € [O 1]
and defining ¥; := (1 — yp fg) + n; for ease of notation. Now, using the partial sum Z i1 L=

@, we can see that the bound equatlonon the expression Ej:O E[||z%7 — z(2%, y"9)|?]
is given by

9 — 07 , o J(J -1
EjEmﬂ P < (1 (G50 ) Bl - st + T e e

Now, we wish to analyze the limiting behavior of the term 191%-:;;9‘{ as 9 — 0and ¥ — 1 in order to
obtain an upper-bound. Starting by analyzing the limiting behavior as ¢ — 0, we have

9;(1—9/7 0.1

lim ————=—=0.

191-1 glo 1-—199; 1 0

Further, when ©J; — 1, we can analyze the limiting behavior via L’Hopital’s rule to obtain

Y 9 — 0]
im Ui — v — 1 M = lim —(1—J19;']71):J_1'
9i—1 1 —19; 9;—1 W(l — ’l%) Yi—1

Therefore, we can see that (since 1 < J € N)

9 — 97
0< 1_191<J71 (C.12)

Utilizing the upper-bound of equation [C.12]in equation[C.11]yields

J—1
- - , . J(J -1
SR — ey )P < TR -+ T e )

J=0

Now, substituting equation [C.13] back into equation equation [C.9 and using the fact that 0 < 1 —

vips, < 1, which is satisfied by our choice of v; < m and recalling that ; and py, are

positive, yields

JJ -1

5 O

Ellly™" = y(@)I”] < (1= i)  Ellly’ — y(@")|*] + JYBF + TEA o5y, +
K i i
+ (1= 7ipg)" JE[|2" = 2(2",y")I],
Further simplifying this expression, we obtain the bound equation [B.T1]

(Analysis of AéB)): The derivation of the upper-bound on A§3) in equation follows the exact

same steps that were used to derive the upper-bound on the term Aél) in Lemma (only with
using equation [E-4]instead of equation [E-T), from which we have

Elly(a") -y )] < 2L5a (E[llg7, 7] + 7)
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(Analysis of Aég)): The term Aég) in equation can be bounded by taking expectation condi-
tioned on F; followed by adding and subtracting Vy/(z*)(z**! — 2?) in the following way:

E[(y't! — y(a") " (y(a") — y(a™))|F]
= —E[(y"" = y(@") T (Vy(a") (@ — 2') + y(z") — y(2') — Vy(a') (2" = 2"))|F]
= —E[(y""" — y(2") T (Vy(a") (2" — 27))| F}]

—El(y! —y(a") " (y(a") —y(a') - Vy(a') (@ —a"))|F]. (C.14)

(Analysis of B%S)): The derivation of the upper-bound on BEB) in equation follows the exact

same steps that were used to derive the upper-bound on the term Bgl) in Lemma (only with
using equation instead of equation [E. 1)), from which, for some ¢; > 0, we have

212

~E[(y™ = y(@) T (Vy(a) (@ = a))IF] < pBllly™ -y PIF] + ai@y]E[Héjvl I1%1.73)-

(Analysis of Bég)): The derivation of the upper-bound on B§3) in equation follows the exact

same steps that were used to derive the upper-bound on the term Bél) in Lemma (only with
using equation instead of equation [E.3), from which we have

—E[(y"™ —y(@")) T (y(=™) — y(a') - Vy(a') (@™ — )| F]

Ly 0%2 i
——L (E[llg}, IIPIFi] + 7).

Lyyai¢ ; i
< R E[|ly T — y(a)|P1F] + 1

4

Finally, substituting these bounds for BF’) and BéB) back into equation and taking total expec-
tation, we obtain the bound on the term Agg) as

o’ ) .
Bl o) (0e) — o) < (0 EEE Y gy ) )

a?l?  Lg,a? ; TL
1y Vy®i —i 2 Vy 2
E 2,
+ ( 10, + 4 [1lg%, [I7] + 1

Finally, substituting these bounds for Af’), Aég), and AéB) back into equation we obtain the
desired upper-bound on E[||y**! — y(21)||?], completing the proof. O
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C.5 PROOF OF THEOREM [B.3]

Proof. To begin, using Lemmas [B.2] and[B.4] we can begin by bounding the two Lyapunov
difference terms (defined in equation [B.1)) by taking total expectation in the following way:
=E[f(«")] —E[f ()] +E[ly™ —y (") ] ~Ellly* — y («") ||

Lemmal[B.1] Lemmal[B.4]
E[ll2F = 2 («) [IP] —E[llz" — 2 («°) IP] + B[l — 2 (&, o) 2] —E[l|2" = 2 (2%, ") |I”]
Lemma[B2] Lemma[BJl
a; o Lpa? » 5
< - SEIVAOI - (5 - 25 ) Bllgh 17 + ao?

+ai L, Ellly(«") =y ] + ai L, E[ll2(2") — 2]

2
+ (1 200+ T Y 1y -y 01 1)

L} Ly L
2 2 2 Vy 2
o+ ot + 53 ) Bl 12+ (22 + 252 ) v

+ (1 + 2k + LEQQC> E[||"t — 2 (z7) ||?]
(
(

I? L . L
2 z Vz 2m(|1A8 (12 2 Vz 2
22+ 5= + 252 ) aZEllgh, I+ (222 + 552 )
L. a2  J*TL. B? . o
2 o)+ 222 T Y Bl s ) ]

Liy | Loy ‘ L L J2YL, [
2L2 Fay Fzy 2E i 12 2L2 Zzy 2 142L. Zay Zay i
( o " 2n; N 2 ) “ H|gf1 ” } + Zoy + 2 T+ + Ty + V; 2

—Ellly" —y (2") 7] = Elll* — 2 (") I’] = E[ll=* — 2 (", ") |’].

Simplifying, we have

i i 673 LFOC‘2 i
B[V - B[V < -SRIV - (5 - 22 ) Bllg, 12
L 2 . .
+ (1 + azL% + 2¢; + w;m) E[lly"* —y (2") |17 (C.15)
Lemmal[B4]
Ly.a? . .
+ (1 + oLl 42+ VQO‘C) E[|2 ! — 2 (27) 2] (C.16)
Lemma[B2]
LZ a2¢  J?YL, B2 . o
+ (1 +2(n; +v;) 11,2 LR > oy i ) IE[H,ZH'1 —z (a:l,yl) ||2]
Lemmal[BJ3]
(C.17)
L2 Ly L? L .
2L 2L2 z Zxy Zry 2E —1 2
(C.18)
L,
T <<2L2 Loy 21> 5 2.+ 2) T +a;> o? (C.19)
J2YL, /32
+ (1 +2L,,, + ) i
U; 2
—E[lly’ —y («) I’] = Elllz" — 2 («*) ] = E[l|lz* — 2 (=, ") |I?].
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Now, for ease of notation, we denote the coefficients in equation [C.13}-equation [C.19]as follows:

) L 2
Gy = (1 + il 420+ W;C) : (C.20)
. Ly, 2
Gy = (1 + aiL%yZ + 2K, + V2a’c> ; (C.21)
i L.,ai¢  J*YL., B}
Gy o= (1420 +v)+ 1‘2 + 5 y , (C.22)
, L} L L2 L L2 L
Gy = 202+ L + W8 4212 4 2  ZV2 4 9] 2 C.23
4 < 2¢Z 5 T 2+2/£i+ 5 T y+2m+ 2 ) (€.23)
Ly Ly L, -
O = ((202+ 2 42024 FE p21? 4 . 24
(( R S R AR (C.24)
Then, using these definitions and applying Lemmas[B.2] [B.3] and[B.4] we have
; i Q; a;  Lpaj i i
B[V - V] < -SRIV - (3 - 2% - cla?) Ellgh 1) + 202
. ) . ) 1 . .
+ G (1= iB)  Elly' — y(a)|P] + Gi <1 + §(J - 1)niL§y> JYB} + Gy —JK Viods,

i K 191'*19%] i i\ [12
+ G =ipp) (14 (=55 ) ) Bl = 2@ )
+ Gy (1= 7ipg,) " EB[l|2" = 2(2") ] + Gy I K~} oy,
+ G (L= ipg) N E[l|2" — 2(2',y)|?] + GiTKvPod

L. JQTLZ 2
 fo) P

Zay

+ <1+2L

—Ellly" —y (= )II] Efl2" - 2 (") 17 - Ell2" — 2 (", ") ]

Simplifying once again while using the fact that (1 — ~;p fg)‘]K < (1 —p fs)K (recalling that p,
from Lemma[B.2]and ~; are positive) as well as J — 1 < .J, we have

E[Vi+1] o E[Vz]
< - GBIV + 002 - (5 - 2% - Gja? ) Blla), I
A
(LT +2) (L= i) ~ DE[* — (' )
Az
+ (G (= 08)” — DE[lY ~ v+ (G5 (1= 30s)”™ — DE]J2* - ()2
As Ay

1. ; AT
+ (2JL§W + (1 + 2JniL§y> Gl) JYBE + (G12 + Gy + 2) JK~y 0%, (C.25)

(Analysis of A;): Now, consider the coefficient A; of the ]E[Hgf |?] term in equation We
wish to determine an appropriate bound on «; such that this term in non-negative. To that end we
wish to ensure that A; > 0, which is true if

Ly Ly.
5 2L+ S 2L+ Zwy)aizo.

Now, choosing
¢ =4L}a; and k; =4L2q;, (C.26)
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we have

1
n 1
O[i < 4 = .
T Le o124 igv o124 Lys 4412 2(Lp +4L% + Ly, +4L% + Ly, +8L2 )
' (C.27)

(Defining & ): Now, we will define & as the largest value that v; can take, which is defined by the
upper-bound equation[C.27)and the fact that o; < 1, i.e.,

Zxy

1
4; :=min { 1 . C.28
o mm{ "2(Lp + 4L2 + Ly, + 4L2 + Ly, + 8L2 )} (€28)

(Analysis of A5): Now, consider the coefficient Ay of the E[||z* — z(z%,4%)||?] term in equa-
tion [C.25] We wish to determine an appropriate bound on ~; such that this term is non-positive.

Now, recall from Lemma that py, = ZL-Z&-LTVVJ;; (see equation in Appendix | as well as

the assumed bound (imposed 1n Lemmas and[B.4)

Y < (C.29)

= e+ Ly,

Recall the fact that «; and py, are positive, along with equation @ which ensures that
0 <1 —1;py, < 1. With this, to guarantee that A, is non-positive, we wish to ensure that

(GLT +2) (1 —yipp,)™ <1, (C.30)
Now, recall the fact that 1 + a < e® for any a € R. Multiplying both sides of this equation by the

. K
quantity (1 - %) , we can see that

(14+a) (1 - %)K <e® (1 - %)K <e® (e_?)K =ee v =1. (C31)

Now, to ensure that equation [C.30] holds, applying equation [C.3T|with a = K~;py,, yields the new
inequality we wish to satisfy given by

GiJ+2 < 1+ Kvpy,. (C.32)

Further, using the fact that o; < 1 along with the choice ¢; = 4L§ai, we have
. L
Gi=1+ (L%yz +8L2 + V;C) ;. (C.33)
Thus, utilizing equation[C.33] we see that equation [C.32]is satisfied by

Ly,
(1 + (L%Tyz +8L22/ + Zyc) ai) J+2<1 +K’Yipf3a

1+ J+ giJo; < Kvipy,, (C.34)

with g = L%yz + 8L§ + % Therefore, when choosing ;, and K such that the inequality equa-
tion is satisfied, the coefficient Ay of the E[||2* — z(z*, y%)||?] term in equation will be
non-positive.

