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ABSTRACT

With the success that the field of bilevel optimization has seen in recent years,
similar methodologies have started being applied to solving more difficult appli-
cations that arise in trilevel optimization. At the helm of these applications are new
machine learning formulations that have been proposed in the trilevel context and,
as a result, efficient and theoretically sound stochastic methods are required. In
this work, we propose the first-ever stochastic gradient descent method for solving
unconstrained trilevel optimization problems and provide a convergence theory
that covers all forms of inexactness of the trilevel adjoint gradient, such as the in-
exact solutions of the middle-level and lower-level problems, inexact computation
of the trilevel adjoint formula, and noisy estimates of the gradients, Hessians, Ja-
cobians, and tensors of third-order derivatives involved. We also demonstrate the
promise of our approach by providing numerical results on both synthetic trilevel
problems and trilevel formulations for hyperparameter adversarial tuning.

1 INTRODUCTION

Multi-level optimization (MLO) is a general class of problems with the goal of optimizing an upper-
level objective while requiring subsets of the considered variables to satisfy optimality principles for
some number of nested sub-problems. Hierarchical in nature, these MLO problems have a variety
of applications that appear in fields such as defense industry Arguello et al. (2023); Lai et al. (2019);
Yao et al. (2007); Wu & Conejo (2017); Guo et al. (2023), signal recovery and power control Liduka
(2011); Cang & Petrusel (2010), supply chain networks Xu et al. (2013); Rahdar et al. (2018);
Fathollahi-Fard et al. (2018), and more recently in the field of machine learning Jiao et al. (2023);
Choe et al. (2022); Guo et al. (2019); Jiao et al. (2024); Liu et al. (2019); Giovannelli et al. (2025);
Jin et al. (2019). Due to the difficulty of these MLO problems, most of the algorithms have largely
only been developed for solving the bilevel case. However, the trilevel case has recently seen further
interest by applying similar methodologies that have been utilized in the bilevel case. With this
interest comes the aim of developing efficient and theoretically sound first-order stochastic gradient
methods for handling large-scale applications of trilevel optimization problems that arise in the field
of machine learning. As far as we know, this is the first work that addresses the stochastic setting of
a trilevel problem, both theoretically and numerically.

In this paper, we consider the general trilevel optimization (TLO) problem formulation

min
x∈Rn, y∈Rm, z∈Rt

f1(x, y, z)

s.t. x ∈ X

y, z ∈ argmin
y∈Y (x), z∈Rt

f2(x, y, z)

s.t. z ∈ argmin
z∈Z(x,y)

f3(x, y, z).

TLO

The goal of the upper-level (UL) problem is to determine the optimal value of the UL function f1 :
Rn × Rm × Rt → R, where the UL variables x are subjected to UL constraints (x ∈ X), the
middle-level (ML) variables y are subjected to being an optimal solution of the ML problem, and the
lower-level (LL) variables z are subjected to being an optimal solution of the LL problem. In the ML
problem, the ML function f2 : Rn × Rm × Rt → R is optimized in the ML variables y, subject to
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the ML constraints y ∈ Y (x). Similarly, in the LL problem, the LL function f3 : Rn×Rm×Rt → R
is optimized in the LL variables z, subject to the constraints z ∈ Z(x, y). In this paper, we will
assume that the ML and LL problems are strongly convex (see Subsection 3.1 below) and that the
UL problem is possibly nonconvex (see Theorem B.6 below).

1.1 TRILEVEL OPTIMIZATION IN THE LITERATURE

Trilevel and multi-level optimization has been studied as early as the 1980s (see Blair (1992); Bard
& Falk (1982); Bard (1984); Ue-Pyng & Bialas (1986); Benson (1989)), but in many of the afore-
mentioned fields (e.g., defense industry, supply chain networks, etc.), problem-specific formulations
typically lack general solution methodologies. We mention here a few notable exceptions that do
consider general methodologies. The authors of Tilahun et al. (2012) introduced an evolutionary
strategy to update each level sequentially, but without convergence guarantees. In contrast, the au-
thors of Shafiei et al. (2024) proposed a proximal gradient method for TLO problems with convex
objective functions, offering convergence guarantees but lacking numerical validation. For thorough
reviews of the development of multi-level optimization, see the surveys Vicente & Calamai (1994);
Lu et al. (2016); Liu et al. (2021); Chen et al. (2022a).

Trilevel optimization for machine learning. More recently, TLO (also referred to as trilevel learn-
ing when taking on applications in a machine learning context) and MLO problems have seen uti-
lization in being applied to solving large-scale hierarchical machine learning problems with ap-
plications of hyperparameter tuning, adversarial learning, and federated learning. In Sato et al.
(2021), the authors developed a gradient-based method for solving an approximate formulation
of the general MLO problem, as well as presenting convergence guarantees and numeric results
for their method in the deterministic case. Such a paper builds on pre-existing methods utilized
in Franceschi et al. (2017) for the bilevel case that approximate the solution to each of the lower-
level problems with an iterative method. Complimenting this development, the authors of Choe et al.
(2022) introduced BETTY, an automatic differentiation library for general multi-level optimization,
which has helped facilitate applications like neural architecture search (NAS) with adversarial ro-
bustness Guo et al. (2019). Trilevel optimization has also been further extended to decentralized
learning environments in Jiao et al. (2023; 2024), where the authors aim at developing methods with
convergence guarantees for federated trilevel learning problems. However, it bears mentioning that
all of the aforementioned papers only consider the deterministic setting in their analysis.

1.2 CONTRIBUTIONS OF THIS PAPER

The field of bilevel optimization has seen a rich development of first-order descent methods for
solving large-scale problems that arise in the field of machine learning (e.g., see Chen et al. (2022b;
2021); Liu et al. (2019); Giovannelli et al. (2025; 2024); Jin et al. (2019)). However, as we have
seen in the existing literature, no works have yet begun extending the theory and implementation of
stochastic methods to trilevel and higher-level problems. In this paper, we propose TSG, the first
stochastic gradient method for solving trilevel optimization problems, along with an extensive con-
vergence analysis with general nonlinear and nonconvex UL functions. This is done by extending the
concepts and methodologies developed for first-order bilevel optimization methods that utilize the
so-called adjoint gradient (or hyper-gradient) via implicit differentiation, and adapting them to the
trilevel setting. To address the significant difficulties imposed by the presence of second-order and
third-order derivatives in handling these problems, we also propose practical and efficient strategies
for implementing our TSG method and demonstrate its performance on a series of trilevel problems.
The numerical results show that the trilevel formulation we propose for hyperparameter adversarial
tuning consistently yields the most robust performance across all tested datasets, outperforming the
corresponding bilevel formulations for both hyperparameter tuning and adversarial learning.

2 TRILEVEL OPTIMIZATION

In this paper, we will only focus on the unconstrained ML and LL cases of problem TLO, i.e.,
Y (x) = Rm and Z(x, y) = Rt. Since our goal is to propose and analyze a general optimization
methodology for a stochastic TLO, the LL problem is assumed to be well-defined, in the sense of
having a unique solution z(x, y) for all x ∈ Rn and y ∈ Rm. Thus, problem TLO is equivalent
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to the following bilevel optimization (BLO) problem, which is defined solely in terms of the UL
and ML variables:

min
x∈Rn, y∈Rm

f1(x, y, z(x, y))

s.t. y ∈ argmin
y∈Rm

f̄(x, y) := f2(x, y, z(x, y)).
BLO

Similarly, problem BLO can be even further reduced to a single-level optimization problem under
the assumption that the lower-level problem in BLO also has a unique solution y(x). In this way,
since y(x) is solely determined by x, it is clear that the unique solution z(x, y(x)) is solely deter-
mined by x as well, which we denote simply as z(x). Thus, problem TLO ultimately reduces to the
single-level optimization problem given by

min
x∈Rn

f(x) = f1(x, y(x), z(x, y(x))) s.t. x ∈ X. (2.1)

We define the trilevel adjoint gradient of f at x as

∇f = (∇xf1 −∇2
xzf3∇2

zzf
−1
3 ∇zf1)−∇2

xy f̄∇2
yy f̄

−1(∇yf1 −∇2
yzf3∇2

zzf
−1
3 ∇zf1), (2.2)

where all of the gradient and Hessian terms involved are evaluated at the point (x, y(x), z(x)).
Notice that this is essentially a classical adjoint gradient calculation applied to problem BLO. The
complete statement, along with all term definitions and full derivation, is given by Proposition A.1
in Appendix A.

2.1 THE TRILEVEL STOCHASTIC GRADIENT METHOD

The stochastic algorithm developed in this paper proceeds by iteratively updating the LL variables
first, followed by the ML variables, and lastly the UL variables. The iterations corresponding to
the UL, ML, and LL problems are denoted by i, j, and k, respectively, with the total number of
iterations denoted as I , J , and K, respectively. Let {ξi}, {ξi,j}, and {ξi,j,k} denote sequences of
random variables defined in a probability space (with probability measure independent from x, y,
and z) such that i.i.d. samples can be observed or generated. Such random variables are introduced
for gradient, Jacobian, and Hessian evaluations, and their realizations can be interpreted as a single
sample or a batch of samples for a mini-batch stochastic gradient (SG). For simplicity, we also adopt
the following terminology throughout this paper: zi,j = zi,j,0, zi,j+1 = zi,j+1,0 = zi,j,K , zi =
zi,0,0, and zi+1 = zi+1,0,0 = zi,J,K for the LL iterations and yi = yi,0 and yi+1 = yi+1,0 = yi,J for
the ML iterations. Most of this terminology is merely notation; however, by letting zi+1 = zi,J,K ,
zi,j+1 = zi,j,K , and yi+1 = yi,J , we are saying that the initial iterates for new cycles are the last
ones of the previous corresponding cycles.

Given the current iterate (xi, yi,j , zi,j,k), the update direction that is used for the LL problem is
simply the stochastic gradient of the LL objective function f3, denoted as gi,j,kf3

and given by
gi,j,kf3

= ∇zf3(x
i, yi,j , zi,j,k; ξi,j,k). Letting γi ∈ (0, 1] denote the step size for the LL prob-

lem at the UL iteration i, the update of the LL variables is given by zi,j,k+1 = zi,j,k−γigi,j,kf3
. The

SG algorithm used to obtain the approximate solution zi,j+1 ≈ z(xi, yi,j) is stated by Algorithm 1.

The exact gradient for the ML problem is computed via the following standard adjoint gradient (by
combining equations equation A.9 and equation A.4 in Appendix A):

∇y f̄(x, y) = ∇yf2 −∇2
yzf3∇2

zzf
−1
3 ∇zf2, (2.3)

where all gradients and Hessians are evaluated at the point (x, y, z(x, y)). However, since we solve
the LL problem inexactly to obtain an approximate solution zi,j+1 ≈ z(xi, yi,j), the ML adjoint
gradient equation 2.3 now becomes “inexact”. Thus, given the current iterate (xi, yi,j , zi,j+1), the
update direction that is used for the ML problem is the inexact stochastic gradient of the function f̄ ,
denoted as g̃i,jf2 and given by

g̃i,jf2 = ∇y f̄(x
i, yi,j , zi,j+1; ξi,j) = ∇yf2 −∇2

yzf3∇2
zzf

−1
3 ∇zf2, (2.4)

where all gradients and Hessians are evaluated at the point (xi, yi,j , zi,j+1; ξi,j). We highlight this
slight abuse of notation, since f̄ is a function of (x, y) and not (x, y, z), as we are utilizing the
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approximation zi,j+1 ≈ z(x, yi,j) in computing the gradient ∇y f̄ . It is for this reason that we
adopt the notation g̃2 to denote an “inexact” SG (as opposed to simply g2, which would denote the
“exact” SG ∇f̄(xi, yi,j)). Letting βi ∈ (0, 1] denote the step size for the ML problem at the UL
iteration i, the update of the ML variables is given by yi,j+1 = yi,j − βig̃

i,j
f2

. The bilevel SG
algorithm that is used to obtain the approximate solution yi+1 ≈ y(xi) is stated by Algorithm 2.
It bears mentioning that after every ML iteration, we will perform another LL update to obtain an
approximation zi+1 to z(xi, yi+1).

Algorithm 1 SG (LL Problem)

Input: Initial zi,j,0, γi ∈ (0, 1].
For k = 0, 1, 2, . . . ,K − 1 do

1. Compute an SG gi,j,kf3
.

2. Update zi,j,k+1 = zi,j,k − γi g
i,j,k
f3

.
Return zi,j+1 = zi,j,K .

Algorithm 2 Bilevel SG (ML Problem)

Input: Initial yi,0, βi ∈ (0, 1], γi ∈ (0, 1].
For j = 0, 1, 2, . . . , J − 1 do

1. Compute zi,j+1 via Algorithm 1
2. Compute an approximation g̃i,jf2 .
3. Update yi,j+1 = yi,j − βi g̃

i,j
f2

.
Return (yi+1 = yi,J , zi,J).

Algorithm 3 Trilevel Stochastic Gradient (TSG)

Input: Initial (x0, y0,0, z0,0,0), αi ∈ (0, 1], βi ∈
(0, 1], γi ∈ (0, 1].

For i = 0, 1, 2, . . . , I − 1 do
1. Compute yi+1 = yi,J and zi,J,0 via Algo-

rithm 2.
2. Compute zi+1 = zi,J,K via Algorithm 1.
3. Compute an approximation g̃if1 .
4. Update xi+1 = xi − αi g̃

i
f1

.
Return xI .