(Analysis of A3): Now, consider the coefficient A3 of the E[||y* — y(z*)||?] term in equation|C.25
We wish to choose a 3; such that this term is non-positive. Recall from the proof of Lemma [B.4
4

that p = % (see equationin Appendix |C.4) and that
1 P
i < ) i < . C.35

Further, recall from Lemma [B-4] that these two upper-bounds ensure that 0 < 1 — 1;3; < 1, where
¥; = p— 20262 — B;. With this, we wish to ensure that G4 (1 — ;3;)” < 1. Now, once again using
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the fact that (1 + a) (1 — %) ! < 1 as discussed for the analysis of Ag, we need to choose an a such
that 0 < % < 1. Choosing a = J;5;, we have % # = 1;3;, which from Lemma we

S]]

know that 0 < v;3; < 1, and by extension that 0 < 4 < 1. Thus, we choose (3; such that
. Ly, a?
Gt aub > ould, 26+ TN < gy (€36)

(Analysis of A;): Now, consider the coefficient A, of the E[|[z* — z(2%)||?] term in equa-
tion [C.25] We wish to choose a 7; such that this term is non-positive. With this, we have
Gy (1— %»pfS)JK < 1. Now, recall that equation equation ensures 0 < (1 — %‘ﬂf3>JK <1l
With this, and using the same reasoning that was used earlier, we need to choose -y; such that
G4 < 1+ JKv;py,, which, when utilizing the fact that ; < 1 and the choice x; = 4L§ai, is
satisfied if

LVZC

goc; < JKipy,, where go:= L% +8L2+ 5

(C.37)

(Defining 3;): Now, from equation equation C.35| define the constant [, as the largest value that
[3; can take, i.e.,

_ 1 P
'=min< 1 . C.38
61 mln{ ’My"_LVf, 2(2)2_’_1} ( )

(Choosing the step-size 3;): We need to choose j3; to ensure that equation is satisfied. To that
end, using the fact that §; = «;3;v; < 5; (by a; < 1and y; < 1) and equation |C.38]in the definition
of ¥; = p — 2026% — B;, we define the lower-bounding constant T" as

I = p—20°B — B. (C.39)

Notice that 0 < I" < 4); for all feasible values of 6; and ; in ;. Now, using this definition of T,
along with equation equation and the fact that ¢; = 4L§ai, from equation equation , we
can choose the ML step-size as

B e 2L +16L7 + Lvydlcav
v 2JT
which follows by keeping one «; while upper-bounding the other with &; and solving for 3; in equa-

tion It bears mentioning that this choice of §; still needs to satisfy the bound 3; < 1, which
can be satisfied by choosing a sufficiently small «;, which will be defined as the upper-bound &y

below in equation equation

(Defining 71 ): Now, from equation equation|C.29} we can define the constant 7, as the largest value
that +; can take as

(C.40)

1
Y1 :=min{l, —— 5. C.41
) mm{ ’mLm} (C41)

(Choosing the step-size +;): From equations equation and equation [C.37} we need to satisfy

the lower-bound

14+J §1 JOQ' gg()é,‘ }

max + , < - (C.42)
{Kpfzs Kpf3 JKpfs

Now, we can rearrange the left-hand side of this inequality by multiplying by 1 = ‘;T\/g, yielding

1 ~ 2 . et .
J( +J) glJ &%) 920 } <. (C43)

1
II .= —— max + ,
JVK { VEpp,  VEpg VEpy,

Further, we wish to define ~y; as some constant multiple of ;. This can be accomplished by imposing
the following appropriate bound on «a;, which can be enforced by a sufficiently large enough choice
of K:

JA+J) <

L <. (C.44)
\/[?pj%
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Thus, under this bound on ¢, it is clear that we can replace the lower-bound equation [C.43] with
a more restrictive bound on ~y; (but which is defined as a constant multiple of «;) in the following
way:

G1J° g2
max < 1 !
{ + VKPfg’ VEpg,

I < a; < Y.
= IVE k
Therefore, we choose the LL step-size as this new lower-bound, i.e.,
J K
¥i = ol K) )ai, (C.45)
JVEK
where the function ¢ : Ny x N — R, is defined as
g1J? g2
o(J,K) :=max <1+ , . (C.46)
\/Epfs \/?pf?,

In order to ensure that o(.J, K') does not grow to infinity as .J increases, we can impose the lower-
bound on K of

(C47)

Now, it bears mentioning that this choice of «y; defined by equation still needs to satisfy the
bound v; < 71, which can be ensured by choosing a sufficiently small «;, which will be defined as
the upper-bound &3 below in equation equation [C.56]

(Upper-bounding 7j;): We need an upper-bound on the positive quantity 7; in the second to last
term of equation[C.23] Specifically, we wish to upper bound the term given by

1
=1+ —. (C.48)

7

Further, recall that 0 < (1 — v;p fS)K + n; < 1 from the assumed bound (imposed in Lemma b

mi <1 —(1—p)"~, (C.49)

on the positive quantity 7; > 0. To ensure that bound equation[C.49]is always satisfied, we can start
by choosing 7; to be

mi=EL— (1 —7ipg)"), (C.50)
for some constant 0 < £ < 1. Thus, we want to derive an upper-bound on the term 1/7;. Recall
that 1 + a < e® for all @ € R. Recalling equation [C.45|and letting a := %ai, we have that

(1 —a)X < e~Ka, For simplification, let a = Ka = wai. Further, multiplying both
sides of the inequality by —1 and adding 1 to both sides, we obtain 1 — (1 —a)* > 1 — =2, Lastly,
multiplying by £ and inverting, we obtain the inequality

1 < 1
ni — E(l—em®)

Notice that the right-hand side of this inequality decreases when a — oo and increases toward
infinity as @ — 0. Therefore, we can derive an upper-bound on 1/7); by analyzing the limiting
behavior of @ — 0. To that end, we can begin by analyzing the behavior of ¢ (J, K) in terms
!

f3

(C.51)

of the combinations of scenarios when J = 1 or J = oo and K = (lower-bound defined

by equation|C.47) or K = o0, yielding the bounds

1< 0(J,K) < max {2, ?2} . (C.52)
g1

Therefore, we can see that when lower-bounding ¢ (J, K) with 1, we have

Ko(J K ,
f@(? )P.fsai > \/?pfg%-

a =

29



Therefore, @ will approach 0 when Ja; ! approaches infinity faster than K. Therefore, in order to
prevent a from reaching 0, we can impose another lower-bound on K in the form of
J2
K > —. (C.53)

&

When imposing this bound, we can see that @ > py,. Therefore, when imposing the bound equa-
tion[C.53] we will obtain the upper-bound we desire of

1 1

(Defining &v3): Now, in order to ensure that the bound ; < 51 in equation is satisfied, we
can use the step-size choice of f3; in equation [C.40| along with the upper-bounds on [3; defined
in equation to define the upper-bound constant & as

2JT By
Q9 = .
2 QL%yZ + 16L§ + LVydIC

(C.55)

(Defining &v3): Further, in order to ensure that the bound v; < % in equation is satisfied,
with the step-size choice of ~; in equation [C.45]along with the upper-bounds on +; defined in equa-
tion and the lower-bound of 1 < p(J, K) in equation we can define the upper-bound
constant &vg as

as = JVEK7. (C.56)

(Choosing the step-size «;): Therefore, in order to satisfy conditions equation|C.28] equation|C.55]|
and equation [C.56] we choose «; to be

. _ _ - O
«; := min {al, Qo, 3, —F ¢, (C.57)
\/T}

where o € (0, 1] is some constant.

(Identifying the lower-bounds on K'): Now, it bears mentioning that with the choice of step-size

for a; given by equation from bounds equation [C.44] equation and equation [C.53] we

can write the consolidated lower-bound that we require K to satisfy as

J2(1+ J)2 G2J4 J?

K > max (C.58)

207 2 2
p?ﬂ} min{dlv@defﬁv%} pf3 min{d17d27@3a%}
Notice that only &3 on the right-hand side of equation is the only term with a K in it. How-
ever, since limg oo &t = 00, it will either have no impact on the right-hand side or it will act
to potentially decrease the right-hand side, making the bound on K less restrictive. Thus, we can
lower-bound &3 by the positive constant &3 := Qas] K=1,7=1 < ag. For the sake of clarity, we can
also lower-bound &, by the positive constant ¢y := @i j=1 < @s. Lastly, by using the lower-bound
I > 1, notice that

1 11 1 I 7 1 1 1 1 < IA
=mMaxy —3; 755 297 9 =1MaX | 755 735 7,97 95 = 9

. {, A A ag }2 a?’ a3’ ad’ ol Ia?’ 143’ 1437 o

min 041,042,043,W

where A := max { L 2, = i} is a positive constant independent of I, J, and K. Now, putting

aiv a3 a3’ of
this together, we can write equation [C.58] alternatively as the bound

2 2 ~2 74
J2(1+ J)2IA §#J JQIA}7

» T s (C.59)

szax{ 5
P, P,

from which it is immediately clear that K > O(J*I).
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(Upper-bounding the remaining terms in equation |C'.25): We wish to upper-bound GY and G5,
We have seen that G can be given by equationm Using the fact that a;; < 1, we have

Ly, —
5

We can bound G% from equation similarly by using the choice x; = 4L2«; along with the fact
that a; < 1, yielding
LVZC

Gy <1+L% +8L§+T = g. (C.61)

Gi<1+1L% +8L+ g1 (C.60)

Therefore, by choosing the step-sizes o, 3;, and 7; according to equation equation [C.40]
and equation@, respectively, it follows that A is non-negative while A5, A3, and A, are non-
positive in equation[C.23] Therefore, when utilizing the bounds equation [C.54] equation [C.60] and
equation [C.61] we can simplify inequality equation[C.23]to

+1

, , ; . J
B[V - B[V < - BV + 802 + (0 a0 +2) TErRod,

2 1 Lgy 2
+ <2JLZM + (1 +J (5(1—6”@) 5 g1 | JYB;

< —FE[IVI)?)+ (@ +e1 + ea) o, (C.62)

where the last inequality follows from utilizing the step-sizes 3; and ; according to equation [C.40)]
and equation [C.43] respectively, along with using the upper-bound defined in equation [C.52] where
the constants ¢; and co are defined as the following:

L N2
(3 g1 1Y » g2
cl = (2+(2 +92+2) J) UVmeaX{Q,gl} ,

e (or2 (L1 L, T(2L3,, +16L; + Ly,ai()’
2 = Zay J £ (1 _ 67pf3) 9 g1 AT2 .