Now, recall that the exact gradient
for the UL problem is computed via
the trilevel adjoint gradient given by
equation equation 2.2. Since we
only solve the ML problem inex-
actly to obtain an approximate solu-
tion yi+1 ≈ y(xi), the trilevel adjoint
gradient equation 2.2 also becomes
“inexact”. Notice that the inexactness
here comes from two sources: one
related to the inexactness of the LL
variables and the other to the inexact-
ness of the ML variables. The first
source of inexactness arises from the
two Hessian terms of the true ML
problem, i.e., ∇2

xy f̄ and ∇2
yy f̄

−1,
due to them being evaluated at the approximate solution zi+1 instead of z(xi, y(xi)). The sec-
ond source of inexactness comes from all of the terms involved being evaluated at the approximate
solution yi+1 instead of y(xi). Thus, given the current iterate (xi, yi+1, zi+1), the update direction
that is used for the UL problem is the inexact stochastic gradient of f , denoted as g̃if1 and given by

g̃if1 = ∇f(xi, yi+1, zi+1; ξi). (2.5)

We again highlight this slight abuse of notation, since f is a function of (x) and not (x, y, z), as we
are utilizing the approximations yi+1 ≈ y(xi) and zi+1 ≈ z(xi, y(xi)) in computing the gradient
f̄ . It is again for this reason that we adopt the notation g̃1 to denote an “inexact” SG (as opposed to
simply g1, which would denote the “exact” SG ∇f(xi)). Letting αi ∈ (0, 1] denote the step size for
the UL problem in the UL iteration i, the update of the UL variables is given by xi+1 = xi−αig̃if1 .
Finally, the schema of the resulting trilevel stochastic gradient (TSG) algorithm developed in this
paper is given by Algorithm 3.

3 CONVERGENCE ANALYSIS OF THE TSG METHOD

Throughout this section, to simplify notation when there are no ambiguities, we will write func-
tions, gradients, Jacobians, and Hessians by omitting their arguments (x, y, z). When dealing with
stochastic estimates, we will replace the arguments (x, y, z; ξ) with an ξ-superscript. For example,
we denote ∇2

zzf
ξ
3 = ∇2

zzf3(x, y, z; ξ). It also bears mentioning that in the following assumptions,
we will omit the iterates (i, j, k) for the evaluated point (x, y, z) and the iterate i for the step sizes α,
β, and γ, as the results are required to hold true for any iterate. For convenience throughout the
analysis, we utilize the following composite step-size:

θi := αiβiγi (or θ := αβγ in the general case). (3.1)
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Further, we define the expectations to be taken over σ-algebras generated by the sets of the relevant
random variables. For simplicity, we define a general σ-algebra Fξ that includes all the events up
to the generation of a general point (x, y, z), before observing a realization of ξ. Further, E[·|Fξ]
denotes the expectation taken with respect to the probability distribution of ξ given Fξ. We will also
use E[·] to denote the total expectation, i.e., the expected value with respect to the joint distribution of
all the random variables. For a full description of all σ-algebras used in the analysis, see Section B.1
of Appendix B.

3.1 ASSUMPTIONS ON THE TRILEVEL PROBLEM

We now provide all of the assumptions that are required for the convergence analysis of Algorithm 3.
It bears mentioning that throughout this paper, we use ∥ · ∥ to denote the ℓ2-Euclidean norm when
dealing with vectors and the spectral norm when dealing with matrices. We begin by imposing
Assumption 3.1 below which ensures that the functions of interest are differentiable and satisfy
appropriate smoothness requirements on the functions, gradients, Jacobians, Hessians, and tensors
of third-order derivatives involved in problem TLO.

Assumption 3.1 (Differentiability and Lipschitz continuity) The function f1 is once continu-
ously differentiable, f2 is twice continuously differentiable, and f3 is thrice continuously differ-
entiable. Further, the functions f1, ∇f1, f2, ∇f2, ∇2f2, ∇f3, ∇2f3, and ∇3f3 are Lipschitz
continuous with constants Lf1 , L∇f1 , Lf2 , L∇f2 , L∇2f2 , L∇f3 , L∇2f3 , and L∇3f3 , respectively.

To ensure that problem TLO is well-defined, Assumptions 3.2–3.3 below require that the LL func-
tion f3 as well as the true ML function f̄ are strongly convex. These kind of assumptions are standard
in the stochastic approximation literature (e.g., see Ghadimi & Wang (2018)) and will guarantee the
existence and uniqueness of the ML and LL optimal solutions y(x) and z(x), respectively, for any
fixed value of x. Further, the constants µz and µy defined in these assumptions are positive.

Assumption 3.2 (Strong convexity of f3 in z) For any fixed x and y, f3 is µz-strongly convex in
z, i.e., f3(x, y, z1) ≥ f3(x, y, z2) +∇zf3(x, y, z2)

⊤(z1 − z2) +
µz

2 ∥z1 − z2∥2, for all (z1, z2).

Assumption 3.3 (Strong convexity of f̄ in y) For any fixed x, f̄ is µy-strongly convex in y, i.e.,
f̄(x, y1) ≥ f̄(x, y2) +∇y f̄(x, y2)

⊤(y1 − y2) +
µy

2 ∥y1 − y2∥2, for all (y1, y2).

The assumption that the second level is strongly convex is prevalent throughout the bilevel optimiza-
tion literature (e.g., see Ghadimi & Wang (2018); Ji et al. (2020); Liu et al. (2021); Chen et al. (2021;
2022b;a); Giovannelli et al. (2024; 2025)). In practice, f̄ will be strongly convex when f2 is strongly
convex in (y, z) and z(x, y) is an affine function in (x, y). Hence, assuming strong convexity of f̄
covers cases where the LL problem is a QP problem or even certain special cases of polynomial
functions of even order, such as the squared norm of a quadratic function (see equation F.16 in
Subsection 4.2).

Next, as is standard in the stochastic approximation literature, we require that all stochastic estimates
be unbiased with bounded variances and that all random variables that are sampled are independent
and identically distributed, stated in Assumption 3.4 below. This ensures that the stochastic terms
that are used to approximate the gradients, Hessians, Jacobians, and third-order tensors are reliable
approximations of their corresponding deterministic counter-parts. In applications of empirical risk
minimization like machine learning, such an assumption can easily be satisfied in practice by taking
larger sample sizes when approximating these terms.

Assumption 3.4 (Stochastic estimates) The stochastic derivatives ∇fξ1 , ∇fξ2 , ∇2fξ2 , ∇fξ3 , ∇2fξ3 ,
and ∇3fξ3 are unbiased estimators of ∇f1, ∇f2, ∇2f2, ∇f3, ∇2f3, and ∇3f3, respectively. Fur-
ther, the variances of the stochastic derivatives are bounded by constants σ2

∇f1 , σ2
∇f2 , σ2

∇2f2
, σ2

∇f3 ,
σ2
∇2f3

, and σ2
∇3f3

, respectively. Further, all of the random variables ξ that are sampled are inde-
pendent and idententically distributed (i.i.d.).

Although Assumptions 3.2–3.3 ensure that the Hessian sub-matrices ∇2
zzf3 and ∇2

yy f̄ are bounded
away from singularity, we also require that their stochastic estimates be bounded away from singu-
larity, stated as Assumption 3.5 below, which ensures that these estimates provide a robust measure
of the curvature of the functions f3 and f̄ .
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Assumption 3.5 (Uniform bound on inverted stochastic Hessians) The stochastic principal sub-
matrices [∇2

zzf
ξ
3 ]

−1 and [∇2
yy f̄

ξ]−1 are upper-bounded in norm at all points by the positive con-
stants bzz and byy , respectively.

In the stochastic gradient literature concerning second-order derivatives, it is common to assume
that a Hessian matrix, stochastic or not, is uniformly bounded below Bollapragada et al. (2018),
implying that its inverse is uniformly bounded above. The motivation is that, if the Hessian matrix
is not uniformly bounded below, a regularization term can be added to such a matrix to ensure it is
non-singular.

Lastly, Assumption 3.6 below is imposed to ensure that the bias of the inverted stochastic esti-
mates [∇2

zzf
ξ
3 ]

−1 and [∇2
yy f̄

ξ]−1 approach zero on the order O(θ). It is known that such an as-
sumption can be satisfied in practice, e.g., by utilizing a truncated-Neumann series (see Ghadimi &
Wang (2018)) and incrementally increasing the number of samples used when approximating the
terms ∇2

zzf3 and ∇2
yy f̄ (the authors in Chen et al. (2021) utilize such a property to establish a simi-

lar bound; though they do not state it as an assumption, but instead leave the number of samples as
a parameter in their analysis that they choose to yield their desired convergence result).

Assumption 3.6 (Bounded bias of inverted stochastic Hessians) The stochastic principal sub-
matrices [∇2

zzf
ξ
3 ]

−1 and [∇2
yy f̄

ξ]−1 are estimators of [∇2
zzf3]

−1 and [∇2
yy f̄ ]

−1, respectively, with
biases that are bounded on the order of O(θ), i.e., there exist positive constants Wzz and Wyy such
that ∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1|Fξ]∥ ≤ Wzzθ and ∥[∇2
yy f̄ ]

−1 − E[[∇2
yy f̄

ξ]−1|Fξ]∥ ≤ Wyyθ,
respectively.

3.2 CONVERGENCE OF THE TSG METHOD

To derive our analysis of TLO methods, we introduce the following Lyapunov-type function

Vi := f(xi) + ∥yi − y(xi)∥2 + ∥zi − z(xi)∥2 + ∥zi − z(xi, yi)∥2, (3.2)

which is telescopically summed over all iterates (see Appendix B). The first two terms in (3.2) were
used in the analysis of Chen et al. (2021) for bilevel optimization. While carrying out our analysis,
we realized that adding the third term was not enough for TLO, and the need for the fourth term
arises from the inexact LL error relative to the ML variables. We now present an overview of the
primary convergence result of Algorithm 3, in which we consider the general case where the true
UL function f is possibly nonconvex. Further, for the full description and proof of this theorem, see
Theorem B.5 and Appendix C.5, respectively.

Convergence of TSG – Nonconvex f (Theorem B.5). Under Assumptions 3.1–3.6, when choosing
the step-sizes αi, βi, and γi to incorporate problem-specific information, a convergence rate of
1
I

∑I−1
i=0 E[∥∇f(xi)∥2] = O(1/

√
I) can be obtained. This result does not require lower-bounds on

the UL or ML variables I and J , but requires K ≥ O(J4I).

We state this theorem as our primary convergence result since it matches the tightest known bound
derived for general nonconvex bilevel optimization problems under similar assumptions Chen et al.
(2021). However, we also include another less-tight convergence rate of O(J/

√
I) (see Theo-

rem B.6) that provides a more intuitive choice of step-sizes that directly impact algorithmic im-
plementability, requiring K ≥ O(J3I). We highlight that the J present in the numerator of this
alternative rate can be thought of as the extra J that is present in the iteration complexity on K in
Theorem B.5 (i.e., K ≥ O((J × J3)I).

Notice that both Theorems B.5 and B.6 share a common constraint: the LL iterations K must scale
linearly in I and polynomially in J . We argue that such a requirement follows intuitively, as the
accuracy of the LL solution directly impacts the inexactness of the bilevel adjoint gradient for the
ML problem. Further, this constraint reveals the hierarchical interplay within trilevel problems,
i.e., more LL iterations are required to obtain a higher accuracy in the ML problem than in the
UL problem. This implies that the trilevel adjoint gradient ∇f tolerates more inexactness from the
ML problem than the bilevel adjoint gradient ∇y f̄ does from the LL problem. Such a relationship
underscores how errors in the LL propagate upward through the levels: greater accuracy at any
sub-upper level necessitates significantly higher precision in the LL solution. Whether this pattern
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Figure 1: Quadratic problem, deterministic
case.
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Figure 2: Quartic problem, deterministic case.

extends to all sup-upper levels in general multi-level problems or entirely shifts the computational
burden to the lowest level remains an open question for future research.

4 NUMERICAL EXPERIMENTS

The experimental results were obtained on a desktop workstation with 128GB of RAM, an Intel(R)
Core(TM) i9-13950HX processor (24 cores, 32 threads) running at 2200 MHz under Windows 11.

4.1 OUR PRACTICAL TSG METHODS

A major difficulty in the adjoint gradient equation 2.2 is the need for second-order derivatives of f̄
(a challenge that also arises in the adjoint gradient of a BLO problem), and, in particular, the pres-
ence of third-order derivative tensors in ∇yxf̄ and ∇yy f̄ in equation A.1 and equation A.2, due
to equation A.5 and equation A.6, respectively. We consider two approaches to address this issue
(see Appendix F.1), leading to two practical versions of the TSG method, referred to as TSG-N-FD
and TSG-AD. In the numerical experiments, we are mainly interested in testing these two practical
implementations (Algorithms 4 and 7 in Appendices F.2 and F.3, respectively) rather than the method
we refer to as TSG-H, which uses the true Hessians and third-order derivative tensors (Algorithm 3
in Section 2).

The first algorithm we propose, TSG-N-FD, is based on the adjoint equation approach and involves
solving any adjoint system arising in equation 2.2 and equation F.2 by using the linear CG method,
where each Hessian-vector product is approximated via a finite-difference (FD) scheme. When
using TSG-H, we will apply the linear CG method to solve any adjoint system arising in equa-
tion 2.2 and equation F.2 until non-positive curvature is detected. The second algorithm we propose,
TSG-AD, is based on the truncated Neumann series approach and consists of approximating each
Hessian-vector product by using automatic differentiation (AD). Note that TSG-H is not suited for
practical optimization problems, but we include it in the experiments for completeness. For very
large problems, one must use TSG-N-FD or TSG-AD.

To determine the ML and LL iterations J and K, we used an increasing accuracy strategy inspired
by Giovannelli et al. (2025): the number of ML iterations increases by one when the change in f1
between two consecutive UL iterations drops below 10−2, and the number of LL iterations increases
similarly when the change in f2 between two consecutive ML iterations drops below 10−1.