(Telescoping): Now, rearranging equation and telescoping over i = 0,1, ..., I — 1 leads to

I-1 I-1

1 )

5 2 B[V < VO = VI3 (@ + 1+ ea)af. (C.63)
i=0 =0

Note that «; is a constant that does not depend on 4 given by equation Thus, dividing both
sides of equation |C.63|by %I a;, while noting that Zf;ol a; = Ty, and considering that 0 < V? for
alli € {0,1,...,I — T}, we have

I—1 I—1
1 i VOt (@+er+e2)d_ya?
I BV < e
i=0 PRl
2VO + 2((1) + C1 =+ CQ)O[O
~ oy VI
AR 2y0 2(®
<+ L A2+ata)a
Imln{al,ag,ag} QO\/T \/T

where the second inequality follows from «; < % and the last inequality follows from

2v0 2y 1 2V0 1 1 _ AS n 2V0
IO&Z‘ 1 Inill{al,dg,dg,%} - 1 min{@l,@2,&3} % Imin{@h&g,@g} ao\ﬁ
Therefore, we have obtained the desired convergence result, completing the proof. (]
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C.6 PROOF OF THEOREM[B.6]

Proof. The start of the proof of this theorem follows the same reasoning that was utilized to ob-
tain equation [C.25]in the proof of Theorem [B.5] (Appendix [C.5)), which we restate here as equa-
tion [C.64t

E[V**H] — E[V]
(673 ; Q; CY2
< - GBIV + 002 - (G - 2% - Gja? ) Blla), I
Ay
FUGLT +2) (- 705)" ~ DE] — 2,y
Ay
(G0 080~ DE(lY v+ (G (= 30s)”™ ~ DE[ — 2(a?)
As Aa

1 ST+ 1
+ <2JL§W + (1 + 2J77}L§y> ) JYBE + ( L, Gh+ 2) JKy 0, (C.64)

The definitions of G¢, ’ 5, and ® are restated here as
. Ly,
Gl o= (1 + oL+ 20; + w;%() : (C.65)
) L 2
Gi = <1+a L3+ 2%+ VZ;‘ZC), (C.66)
, L L2 Ly.
G = <2L + Ly + 2 o2 2 TV g2 ) (C.67)
2 2K; 2 oy
2 LVU 2 Ly. 2 ~
d = 2L, + T +2L: + < + 4Lzzy T+ ). (C.68)

(Choice of step sizes): In the proof of this theorem, we choose the UL, ML, and LL step sizes to be
the following:

1
ii= = C.69
o i (C.69)
Bi = L a-—il (C.70)
VT VIVT '
! 1 (C.71)

T IVE ST VIVIVE

(Analysis of A;): Now, consider the coefficient A; of the E[||g}, [|*] term in equation W We
wish to determine an appropriate bound on «; (in terms of I) such that this term in non-negative. To
that end, we wish to ensure that A; > 0, which is true if

L Ly
5 2Ly + ;y +2L% + 57 Zly) a; > 0.

Now, choosing

¢i =4L7; and k; = 4L3q;, (C.72)
we have
1
Le 4212 4 L3v 4212 4 Ly= 4412 2(Lp +4L2 + Ly, +4L% + Ly, +8L2_ )
zy : v
(C.73)
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Now, recalling our choice for «; given by equation [C.69] then from equation [C.73| we see that we
must choose I € N such that

A(Lp +4L, + Lyy +4L2 4+ Ly. +8L% )? <I. (C.74)

Therefore, when choosing I such that the inequality equation [C74)is satisfied, the coefficient A; of
the E[[|g}, [|?] term in equation will be non-negative.

(Analysis of A): Now, consider the coefficient Ay of the E[||z¢ — z(z%,4%)||?] term in equa-
tion [C.64, We wish to determine an appropriate bound on ~; (in terms of I, J, and K) such that

this term is non-positive. Now, recall from Lemma that py, = % (see equation in
z 3
Appendix[C.2)) as well as the assumed bound (imposed in Lemmas and[B-4)
1
g < (C.75)
K Mz + LVf3

Utilizing our choice of v; given by equation|C.71] this can be satisfied by choosing I, J, and K such
that
(s + Lyy,)? < IJK, (C.76)

Recall the fact that ; and py, are positive, along with equation which ensures that
0 <1 —r;pyp, < 1. With this, to guarantee that A, is non-positive, we wish to ensure that

(G +2) (1= yipp)" < 1, (C.77)
Now, recall the fact that 1 + a < e® for any @ € R. Multiplying both sides of this equation by the
quantity (1 — %)K, we can see that

(1+a) (1 — %)K <e (1 — %)K <e (e_?)K =e% *=1. (C.78)

Now, to ensure that equation [C.77]holds, applying equation [C.78|with a = K~;py,, yields the new
inequality we wish to satisfy given by

GiJ+2 < 1+ Kvipy,. (C.79)
Now, using the fact that «; < 1 along with the choice ¢; = 4L12/az-, we can upper-bound G as
i Lyyai¢ Lvy¢
Gy =1+ailf, +20+ -2 <1+ L +8L5+ =2 =g (C.80)

Thus, utilizing equation [C.80] we can guarantee equation [C.79]if Jg1 + 1 < K~ipy, is satisfied.
Now, utilizing the choice of 7; given by equation[C.71] we have
Jg1 +1 K N IJ(Jg1 +1)2
Pfs VIVIVEK p 3“3

Therefore, when choosing 7, J, and K such that the inequality equation [C.81]is satisfied, the coef-
ficient Ay of the E[||2* — z(x%,%%)||?] term in equation will be non-positive.

(Analysis of A3): Now, consider the coefficient A3 of the E[[|y* — y(2)||?] term in equation [C.64]
We wish to determine an appropriate bound on 3; (in terms of I and J) such that this term is non-
positive. Recall from the proof of Lemmathat p= % (see equationin Appendix |
and that

< K. (C.81)

1 p

i < ) [ S ~ .
Utilizing our choice of /3; given by equation this can be satisfied by choosing I and .J such
that

(C.82)

2% +1)°
max{,uerva,prr} <1IJ (C.83)

Further, recall from Lemma [B-4] that these two upper-bounds ensure that 0 < 1 — 1;3; < 1, where
¥; = p— 20262 — ;. With this, we wish to ensure that G4 (1 — ;3;)” < 1. Now, once again using
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the fact that (1 + a) (1 — %) ! < 1 as discussed for the analysis of Ag, we need to choose an a such
that 0 < % < 1. Choosing a = J;5;, we have % # = 1;3;, which from Lemma we

S]]

know that 0 < v;8; < 1, and by extension that 0 < 4 < 1. Thus, we have
) L 2
Gt Iub > ould, 260+ TN < gy (C84)

Notice that from equation equation |C.82] f3; is upper-bounded by the constant 3; (defined as the
largest value that 3; can take) given by

_ 1 P
'=min< 1 . C.85
61 mln{ ?My+va72a)2+1} ( )

Using the fact that ; = ;8;v; < 8; (by o; < 1 and y; < 1) and equation[C.83]in the definition of
; = p — 20202 — j3;, we can define the new lower-bounding constant I" as

I = p—202B2 — B. (C.86)

Notice that 0 < I" < 1); for all feasible values of 8; and (3; in v);. Now, using this definition of T, the
fact that o; < 1, and the choice ¢; = 4L, we have that the following implies equation

LVyC
2

Utilizing the choices for a;; and 3; given by equation[C.69]and equation[C.70} respectively, it follows
that the bound

a; (L%yz + 8L + ) < JT'B,;.

2
LvyC¢
(13, +8L3 + £55)
= <
implies that equation [C.84]is satisfied. Therefore, when choosing J such that the inequality equa-
h

tion is satisfied, the coefficient A3 of the E[||y® — y(x%)|?] term in equation |C.64] will be
non-positive.

(Analysis of A,): Now, consider the coefficient A4 of the E[||z* — z(x%)||?] term in equationm
We wish to determine an appropriate bound on ~y; (in terms of I, J, and K) such that this term is non-
positive. That is, we wish to show G% (1 — v;p fS)JK < 1. Now, recall that equation equation

ensures 0 < (1 —;p fS)JK < 1. With this, and using the same reasoning that was used earlier, we
need to show that

(C.87)

LVZQ?C

Gy <1+ JKvips, = Ly, +2ki+ < JKYipy,- (C.88)

Now, using the fact that «; < 1 along with the choice k; = 4L§ai, we can see that equationis
satisfied if
LVZC
2

a; (L%,yz +8L2 + ) < JK5ipg,-

Utilizing the choices for a; and ~y; given by equation[C.69|and equation[C.71] respectively, it follows
that the bound
Ly-
(L%yz +8L2 4 Ly
2
P¥s

implies equation[C.88] Therefore, when choosing .J and K such that the inequality equation|C.89]is
satisfied, the coefficient A, of the E[||2* — z(z?)||?] term in equation will be non-positive.

2
) < JK, (C.89)

(Upper-bounding 7;): We need an upper-bound on the positive quantity 7; in the second to last
term of equation[C.64] Specifically, we wish to upper bound the term given by

1
=1+ —. (C.90)

?

Further, recall that 0 < (1 — v;p fS)K + n; < 1 from the assumed bound (imposed in Lemma |

mi <1 —(1—ps)"~, (C.91)
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on the positive quantity 7; > 0. To ensure that bound equation[C.91]is always satisfied, we can start
by choosing 7; to be

ni = E1— (1 —yipp,) ), (C.92)
for some constant 0 < £ < 1. When utilizing the choice of ~; given by equation|C.71] we have

wme (1= (- %))

Thus, we want to derive an upper-bound on the term 1/7;. Recall that 1 + a < e for all a € R.

Letting a := %, we have that (1 — @)% < e=%4, For simplification, let a = Ka =
K

% pf,- Further, multiplying both sides of the inequality by —1 and adding 1 to both sides, we

obtain 1 — (1 — a)® > 1 — e~ Lastly, multiplying by £ and inverting, we obtain the inequality
_ 1 1

L _ _ K _ _—a -
n=E1-(1-a)")>EQ—e?) = niéig(l—e_a)' (C.93)

It is clear that as @ — oo (i.e., VK approaches infinity faster than VIVJ) then lims_yop e~ = 0,
leading to the lower-bounding limit of

y 1 1 1
m ———-—== = -
Ko E(l—ea) & 3

Now, notice that the expression ﬁ grows toward infinity as @ — 0" (which will occur when

V/Iv/J approaches infinity faster than v/K), since lim,_,o+ e~ = 1. Therefore, to prevent the term
a from approaching 0, we can impose the bound

IJ<K. (C.94)

Thus, when imposing bound equation[@] and considering that [ > 1, J > 1, and K > 1, we can
see that a = % P, is bounded by

prs < a. (C.95)

Therefore, utilizing the lower-bound in equation will yield the desired upper-bound on 1/7; of
1 1

—_ (C.96)

n — E(1—e7Phs)

(Consolidation of bounds): To summarize, we choose the step-sizes «;, (;, and ~y; according
to equation equation [C.70] and equation [C.71] respectively, as well as impose the following

bounds on I, J, and K (defined by equation equation equation equation [C.83]
equation [C.87] equation[C.89)] and lastly equation [C.94] respectively), restated here for convenience:

A(Lp 4+ 4Ly + Lyy +4L% + Ly. + 812 )* <1,

1J(Jg1 +1)? 202 +1)°
(s + Log,)? < 1K, # <K, max{,uy+va’w} <1J
Py, P
2 2
(£3,, +8L3 + £55) (£3,, +8L2 + £5¢)
> </, . < JK, IJ<K.
r Pis

We can denote the constant lower-bound on J given by equation[C.87]as

2
(£3,, +8L3 + £55)
yz
- . (C.97)

Using equation the bounds equation and equation [C.83]are implied by the consolidated
bound
w<I, (C.98)
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where the constant o is defined as

R 2
max {,uy +Lyj, 2w';+1 }
@ :=max 4(Lp + 4L} + Ly, + 4L + Ly. + 8L§W)2,

S

(C.99)
Similarly, using equation [C.97] and equation [C.99] we can see that the bounds equation [C.76] equa-
tion [C:81] equation[C-89] and equation[C.94]are implied by the following consolidated bound

=(I,J) <K, (C.100)
where the function = : Ny x Ny — R, is defined as
2
L ZC
o+ Lo 1T+ 12 (Lh 822+ 25)

=(I,J) := max , ! , _ LTS, (C.101)
s P, <%,

from which it is immediately clear that K > O(J31).