4.2 NUMERICAL RESULTS FOR SYNTHETIC TRILEVEL PROBLEMS

We first report results for two synthetic trilevel problems that differ in their LL problem formulations
(see Appendix F.4). In the first, all levels have quadratic objective functions, leading to a quadratic
trilevel problem (with zero third-order derivatives). In the second, the UL and ML objective func-
tions are quadratic, while the LL objective is quartic (resulting in non-zero third-order derivatives).
For simplicity, we refer to the second trilevel problem as quartic.

Figures 1, 2, 3, and 4 compare the sequences of f(xi) values obtained by TSG-H, TSG-N-FD,
and TSG-AD over UL iterations and running time. In the stochastic case, we computed the stochastic
gradients and Hessians by adding Gaussian noise with mean zero to the corresponding deterministic
quantities. We did not add noise to the third-order tensors, as these are not used in the practical
algorithms TSG-N-FD and TSG-AD. All figures involving stochasticity include 95% confidence
intervals computed using the t-distribution over 10 runs.
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Figure 3: Quadratic problem, stochastic case (low noise: two left plots; high noise: two right plots).
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Figure 4: Quartic problem, stochastic case (low noise: two left plots; high noise: two right plots).

For the quadratic problem, Figure 1 shows that TSG-H, which uses Hessians and third-order tensors,
outperforms TSG-N-FD and TSG-AD in terms of both UL iterations and time in the deterministic
case. Figure 3 shows the plots for the stochastic case. Note that TSG-N-FD and TSG-AD are not
affected by the noise in the Hessians of f2 and f3, as they rely only on first-order derivatives. TSG-H
is highly sensitive to the standard deviation of the Hessian of f3 (which appears in the trilevel adjoint
gradient equation 2.2), and its performance deteriorates significantly when this value exceeds 0.1.
Such behavior aligns with the well-known fact that stochastic Hessians require lower noise levels
(i.e., larger mini-batch sizes when noise arises from sampling finite-sum Hessians in SG contexts)
than stochastic gradients to perform well (Bottou et al., 2018, Section 6.1.1). For this reason, we
omit TSG-H from the two right plots. As noise levels increase, the performance of TSG-N-FD
deteriorates, whereas TSG-AD remains more robust. The most critical source of noise for TSG-
N-FD is that added to ∇f3, which is used to approximate the matrix-vector products involving
the Hessian of f3 via the FD scheme in equation F.5. Note that such an FD scheme affects the
computation of both equation F.3 and equation F.4.

For the quartic problem, in the deterministic case, Figure 2 shows that TSG-H is the least competitive
algorithm in terms of time, as the computation of third-order tensors slows it down. In the stochastic
case, shown in Figure 4, increasing noise levels lead to performance deterioration for both TSG-N-
FD and TSG-H, whereas TSG-AD remains the most robust. We can conclude that when third-order
derivatives are non-zero, the FD approximations used in TSG-N-FD become less accurate.

4.3 NUMERICAL RESULTS FOR TRILEVEL HYPERPARAMETER ADVERSARIAL TUNING

In the TLO formulation we propose for hyperparameter adversarial tuning (see problem F.18 in
Appendix F.5 for the rigorous formulation), the UL problem minimizes the validation loss over a
regularization parameter used in the training loss, the ML problem minimizes the training loss over
the model parameters, and the LL problem is posed on the variables that perturb the data in a worst-
case fashion. In the formulation proposed in Sato et al. (2021), the ML and LL problems are swapped
compared to our formulation in equation F.18. We adopt equation F.18 because it more accurately
reflects the original minimax formulation for adversarial training equation F.17, and indeed leads to
improved performance (see Appendix F.5.1). We will also evaluate BLO formulations obtained by
removing either the UL or LL problem from equation F.18. Removing the UL problem yields a BLO
problem similar in spirit to the original minimax formulation of adversarial learning, while removing
the LL problem gives a BLO problem for hyperparameter tuning without adversarial learning.

The BLO problems obtained from equation F.18 are solved using corresponding bilevel algorithms
(denoted as BSG-AD) derived from TSG-AD. Such algorithms are essentially equivalent to the
well-known StocBiO Ji et al. (2020). In this section, we will not test TSG-H, as it requires second
and third-order derivatives, which are impractical to compute in applications involving large-scale
datasets. Similarly, we will not test the trilevel algorithm proposed in Sato et al. (2021), as it is
designed specifically for the deterministic setting. When using equation F.18, TSG-N-FD does not
perform well and is therefore excluded from further analysis (see Appendix F.5.1 for a discussion).
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Figure 5: Adversarial learning formula-
tion equation F.18, red wine quality dataset.
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Figure 6: Adversarial learning formula-
tion equation F.18, white wine quality dataset.

For the experiments, we consider three popular tabular datasets: the red and white wine quality
datasets Cortez et al. (2009) and the California housing dataset Pace & Barry (1997). To assess the
performance of the algorithms and formulations on these datasets, we compute the test MSE after
adding Gaussian noise (with a standard deviation of 5) to the features of the test data, averaged
over 100 realizations of the noise. The optimal solution obtained from the trilevel formulation equa-
tion F.18 is expected to yield a model robust to such noise.

The results for our TLO formulation in equation F.18, along with those for the BLO formulations
obtained by removing the UL and LL problems from equation F.18, are shown in Figures 5–7. The
TLO formulation in equation F.18 proves to be the most consistently effective for hyperparameter
adversarial tuning, with the BLO variants demonstrating competitive runtime but greater sensitivity
to the nature of the dataset, reflected in the contrasting dependencies observed across the datasets.
In fact, the superior performance of BSG-AD (without LL) over BSG-AD (without UL) on the red
and white wine datasets is an indication of the reliance of these datasets on hyperparameter tuning,
whereas the inverted performance of the BSG algorithms on the California housing dataset is a
symptom of this dataset’s dependence on adversarial learning. Overall, TSG-AD, which leverages
both adversarial and hyperparameter tuning components during model training, consistently yields
the most robust performance across all the tested datasets and will likely deliver further performance
improvements in settings where both components are jointly critical.

5 CONCLUSION
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Figure 7: Adversarial learning formulation equa-
tion F.18, California housing dataset.

In this paper, we proposed the first stochas-
tic first-order method for trilevel optimization
along with a rigorous convergence theory for
the nonconvex setting. The proposed theory
also covers all forms of inexactness that arise
within the trilevel adjoint gradient, such as the
inexact solutions of the middle and lower-level
problems, inexact computation of the trilevel
adjoint formula, and noisy estimates of the
gradients, Hessians, Jacobians, and tensors of
third-order derivatives involved. Our experi-
ments demonstrate that the proposed TLO formulation can be more robust than the BLO formu-
lations corresponding to its UL and ML (i.e., hyperparameter tuning without adversarial learning),
or its ML and LL (i.e., the original minimax adversarial training), as well as the TLO formulation
in Sato et al. (2021), where the ML and LL are swapped compared to ours. A natural direction left
for future research lies in thoroughly exploring how the accuracy at any given intermediate level
relates to the precision required at lower levels within general multi-level optimization problems.
Specifically, such an investigation would seek to clarify whether increasing the accuracy at a partic-
ular level necessitates higher precision at all subsequent lower levels, or if the computational burden
entirely shifts to the lowest level. Following directions similar to those emerging in the BLO liter-
ature, an additional avenue for future work is to relax the strong convexity assumptions on the ML
and LL objective functions by exploring penalization techniques that allow for non-convex objec-
tives at lower levels.
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A DERIVATION OF THE TRILEVEL ADJOINT GRADIENT

This appendix contains the formal statement and derivation of the trilevel adjoint gradient given by
equation equation 2.2.

Proposition A.1 (Trilevel adjoint gradient) Under assumptions that will ensure all terms are well-
defined (specifically, Assumptions 3.1–3.3), we define the adjoint gradient of f as (referenced
as equation 2.2)

∇f = (∇xf1 −∇2
xzf3∇2

zzf
−1
3 ∇zf1)−∇2

xy f̄∇2
yy f̄

−1(∇yf1 −∇2
yzf3∇2

zzf
−1
3 ∇zf1),

where all of the gradient and Hessian terms of f1 and f3 on the right-hand side are evaluated
at (x, y(x), z(x)). Further, the f̄ terms are evaluated at (x, y(x)) where

∇2
yxf̄(x, y) = ∇2

yxf2 +∇2
yzf2∇xz

⊤ +
∂

∂x
[∇yz∇zf2] , (A.1)

∇2
yy f̄(x, y) = ∇2

yyf2 +∇2
yzf2∇yz

⊤ +
∂

∂y
[∇yz∇zf2] , (A.2)

with

∇xz(x, y)
⊤ = −∇2

zzf
−1
3 ∇2

zxf3, (A.3)

∇yz(x, y)
⊤ = −∇2

zzf
−1
3 ∇2

zyf3, (A.4)

∂

∂x
[∇yz∇zf2] = −[∇3

yzxf3 +∇3
yzzf3∇xz

⊤ −∇2
yzf3∇2

zzf
−1
3 (∇3

zzxf3 +∇3
zzzf3∇xz

⊤)]∇2
zzf

−1
3 ∇zf2

−∇2
yzf3∇2

zzf
−1
3 (∇2

zxf2 +∇2
zzf2∇xz

⊤), (A.5)
∂

∂y
[∇yz∇zf2] = −[∇3

yzyf3 +∇3
yzzf3∇yz

⊤ −∇2
yzf3∇2

zzf
−1
3 (∇3

zzyf3 +∇3
zzzf3∇yz

⊤)]∇2
zzf

−1
3 ∇zf2

−∇2
yzf3∇2

zzf
−1
3 (∇2

zyf2 +∇2
zzf2∇yz

⊤). (A.6)

Notice that all of the gradients and Hessians of f2 and the gradients, Hessians, and tensors of third-
order derivatives (which we denote by ∇3)* of f3 in equation A.1–equation A.6 are evaluated at the
point (x, y, z(x, y)) and all of the ∇z terms are evaluated at the point (x, y).

Proof. One arrives at the adjoint formula equation 2.2 by first applying the multivariate chain rule
to f1(x, y(x), z(x, y(x))) in the following manner:

∇f =
d

dx
f1(x, y(x), z(x, y(x))) =

∂f1
∂x

+
dy

dx

∂f1
∂y

+
d

dx
z(x, y(x))

∂f1
∂z

,

*To clarify the notation for third-order derivatives, consider the following example: given an m × t × n
tensor ∇3

yzxf3 and a t × t matrix ∇2
zzf

−1
3 , the product ∇3

yzxf3∇2
zzf

−1
3 yields an m × t × n matrix. Left-

multiplying a t-dimensional vector ∇zf2 by ∇3
yzxf3∇2

zzf
−1
3 results in an m × 1 × n matrix (or m × n, for

brevity).
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where
d

dx
z(x, y(x)) =

∂z

∂x
+
dy

dx

∂z

∂y
.

Thus, we have

∇f =
∂f1
∂x

+
dy

dx

∂f1
∂y

+ (
∂z

∂x
+
dy

dx

∂z

∂y
)
∂f1
∂z

= ∇xf1 +∇y∇yf1 + (∇xz +∇y∇yz)∇zf1

= ∇xf1 +∇xz∇zf1 +∇y (∇yf1 +∇yz∇zf1) . (A.7)

The Jacobian of y(x), i.e., ∇y(x)⊤ ∈ Rm×n, can be computed from the first-order necessary opti-
mality conditions of the ML problem, defined by ∇y f̄(x, y(x)) = 0. In particular, taking the deriva-
tive of both sides with respect to x, utilizing the chain rule and the implicit function theorem (which
ensures y(·) to be continuously differentiable Rudin (1953)), we obtain ∇2

yxf̄ +∇2
yy f̄∇y(x)⊤ = 0

(where all Hessians are evaluated at (x, y(x))), which yields

∇y(x)⊤ = −∇2
yy f̄(x, y(x))

−1∇2
yxf̄(x, y(x)). (A.8)

Since
∇y f̄(x, y) = ∇yf2(x, y, z(x, y)) +∇yz∇zf2(x, y, z(x, y)), (A.9)

taking the derivative of both sides with respect to x and y and utilizing the chain rule, we obtain the
expressions for ∇2

yxf̄(x, y) and ∇2
yy f̄(x, y) in equation A.1 and equation A.2, respectively.

Similarly, we can derive expressions for both of the Jacobians of z(x, y), i.e., ∇xz(x, y)
⊤ ∈ Rt×n

and ∇yz(x, y)
⊤ ∈ Rt×m, respectively, from the first-order necessary optimality conditions of the

LL problem, defined by ∇zf3(x, y, z(x, y)) = 0. In particular, taking derivatives of both sides with
respect to x will yield ∇2

zxf3(x, y, z(x, y)) +∇2
zzf3(x, y, z(x, y))∇xz(x, y)

⊤ = 0, whereas taking
derivatives with respect to y will yield ∇2

zyf3(x, y, z(x, y)) + ∇2
zzf3(x, y, z(x, y))∇yz(x, y)

⊤ =

0. Solving these two equations for both ∇xz(x, y)
⊤ and ∇yz(x, y)

⊤, respectively, we obtain the
expressions for ∇xz(x, y)

⊤ and ∇yz(x, y)
⊤ in equation A.3 and equation A.4, respectively. Now,

substituting equation A.8, equation A.3, and equation A.4 into equation A.7, we obtain the adjoint
gradient defined by equation 2.2.

It remains to derive equation A.5 and equation A.6. Using the property that the derivative of the
inverse of a matrix K (g(x)) with respect to x, where g is a vector-valued function of x, is given by

∂

∂x
K (g(x))

−1
= −K (g(x))

−1

[
∂

∂x
K (g(x))

]
K (g(x))

−1
,

and applying the product rule twice, it follows that the last term in equation A.1 can be written as

∂

∂x
[∇yz∇zf2] =

∂

∂x

[
−∇2

yzf3∇2
zzf

−1
3 ∇zf2

]
= −

(
∂

∂x
∇2
yzf3

)
∇2
zzf

−1
3 ∇zf2 −∇2

yzf3

(
∂

∂x
∇2
zzf

−1
3 ∇zf2

)
= −

(
∂

∂x
∇2
yzf3

)
∇2
zzf

−1
3 ∇zf2 −∇2

yzf3

[(
∂

∂x
∇2
zzf

−1
3

)
∇zf2 +∇2

zzf
−1
3

(
∂

∂x
∇zf2

)]
,

(A.10)

where
∂

∂x
∇2
yzf3 = ∇3

yzxf3 +∇3
yzzf3∇xz(x, y)

⊤,
∂

∂x
∇zf2 = ∇2

zxf2 +∇2
zzf2∇xz(x, y)

⊤,

∂

∂x
∇2
zzf

−1
3 = −∇2

zzf
−1
3

(
∂

∂x
∇2
zzf3

)
∇2
zzf

−1
3 ,

∂

∂x
∇2
zzf3 = ∇3

zzxf3 +∇3
zzzf3∇xz(x, y)

⊤.

(A.11)

Substituting these equations into equation A.10 and simplifying, we obtain equation A.5. Through
a similar process, we obtain that the right-most term of equation A.2 is given by equation A.6. □
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B DISCUSSION ON THE CONVERGENCE ANALYSIS OF THE TSG METHOD

In this appendix, we outline the convergence analysis for the TSG method (Algorithm 3) and high-
light all of the relevant results and notation involved. For simplicity of the convergence analysis, we
utilize the Lyapunov function 3.2, which we restate here for ease of reference:

Vi := f(xi) + ∥yi − y(xi)∥2 + ∥zi − z(xi)∥2 + ∥zi − z(xi, yi)∥2.

There is no particular property that is required from Lyapunov functions for our analysis. Rather,
equation 3.2 is defined to allow for appropriate telescoping cancellations in the proofs of Theo-
rems B.5–B.6 (which is an extension of the methodology utilized in Chen et al. (2021) for bilevel
problems). Further, the difference between two consecutive Lyapunov evaluations can by quantified
as

Vi+1 − Vi

= f(xi+1)− f(xi)︸ ︷︷ ︸
Lemma B.1

+ ∥yi+1 − y(xi+1)∥2 − ∥yi − y(xi)∥2︸ ︷︷ ︸
Lemma B.4

+ ∥zi+1 − z(xi+1)∥2 − ∥zi − z(xi)∥2︸ ︷︷ ︸
Lemma B.2

+ ∥zi+1 − z(xi+1, yi+1)∥2 − ∥zi − z(xi, yi)∥2︸ ︷︷ ︸
Lemma B.3

.

(B.1)

Notice that this consists of four differences: the first difference measures the amount of descent
that is achieved in the UL problem, the second and third differences correspond to the error present
in the ML and LL problems, respectively, and the fourth difference is an auxiliary term that cor-
responds to the inexact LL error relative to the ML variables. Further, it bears mentioning that
Appendix C contains the proofs of Lemmas B.1–B.4 and Theorems B.5–B.6, and Appendix D con-
tains the statements and proofs of intermediary results that are required for the arguments used in
Appendix C. Lastly, Appendix E includes auxiliary lemmas proving Lipschitz continuity proper-
ties for the following functions, gradients, and Jacobians: z(x), z(x, y), y(x), ∇y f̄ , ∇2

xy f̄ , ∇2
yy f̄ ,

∇f , ∇z, and ∇y. For ease of reference, Table 1 below compiles all the relevant constants utilized
throughout the theory which are not defined in Lemmas B.1–B.4.

Table 1: Reference table of constants associated with derived bounds.

Descriptions Constants References

Bounds on bias & variance Ux, Uy , Uxy , Uyy , Vxy , Vyy Lemmas D.1 – D.2
Bounds on UL inexactness ω, τ , ζ Lemmas D.3 – D.4
Bounds on ML inexactness ω̂, τ̂ , Υ Lemmas D.5 – D.6

Derived Lipschitz properties
Lz , Lzxy

, Lzy , Ly , L∇z
, LF̄ , LF̄y

LF̄z
, L∇2

yxf̄
, L∇2

yy f̄
, LF , LFyz

, L∇y
Equations E.1 – E.13

B.1 DESCRIPTIONS OF σ-ALGEBRAS

We denote three auxiliary sets Σi, Σi,j , and Σi,j,k, each corresponding to the set of iterates generated
by Algorithm 3 for the UL update, ML update, and LL update, respectively. We define these sets
explicitly in the following way:

Σi := {xî, yî, z î | ∀î ∈ {0, 1, ..., i}},

Σi,j := {xî, yî,ĵ , z î,ĵ | ∀î ∈ {0, 1, ..., i} and ∀ĵ ∈ {0, 1, ..., j}},

Σi,j,k := {xî, yî,ĵ , z î,ĵ,k̂ | ∀î ∈ {0, 1, ..., i} and ∀ĵ ∈ {0, 1, ..., j} and ∀k̂ ∈ {0, 1, ..., k}}.
Now, we define the corresponding σ-algebras generated as Fi := σ

(
Σi ∪ {yi+1, zi+1}

)
,

Fi,j := σ
(
Σi,j ∪ {zi,j+1}

)
, and Fi,j,k := σ (Σi,j,k), respectively. Further, we will use the expres-

sions E [·|Fi], E [·|Fi,j ], and E [·|Fi,j,k] to denote the conditional expectations taken with respect to
the probability distributions of ξi, ξi,j , and ξi,j,k given Fi, Fi,j , and Fi,j,k, respectively. Recalling
from the beginning of Section 3, we also define a general sigma-algebra Fξ that includes all the
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events up to the generation of a general point (x, y, z), before observing a realization of ξ; similarly,
E[·|Fξ] denotes the expectation taken with respect to the probability distribution of ξ given Fξ.
We also use E[·] to denote the total expectation, i.e., the expected value with respect to the joint
distribution of all the random variables.

B.2 STATEMENTS OF DESCENT AND ERROR BOUND RESULTS

We now provide the statements of Lemmas B.1–B.4 and Theorems B.5–B.6 below, that bound the
terms in the Lyapunov difference given by equation B.1, and which are ultimately required to prove
the main convergence results of Algorithm 3, presented in Theorems B.5–B.6. The proofs of such
lemmas and theorems are provided in Appendix C. They required a non-trivial adaptation of the
proofs in Chen et al. (2021), which were specific for bilevel problems.

Lemma B.1 (Descent of the true trilevel UL problem) Recalling ḡif1 = E[g̃if1 |Fi], under As-
sumptions 3.1–3.6, the sequence of iterates {xi}i≥0 generated by Algorithm 3 satisfies

E[f(xi+1)]− E[f(xi)] ≤ −αi
2
E[∥∇f(xi)∥2]−

(
αi
2

− LFα
2
i

2

)
E[∥ḡif1∥

2] + ω̃α2
i

+ αiL
2
Fyz

(E[∥y(xi)− yi+1∥2] + E[∥z(xi)− zi+1∥2]), (B.2)

where ω̃ is given by equation C.1 in Appendix C.1.

Lemma B.2 (Error bounds of the trilevel LL problem) Suppose that Assumptions 3.1–3.6 hold.
Then, choosing the LL step-size γi such that γi ≤ 1

µz+L∇f3
, there exists the positive constant ρf3 ,

given by equation C.3 in Appendix C.2, and a positive quantity κi, such that

E[∥zi,j+1 − z(xi)∥2] ≤ (1− γiρf3)
K E[∥zi,j − z(xi)∥2] +Kγ2i σ

2
∇f3 , (B.3)

E[∥zi+1 − z(xi)∥2] ≤ (1− γiρf3)
JK E[∥zi − z(xi)∥2] + JKγ2i σ

2
∇f3 , (B.4)

E[∥zi+1 − z(xi+1)∥2] ≤
(
1 + 2κi +

L∇zα
2
i ζ

2

)
E[∥zi+1 − z(xi)∥2]

+

(
2L2

z +
L2
z

2κi
+
L∇z

2

)
α2
iE[∥ḡif1∥

2] +

(
2L2

z +
L∇z

2

)
τα2

i . (B.5)

Lemma B.3 (Auxiliary error bounds of the trilevel LL problem) Suppose that Assump-
tions 3.1–3.6 hold. Then, choosing the LL step-size γi such that γi ≤ 1

µz+L∇f3
, there exist

positive quantities ηi and η̂i such that

E[∥zi,j+1 − z(xi, yi,j+1)∥2] ≤ ((1− γiρf3)
K
+ ηi)E[∥zi,j − z(xi, yi,j)∥2] + η̂iL

2
zyΥβ

2
i +Kγ2i σ

2
∇f3 ,

(B.6)

E[∥zi,j+1 − z(xi, yi)∥2] ≤ (1− γiρf3)
K E[∥zi − z(xi, yi)∥2] +Kγ2i σ

2
∇f3 , (B.7)

E[∥zi+1 − z(xi, yi)∥2] ≤ (1− γiρf3)
JK E[∥zi − z(xi, yi)∥2] + JKγ2i σ

2
∇f3 , (B.8)

E[∥zi+1 − z(xi+1, yi+1)∥2] ≤ 2E[∥zi+1 − z(xi, yi)∥2] + 4L2
zxy
α2
i (E[∥ḡif1∥

2] + τ) + 2J2ΥL2
zxy
β2
i ,

(B.9)

E[∥zi,j+1 − z(xi, yi,j)∥2] ≤ (1− γiρf3)
K E[∥zi,j − z(xi, yi,j)∥2] +Kγ2i σ

2
∇f3 . (B.10)

Lemma B.4 (Error bounds of the trilevel ML problem) Suppose that Assumptions 3.1–3.6 hold.
Then, choosing the ML step-size βi such that βi ≤ 1

µy+L∇f̄
and βi ≤ ρ

2ω̂2+1 as well as choosing
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the LL step-size γi such that γi ≤ 1
µz+L∇f3

, there are positive quantities ψi and ϕi such that

E[∥yi+1 − y(xi)∥2] ≤ (1− ψiβi)
J E[∥yi − y(xi)∥2] +

(
1 +

1

2
(J − 1)η̂iL

2
zy

)
JΥβ2

i

+ (1− γiρf3)
K
JE[∥zi − z(xi, yi)∥2] + J + 1

2
JKγ2i σ

2
∇f3 , (B.11)

E[∥yi+1 − y(xi+1)∥2] ≤
(
1 + 2ϕi +

L∇yα
2
i ζ

2

)
E[∥yi+1 − y(xi)∥2]

+

(
2L2

y +
L2
y

2ϕi
+
L∇y

2

)
α2
iE[∥ḡif1∥

2] +

(
2L2

y +
L∇y

2

)
τα2

i , (B.12)

where ρ is given by equation C.7 in Appendix C.4. Specifically, ψi is a function of θi given by equa-
tion C.7 in Appendix C.4.

Theorem B.5 (V1. Convergence of TSG – Nonconvex f ) Under Assumptions 3.1–3.6, define the
constants

ᾱ1 = min

{
1,

1

2(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)

}
,

ᾱ2 =
2JΓβ̄1

2L2
Fyz

+ 16L2
y + L∇yᾱ1ζ

, ᾱ3 = J
√
Kγ̄1,

with β̄1 = min

{
1,

1

µy + L∇f
,

ρ

2ω̂2 + 1

}
and γ̄1 := min

{
1,

1

µz + L∇f3

}
,

where Γ is a positive constant given by equation C.39 in Appendix C.5 and ρf3 was introduced in
Lemma B.2. Choose the step-sizes

αi = min

{
ᾱ1, ᾱ2, ᾱ3,

α0√
I

}
, βi =

2L2
Fyz

+ 16L2
y + L∇yᾱ1ζ

2JΓ
αi, γi =

ϱ(J,K)

J
√
K

αi,

where ϱ : (J,K) → R+ is defined by equation C.46 in Appendix C.5. Then, for any I ∈ {1, 2, ...},
J ∈ {1, 2, ...}, and K ≥ O

(
J4I

)
as defined by equation C.59, the iterates {xi}i≥0 generated by

Algorithm 3 satisfy
1

I

I−1∑
i=0

E[∥∇f(xi)∥2] = O
(

1√
I

)
.

Theorem B.6 (V2. Convergence of TSG – Nonconvex f ) Under Assumptions 3.1–3.6, choose the
step-sizes

αi =
1√
I
, βi =

1√
J
αi, γi =

1√
J
√
K
αi.

Then, the iterates {xi}i≥0 generated by Algorithm 3 satisfy

1

I

I−1∑
i=0

E[∥∇f(xi)∥2] = O
(
J√
I

)
,

when choosing any I ∈ N+, J ∈ N+, and K ∈ N+ such that

ς ≤ J, ϖ ≤ I, Ξ(I, J) = O(J3I) ≤ K,

where ς ∈ R+ is defined by equation C.97, ϖ ∈ R+ is defined by equation C.99, and Ξ(I, J) :
N+ × N+ → R+ is defined by equation C.101, all in Appendix C.6.