(Upper-bounding the remaining terms in equation [C.64] m When choosing the step-sizes «;, 5;,
and ~y; according to equation|C.69} equation and equation [C.71] respectively, as well as choos-
ing I, J, and K according to equation ﬂuation [C97, and equation [C:100] respectively, it
follows that A; is non-negative while Ay, As, and A4 are non-positive in equation@ Thus, we
can simplify inequality equation [C.64]to

i i i ; J
B[V BV < - SV + 00 + (61750 4 Gl +2) Jratad,
N 37 E Ry (N — L, Gy | JYB;
oy E(1—ePt3) 2 1 i
< —*EHIW(%’)HQ] +(@+ 1+ ) af, (C.102)

where the last inequality follows from utilizing the step-sizes «;, [3;, and ~; according to equa-

tion [C.69] equation [C.70] and equation [C.71} respectively, as well as the inequality equation [C.80]
recalling that g; = 1 + L%yz + 8L§ LWC, and defining the upper-bound on G% of G4 <

1+ L2y +8L2% + LVZC := g (obtained from equatlonmby using a; < 1and k; = 4L2%«;).
Further, the constants 01 and co are defined as

2 2
_ 2 (9 —9]2 909, 9Lz Y 1
€= 0y, (5 +92+2) + 97T, = 2L, T+ 2 ot 2 E(l—eris))’

(Telescoping): Now, rearranging equation [C.102|and telescoping over i = 0,1, ..., I — 1 leads to

I— I-1

1

52 E[IVF(@)?] < VO =V 4+ (D + 1 + c)o. (C.103)
=0 1=0

Note that c; is a constant that does not depend on ¢ given by equation [C.69] Thus, dividing both
sides of equation [C.103| by %I o;, while noting that 25;01 a; = Iy, and considering that 0 < V?
foralls € {0,1,...;7 — 1}, we have

- 1
lz K[|V f(x < VO + (¢+011+C2J)Zz o of _ 2V0 +2(® + ¢4 +02J).
Therefore, we have obtained the desired convergence result, completing the proof. |
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D BOUNDS ON BIAS, VARIANCE, AND INEXACTNESS

This appendix contains derivations of results that yield bounds on the biasedness and variance of
stochastic terms as well as bounds on the sizes, inexactness, and variances of the UL and ML search
directions. For ease of notation, since all expectations that are present in the proofs of Lemmas[D.1]
and [D.3|are conditioned on F¢, we utilize the short-hand notation of E[-] := E[-|F¢], unless
stated otherwise.

Lemma D.1 (Bounds on bias of V2 and V2 f) Under Assumptions
and _the stochastic terms V325, Vyzf, Viyff, and Vf/yff estimate Nz, Vyz, Vi, f,
and ngf, respectively, with biases that are bounded on the order of O(0), i.e., there exist positive
constants Uy, Uy, Uyy, and Uy, such that

IVoz(2,y) " —E[Vez(z,y; ) T|Fe]l < Uab, (D.1)
IVyz(z,y)" —E[Vyz(z,y; ) TIF]ll < Uy, (D.2)
V2, (@, y,2) —E[VZ, f(2,y, 2 )| Fe] | < Uayb, (D.3)
V2, (@, y,2) —E[V, fz,y,2 )| Felll < Uyyb. (D.4)

Proof. For this proof, we will omit the point (z, y, z) that the terms are evaluated at; we will simply
use a £-superscript as short-hand to indicate any random terms. We can obtain the bound on the
biasedness of the estimator V,z(x,y; ) in equation equation by utilizing the consistency of
norms along with equation [A-3]and Assumption [3.4]to obtain

IVoz(z,y)" = E[Vez(z,y:8) "]l = V2 fs] V2 fs — E[[VZ£5] V2, f5
< |IVZ V2. £ = E[V2 £5171
S LVfSsze = UIH, (DS)

where the last inequality follows from applying Assumptions [3.1] and 3.6l The proof of biased-
ness for the estimator V,z(x, y; £) in equation equation can be established following identical
arguments.

Now, to prove the biasedness of the estimator Viy f (z,y, 2; £), referencing equations equation
and equation [A.3] utilizing Assumption [3.4} applying the triangle inequality along with the consis-
tency of matrix norms, we have

< IV FslIV=F2lNVE £ = EIVE A5 (D.6)
IV Sl V-l IVazT V2, fo] ! — E[VL2 T V2 £5] 7] (D.7)

F V2 LIV AV 5] Ve V2 f] T = B[V 5] VLSV (D.8)
V2, IV Lo V2, f3) T V2L fa Va2 T V2, fa] 7 — E[IV2, £5] 73, 59,2 T 192, 5171

(D.9)
+ Ve SslIV2LIIVE £ = EIIVZ £ (D.10)
+ V2, £ 1V2. 3] T V2, £2V02 T — E[IV2, f5]71 V2, £5V.22 T (D.11)

Notice that there are six difference terms here. Applying Assumption [3.1] and 3.6} we can bound
equations equation[D.6and equation [D.I0]in the following way:

IV -a sV Lol (V2. f31 70 = BIVE 517 < Loz g L, Wb, (D.12)
IV V2l 1VE. f3) 7 = EIVE.f5] 7 < Ly gLy g Wesb- (D.13)
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Now, looking at equation equation [D.7] applying Assumption [3.I] adding and subtracting
V.2 E[[VZ, f§ ]71], and applying the triangle inequality, we have
_ ¢ _
IV sl V2 fall Va2 T (V2 fs] ™ = ElVaz TV 5]
_ g _
< Lyzg, Lp||Vez T [V2f5) 7' — E[Vez TIE[VZ, 5]
< Ly2gy L Va2 " [V fs] 7 = Va2 "E[[VZ£5] 7
_ g _
+ Ly g, Ly, | Voz B[V, f5]7'] - E[Vez TIE[VZ, /5171
_ ¢
< Loz, L lIVaz IV S3] 7 = EIVZ 5] + Loz, L BV 2 51711 Vez T —E[VL2 1|
szLVf3

z

L
< vafthuLﬁwzza + L2, LybenUgl = Lg2g, Ly, ( + bzzUm> 9, (D.14)
z

where the second-to-last inequality follows from the consistency of norms, and the last inequality
follows from applying the derived bound equation|D.5] equation equation[E-14] and Assumptions3.3]
and

Now, looking at equation [D.T1] applying Assumptions [3.1] and [3.4] adding and subtracting the

term [V2, f3]71V2, f,E[V,z '], applying the triangle inequality, and using the consistency of ma-
trix norms, we have

V2, 51192, £5] 12, foVoz T — EI[V2, £5]71V2, 59,277
< Lyy, H[vzzfgrlvzfzw — V2] V2 REV, T
+ Lo V2 f3) 7' V2, fE[Vaz 7] — E[[V2, f5] 71V, RE[V,2 ]|
< Lo IV BT VR LIV —EVL2T)
+ Ly, IV2, R IEV. 2 TV, £ — E[IV2, £
Now, applying Assumptions[3.1} 3.2} and[3.6] along with the derived bound equation[D.3] we have

_ 3
IV2, 5 IIV2, f3) P V2 o Va2 —E[[V2, f5]7 V2, f5Va2 ]|
L Loy Uz U,
< %emmmbzmﬁwﬂe = Lys,Lvy, <M +bzsz3sz) 6, (D.15)
where the last inequality follows from ||E[V,z"T]|| = || — E[[V?2 517N V2, f3]| < b..Lyy, (from

Assumptions [3.1] 3.4} and[3.3)

Now, looking at equation @ applying Assumptions 3.1 and [3.4] adding and subtracting the term
V2, f3] 71V, f3E[[VZ2, f3]7 1], applying the triangle inequality, and using the consistency of ma-
trix norms, we have

V2, 5V folll[V 2 fs] Ve S5 V2 3] — B2 £5] 7V £5 V2 £51 71

< Lyp L V2 fs) 7 Ve, £ V2 fa] 71 = (V2 f3] 7 V2L RV 5171
+va3Lf2||[ F)7 VL FE(IVE, £ — EB(VE, £V ARV 517

< Ly Ly, |[V2 fs} 1||||Vsz3||||[ fa] 7t —E[[VZ ] I
+va3Lf2||Vsz3H||EH £ ]||||[ fa] ! E[[ 27N

1
< LVfgLf2;LV2f3sz9 + va3Lf2LV2f3bzzWZZ9 = vagszLV2f3WZZ (ﬂ + bzz) 0,
(D.16)

where the last inequality follows from applying Assumptions [3.1][3.2] [3.5] and 3.6

Now, looking at equation [D.9] applying Assumptions [3.1]and [3.4] adding and subtracting the term
(V2 f3]1V3_, fsV,2 E[[V2, f5]~1], applying the triangle inequality, and using the consistency

38



of matrix norms, we have

V2, £l V- flll V2. £3] 71 V2,L £3 Va2 T[V2, f3] 71 = B[V, £5]7 V2, £5 V.2 T (V2 £5] 71
< Lyg Ly, |[V2.fs] 1vzzzf3v 2T[v2 f3] — VL fs] 1VEzzf3v 2TE[[V? ] I
+va3Lf2||[ F3)7MVELL £3 Va2 E[VE £5]7Y - B[V £V zzzng[v 2 TIE[VZ, #5171
< Lyg, Ly [V zzfg] NIVE Sl Ve ZTHII[ 2 f7 - H 25710
+ Ly, L [IEIV2, 517 IIVE, 5] VE, £3 Va2 T — E[V2, £5] V2, fE[V,2 ]|

L%, Ly, L2y
< B R W0+ Ly gy b |[V2fa) VL Ve T — BV TV ARV T,
where the last inequality follows from applying Assumptions [3.1} 3.2} [3.5] and [3.6] along with
equation equation [E.14] Now, using nearly identical arguments to those that were used in deriving
the bound on equation [D.11] we have

_ 3 _
V2, 5V foll N[V 2 fs) T V2L f3 Va2 T V2, f3] T — B[V £S5V, f5 Ve T [V £517Y
L%, L, Ly> U,
< WWMG + Lys, Lpyb.. (vafs (u + bZZvagl/sz) 9)
z z
L U,
= vaSLfQLVZf:; < ZQJ% W..+0b.. </J =+ bzzLVf3 sz>> 0. D.17)

Finally, substituting the newly-derived upper-bounds equation [D.12}-equation [D.I7] in for the
terms equation [D.6}-equation [D.TT] we have the desired upper bound equation as

szLVfg

z

IV2,f —EIVZ,fll < L2, L, W..0 + L2y, Ly, ( + bzzUx) 0+ Ly, Ly, W..0

L U,
+ va:;Lf2Lv2f3 (/;hwzz + bzz (/J/ + bzzLVf;;sz)> 0

Us 1
+ Lvys,Lyvy, <M + bzzLVf3sz> 0+ Ly, L, Ly2 e, W, (M + bzz> 0
= U0,

where

W,.L
Upy = Ly2p, Ly, (sz 4 ..Uy + Ly s, Washe: + 2Vf3>

Mz
L U, Uy
(D.18)

The proof of the biasedness errors for the estimator Viy f(z,y, 2;€) in equation equation can
be established following nearly identical arguments. O

Lemma D.2 (Bounds on variance of V2 f) Under Assumptions n n and . the variances of
the stochastic matrices V2 f§ and V2 fE are bounded, i.e., there exist positive constants V., and

Vyy such that
[HV fz,y,2€) — [Viyf(%ya2§§)‘f£]||2|f£] < Vay,
E(IVy, f(x,y,2€) —E[Vy, f(2,y, 2 OIF*|Fe] < Vi

Proof. For this proof, we will omit the point (x,y, z) that the terms are evaluated at; we will
simply use a £-superscript as short-hand to indicate ani random terms. We can obtain the bound on

the variance of V2, f¢ by first referencing equation |A.1|and applying the fact that || ZZ\LI a;||? <
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N vazl llai||? (for some a € RY) to the two initial difference terms as well as all of the resulting
terms (leading to a total of 12 terms), Assumption@ and the consistency of matrix norms, to obtain

E[|V3, ¢ —E[VZ, /%)
< 12E(|VE_, SSIPIEIIVE £ IPIEIV- 517 + 12V, S IEIVZ, £ IV - fal?
+ 12E(| V5. /5 IPIBII V.2 T IPIELN V2, 5] PRIV - £511°)
+ 12|V fslPIB[V. 2 TPV E, £5] IRV = foll?
+ 12E(| V5 £5 IPIEIIVZ, £5) TRV .. £5 I PBIIIVZ, £5] IPIBI V- £5 1]
+ 12|V, f3||E[[VZ ] NPVEe £ IPIEIV 2. 5] 1PNV - o1
+ 12E[||V, f5|*]E [||[ SSTTHPIRNIVE L S5 IPIEN V22T PR V2, £51 PRIV - £511°]
+ 12|V, flPIEIVZ £5] PN Ve PV 2 PRIV, 51 1PV 2 fol P
+ 12E(|| V5. /5 I]E [||[ S TPIENVE SR + 120V, IR IEIVE. £ 1P 1V 2, fo
+ 12E[|| V2, f5 PRIV, 51 PRIV, £5 IPTE(I V.25 )1%)
+ 12|V Sl PIE[VZ 5] P IV 2 ol PIEV .25 T
Now, using the result that [|E[V,z¢T][|2 < |E[[V2, f5]~Y|12IV2, f32 < b2, L L%, (from Assump-

t10ns n g and. 3.5|along with the consistency of matrix norms), the result that E[[|V,2¢7||?] <
HI2IE[|| V2, £3€]17) < V2E[| V2, f3€]?] (from Assumptlonsandalong with the

— zz

con51stency of matrix norms), and applying Assumptions[3.1and [3.5] we have
E[|VZ,f* —EVi, o7
< 12E[| V5., fSIPILEII V2 f511°] + 12032 5,02, L7, + 12E[|| V5. f3 P12, Bl V2, S5 P12, EI V. f511%)
+ 12052, b2, L3, b2, L5, + 12E(| V5. S5 1702, E( V2., 517102 EI V- /5 )
+ 1205 4,02, L2, b2, L7, + 12E(||V5 £5 P2 E(I V2. £5 P02 E( V2, f5 IP102. B V- £5 1]
+ 12LVf3b2 Lv?beQ LVf3b2zL22 + 12E[||Vyzf3|| b2 E[VZ, f511%] + 12LVf3b2 Lsz
+ 12E(|[ V5, fE P02 BV, f5 P02 BV 20 f5 17 + 1203 1,03, L%, 1,02, L3 1,

Finally, with all of the remalnlng expectation terms, We can apply the definition of variance (i.e.,
E[X?] = Var[X] + E[X]?) followed by Assumption [3.4| to upper-bound the variance term along
with Assumptions Eand 3.4{to upper-bound the E[X term These bounds are given as:

(V50 [P < 0%ap, + Liap,, BV f5l7] < 0%y, + L3y,
B[V f51°] < 0%y, + Liay,, ElIVELSSIP] < 0%ap, + Liay,,
E(|V2F511P] < 0%y + L3y, ElV5.f517] < o%ap, + Liy,,
E(IVLAI7] < 0%y, + L3y, ElVaf517] <ody, + L5,
Applying these bounds, we will obtain
E[||V3, ¢ —E[VZ, 7%
<12(0%s s, + L2y, )02, (0%, + LE,) + 120325, b2, L3,
+12(0%sp, + L3z, )02, (092, + Lo, V2. (0%, + L7,)
+ 1203202, L3 02, L3, +12(032 4, + va3)b2 (0%, + L3y, V2. (0%, + L7,)
+ 12031, b2, L2 4,02 L5, +12(0%2p, + L3 1, )02, (0% p, + L2y, )07, (092, + LYy )02, (0%, + LF,)
+ 12va3b§zL 2L 02 L5, + 12(0v2 + L3 )02, (0%2p, + L3p,) + 1203 1,02, LT,
+12(02y, + ng)bgz(avzﬁ3 + LVfg)bf«z(Ung +LYy,) + 12L2Vf3bgzL2Vf2b§zLVf3
=" (D.19)
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This completes the proof for the variance bound on V2, f¢.

The proof of the variance bound on ng f¢ follows nearly identical arguments. ]

Lemma D.3 (Bounds on bias and variance of UL direction) Recalling the deﬁnmon of g in

equation equation|2.5| define g. = E[g% |F;]. Then, under Assumpnons 3.1 5 and
f1 f1

there exist positive constants w and T such that
IVf(a,y™™ 2 — gy, || < wbi and  E[l|g}, — g}, PR < T

Proof. For this proof, we will omit the point (z,y""!, 2**1) that the terms are evaluated at; we

will simply use a '-superscript as short-hand to indicate any random terms. Similarly, we will

use the notation (-)¢' to denote that every term in the parenthesis is a random variable. To prove
the upper-bound on the biasedness of g% , we can begin by referring to equation 2.2 and applying
Assumptlon@ yielding

— E[gh ] = E[Vf(a', ', 21 60)]
= vwfl - V:vzf?)E[[szfgl]_l]vzfl - E[viyffb]EHvzyfgL}_l]vyfl
+E[V2, FEIE(V2, V2 AE(VE £S5 V. fi.

Now, to derive a bound on the biasedness ||V f (2, 3", 2F1) — g} ||, we can begin by utilizing the
triangle inequality, the consistency of matrix norms, and Assumption [3.1]and[3.6] yielding

IV £ (2, g 2 — gt ||
< Lusy L Waob; + Ly, |EIV2, FEIE[V2, FE17Y = V2, FIV2, /17
7"
+ L [V2, TV, 117 V2, f5[V2, f3) 7t — B[V2, fE B[V, FE 1 V2, HEIVZ, £ 170,

"

(D.20)

(Analysis of Tl(l)): Now, to upper-bound Tl(l) in equation , we begin by adding and subtract-
ing the term Vi‘;y f E[[Vf,y f¢']71], applying the triangle inequality, and utilizing the consistency of
matrix norms to obtain

Ly, TV < Ly, |E[[V2, FETYINENVZ, 7€ — V2, 7l + Ly IV2, FINEVZ, 7Y — (92, 7174l
< (byyUsy + TuyWyy) Ly, b5, (D.21)

where the last inequality follows by applying Assumptions 3.1} [3.3] and@ along with Lemma|[D.1]
and where ||V2 fll < T4y, which follows from the following reasoning (applying the triangle in-
equality, the con51stency of matrix norms, along with Assumptions [3.T]and [3.2] and equation equa-

tion [E-T4):

V2, fll

< ||Vg2/zf2|| + ||v f2v ZTH + ||Vyzxf3v f3 lv f2H + ||vyzzf3V ZTvizf?jlefQH
+ HV?/ZfS[VEZfS} lvgsz?)[ zzf?)] 1v2f2|| + ||vyz 3[ zzf3] 1v2zzf3vwz—r[vzzf3]_lvzf2H
FIVfVE )T Vel + IV V2 3] V2 Va2 Tl

Lyay. L 2L L2
< (sz + Wffz) (1 T %f?’ + Zf) = Ty (D.22)

(Analysis of T2(1)): Now, to upper-bound Tg(l_) in equation . we begin by adding and subtract-
ing the term V2, f[V2, f]='V2_f3E[[V2, f5 ']-1], applying the triangle inequality, along with the
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consistency of matrix norms to obtain

LT3 < L Vo, ANV, A VG Sl V2. £l — B2 A1)
+ Ly V3 SIIENVE £5 1 VE, V5, 170 = EIVE, BNV, ST
Ty W.
< Ly Lyy, (”L + b, (byyUsy + Twywyy)) 0;, (D.23)
v
where the last inequality follows from applying Assumptions [3.1] [3.3] [3.5] and [3.6] the bound

V2, fll < T, we derived in equation , and the bound we derived on the term Tl(l) in equa-

tion m

Finally, substituting the bounds equation and equation on the terms Tl(l) and Tg(l), re-
spectively, back into equation[D.20} we obtain the desired bound on the biasedness as
IV y™™ =) — gy |l

TCL‘ WZZ
<L (Lstwzz +byyUsy + ToyWyy + Ly, (y

Y

+ bzz (byyUzy + TmyWyy)>> 01 = w@i.
(D.24)

Now, to bound the variance of g}}l, we can begin by using the fact that |la + b + ¢ + d||? <
4 (|lall® + [|b]]® + [I¢]|* + ||d]|?), with a, b, ¢, and d real-valued vectors, to obtain (it bears men-

tioning that for ease of notation, we will use ()f to denote that all terms in the parenthesis are
random variables)

Ellg}, — g% 11*) = Ellg}, — Elg5, 1F:]I1%]

< ARV, f§ — B[V, fE )2 + 4BV, £V o) V1) ] — (V2 92 £ Vo 1) |1

T ¥
+AR[E[(V2, FIV2, £, 1) ] = (V2, FIV2, F1719, 1) |2
T
AR (92, FIV2, F]71V2, £V, 571V £1) S — E[(V2, FIV2, 71712, £V, 5719 £1) S 112
T

(D.25)

(Analysis of T1(2)): Notice that the term T1(2) in equation Can be bounded by Assumption

B[V, 5 —E[V.ff 1|3 < do%, = (D.26)

Analysis of 1 (2) : Now dealing with the contents of the term 7 (2), we can apply Assumption [3.4
2 g 2 pply p
and re-factorize to obtain

E[(Vizf:s[Vizfg]_lvzﬁ)g] - (Vizf:),[vﬁzfs]_lvzﬁ)gi
= V2 B[V LS VLS - V2SS (V2L S
= (V2. f5 — V2SIV £ 17V

+ V2 fS BV LS~ V205 1) VLf
+ V2 VTNV - VL.

By using this, the fact that [|a + b + c||* < 3 (||al|* + [|b]|* + ||¢||?), with a, b, and ¢ real-valued
vectors, along with the consistency of matrix norms, and Assumptions [3.1] [3.5] and[3.4] we can see

42



that the term T2(2) is upper-bounded by
AE[[E[(V2, f5[V2, fa] Vo) ] = (V2 V2 fa) VL 1) )12
<120%., b2, L3, + 12E[| V2, f5 |IPIE[E[VZ£5 171 — V285 171 IPL3,
+ 12E[||V2 f5 22,02, D.27)

Consider the term E[||V§,Zf§ ||?] in equation [D.27} Using the definition of variance (i.e., E[X?] =
Var[X] + E[X]?) along with Assumptions [3.4and|[3.1} we have

E(IV2. /5 17 =E(IVE. /5 —EIVLSS P+ EIENV: A5 1P < 0ep, + L3y, (D28)

Consider the term E[|| [szfgi]_l - ]E[[Vﬁzfgi]_l] ||?] in equation Using the fact that ||a +
bl|> <2 (|lal|* + [|6]|?), with a and b real-valued vectors, and applying Assumption we have

El[V2, £ 171 — E[V2, £5 171017 < 2E[|[V2, ££1712) + 2B [ E[VZ, £5 171117 < 4%.29)

Now substituting the bounds equation [D.28] and equation [D.29] back into equation [D.27] we obtain
the bound on the term T2(2) as

AR[|E[(V2, £5[V2. f5] 7V 1) ] — (V2 AIV2 AV 0) 112
<1202 4,02, L5, +48(0%2p, + LY, )07, L3, + 12(0%2 4, + L3 f, )b2.0%5, = T2 (D.30)

nalysis o : 1ng similar reasoning that was used 1n bounding the term , along wit
Analysis of T.*)): Applying simil ing th d in bounding th T$, along with
utilizing Lemma[D.2]and Assumptions 3.1} 3.3] and[3.4] we have

AR[||E[(V2, FIV2, 71V, 1) ] = (V2,FIV2, A1V, 7))
< 12V, b2, L3 + 12E[|V2, ¢ | 2IE(|E[V2, fE 1Y — [V2, F€ 1128,

Y yy
+ 12E[||V2, £ P2, 0% 4, - (D.31)

Consider the term E[||[V§yf5i]_1 — E[[V2, f¢']7]||?] in equation Applying the same rea-
soning that was used to derive equation we have