C CONVERGENCE THEORY PROOFS

This appendix contains the proofs of Lemmas B.1–B.4 (which are utilized to bound the terms in the
Lyapunov function given by equation B.1) as well as the proofs of Theorems B.5–B.6.
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C.1 PROOF OF LEMMA B.1

Proof. From the Lipschitz property of ∇f (equation equation E.11), taking expectation conditioned
on Fi, and letting ḡif1 = E[g̃if1 |Fi], we have

E[f(xi+1)|Fi]− E[f(xi)|Fi] ≤ E[∇f(xi)⊤(xi+1 − xi)|Fi] +
LF
2

E[∥xi+1 − xi∥2|Fi]

= E[∇f(xi)⊤(xi − αig̃
i
f1 − xi)|Fi] +

LF
2

E[∥xi − αig̃
i
f1 − xi∥2|Fi]

= −αi∇f(xi)⊤ḡif1 +
LF
2
α2
iE[∥g̃if1∥

2|Fi],

Using the fact that 2a⊤b = ∥a∥2 + ∥b∥2 − ∥a− b∥2 twice, with a and b real-valued vectors, yields

E[f(xi+1)|Fi]− E[f(xi)|Fi] ≤ −αi
2
∥∇f(xi)∥2 − αi

2
∥ḡif1∥

2 +
αi
2
∥∇f(xi)− ḡif1∥

2 +
LF
2
α2
iE[∥g̃if1∥

2|Fi]

= −αi
2
∥∇f(xi)∥2 − αi

2
∥ḡif1∥

2 +
αi
2
∥∇f(xi)− ḡif1∥

2

+
LFα

2
i

2
E[2

(
g̃if1
)⊤
ḡif1 − ∥ḡif1∥

2 + ∥g̃if1 − ḡif1∥
2|Fi]

= −αi
2
∥∇f(xi)∥2 − αi

2
∥ḡif1∥

2 +
αi
2
∥∇f(xi)− ḡif1∥

2

+
LFα

2
i

2
E[∥ḡif1∥

2|Fi] +
LFα

2
i

2
E[∥g̃if1 − ḡif1∥

2|Fi].

Utilizing Lemma D.3 and realizing that E[∥ḡif1∥
2|Fi] = ∥ḡif1∥

2, we have

E[f(xi+1)|Fi]−E[f(xi)|Fi] ≤ −αi
2
∥∇f(xi)∥2−

(
αi
2

− LFα
2
i

2

)
∥ḡif1∥

2+
αi
2
∥∇f(xi)−ḡif1∥

2+
τLFα

2
i

2
.

Further, we decompose the gradient bias term by adding and subtracting ∇f(xi, yi+1, zi+1), using
the fact that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, with a and b real-valued vectors, yielding

∥∇f(xi)− ḡif1∥
2 ≤ 2∥∇f(xi, y(xi), z(xi))−∇f(xi, yi+1, zi+1)∥2 + 2∥∇f(xi, yi+1, zi+1)− ḡif1∥

2

≤ 2L2
Fyz

∥(y(xi), z(xi))− (yi+1, zi+1)∥2 + 2ω2θ2i

≤ 2L2
Fyz

(∥y(xi)− yi+1∥2 + ∥z(xi)− zi+1∥2) + 2ω2αi,

where the second inequality follows from equation E.12 and Lemma D.3, and the last inequality
follows from the fact that θi = αiβiγi ≤ αi and 0 < α2

i ≤ αi ≤ 1. Putting this all together, we
have

E[f(xi+1)|Fi]− E[f(xi)|Fi]

≤ −αi
2
∥∇f(xi)∥2 −

(
αi
2

− LFα
2
i

2

)
∥ḡif1∥

2 + αiL
2
Fyz

(∥y(xi)− yi+1∥2 + ∥z(xi)− zi+1∥2) + ω̃α2
i ,

where ω̃ :=

(
ω2 +

τLF
2

)
. (C.1)

Taking total expectation, we obtain the final bound, completing the proof. □

C.2 PROOF OF LEMMA B.2

Proof. To derive the error bound defined by equation B.5, we start by decomposing the error of the
LL variables by adding and subtracting z(xi) in the following way:

E[∥zi+1 − z(xi+1)∥2] = E[∥zi+1 − z(xi)∥2]︸ ︷︷ ︸
A

(1)
1

+E[∥z(xi)− z(xi+1)∥2]︸ ︷︷ ︸
A

(1)
2

+ 2E[(zi+1 − z(xi))⊤(z(xi)− z(xi+1))]︸ ︷︷ ︸
A

(1)
3

. (C.2)
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(Analysis of A(1)
1 ): To derive an upper-bound onA(1)

1 in equation C.2, recall that zi+1 = zi+1,0,0 =

zi,J,K and gi,j,kf3
= ∇zf3(x

i, yi,j , zi,j,k; ξi,j,k). Further, notice that there will be a total of JK
updates to the LL variables starting from zi to obtain zi+1. Thus, in general, taking expectation
conditioned on Fi,j,k, we have

E[∥zi,j,k+1 − z(xi)∥2|Fi,j,k] = E[∥zi,j,k − γig
i,j,k
f3

− z(xi)∥2|Fi,j,k]

= ∥zi,j,k − z(xi)∥2 − 2γi(z
i,j,k − z(xi))⊤∇zf

i,j,k
3 + γ2i E[∥g

i,j,k
f3

∥2|Fi,j,k],
where the last equality follows from the unbiasedness of the stochastic estimates (Assumption 3.4).
Using the fact that Var[X|Y ] = E[X2|Y ]− E[X|Y ]2, where X and Y are random variables, along
with Assumption 3.4, we have

E[∥zi,j,k+1 − z(xi)∥2|Fi,j,k] ≤ ∥zi,j,k − z(xi)∥2 − 2γi(z
i,j,k − z(xi))⊤∇zf

i,j,k
3 + γ2i ∥∇zf

i,j,k
3 ∥2 + γ2i σ

2
∇f3 .

Now, utilizing (Nesterov, 2018, Theorem 2.1.12), which follows from the strong convexity and
Lipschitz continuity of f3 (Assumptions 3.1 and 3.2, respectively), we have

E[∥zi,j,k+1 − z(xi)∥2|Fi,j,k]

≤ ∥zi,j,k − z(xi)∥2 − 2γi

(
µzL∇f3
µz + L∇f3

∥zi,j,k − z(xi)∥2 + 1

µz + L∇f3
∥∇zf

i,j,k
3 ∥2

)
+ γ2i ∥∇zf

i,j,k
3 ∥2 + γ2i σ

2
∇f3

=

(
1− 2γiµzL∇f3

µz + L∇f3

)
∥zi,j,k − z(xi)∥2 + γi

(
γi −

2

µz + L∇f3

)
∥∇zf

i,j,k
3 ∥2 + γ2i σ

2
∇f3

≤ (1− γiρf3) ∥zi,j,k − z(xi)∥2 + γ2i σ
2
∇f3 ,

where the last inequality follows from the assumption that γi ≤ 1
µz+L∇f3

and by letting

ρf3 :=
2µzL∇f3
µz + L∇f3

. (C.3)

Using induction over K and taking total expectation, we obtain the bound equation B.3.

At this point, there would be an update in the ML variables y, i.e.,
(xi, yi,j , zi,j,K) → (xi, yi,j+1, zi,j,K). However, since this upper-bound is not dependent on
y, we can use induction over all J iterations (each consisting of K iterations), which yields the
bound equation B.4. These results follow by ensuring that 0 ≤ 1− γiρf3 ≤ 1, which is satisfied by
the assumption γi ≤ 1

µz+L∇f3
and recalling that γi and ρf3 are positive.

(Analysis of A(1)
2 ): Taking expectation conditioned on Fi and applying equation E.1 yields

E[∥z(xi)− z(xi+1)∥2|Fi] ≤ L2
zE[∥xi − xi+1∥2|Fi] = L2

zα
2
iE[∥g̃if1∥

2|Fi].

Adding and subtracting ḡif1 = E[g̃if1 |Fi] followed by using the fact that ∥a+b∥2 ≤ 2
(
∥a∥2 + ∥b∥2

)
,

with a and b real-valued vectors, along with Lemma D.3, we have

E[∥z(xi)− z(xi+1)∥2|Fi] ≤ L2
zα

2
iE[∥g̃if1 − ḡif1 + ḡif1∥

2|Fi] ≤ 2L2
zα

2
i

(
E[∥ḡif1∥

2|Fi] + τ
)
.

Lastly, taking total expectation, we obtain the bound

E[∥z(xi)− z(xi+1)∥2] ≤ 2L2
zα

2
i (E[∥ḡif1∥

2] + τ).

(Analysis of A(1)
3 ): Taking expectation conditioned on Fi followed by adding and subtracting

∇xz
(
xi
)⊤ (

xi+1 − xi
)

in the following way:

E[(zi+1 − z(xi))⊤(z(xi)− z(xi+1))|Fi]
= −E[(zi+1 − z(xi))⊤(∇xz(x

i)⊤(xi+1 − xi) + z(xi+1)− z(xi)−∇xz(x
i)⊤(xi+1 − xi))|Fi]

= −E[(zi+1 − z(xi))⊤(∇xz(x
i)⊤(xi+1 − xi))|Fi]︸ ︷︷ ︸

B
(1)
1

−E[(zi+1 − z(xi))⊤(z(xi+1)− z(xi)−∇xz(x
i)⊤(xi+1 − xi))|Fi]︸ ︷︷ ︸

B
(1)
2

. (C.4)
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(Analysis of B(1)
1 ): Utilizing the update xi+1 = xi−αigif1 , the fact that E[X] = E[E[X|Y ]], along

with the Cauchy-Schwarz inequality, yields

B
(1)
1 ≤ αiE[∥zi+1 − z(xi)∥∥∇xz(x

i)⊤ḡif1∥|Fi]
≤ αiLzE[∥zi+1 − z(xi)∥∥ḡif1∥|Fi]

≤ κiE[∥zi+1 − z(xi)∥2|Fi] +
α2
iL

2
z

4κi
E[∥ḡif1∥

2|Fi],

where the second inequality comes from equation E.1, and the last inequality comes from using
Young’s inequality (i.e., ab ≤ ϵa2

2 + b2

2ϵ for ϵ > 0), where ϵ = 2κi for some κi > 0, and where
a = ∥zi+1 − z(xi)∥ and b = αiLz∥ḡif1∥.

(Analysis of B(1)
2 ): Now, we can bound the termB

(1)
2 in equation C.4 by using the Cauchy-Schwarz

inequality and applying the Lipschitz property of equation E.5 (i.e, z(xi+1)−z(xi)−∇z(xi)(xi+1−
xi) ≤ L∇z

2 ∥xi+1 − xi∥2) to obtain:

− E[(zi+1 − z(xi))⊤(z(xi+1)− z(xi)−∇xz(x
i)⊤(xi+1 − xi))|Fi]

≤ L∇z

2
E[∥zi+1 − z(xi)∥∥xi+1 − xi∥∥xi+1 − xi∥|Fi].

Further, using Young’s inequality with a = ∥zi+1 − z(xi)∥∥xi+1 − xi∥ and b = ∥xi+1 − xi∥ such
that ab ≤ a2

2 + b2

2 , along with the update xi+1 = xi − αig̃
i
f1

and the fact that E[X] = E[E[X|Y ]],
we have

− E[(zi+1 − z(xi))⊤(z(xi+1)− z(xi)−∇xz(x
i)⊤(xi+1 − xi))|Fi]

≤ L∇z

2

(
1

2
E[∥zi+1 − z(xi)∥2∥xi+1 − xi∥2|Fi] +

1

2
E[∥xi+1 − xi∥2|Fi]

)
≤ L∇zα

2
i ζ

4
E[∥zi+1 − z(xi)∥2|Fi] +

L∇zα
2
i

4
E[∥g̃if1∥

2|Fi]

≤ L∇zα
2
i ζ

4
E[∥zi+1 − z(xi)∥2|Fi] +

L∇zα
2
i

4
(E[∥ḡif1∥

2|Fi] + τ).

where the second inequality follows by applying Lemma D.4 and the last follows by applying the
definition of variance along with Lemma D.3.

Substituting these bounds for B(1)
1 and B(1)

2 back into equation C.4 and taking total expectation, we
obtain the bound on the term A

(1)
3 as

E[(zi+1 − z(xi))⊤(z(xi)− z(xi+1))]

≤
(
κi +

L∇zα
2
i ζ

4

)
E[∥zi+1 − z(xi)∥2] +

(
α2
iL

2
z

4κi
+
L∇zα

2
i

4

)
E[∥ḡif1∥

2] +
τL∇z

4
α2
i .

Finally, substituting these bounds for A(1)
1 , A(1)

2 , and A(1)
3 back into equation C.2, we obtain the

desired upper-bound on E[∥zi+1 − z(xi+1)∥2], completing the proof. □

C.3 PROOF OF LEMMA B.3

Proof. To derive the error bound defined by equation B.6, recall that zi+1 = zi+1,0,0 = zi,J,K

and gi,j,kf3
= ∇zf3(x

i, yi,j , zi,j,k; ξi,j,k) and notice that there will be a total of K updates to the
LL variables starting from zi,j to obtain zi,j+1. Further, following the exact same steps utilized in
Lemma B.2 to derive bound equation B.3 (only with z(xi) replaced with z(xi, yi,j+1)), we have

E[∥zi,j+1 − z(xi, yi,j+1)∥2] ≤ (1− γiρf3)
K ∥zi,j − z(xi, yi,j+1)∥2 +Kγ2i σ

2
∇f3 .