E[|[V2, /€] —E[V2, 717117 < 48, (D.32)

Consider the term E[[[V2, F€'|2] in equation Using the definition of variance (i.e., E[X?] =
Var[X] + E[X]?) and applying Lemma we have

E[IV2, /S I°] < Viy + BV, F1°. (D.33)
Now, consider the ||E[V%y ffl]||2 term in equation Noticing that E[szgiT] =

E[[V2, f§i]—1]vgw f3 (from Assumption , we can apply the triangle inequality along with the
consistency of matrix norms and Assumptions 3.1} [3.4] and 3.3]to obtain

IEIVZ, fl < Ly, +b22(LY g, + Ly Lyayg, (1+ 2b.. Loy, +b2,L% 1) + Log, Log, (1 + ba2Lyvy,))
=" (D.34)
Finally, squaring both sides of this inequality, we have
2 FEh2 )
B[V, fo 117 < Ty, (D.35)

Thus, substituting equationd@ back into equation , we have E[| V2, I < Vi + Tgy
Finally, substituting this and bound equation [D.32] back info equation we obtain the bound on

the term T?EQ) as

_ - §z _ - El
AE([B[(VZ, FIVy 17 V1) 1= (Va, FIV, 17 V1) 1]
<12V bl LG, +48(Vey + 17 b2, L3, + 12(Vay + T5)b2 0%, = Ts. (D.36)

Y yy
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(Analysis of Tf) ): Now, dealing with the contents of the norm in term Tf), we can apply Assump-
tion 3.4] and re-factorize to obtain

(V2, TIV2, 1172, f5[V2, o7V 1) —_E[(V§y_f[vzyf]flvzzfg[v;fs]-lvzfl)si]
= (V2,78 —EIV2, DIV, V2 i Ve S VL pE
+E[V2, F) (V2 FE T V21 (V205 1 — BV, FE T V2L ARV £ ) Vo fe

7

+E[V2, OBV, [V LRIV S TV = Vaf). (D.37)
We can further re-factorize the term Tf) in equation to obtain
T = (W3, FE 1 BV, FE T DV (VA 1 + IV, VS5 = Vi fs) Ve f5

+ B[V, IV (VLT - EIVLET) (D.38)

Substituting equationfor T4(2) in equation we have

(viyf_[vgyf]ilvf/zf:i [V§Zf3]71vzfl)€l - E[(Viyf_[vzyf]ilvzzfia [v§zf3]71vzfl)£l]

= (V2,8 —EIV2, FE DIV, ) Vo b5 (VLA VL

+E[V2, (V2,781 —EIV2, FE T V2SS (V255 VL

+EIV2, FEIE[VE, FE) TNV LS — V2 )V VLS

+EIV2, FEIE[VE, FE Ve, (VLSS 1 - VA LS VLS

+E[V2, IRV, FE ) VEL ARV £ 1 (VLfE = VL f). (D.39)

Finally, substituting equation back into the norm for T4(2) in equation and using the fact
that [|a+b+c+d+el> <5 ([lal|* + [[b]|2 + [lc[|* + [|d]|* + [|e]|?), with a, b, ¢, d, and e real-valued
vectors, along with the consistency of matrix norms, and applying Assumptions [3.1} [3.4] [3.5] along
with Lemma [D.2]and bounds equation [D.29] equation[D.32] and equation[D.33] to obtain

T2 < 200202, Vi BIIV2, £5 1IPIEN V. ££ 2] + 8002, 72,02, B[ V2, £5 1P|V, 5 |1%]

Yy zz zZzTxY Yy
+ QObeU%QfdbngﬁyE[”vsz ||2] + 8Obg2;yL2Vf3bgz,‘f;z?yE[||vzfl)E H2] + 20bg2;yL2Vf3b§zO-2Vf1Tx2y'
(D.40)

Consider the terms E[||V§zf§7 %] and E[||szf7 %] in equation Applying nearly identical
reasoning that was used to derive equation|[D.28] we have

E[IV.ff 7] < 0% + L3, (D.42)

E(IVZ.f5 7] < 0%ap, + Ly, (D.41)

Now substituting the bounds equation [D.41] and equation [D.42] back into equation [D.40 we obtain
the bound on the term T4(2) as

i

AR[[(V2, FIV2, FI7V2, f5[V2, £ IV )¢ — BI(V2, FIV2, )7 V2, f5[V2, )7V )¢ )
<2002, b2, Vay (0524, + L3 p, ) (0%, + L7,) + 8002, 75,02 (094, + L3y, ) (0%, + L)

zzxy Yy
+ 2007, 0%, b2 T2, (0%, + L7,) + 8062 L3, T2 b2 (0%, + LF,) + 2002, L3, b2 0%, T2,
=7y (D.43)

The proof is completed by substituting the derived bounds for Tf2), T2(2), T?EQ), and Tf)
(bounds equation equation equation [D.36] and equation [D.43] respectively) back
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into equation [D:23] yielding the desired variance bound (including the omitted o-algebra F; that
the expectation is conditioned on):

E[||§}1 —§}1||2|_7:Z—] < 7, where 7 := 7 +7+ 73+ 74 (D.44)
O

Lemma D.4 (Boundedness of UL direction) Under Assumptions and|[3.6] there
exists a positive constant ( such that

~1 2
Elllgy, IP17:] < ¢
Proof. For this proof, we may omit the point (2%, y**!, z*!) that the terms are evaluated at; we

will simply use a £*-superscript as short-hand to indicate any random terms. From the definition of
variance along with using Lemma[D.3] we have

Elllgy, I717:] = gy, II* + Ellgy, — g5 171F] < llgg, I* + . (D45)

Now, considering the || g% %, || term in equation | we can apply the triangle inequality, Assump-
tion[3.4] along with the consistency of matrix norms, to obtain

lgh, | < IV fall + 92 HEIV £5 1 FIV- A+ [EIV2, £ IRV, P FIV, Al
+ [B[V2, F€ | FIE[V2, [ RV, BEVE £ 7RIV f1||
SLf1+LVf3Lf1H1E[[ 1A + Ly BV nylIF]IIIIE[[ FEE]

+ Ly, Ly, |E[V ]||||E[[ 2 T HFEINEVE, £ E1YFEN
< Lfl + LstLfleZ + LfleI?ybyy + LstLflTEybybeZ’

where the second inequality follows from applying Assumption [3.1] and the last inequality follows
from applying Assumption [3.5]along with the derived bound equation [D.34|from Lemma[D.3} Fur-
ther, squaring both sides, we have the bound ||g% [|> < (Lf, + Ly gLy boz + Ly Tuyby, +

Ly, Ly, szbyy b..)?. Substituting this back into equation|D.45} we obtain the bound

EH|§}1H2|-E] < (¢, where (¢ := (Lfl +LstLf1bzz+Lf1szbyy"‘LstLflTxybyybzz)Q‘H'
(D.46)
O

Lemma D.5 (Bounds on bias and variance of ML direction) Recalling the definition of g g :

equation equatton define gZ J = = E[g] b | Fij]. Then, under Assumptlonsm H ﬁ and

there exist positive constants w and T such that
Y . 3
IV, f(a,y™d, 29 — g || < @8, and  E[|§} — gyl P Fiy) <
Proof. For this proof, we may omit the point (2%, 3%/, 2/+1) that the terms are evaluated at; we will

simply use a £%J-superscript as short-hand to indicate any random terms. From Assumption we
have

IVyf = g1l = IV, fa— V2 fs[ V2 3] IV fo = (Vy fo = V2 SEV2 1S TV fo)|
— |IV2, f3(E[[VZ, /S ] Y] = V2 5OV foll
S vade2H]E[[ zsz ] 1|]:,j] [vng3]71”7

where the inequality follows from Assumption [3.1] along with the consistency of matrix norms.
Utilizing Assumption 3.6} we obtain the desired first result of

gy — V,f < @6;, where @ := Lys,Ly,W... (D.47)
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Now, to estimate the variance of gj;j , we can apply Assumption [3.4|and the fact that ||a + b[|? <
2||al|? + 2|b||?, with @ and b real-valued vectors, yielding

Ellg% — g% 111 F) = Bl — Elgy |7 11217,
i, g i,J g i,J
=E[||Vyf5 " = Vyfo+ VL EEVZ 5 1 NF Ve fo — V25 V21V 1P1F L

<20, + 2E[||V2, BE[VZ £S5 THF IV o — V2 IV SIS P FL),
(D.48)

Now, dealing with the contents of the norm in the right-most term of equation [D.48] we have

VoIV IS ) F IV ete = Vo f5 VLS TV

= (V55 = Vi f§ DEIVE LS 1T FIVate + VoS5 EIVELS 1 FS] = [V2T1T)VaL
VL5 VRS TV = V).

Using this, the fact that |a+b+c||* < 3 (||a]|* + [[b]|* + [|c[[*), with a, b, and ¢ real-valued vectors,
along with the consistency of matrix norms, and applying Assumptions [3.1] [3.3] [3.4] and 3.6 we
can see that the norm term in equation [D.48]can be bounded as

E(|V2, E(VZ S HF I Vafe — V2 fs T V2 fs 17Va s 121 Fi)
< 308, b2, L%, + BE[|VE 5 12 Fi WROILE, + 3EV2. 5 IPIFSIENIVE £5 1 1 Flod
< 302V2fgb§zL22 + 3(02V2f3 + L2Vf3)W222012L22 + 3(J2V2f3 + L2Vf3)(W222912 + bgz)a%fg’

where the last inequality follows from using E[||V§Zf§7||2|]-'”} = Var[szf?fiq}},j]
+ \\E[Vizfgﬂ\fiyj]ﬂz < 032y, + LYy, (by the definition of variance along with As-

sumptions [3.1] and [.4) and by using EIIV2 A1 IPIF] = Va2 ) E]
IE[[V2, £5 17 Fi ]2 < W2.62 4 b2, (by the definition of variance along with Assumptions

and [3.6). Plugging this expression back into equation and using the fact that 0 < 67 < 1, we
obtain the desired result

Ellgy — g7 1171 Fi 5]
< 2‘72sz + 602V2f3b32L22 + 6(02v2f3 + L:)st)WzQzLQQ + 6(02v2f3 + L2Vf3)(szz + bgz)(’%fz

= 7. (D.49)
O

Lemma D.6 (Boundedness of ML direction) Under Assumptions[3.1) 3.2 and 3.6} there

exists the positive constant (' such that

2 <.

Ellgy/I?1Fisl < T and |lgy]

P2y

Proof. From the definition of variance, we have E[[|g}/ | 2| F ] = ||§}2] 1>+ E[Hg}j - g};

1173 ]-
Now, adding and subtracting V,, f (2%, y*7, 25:9+1) to the first term, followed by utilizing the fact
that ||a + b||> < 2[|a]|? + 2||b||?, with a and b real-valued vectors, along with Lemma|D.5] we have

Elllgy] 11Fi) < 203 = Vol (@57, 29 1P 4 20|V, f(2, 4™, 22+ 7. (D.50)
Referencing equation and equation the |V, f(z?,y"7, 259+ 1)| term can be bounded by

applying the triangle inequality, the consistency of matrix norms, and Assumptions [3.1] and [3.2]
yielding

z z

o Ly, L o LypLp\’
|‘vyf(x’t7yl,j,zl,j+l)|‘ < Lf2 + Vst f2 — ||Vyf($z,yz’j,zz’]+l)||2 < (sz + Vs fz) )
125 125
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Substituting this back into equation , utilizing Lemma and letting W := Ly, + %,
yields
E[|gy7 1%\ Fi ] = 20%07 + §,  where ¢ :=2W? + 7. (D.51)

Finally, using the fact that 0 < 62 < 1, it follows that

B[l 1P\ 7] < T, where T := 207 46, (052

The second result follows from the definition of variance and applying bound equation [D.52] yield-
ing

Y1 = EllggI®

gy |Figl —Elllgy — g I71Fig] < Ellgg 1?1F) < T

E LIPSCHITZ CONTINUITY PROPERTIES

This appendix contains all of the statements of derived Lipschitz continuity properties of the func-
tions, gradients, Hessians, and Jacobians involved in the trilevel adjoint gradient equation [2.2] All
of their corresponding proofs are provided in Appendix B.5 of the PhD thesis Kent (2025) .

Proposition E.1 Under Assumptions there exist positive constants L, L, ,and L, , such
that the following Lipschitz continuity properties hold:

[2(z1) — z(22)|| < Laflz1 — 22, (E.1)

H (mla yl - Z(LUQ, 92) H S szy || (xla yl) - (I‘Qa y2) ||7 (Ez)

[2(z,y1) = z(2, 92)| < Lz, llyr — v2l|- (E3)

Proposition E.2 Under Assumptions W there exist positive constants Ly, L., Ly, L By L o
L2 7 L2 7 Lp, prz, and L, such that the following Lipschitz properties hold:
yx yy

||y($1)— y(@2)|| < Lyllzr — 22, (E4)

||VZ($1) Vz(za)| < Lv:llz1 — 22|, (E.5)

IVyf(z1) = Vyf(x2)| < Lpllz1 — 22|, (E.6)

IVy f(z,91) — yf(JU v2)ll < Lg,llyr — v2ll, (E.7)
IVyf(z,y,21) = Vyf (2,9, 22) | < Lg [l21 — 22, (E.8)
Ve f (@1, y(@1)) = Viaf(@a,y(z2))| < Loz flla — 2], (E.9)
IV, f @1, y(21)) = Vi, flz2,y(z))ll < Lgs fllor — o, (E.10)
IVf(z1) = Vf(z2)| < Lpllzr — 22|, (E.11)
IVf(z,y1,21) = V(x,y2,22) | < Lr,.[[(y1,21) = (y2, 22)], (E.12)
[Vy(z1) = Vy(z2)l| < Lvyllzy — 22 (E.13)

A useful intermediary result of Proposition[E.I]is the following:

Loy Loy
IVez(z,y(@)] < L and |Vyz(z, y(2)| < VL&, (E.14)

Kz Hz
where i, is the constant of the strong convexity of f5 (Assumption[3.2).

F NUMERICAL EXPERIMENTAL SETUP

F.1 COMPUTING THE TSG ADJOINT GRADIENT INEXACTLY

Let us rewrite the adjoint gradient equation[2.2]in « as follows:

Vf = a— AB™ b, (E.1)
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where a = Vofi — V2, fsV2.f5'V.fi, A = V2, f. B = V2, f,and b = V,fi —
Viz [3V2, fy 1V, f1. Note that this is the same structure arising in the adjoint gradient of a BLO
problem. Two approaches have been proposed in the BLO literature to deal with B~!. One op-
tion is to compute the adjoint gradient by first solving the linear system given by the adjoint equa-
tion B A = b for the adjoint variables A, and then calculating a — A \. The second option is to
truncate the Neumann series given by B~! = ZZO:()(I — B)", which requires the assumption
of ||B|l2 < 1 to guarantee the convergence of the series. Note that the same two approaches can be
used to deal with V2_f; Lin @ and b in equation as well as in the expression for V, f. given
in equatio below. The expression for the adjoint gradient V,, f follows from equation in
Appendix [A] together with equation [A.4}

Vyf(@,y) =Vyfa— Vo, fsV2,f5'V.fa, (F2)

where all gradients and Hessians on the right-hand side are evaluated at (x, y, z(z,y)).

F.2 TSG-N-FD

Our first proposed method, TSG-N-FD, solves the adjoint systems in equation [2.2] and equation [F2]
by using an iterative method where each Hessian-vector product is approximated with an FD scheme.
In particular, let us rewrite equation and equation [F.2] by highlighting the adjoint systems as
follows:

Vi= (Voh = Ve s Ve f5 'V ) = Vo, f Vo, [ (Vi = V3. s V[V ),

N———’
s . (E.3)
>\y
Vyf =Vyfo= Vi fs Vi fi'Vafa. (F4)
5/_/
Az

Specifically, the adjoint systems in equation are V2_fs\, = V.f; and ng Ay = Vyfi —
V2, f3Az. The adjoint system in equationis V2, f3\, = V. fo.

First, we focus on equation In TSG-N-FD, the adjoint system V2, f3\, = V., fi is solved
for the adjoint variables )\, by using the linear CG method, with V2_f3\, being approximated as
follows:

vzf?)(xi) yi7j7 zlj7k7 §i7j7k) - vzf3(mia Zli’j7 Zﬁ%ka gi,j,k)
2¢ '
(E.5)

where zij’k = %7k £e)\,, with € > 0. Then, the adjoint equation ngf_)\y =Vyfi — V?szB)\z
is solved for the adjoint variables A, by using the linear CG method again, with sz f3A. being
approximated via an FD scheme similar to equation and Viy f Ay being approximated as follows:

vng?) (xi7 yiﬁja Zi’j,k; gi’j,k))‘z ~

Vo f(ah, gy, 20 e0) — ¥ faf yt, 20Tt ghd)

Vo, [ty 2N, & 5 , (F.6)
where i/ = y"J + e\, with e > 0. Then, the adjoint gradient is calculated from
Vi~ (Vafi = Vi fsh:) = Vi, Ay, (E7)

where V2_f3 A\, and Vf:y f Ay are approximated via FD schemes similar to equation and equa-
tion[FL6] respectively.

Let us now focus on equation The adjoint system V2_ f3\. = V. f is solved for the adjoint
variables )\, by using the linear CG method, with V2, f3)\, being approximated as in equation
Then, the adjoint gradient is calculated from

Vyf = Vyfa= V. fs)., (E8)

where Vf/z f3 . is approximated via an FD scheme similar to equation
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The schema of BSG-N-FD is included in Algorithm[] The “N” in the algorithm name refers to the
Newton-type system defined by the adjoint equation, while the “FD” refers to the finite-difference
approximations we use. We set the FD parameter value to € = 0.1.

Algorithm 4 TSG-N-FD
TSG-N-FD is obtained from Algorithm 3] with the following modifications:

In Step 1, replace Step 2 of Algorithm 2 with the following:
Step 2. Compute an approximation gj;j , using equation

In Step 3, replace the content with the following:
Step 3. Compute an approximation g%, , using equation

F.3 TSG-AD

Our second proposed method, TSG-AD, is based on the truncated Neumann series approach.
We will illustrate such an approach by applym% it to the two terms from the adjoint gradi-
ent equation that require it, i.e., V2, f3V2, V.f1 and V2 fvzyf’lb, where b = V, f1 —
Vf,zfgvngg sz1- A similar approach can be applied to handle the term Vizf:;VEzf;lvzfQ
in equation [F.2]

Let us start with V2, f3V2_ f5 'V f; from equation Approximating V2, f; ' using a Neumann
series (i.e., B~! = Y32 (I — B)", where B plays the role of V2, f3) requires || V2, f3]]2 < 1,
which is a strong assumption in practice. However, recall that f3 is thrice continuously differ-
entiable and V f3 is Lipschitz continuous in z with some constant Cy > 0 by Assumption [3.1}
implying that |V2, f3]| < Co (Beck, 2017, Theorem 5.12). Therefore, following a common ap-
proach in the BLO literature Ji et al.| (2020), we apply the truncated Neumann series to approxi-

mate [(1/Co)V?2, f3]!

Given an accuracy level Q > 0, we can write the truncated Neumann series as B~! ~ Z,?:O (I
B)h Z 0 Hz _ny1(I — B), where we define H?:Q +1(+) = I for simplicity. Therefore, we
can approximate sz f3 1V f1 as follows

VIV = (1/Co) Z H — (1/Co) V2, fs(a',y™ 250k, € 70)) | V£,
h=0(=Q—h+1
(F.9)
with &7 ok representing the /-th sample (or batch of samples) from the sequence of random vari-
ables {¢%7%}. The expression on the right-hand side of equation can be efficiently computed
using the AD procedure detailed in Algorithm[5] Then, given v, returned by Algorithm [5] we can
compute the desired term as follows

——(Vefa(a®,y™, 2R €00 Ty, (F.10)

2 o2 g1 ~
vxzf3vzzf3 szl dx

where differentiation with respect to x is performed using AD (note that V, f5 is a function of z
and v, is fixed).
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Algorithm 5 Automatic differentiation procedure to compute V2, f5° v

Input: (2%, y"7, 255:F).
For/=1,2,...,Q do N
Go(z00R) = 2008 — (1/Co)V. fa(a',ytd, 2K, 7).
Setro = V. fi(at,yd, 27k €0),
Forh=0,1,...,Q —1do
Caleulate 7,41 = L (Gpp1(z99%)Try,) = (I — (1/Co)V2, f3(x?,y"7, 209k €00 ) ) ry,
where differentiation with respect to z is performed using AD (note that Gp41is a functlon of z

and ry, is fixed).
End

Output: v, = (1/Cy) Zg=0 Th-

Let us now focus on V2, fV2 f~'b from equation Recall that f5 is twice continuously differ-

entiable and V,, f is Lipschitz continuous in 3 with some constant C; > 0 as a consequence of equa-

tion in Proposition of Appendix |E} (such a proposition implies that C is equal to Lz , but

we prefer to use C'; for generality). Similar to equation we apply the truncated Neumann series
to [(1/Cy)V2, f]~*, which allows us to approximate V2, f~1b as follows:

Vi [ = (1/Ch) Z H — (1/C)V2, f(at g7, 2 b)) | b, RID)

h=0=Q— h+1

where &, represents the ¢-th sample (or batch of samples) from the sequence of random vari-
ables {£%7}. The expression on the right-hand side of equation can be efficiently computed
using the AD procedure detailed in Algorithm[6] Then, given v, returned by Algorithm 6] we can
compute the desired term as follows

£ rF— d O A N | ,J
Vi [V b = (Vo f(a, g™ 278 Doy, (F.12)

where differentiation with respect to x is performed using AD (note that V, f is a function of
and v, is fixed).

Algorithm 6 Automatic differentiation procedure to compute vf/y b

Input: (z°,y%7, 257 +1).
For/=1,2,...,Q do _ .
Goly™1) = ybi — (1/C1)V, fal, ytd, 200+ i),
End
Setrg = b.
For h=0,1,...,Q —1do )
Calculate 41 = d%(GhH(yz,J)Trh) = (I - (1/01)V§yf(m Y, Z”Hafhﬂ))rh,
where differentiation with respect to y is performed using AD (note that G,y is a function of y

and 7y, is fixed).
End

Output: v, = (1/C4) Zgzo The

The schema of TSG-AD is included in Algorithm 7]
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Algorithm 7 TSG-AD
TSG-AD is obtained from Algorithm [3| with the following modifications:

In Step 1, replace Step 2 of Algorithmwjth the following:
Step 2. Compute an approximation g by applying to V2 f3Vi.fs 'V, f» the same
approach that was used to compute V2, f3V2_ fo° 1¥. f1 in equation

In Step 3, replace the content with the following:
Step 3. Compute an approximation g’ , using equation and equation m

F.4 SYNTHETIC TRILEVEL PROBLEMS

Given h, € R", h, € R™, and h, € R, the UL and ML objective functions for both the quadratic
and quartic synthetic trilevel problems considered in the experiments are respectively given by

file,y,z) = hyw+hyy+hlz+052" Hygw + 2" Hyyy + 2" Hy 2, (E.13)
fo(,y,2) = 0.5y Hyyy —y' Hypx —y ' Hy.z, (F.14)

where H,, € R"*" and H,, € R™*"™ are symmetric positive definite matrices, and H,, € R"*™,

H,, € R™*, H,, =H Jy and H,, € R™*t are arbitrary matrices. The LL objective functions of
the two problems are respectively defined as follows

fa(z,y,2) = 0.5 2"H,,z — 2 Hypx — zTHZyy7 (F.15)
fa(@,y,2) = 0.5|2"Hooz — 2" Hop — 2T Heoyy?, (F.16)

where H.. € R"™" is a symmetric positive definite matrix, and H., = H,[, and H., = H,, are
arbitrary matrices.