Now, adding and subtracting z(xi, yi,j) in the norm, followed by using the fact that ∥a + b∥2 =
∥a∥2 + ∥b∥2 + 2a⊤b, with a and b real-valued vectors, the Cauchy-Schwarz inequality, and the fact
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that (1− γiρf3)
K ≤ 1 which is satisfied by our choice of γi ≤ 1

µz+L∇f3
, we have

E[∥zi,j+1 − z(xi, yi,j+1)∥2]

≤ (1− γiρf3)
K ∥zi,j − z(xi, yi,j)∥2 + (1− γiρf3)

K ∥z(xi, yi,j)− z(xi, yi,j+1)∥2 +Kγ2i σ
2
∇f3

+ 2∥zi,j − z(xi, yi,j)∥∥z(xi, yi,j)− z(xi, yi,j+1)∥

≤ (1− γiρf3)
K ∥zi,j − z(xi, yi,j)∥2 + (1− γiρf3)

K ∥z(xi, yi,j)− z(xi, yi,j+1)∥2 +Kγ2i σ
2
∇f3

+ ηi∥zi,j − z(xi, yi,j)∥2 + 1

ηi
∥z(xi, yi,j)− z(xi, yi,j+1)∥2

≤ ((1− γiρf3)
K
+ ηi)∥zi,j − z(xi, yi,j)∥2 +

(
(1− γiρf3)

K
+

1

ηi

)
L2
zy∥y

i,j+1 − yi,j∥2 +Kγ2i σ
2
∇f3

= ((1− γiρf3)
K
+ ηi)∥zi,j − z(xi, yi,j)∥2 +

(
(1− γiρf3)

K
+

1

ηi

)
L2
zy∥y

i,j − βig̃
i,j
f2

− yi,j∥2

+Kγ2i σ
2
∇f3

≤ ((1− γiρf3)
K
+ ηi)∥zi,j − z(xi, yi,j)∥2 + η̂iL

2
zyβ

2
i ∥g̃

i,j
f2
∥2 +Kγ2i σ

2
∇f3 ,

where the second inequality follows from applying Young’s inequality (i.e., ab ≤ ϵa2

2 + b2

2ϵ for ϵ > 0)
with ϵ = ηi for some ηi > 0 (notice that a = ∥zi,j−z(xi, yi,j)∥ and b = ∥z(xi, yi,j)−z(xi, yi,j+1)∥
here), the third inequality follows from applying equation E.3, and the last inequality follows from
the fact that 0 ≤ 1− γiρf3 ≤ 1 (where we define η̂i := 1+ 1

ηi
). Lastly, taking total expectation and

using the fact that E[X] = E[E[X|Y ]], we will obtain the bound equation B.6
E[∥zi,j+1 − z(xi, yi,j+1)∥2]

≤ ((1− γiρf3)
K
+ ηi)E[∥zi,j − z(xi, yi,j)∥2] + η̂iL

2
zyβ

2
i E[E[∥g̃

i,j
f2
∥2|Fi,j ]] +Kγ2i σ

2
∇f3

≤ ((1− γiρf3)
K
+ ηi)E[∥zi,j − z(xi, yi,j)∥2] + η̂iL

2
zyβ

2
iΥ+Kγ2i σ

2
∇f3 ,

where the last inequality follows by applying Lemma D.6.

Now, to derive results equation B.7, equation B.8, and equation B.9, we start by decomposing the
expected error of the LL variables by adding and subtracting z(xi, yi) followed by using the fact
that ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) with a and b real-valued vectors:

E[∥zi+1 − z(xi+1, yi+1)∥2] ≤ 2E[∥zi+1 − z(xi, yi)∥2]︸ ︷︷ ︸
A

(2)
1

+2E[∥z(xi, yi)− z(xi+1, yi+1)∥2]︸ ︷︷ ︸
A

(2)
2

.

(C.5)

(Analysis of A(2)
1 ): To derive an upper-bound on A(2)

1 in equation C.5, we can follow the exact
same steps that were utilized in Lemma B.2 to derive bound equation B.3 (only with z(xi) replaced
with z(xi, yi)), which will yield the bound equation B.7. Further, using induction over J (each
consisting of K iterations) will yield the following bound on A(2)

1 in equation C.5 (which is the
bound equation B.8). Notice that this induction result again follows by ensuring that 0 ≤ 1−γiρf3 ≤
1, which is satisfied by the assumption γi ≤ 1

µz+L∇f3
and recalling that γi and ρf3 are positive.

(Analysis of A(2)
2 ): Now, the upper-bound on A(2)

2 in equation C.5 can be derived by taking total
expectation, using the fact that E[X] = E[E[X|Y ]], applying equation E.2, and recursively using
the fact that yi,j+1 = yi,j − βig̃

i,j
f2

(while recalling that yi+1 = yi,J and xi+1 = xi − αig̃
i
f1

):

E[∥z(xi, yi)− z(xi+1, yi+1)∥2] ≤ L2
zxy

E[∥xi − xi+1∥2] + L2
zxy

E[E[∥yi − yi+1∥2|Fi,j ]]

= L2
zxy
α2
iE[∥g̃if1∥

2] + L2
zxy

E[E[∥yi −
J−1∑
j=0

βig̃
i,j
f2

− yi∥2|Fi,j ]]

≤ L2
zxy
α2
iE[∥g̃if1∥

2] + JL2
zxy
β2
i

J−1∑
j=0

E[E[∥g̃i,jf2 ∥
2|Fi,j ]]

≤ L2
zxy
α2
iE[∥g̃if1∥

2] + J2ΥL2
zxy
β2
i ,
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where the second inequality follows from using the fact that ∥
∑N
i=1 ai∥2 ≤ N

∑N
i=1 ∥ai∥2 (for

some a ∈ RN ) and the last inequality follows from applying Lemma D.6. Now, using the fact
that E[X] = E[E[X|Y ]], adding and subtracting ḡif1 in the norm, followed by using the fact that
∥a+ b∥2 ≤ 2

(
∥a∥2 + ∥b∥2

)
, and applying Lemma D.3, we have

E[∥z(xi, yi)− z(xi+1, yi+1)∥2] = L2
zxy
α2
iE[E[∥g̃if1∥

2|Fi]] + J2ΥL2
zxy
β2
i

≤ 2L2
zxy
α2
i (E[∥ḡif1∥

2] + τ) + J2ΥL2
zxy
β2
i .

Notice in the inequality that E[∥ḡif1∥
2] = E[E[∥ḡif1∥

2|Fi]] = ∥ḡif1∥
2 since ḡif1 is deterministic.

Finally, substituting these bounds for A(2)
1 and A

(2)
2 back into equation C.5, we can obtain the

desired upper-bound on E[∥zi+1 − z
(
xi+1, yi+1

)
∥2] defined by equation B.9.

Lastly, to derive the upper-bound equation B.10, we can follow the exact same steps that were
utilized in Lemma B.2 to derive bound equation B.3 (only with z(xi) replaced with z(xi, yi,j)).
Notice that this induction result again follows by ensuring that 0 ≤ 1−γiρf3 ≤ 1, which is satisfied
by the assumption of γi ≤ 1

µz+L∇f3
and recalling that γi and ρf3 are positive. □

C.4 PROOF OF LEMMA B.4

Proof. To derive the error bound defined by equation B.12, we start by decomposing the expected
error of the LL variables by adding and subtracting y(xi) in the following way:

E[∥yi+1 − y(xi+1)∥2] = E[∥yi+1 − y(xi)∥2]︸ ︷︷ ︸
A

(3)
1

+E[∥y(xi)− y(xi+1)∥2]︸ ︷︷ ︸
A

(3)
2

+ 2E[(yi+1 − y(xi))⊤(y(xi)− y(xi+1))]︸ ︷︷ ︸
A

(3)
3

. (C.6)

(Analysis of A(3)
1 ): To derive an upper-bound on A(3)

1 in equation C.6, recall that yi+1 = yi,J and
g̃i,jf2 = ∇y f̄(x

i, yi,j , zi,j+1; ξi,j). Further, notice that there will be a total of J updates to the ML
variables starting from yi to obtain yi+1. Thus, in general, taking expectation conditioned on Fi,j
and applying Lemma D.6, we have

E[∥yi,j+1 − y(xi)∥2|Fi,j ] = E[∥yi,j − βig̃
i,j
f2

− y(xi)∥2|Fi,j ]

≤ ∥yi,j − y(xi)∥2 − 2βi(y
i,j − y(xi))⊤ḡi,jf2 +Υβ2

i

= ∥yi,j − y(xi)∥2 +Υβ2
i − 2βi(y

i,j − y(xi))⊤∇y f̄(x
i, yi,j)

− 2βi(y
i,j − y(xi))⊤(ḡi,jf2 −∇y f̄(x

i, yi,j)),

where the last equality follows from adding and subtracting ∇y f̄(x
i, yi,j) to the ḡi,jf2 term in the

cross-product. Now, under the strong convexity of f̄ (Assumption 3.3) and the Lipschitz continuity
of ∇y f̄ in y (equation equation E.7), we can utilize (Nesterov, 2018, Theorem 2.1.12), yielding

E[∥yi,j+1 − y(xi)∥2|Fi,j ] ≤ ∥yi,j − y(xi)∥2 +Υβ2
i

− 2βi

(
µyL∇f̄

µy + L∇f̄
∥yi,j − y(xi)∥2 + 1

µy + L∇f̄
∥∇y f̄(x

i, yi,j)∥2
)

+ 2βi∥yi,j − y(xi)∥2∥ḡi,jf2 −∇y f̄(x
i, yi,j , zi,j+1)∥2

+ 2βi∥yi,j − y(xi)∥∥∇y f̄(x
i, yi,j , zi,j+1)−∇y f̄(x

i, yi,j)∥,

where the last two added terms come from adding and subtracting ∇y f̄(x
i, yi,j , zi,j+1) to the ḡi,jf2 −

∇y f̄(x
i, yi,j) term in the cross product followed by applying the Cauchy Schwarz inequality. Now,

utilizing the Lipschitz continuity of ∇y f̄ in z (equation equation E.8), the bound on the biasedness
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of g̃f2 (Lemma D.5), and the fact that 2βi

µy+L∇f̄
∥∇y f̄(x

i, yi,j)∥2 is non-negative, we have

E[∥yi,j+1 − y(xi)∥2|Fi,j ]

≤
(
1− βi

(
2µyL∇f̄

µy + L∇f̄
− 2ω̂2θ2i

))
∥yi,j − y(xi)∥2 + 2βi∥yi,j − y(xi)∥∥zi,j+1 − z(xi, yi,j)∥+Υβ2

i

≤
(
1− βi

(
2µyL∇f̄

µy + L∇f̄
− 2ω̂2θ2i − βi

))
∥yi,j − y(xi)∥2 + ∥zi,j+1 − z(xi, yi,j)∥2 +Υβ2

i

= (1− ψiβi) ∥yi,j − y(xi)∥2 + ∥zi,j+1 − z(xi, yi,j)∥2 +Υβ2
i ,

where the last inequality follows from the fact that 2ab ≤ a2 + b2 (a and b positive scalars) where

ψi := ρ− 2ω̂2θ2i − βi and ρ :=
2µyL∇f̄

µy + L∇f̄
. (C.7)

Taking total expectation and using bound equation B.10 from Lemma B.3, we have

E[∥yi,j+1 − y(xi)∥2] (C.8)

≤ (1− ψiβi)E[∥yi,j − y(xi)∥2] + Υβ2
i + (1− γiρf3)

K E[∥zi,j − z(xi, yi,j)∥2] +Kγ2i σ
2
∇f3

≤ (1− ψiβi)
J E[∥yi − y(xi)∥2] + (1− γiρf3)

K
J−1∑
j=0

E[∥zi,j − z(xi, yi,j)∥2] + JΥβ2
i + JKγ2i σ

2
∇f3 ,

(C.9)

where the last inequality follows by using induction over J . Notice that this result follows by
ensuring that 0 ≤ 1 − ψiβi ≤ 1, which holds when choosing βi such that βi ≤ 1

µy+L∇f̄
and βi ≤

ρ
2ω̂2+1 . In other words, to show that 0 ≤ 1− ψiβi, we have

ψiβi = βi(ρ− 2ω̂2θ2i − βi) < βiρ ≤
2µyL∇f̄

(µy + L∇f̄ )
2
≤ 1,

where the first inequality follows by observing that −2ω̂2θ2i βi − β2
i < 0, the second inequality

follows by choosing βi ≤ 1
µy+L∇f̄

along with the definition of ρ, and the third inequality follows

from the fact that 2ab ≤ (a+b)2, with a and b positive scalars. Notice that showing that 1−ψiβi ≤ 1
is equivalent to showing that ψi ≥ 0, i.e., using the fact that 0 < θ2i ≤ θi ≤ 1 along with θi =
αiβiγi ≤ βi, we have

ρ− 2ω̂2θ2i − βi ≥ 0 ⇒ 2ω̂2βi + βi ≤ ρ ⇒ βi ≤
ρ

2ω̂2 + 1
.

Now, looking at the
∑J−1
j=0 E[∥zi,j − z(xi, yi)∥2] term in equation C.9 and defining Θi :=

η̂iL
2
zyΥβ

2
i + Kγ2i σ

2
∇f3 , we have

J−1∑
j=0

E[∥zi,j − z(xi, yi,j)∥2]

= E[∥zi,0 − z(xi, yi,0)∥2] + E[∥zi,1 − z(xi, yi,1)∥2] + · · ·+ E[∥zi,J−1 − z(xi, yi,J−1)∥2]
= E[∥zi − z(xi, yi)∥2]

+ E[∥zi,1 − z(xi, yi,1)∥2] −→
(
≤ ((1− γiρf3)

K
+ ηi)E[∥zi − z(xi, yi)∥2] + Θi

)
+ E[∥zi,2 − z(xi, yi,2)∥2] −→

(
≤ ((1− γiρf3)

K
+ ηi)

2E[∥zi − z(xi, yi)∥2] + 2Θi

)
...