In all the numerical experiments, we considered the same dimension at all levels (i.e.,n =m =t =
50) for the quadratic problem, and varying dimensions (i.e., » = m = 5 and ¢ = 1) for the quartic
problem. In equation @, the components of the vectors h, hy, and h, were randomly generated
from a uniform distribution between 0 and 10 for the quadratic problem, and between 0 and 0.1 for
the quartic problem. We set all matrices in equation [F.13}-equation equal to identity matrices,
except for H,, in equation[F-T4] which was set to four times the identity matrix.

When using equation our choices for the matrices in equation [F.13}-equation ensure
that f3, f, and f have unique solutionsm When using equation [F.16] the resulting LL problem has

two optimal solutions: z(z,y) = 0 and z(x,y) = H.,x+ H_,y. Our choice for the initial points z°,
y0, and 299V ensures that the methods considered in the experiments converge to the LL optimal
solution z(z,y) = H.,x + H,,y. Specifically, the components of the initial points were randomly
generated from a uniform distribution over the interval [0, 20] when using equation [F.15] and over
the intervals [-0.4, 0], [-0.2, 0], and [-0.6, O] (for the UL, ML, and LL variables, respectively) when
using equation

All algorithms (i.e., TSG-H, TSG-N-FD, and TSG-AD) were compared using a decaying step size
at each level. Specifically, we used o; = &/i, §8; = (3/4, and v, = 7/k, where @, 3, and 7 are
positive scalars carefully chosen to ensure good performance for each algorithm (without conducting
extensive, time-consuming grid searches at all levels, as our goal is not to compare our algorithms
against others). The values of &, (3, and 7 are provided in Table

F.4.1 ADDITIONAL FIGURES AND DISCUSSION FOR THE SYNTHETIC TRILEVEL PROBLEMS

In the deterministic case, Figures and@]break down the behavior of TSG-H, TSG-N-FD, and TSG-
AD at the UL, ML, and LL levels. Specifically, such figures plot the sequence of f(x") values
(upper plot), f(x%, y"7) values (middle plot), and f3(x*,y"7, z7'F) values (lower plot). They

iWe have z(z,y) = Hz_zl(Hzrcl’ + H.yy), y(x) = (Hyy — 2Hy{Hz_lezy)_1(Hym + Hysz_lezx),
Vyf(z,y) = Hyyy — Hyox — Hy. H,' (H.ox + 2H.yy), and Vi, f(z,y) = Hyy — 2H,.H.,' H.,,. We
omit the expressions of V f(z) of V2 f(x) for brevity.
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%/k) used across algorithms for the

Table 2: Details of the stepsizes (a; = a/i, B; = B/j, Vi
synthetic quadratic and quartic trilevel problems

Problem  Algorithm  Case o 154 o

TSG-H Deterministic 0.3 0.2 0.1
TSG-N-FD Deterministic 0.01 0.1 0.05
TSG-AD Deterministic  0.01 0.1 0.1

Quadratic  pq Stochastic 0.1 0.1 0.1
TSG-N-FD  Stochastic 0.01 0.1 0.1
TSG-AD Stochastic 0.01 0.1 0.1
TSG-H Deterministic 0.3 0.2 0.1
TSG-N-FD  Deterministic 0.3 0.2 0.0001

Quartic TSG-AD Deterministic 0.3 0.2 0.0001

TSG-H Stochastic 0.3 0.2 0.1
TSG-N-FD  Stochastic 0.01 0.01 0.001
TSG-AD Stochastic 03 0.2 0.0001

also include the values f(z.) (only for the quadratic problem, where it can be computed ana-
lytically), with x, denoting the optimal solution of the trilevel problem, as well as f(z?, y(x"))
and fs(x?,y*7, z(2?,y*7)). The goal is for the sequences of f, f, and f3 values to converge to
their respective dashed lines. In the middle- and lower-level plots, the horizontal axis represents
cumulative ML and LL iterations, respectively.

As evident from Figure [§] for the quadratic problem, the sequences of function values at the UL
and ML problems converge when the function values at the ML and LL problems, respectively, also
converge. As evident from Figure[9] for the quartic problem, the sequences of function values at all
levels converge after a few iterations.

UL, ML, and LL grad std devs: 0, 0, 0 UL, ML, and LL grad std devs: 0, 0, 0 UL, ML, and LL grad std devs: 0, 0, 0
ML and LL Hess std devs: 0, 0 ML and LL Hess std devs: 0, 0 ML and LL Hess std devs: 0, 0

—— TSG-AD
fix+)

-~ TSG-N-FD
fix+)

TSG-H
flx«)

fix')
f(x')
f(x')

o H 0 3 35 40 0 H 10 0 3 40 0 5 10 0 35 40

520 25 S R
UL Iterations UL Iterations UL Iterations

= TSG-N-FD

o =

T - T Lo Mg S -

>, TSG-H e fix', y(x) . TSGAD

= fix', y(x)) = 6 = sy Vi fix', y(x'))

1
[ 100 200 300 60 0 0 20 30 40 50 6 70 8 0 T 20 3 40 s 6 70 8

Cumulative ML Iterations Cumulative ML Iterations Cumulative ML Iterations

o ol o~ e o e

< < oo p— < oo -

= < I o N 3 - e

N T5GH Nl TSG-N-FD N s -

N Ay | ¢ f0 v, 20,y | o —— TSG-AD

35Xy, 2,y "

%o 371 3710 f(x,yH, z(x', )

«“ G 1000 2000 3000 4000 5000 6000 7000 soo0 T 0 200 400 600 800 w00 ¥ 0 25 so 75 10 125 150 175 200
Cumulative LL Iterations Cumulative LL Iterations Cumulative LL Iterations

Figure 8: Breakdown of the algorithms, quadratic problem, deterministic case.
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Figure 9: Breakdown of the algorithms, quartic problem, deterministic case.

F.5 TRILEVEL HYPERPARAMETER ADVERSARIAL TUNING

Let us denote the whole learning dataset used in the experiments by D = {(uj,v;),j €
{1,...,N}}, which consists of N pairs given by a feature vector u; and the corresponding true
label v;. We denote the datasets used for training and validation as Dp and D), which respec-
tively consist of Np and Ny, pairs extracted from the original dataset D (with additional pairs set
aside for testing). Let ¢(u;; ) be the prediction function, where 6 is a vector of parameters. The
adversarial training problem can be written according to the following minimax formulation (see,
e.g.,Madry et al.|(2017)):

1
min — max £(p(u+ dy; 0), v), (F.17)
0 Np Z ll6ull<e (@ ) )
(u,v)EDp
where ¢, is a perturbation vector associated with each sample « in the training set, and € is a pos-
itive threshold. Introducing § = (d, | (u,v) € Dp), we propose the following TLO problem for
hyperparameter adversarial tuning, inspired by Sato et al.| (2021):

LS e 0), )

min
AER, 0eR™, §eRt Ny

(u,v)EDyar
s.t. 0,0 € i S U(o(ut b 0), ) + B0 N)
L0, argmin = —— U u; V), U ;
ocrm,5crt Np (F.18)
(u,v)€Dp
1
s.t. § € argmax — Z Up(u+ by; 0), v) —U(5),
SCRe D
(u,v)€Dp

where ) is a penalty coefficient, and ®(6; \) = (e*[|]|1+)/m (with || - |1~ being a smooth approxi-
mation of the /1-norm (Saheya et al., 2019, Eq. (18) with z = 0.25)) and ¥(3) = (¢||§||*)/(mNp)
(with ¢ = 0.1 being a penalty coefficient) are penalty terms that penalize large values of 6 and J,
respectively. To convert the LL problem into a minimization problem, we switch to arg min by
multiplying the objective function by —1. Following Sato et al.| (2021]), we use a linear prediction
function and mean squared error (MSE) as the loss function in our experiments.

Regarding the datasets used in the experiments, the red and white wine quality datasets|Cortez et al.
(2009) contain 1,599 and 4,898 samples, respectively, each with 11 features, while the California
housing dataset [Pace & Barry| (1997) contains 20,640 samples and 8 features. Each dataset is split
into training, validation, and test sets in proportions of 70%, 15%, and 15%, respectively.

For TSG-N-FD and TSG-AD, we use the same configuration described in Section including
decaying stepsizes (o; = &/, B; = /7, and v, = 7/k), where the positive scalars &, (3, and 7
are selected via grid search over the set {0.1,0.01,0.001}. For the BSG-AD algorithms, which are
derived from TSG-AD to solve the BLO problems obtained from equation [F.18] we once again use
decaying stepsizes selected via grid search over {0.1,0.01,0.001}. Specifically, the values of &,
5, and 4 are provided in Table In all experiments, the algorithms use a minibatch size of 64 for
training, and the results presented in the figures are averaged over 10 runs.
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Table 3: Details of the stepsizes (o; = &/i, B; = B/, v = 7/k) used across algorithms, formula-

tions, and datasets in the trilevel hyperparameter adversarial tuning experiments

Algorithm Formulation Dataset a B ~
TSG-N-FD Sato et al.[(2021) Red Wine 0.1 0.1 0.1
TSG-AD Sato et al.|(2021) Red Wine 0.01 0.01 0.01
TSG-AD equation|F.18 Red & White Wine 0.1 0.01 0.1
TSG-AD equation|F.18 California Housing 0.01 0.001 0.01
BSG-AD (without UL) equation|F.18 Red & White Wine - 0.01 0.1
BSG-AD (without UL) equation|F.18 California Housing - 0.001 0.1
BSG-AD (without LL)  equation|F.18 Red & White Wine 0.1 0.01 -
BSG-AD (without LL)  equation|F.18 California Housing 0.1 0.001 -

F.5.1 ADDITIONAL FIGURES AND DISCUSSION FOR TRILEVEL HYPERPARAMETER

ADVERSARIAL TUNING

In Figure we assess the TLO problem for hyperparameter adversarial tuning proposed in [Sato
et al.| (2021), which can be obtained by swapping the ML and LL problems in equation The
results on the red wine dataset demonstrate that both TSG-N-FD and TSG-AD exhibit essentially
similar performance in terms of test MSE. However, the test MSE values are consistently worse or
comparable to those obtained using the formulation in equation (see Figure [5), which is why
we discontinued testing the formulation from |Sato et al.|(2021)).

When using equation[F.18] TSG-N-FD does not perform well and is therefore excluded from further
analysis. This outcome is not surprising, as the results from the synthetic problems in Section #.2]
indicated that TSG-N-FD is more affected by noise in V f3 than TSG-AD. In equation the
noise is further amplified by the fact that the size of § corresponds to the number of rows times the
number of columns of the entire dataset, making V f3 more susceptible to minibatch sampling.

--= TSG-N-FD
—— TSG-AD

~- TSG-N-FD |
—— TSG-AD

-~~~ TSG-N-FD
—— TSG-AD

-- TSG-N-FD
—— TSG-AD

Test MSE
7

Test MSE

Test MSE

Test MSE

ssssssssssssssssss

Uf\terat\;:\s U‘:.Dltera[\;rals Time (s)
Figure 10: Trilevel adversarial learning formulation proposed in|(Sato et al.[(2021), red wine quality
dataset. The two left plots correspond to noise with standard deviation 0, and the two right plots to

standard deviation 5.
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