+ E[∥zi,J−1 − z(xi, yi,J−1)∥2] −→
(
≤ ((1− γiρf3)

K
+ ηi)

J−1E[∥zi − z(xi, yi)∥2] + (J − 1)Θi

)
≤ E[∥zi − z(xi, yi)∥2] +

J−1∑
j=1

((1− γiρf3)
K
+ ηi)

jE[∥zi − z(xi, yi)∥2] + Θi

J−1∑
j=1

j, (C.10)
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where the intermediate inequalities follow from applying equation equation B.6 from Lemma B.3
repeatedly while choosing ηi such that ηi ≤ 1 − (1− γiρf3)

K (which will ensure that
0 ≤ (1− γiρf3)

K
+ ηi ≤ 1 when considering the fact that 0 ≤ (1− γiρf3)

K ≤ 1 which is satisfied
by our choice of γi ≤ 1

µz+L∇f3
and recalling that γi, ρf3 , and ηi are positive). Now, looking at the∑J−1

j=1 ((1− γiρf3)
K
+ ηi)

j term in equation C.10, we have

J−1∑
j=1

((1− γiρf3)
K
+ ηi)

j =

(
((1− γiρf3)

K
+ ηi)− ((1− γiρf3)

K
+ ηi)

J

1− ((1− γiρf3)
K
+ ηi)

)
=

(
ϑi − ϑJi
1− ϑi

)
,

where the last equality follows by using the geometric series
∑J−1
j=1 a

j = a−aJ
1−a when a ∈ [0, 1]

and defining ϑi := (1− γiρf3)
K

+ ηi for ease of notation. Now, using the partial sum
∑J−1
j=1 j =

J(J−1)
2 , we can see that the bound equation C.10 on the expression

∑J−1
j=0 E[∥zi,j − z(xi, yi,j)∥2]

is given by

J−1∑
j=0

E[∥zi,j − z(xi, yi,j)∥2] ≤
(
1 +

(
ϑi − ϑJi
1− ϑi

))
E[∥zi − z(xi, yi)∥2] + J(J − 1)

2
Θi. (C.11)

Now, we wish to analyze the limiting behavior of the term ϑi−ϑJ
i

1−ϑi
as ϑ → 0 and ϑ → 1 in order to

obtain an upper-bound. Starting by analyzing the limiting behavior as ϑ→ 0, we have

lim
ϑi→0

ϑi(1− ϑJ−1
i )

1− ϑi
=

0 · 1
1

= 0.

Further, when ϑi → 1, we can analyze the limiting behavior via L’Hopital’s rule to obtain

lim
ϑi→1

ϑi − ϑJi
1− ϑi

= lim
ϑi→1

d
dϑi

(ϑi − ϑJi )
d
dϑi

(1− ϑi)
= lim
ϑi→1

−(1− JϑJ−1
i ) = J − 1.

Therefore, we can see that (since 1 ≤ J ∈ N)

0 ≤ ϑi − ϑJi
1− ϑi

≤ J − 1. (C.12)

Utilizing the upper-bound of equation C.12 in equation C.11 yields

J−1∑
j=0

E[∥zi,j − z(xi, yi,j)∥2] ≤ JE[∥zi − z(xi, yi)∥2] + J(J − 1)

2
Θi. (C.13)

Now, substituting equation C.13 back into equation equation C.9 and using the fact that 0 ≤ 1 −
γiρf3 ≤ 1, which is satisfied by our choice of γi ≤ 1

µz+L∇f3
and recalling that γi and ρf3 are

positive, yields

E[∥yi+1 − y(xi)∥2] ≤ (1− ψiβi)
J E[∥yi − y(xi)∥2] + JΥβ2

i + JKγ2i σ
2
∇f3 +

J(J − 1)

2
Θi

+ (1− γiρf3)
K
JE[∥zi − z(xi, yi)∥2],

Further simplifying this expression, we obtain the bound equation B.11.

(Analysis of A(3)
2 ): The derivation of the upper-bound on A(3)

2 in equation C.6 follows the exact
same steps that were used to derive the upper-bound on the term A

(1)
2 in Lemma B.2 (only with

using equation E.4 instead of equation E.1), from which we have

E[∥y(xi)− y(xi+1)∥2] ≤ 2L2
yα

2
i (E[∥ḡif1∥

2] + τ).
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(Analysis of A(3)
3 ): The term A

(3)
3 in equation C.6 can be bounded by taking expectation condi-

tioned on Fi followed by adding and subtracting ∇y(xi)(xi+1 − xi) in the following way:

E[(yi+1 − y(xi))⊤(y(xi)− y(xi+1))|Fi]
= −E[(yi+1 − y(xi))⊤(∇y(xi)(xi+1 − xi) + y(xi+1)− y(xi)−∇y(xi)(xi+1 − xi))|Fi]
= −E[(yi+1 − y(xi))⊤(∇y(xi)(xi+1 − xi))|Fi]︸ ︷︷ ︸

B
(3)
1

−E[(yi+1 − y(xi))⊤(y(xi+1)− y(xi)−∇y(xi)(xi+1 − xi))|Fi]︸ ︷︷ ︸
B

(3)
2

. (C.14)

(Analysis of B(3)
1 ): The derivation of the upper-bound on B(3)

1 in equation C.14 follows the exact
same steps that were used to derive the upper-bound on the term B

(1)
1 in Lemma B.2 (only with

using equation E.4 instead of equation E.1), from which, for some ϕi > 0, we have

−E[(yi+1 − y(xi))⊤(∇y(xi)(xi+1 − xi))|Fi] ≤ ϕiE[∥yi+1 − y(xi)∥2|Fi] +
α2
iL

2
y

4ϕi
E[∥ḡif1∥

2|Fi].

(Analysis of B(3)
2 ): The derivation of the upper-bound on B(3)

2 in equation C.14 follows the exact
same steps that were used to derive the upper-bound on the term B

(1)
2 in Lemma B.2 (only with

using equation E.13 instead of equation E.5), from which we have

− E[(yi+1 − y(xi))⊤(y(xi+1)− y(xi)−∇y(xi)(xi+1 − xi))|Fi]

≤ L∇yα
2
i ζ

4
E[∥yi+1 − y(xi)∥2|Fi] +

L∇yα
2
i

4
(E[∥ḡif1∥

2|Fi] + τ).

Finally, substituting these bounds for B(3)
1 and B(3)

2 back into equation C.14 and taking total expec-
tation, we obtain the bound on the term A

(3)
3 as

E[(yi+1 − y(xi))⊤(y(xi)− y(xi+1))] ≤
(
ϕi +

L∇yα
2
i ζ

4

)
E[∥yi+1 − y

(
xi
)
∥2]

+

(
α2
iL

2
y

4ϕi
+
L∇yα

2
i

4

)
E[∥ḡif1∥

2] +
τL∇y

4
α2
i .

Finally, substituting these bounds for A(3)
1 , A(3)

2 , and A(3)
3 back into equation C.6, we obtain the

desired upper-bound on E[∥yi+1 − y(xi+1)∥2], completing the proof. □
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C.5 PROOF OF THEOREM B.5

Proof. To begin, using Lemmas B.1, B.2, B.3, and B.4, we can begin by bounding the two Lyapunov
difference terms (defined in equation B.1) by taking total expectation in the following way:

E[Vi+1]− E[Vi]
= E[f(xi+1)]− E[f(xi)]︸ ︷︷ ︸

Lemma B.1

+E[∥yi+1 − y
(
xi+1

)
∥2]︸ ︷︷ ︸

Lemma B.4

−E[∥yi − y
(
xi
)
∥2]

+ E[∥zi+1 − z
(
xi+1

)
∥2]︸ ︷︷ ︸

Lemma B.2

−E[∥zi − z
(
xi
)
∥2] + E[∥zi+1 − z

(
xi+1, yi+1

)
∥2]︸ ︷︷ ︸

Lemma B.3

−E[∥zi − z
(
xi, yi

)
∥2]

≤ −αi
2
E[∥∇f(xi)∥2]−

(
αi
2

− LFα
2
i

2

)
E[∥ḡif1∥

2] + ω̃α2
i

+ αiL
2
Fyz

E[∥y(xi)− yi+1∥2] + αiL
2
Fyz

E[∥z(xi)− zi+1∥2]

+

(
1 + 2ϕi +

L∇yα
2
i ζ

2

)
E[∥yi+1 − y

(
xi
)
∥2]

+

(
2L2

y +
L2
y

2ϕi
+
L∇y

2

)
α2
iE[∥ḡif1∥

2] +

(
2L2

y +
L∇y

2

)
τα2

i

+

(
1 + 2κi +

L∇zα
2
i ζ

2

)
E[∥zi+1 − z

(
xi
)
∥2]

+

(
2L2

z +
L2
z

2κi
+
L∇z

2

)
α2
iE[∥ḡif1∥

2] +

(
2L2

z +
L∇z

2

)
τα2

i

+

(
1 + 2 (ηi + υi) +

Lzxyα
2
i ζ

2
+
J2ΥLzxyβ

2
i

2

)
E[∥zi+1 − z

(
xi, yi

)
∥2]

+

(
2L2

zxy
+
L2
zxy

2ηi
+
Lzxy

2

)
α2
iE[∥ḡif1∥

2] +

(
2L2

zxy
+
Lzxy

2

)
α2
i τ +

(
1 + 2Lzxy +

Lzxy

υi

)
J2ΥLzxy

β2
i

2

− E[∥yi − y
(
xi
)
∥2]− E[∥zi − z

(
xi
)
∥2]− E[∥zi − z

(
xi, yi

)
∥2].

Simplifying, we have

E[Vi+1]− E[Vi] ≤ −αi
2
E[∥∇f(xi)∥2]−

(
αi
2

− LFα
2
i

2

)
E[∥ḡif1∥

2]

+

(
1 + αiL

2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2

)
E[∥yi+1 − y

(
xi
)
∥2]︸ ︷︷ ︸

Lemma B.4

(C.15)

+

(
1 + αiL

2
Fyz

+ 2κi +
L∇zα

2
i ζ

2

)
E[∥zi+1 − z

(
xi
)
∥2]︸ ︷︷ ︸

Lemma B.2

(C.16)

+

(
1 + 2 (ηi + υi) +

Lzxy
α2
i ζ

2
+
J2ΥLzxy

β2
i

2

)
E[∥zi+1 − z

(
xi, yi

)
∥2]︸ ︷︷ ︸

Lemma B.3
(C.17)

+

(
2L2

y +
L2
y

2ϕi
+
L∇y

2
+ 2L2

z +
L2
z

2κi
+
L∇z

2
+ 2L2

zxy
+
L2
zxy

2ηi
+
Lzxy

2

)
α2
iE[∥ḡif1∥

2]

(C.18)

+

((
2L2

y +
L∇y

2
+ 2L2

z +
L∇z

2
+ 2L2

zxy
+
Lzxy

2

)
τ + ω̃

)
α2
i (C.19)

+

(
1 + 2Lzxy +

Lzxy

υi

)
J2ΥLzxy

β2
i

2

− E[∥yi − y
(
xi
)
∥2]− E[∥zi − z

(
xi
)
∥2]− E[∥zi − z

(
xi, yi

)
∥2].
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Now, for ease of notation, we denote the coefficients in equation C.15–equation C.19 as follows:

Gi1 :=

(
1 + αiL

2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2

)
, (C.20)

Gi2 :=

(
1 + αiL

2
Fyz

+ 2κi +
L∇zα

2
i ζ

2

)
, (C.21)

Gi3 :=

(
1 + 2 (ηi + υi) +

Lzxyα
2
i ζ

2
+
J2ΥLzxyβ

2
i

2

)
, (C.22)

Gi4 :=

(
2L2

y +
L2
y

2ϕi
+
L∇y

2
+ 2L2

z +
L2
z

2κi
+
L∇z

2
+ 2L2

zxy
+
L2
zxy

2ηi
+
Lzxy

2

)
, (C.23)

Φ :=

((
2L2

y +
L∇y

2
+ 2L2

z +
L∇z

2
+ 2L2

zxy
+
Lzxy

2

)
τ + ω̃

)
. (C.24)

Then, using these definitions and applying Lemmas B.2, B.3, and B.4, we have

E[Vi+1]− E[Vi] ≤ −αi
2
E[∥∇f(xi)∥2]−

(
αi
2

− LFα
2
i

2
−Gi4α

2
i

)
E[∥ḡif1∥

2] + Φα2
i

+Gi1 (1− ψiβi)
J E[∥yi − y(xi)∥2] +Gi1

(
1 +

1

2
(J − 1) ˆ̂ηiL

2
zy

)
JΥβ2

i +Gi1
J + 1

2
JKγ2i σ

2
∇f3

+Gi1 (1− γiρf3)
K

(
1 +

(
ϑi − ϑJi
1− ϑi

))
E[∥zi − z(xi, yi)∥2]

+Gi2 (1− γiρf3)
JK E[∥zi − z(xi)∥2] +Gi2JKγ

2
i σ

2
∇f3

+Gi3 (1− γiρf3)
JK E[∥zi − z(xi, yi)∥2] +Gi3JKγ

2
i σ

2
∇f3

+

(
1 + 2Lzxy

+
Lzxy

υi

)
J2ΥLzxy

β2
i

2

− E[∥yi − y
(
xi
)
∥2]− E[∥zi − z

(
xi
)
∥2]− E[∥zi − z

(
xi, yi

)
∥2].

Simplifying once again while using the fact that (1− γiρf3)
JK ≤ (1− γiρf3)

K (recalling that ρf3
from Lemma B.2 and γi are positive) as well as J − 1 ≤ J , we have

E[Vi+1]− E[Vi]

≤ −αi
2
E[∥∇f(xi)∥2] + Φα2

i −
(
αi
2

− LFα
2
i

2
−Gi3α

2
i

)
︸ ︷︷ ︸

A1

E[∥ḡif1∥
2]

+ (
(
Gi1J + 2

)
(1− γiρf3)

K − 1)︸ ︷︷ ︸
A2

E[∥zi − z(xi, yi)∥2]

+ (Gi1 (1− ψiβi)
J − 1)︸ ︷︷ ︸

A3

E[∥yi − y(xi)∥2] + (Gi2 (1− γiρf3)
JK − 1)︸ ︷︷ ︸

A4

E[∥zi − z(xi)∥2]

+

(
2JL2

zxy
+

(
1 +

1

2
Jη̂iL

2
zy

)
Gi1

)
JΥβ2

i +

(
Gi1

J + 1

2
+Gi2 + 2

)
JKγ2i σ

2
∇f3 , (C.25)

(Analysis of A1): Now, consider the coefficient A1 of the E[∥ḡif1∥
2] term in equation C.25. We

wish to determine an appropriate bound on αi such that this term in non-negative. To that end, we
wish to ensure that A1 ≥ 0, which is true if

1

2
−
L2
yαi

2ϕi
− L2

zαi
2κi

−
(
LF
2

+ 2L2
y +

L∇y

2
+ 2L2

z +
L∇z

2
+ 4L2

zxy

)
αi ≥ 0.

Now, choosing
ϕi = 4L2

yαi and κi = 4L2
zαi, (C.26)
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we have

αi ≤
1
4

LF

2 + 2L2
y +

L∇y

2 + 2L2
z +

L∇z

2 + 4L2
zxy

=
1

2(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)
.

(C.27)

(Defining ᾱ1): Now, we will define ᾱ1 as the largest value that αi can take, which is defined by the
upper-bound equation C.27 and the fact that αi ≤ 1, i.e.,

ᾱ1 := min

{
1,

1

2(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)

}
. (C.28)

(Analysis of A2): Now, consider the coefficient A2 of the E[∥zi − z(xi, yi)∥2] term in equa-
tion C.25. We wish to determine an appropriate bound on γi such that this term is non-positive.
Now, recall from Lemma B.2 that ρf3 =

2µzL∇f3

µz+L∇f3
(see equation C.3 in Appendix C.2) as well as

the assumed bound (imposed in Lemmas B.2, B.3, and B.4)

γi ≤
1

µz + L∇f3
. (C.29)

Recall the fact that γi and ρf3 are positive, along with equation C.29, which ensures that
0 ≤ 1− γiρf3 ≤ 1. With this, to guarantee that A2 is non-positive, we wish to ensure that

(Gi1J + 2) (1− γiρf3)
K ≤ 1, (C.30)

Now, recall the fact that 1 + a ≤ ea for any a ∈ R. Multiplying both sides of this equation by the
quantity

(
1− a

K

)K
, we can see that

(1 + a)
(
1− a

K

)K
≤ ea

(
1− a

K

)K
≤ ea

(
e−

a
K

)K
= eae−a = 1. (C.31)

Now, to ensure that equation C.30 holds, applying equation C.31 with a = Kγiρf3 , yields the new
inequality we wish to satisfy given by

Gi1J + 2 ≤ 1 +Kγiρf3 . (C.32)

Further, using the fact that αi ≤ 1 along with the choice ϕi = 4L2
yαi, we have

Gi1 = 1 +

(
L2
Fyz

+ 8L2
y +

L∇yζ

2

)
αi. (C.33)

Thus, utilizing equation C.33, we see that equation C.32 is satisfied by(
1 +

(
L2
Fyz

+ 8L2
y +

L∇yζ

2

)
αi

)
J + 2 ≤ 1 +Kγiρf3 ,

1 + J + g̃1Jαi ≤ Kγiρf3 , (C.34)

with g̃1 := L2
Fyz

+8L2
y +

L∇yζ
2 . Therefore, when choosing γi, and K such that the inequality equa-

tion C.34 is satisfied, the coefficient A2 of the E[∥zi − z(xi, yi)∥2] term in equation C.25 will be
non-positive.

(Analysis of A3): Now, consider the coefficient A3 of the E[∥yi − y(xi)∥2] term in equation C.25.
We wish to choose a βi such that this term is non-positive. Recall from the proof of Lemma B.4
that ρ =

2µyL∇f̄

µy+L∇f̄
(see equation C.7 in Appendix C.4) and that

βi ≤ 1

µy + L∇f̄
, βi ≤ ρ

2ω̂2 + 1
. (C.35)

Further, recall from Lemma B.4 that these two upper-bounds ensure that 0 ≤ 1 − ψiβi ≤ 1, where
ψi = ρ−2ω̂2θ2i −βi. With this, we wish to ensure thatGi1 (1− ψiβi)

J ≤ 1. Now, once again using
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the fact that (1 + a)
(
1− a

J

)J ≤ 1 as discussed for the analysis of A2, we need to choose an a such
that 0 ≤ a

J ≤ 1. Choosing a = Jψiβi, we have a
J = Jψiβi

J = ψiβi, which from Lemma B.4, we
know that 0 ≤ ψiβi ≤ 1, and by extension that 0 ≤ a

J ≤ 1. Thus, we choose βi such that

Gi1 ≤ 1 + Jψiβi ⇒ αiL
2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2
≤ Jψiβi. (C.36)

(Analysis of A4): Now, consider the coefficient A4 of the E[∥zi − z(xi)∥2] term in equa-
tion C.25. We wish to choose a γi such that this term is non-positive. With this, we have
Gi2 (1− γiρf3)

JK ≤ 1. Now, recall that equation equation C.29 ensures 0 ≤ (1− γiρf3)
JK ≤ 1.

With this, and using the same reasoning that was used earlier, we need to choose γi such that
Gi2 ≤ 1 + JKγiρf3 , which, when utilizing the fact that αi ≤ 1 and the choice κi = 4L2

zαi, is
satisfied if

g̃2αi ≤ JKγiρf3 , where g̃2 := L2
Fyz

+ 8L2
z +

L∇zζ

2
. (C.37)

(Defining β̄1): Now, from equation equation C.35, define the constant β̄1 as the largest value that
βi can take, i.e.,

β̄1 := min

{
1,

1

µy + L∇f
,

ρ

2ω̂2 + 1

}
. (C.38)

(Choosing the step-size βi): We need to choose βi to ensure that equation C.36 is satisfied. To that
end, using the fact that θi = αiβiγi ≤ βi (by αi ≤ 1 and γi ≤ 1) and equation C.38 in the definition
of ψi = ρ− 2ω̂2θ2i − βi, we define the lower-bounding constant Γ as

Γ := ρ− 2ω̂2β̄2
1 − β̄1. (C.39)

Notice that 0 ≤ Γ ≤ ψi for all feasible values of θi and βi in ψi. Now, using this definition of Γ,
along with equation equation C.28 and the fact that ϕi = 4L2

yαi, from equation equation C.36, we
can choose the ML step-size as

βi :=
2L2

Fyz
+ 16L2

y + L∇yᾱ1ζ

2JΓ
αi, (C.40)

which follows by keeping one αi while upper-bounding the other with ᾱ1 and solving for βi in equa-
tion C.36. It bears mentioning that this choice of βi still needs to satisfy the bound βi ≤ β̄1, which
can be satisfied by choosing a sufficiently small αi, which will be defined as the upper-bound ᾱ2

below in equation equation C.55.

(Defining γ̄1): Now, from equation equation C.29, we can define the constant γ̄1 as the largest value
that γi can take as

γ̄1 := min

{
1,

1

µz + L∇f3

}
. (C.41)

(Choosing the step-size γi): From equations equation C.34 and equation C.37, we need to satisfy
the lower-bound

max

{
1 + J

Kρf3
+
g̃1Jαi
Kρf3

,
g̃2αi
JKρf3

}
≤ γi. (C.42)

Now, we can rearrange the left-hand side of this inequality by multiplying by 1 = J
√
K

J
√
K

, yielding

Π :=
1

J
√
K

max

{
J(1 + J)√
Kρf3

+
g̃1J

2αi√
Kρf3

,
g̃2αi√
Kρf3

}
≤ γi. (C.43)

Further, we wish to define γi as some constant multiple of αi. This can be accomplished by imposing
the following appropriate bound on αi, which can be enforced by a sufficiently large enough choice
of K:

J(1 + J)√
Kρf3

≤ αi. (C.44)
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Thus, under this bound on αi, it is clear that we can replace the lower-bound equation C.43 with
a more restrictive bound on γi (but which is defined as a constant multiple of αi) in the following
way:

Π ≤
max

{
1 + g̃1J

2

√
Kρf3

, g̃2√
Kρf3

}
J
√
K

αi ≤ γi.

Therefore, we choose the LL step-size as this new lower-bound, i.e.,

γi :=
ϱ(J,K)

J
√
K

αi, (C.45)

where the function ϱ : N+ × N+ → R+ is defined as

ϱ(J,K) := max

{
1 +

g̃1J
2

√
Kρf3

,
g̃2√
Kρf3

}
. (C.46)

In order to ensure that ϱ(J,K) does not grow to infinity as J increases, we can impose the lower-
bound on K of

K ≥ g̃21J
4

ρ2f3
. (C.47)

Now, it bears mentioning that this choice of γi defined by equation C.45 still needs to satisfy the
bound γi ≤ γ̄1, which can be ensured by choosing a sufficiently small αi, which will be defined as
the upper-bound ᾱ3 below in equation equation C.56.

(Upper-bounding η̂i): We need an upper-bound on the positive quantity η̂i in the second to last
term of equation C.25. Specifically, we wish to upper bound the term given by

η̂i = 1 +
1

ηi
. (C.48)

Further, recall that 0 ≤ (1− γiρf3)
K
+ ηi ≤ 1 from the assumed bound (imposed in Lemma B.4)

ηi ≤ 1− (1− γiρf3)
K
, (C.49)

on the positive quantity ηi > 0. To ensure that bound equation C.49 is always satisfied, we can start
by choosing ηi to be

ηi := E(1− (1− γiρf3)
K), (C.50)

for some constant 0 < E < 1. Thus, we want to derive an upper-bound on the term 1/ηi. Recall
that 1 + a ≤ ea for all a ∈ R. Recalling equation C.45 and letting â :=

ϱ(J,K)ρf3
J
√
K

αi, we have that

(1 − â)K ≤ e−Kâ. For simplification, let ā = Kâ =
√
Kϱ(J,K)ρf3

J αi. Further, multiplying both
sides of the inequality by −1 and adding 1 to both sides, we obtain 1− (1− â)K ≥ 1− e−ā. Lastly,
multiplying by E and inverting, we obtain the inequality

1

ηi
≤ 1

E(1− e−ā)
. (C.51)

Notice that the right-hand side of this inequality decreases when ā → ∞ and increases toward
infinity as ā → 0. Therefore, we can derive an upper-bound on 1/ηi by analyzing the limiting
behavior of ā → 0. To that end, we can begin by analyzing the behavior of ϱ (J,K) in terms
of the combinations of scenarios when J = 1 or J = ∞ and K =

g̃21J
4

ρ2f3
(lower-bound defined

by equation C.47) or K = ∞, yielding the bounds

1 ≤ ϱ (J,K) ≤ max

{
2,
g̃2
g̃1

}
. (C.52)

Therefore, we can see that when lower-bounding ϱ (J,K) with 1, we have

ā =

√
Kϱ(J,K)ρf3

J
αi ≥

√
Kρf3

αi
J
.
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Therefore, ā will approach 0 when Jα−1
i approaches infinity faster than K. Therefore, in order to

prevent ā from reaching 0, we can impose another lower-bound on K in the form of

K ≥ J2

α2
i

. (C.53)

When imposing this bound, we can see that ā ≥ ρf3 . Therefore, when imposing the bound equa-
tion C.53, we will obtain the upper-bound we desire of

1

ηi
≤ 1

E(1− e−ρf3 )
. (C.54)

(Defining ᾱ2): Now, in order to ensure that the bound βi ≤ β̄1 in equation C.38 is satisfied, we
can use the step-size choice of βi in equation C.40 along with the upper-bounds on βi defined
in equation C.38 to define the upper-bound constant ᾱ2 as

ᾱ2 :=
2JΓβ̄1

2L2
Fyz

+ 16L2
y + L∇yᾱ1ζ

. (C.55)

(Defining ᾱ3): Further, in order to ensure that the bound γi ≤ γ̄1 in equation C.41 is satisfied,
with the step-size choice of γi in equation C.45 along with the upper-bounds on γi defined in equa-
tion C.41 and the lower-bound of 1 ≤ ϱ(J,K) in equation C.52 we can define the upper-bound
constant ᾱ3 as

ᾱ3 := J
√
Kγ̄1. (C.56)

(Choosing the step-size αi): Therefore, in order to satisfy conditions equation C.28, equation C.55,
and equation C.56 we choose αi to be

αi := min

{
ᾱ1, ᾱ2, ᾱ3,

α0√
I

}
, (C.57)

where α0 ∈ (0, 1] is some constant.

(Identifying the lower-bounds on K): Now, it bears mentioning that with the choice of step-size
for αi given by equation C.57, from bounds equation C.44, equation C.47, and equation C.53, we
can write the consolidated lower-bound that we require K to satisfy as

K ≥ max

 J2(1 + J)2

ρ2f3 min
{
ᾱ1, ᾱ2, ᾱ3,

α0√
I

}2 ,
g̃21J

4

ρ2f3
,

J2

min
{
ᾱ1, ᾱ2, ᾱ3,

α0√
I

}2

 . (C.58)

Notice that only ᾱ3 on the right-hand side of equation C.58 is the only term with a K in it. How-
ever, since limK→∞ ᾱ3 = ∞, it will either have no impact on the right-hand side or it will act
to potentially decrease the right-hand side, making the bound on K less restrictive. Thus, we can
lower-bound ᾱ3 by the positive constant α̂3 := ᾱ3|K=1,J=1 ≤ ᾱ3. For the sake of clarity, we can
also lower-bound ᾱ2 by the positive constant α̂2 := ᾱ2|J=1 ≤ ᾱ2. Lastly, by using the lower-bound
I ≥ 1, notice that

1

min
{
ᾱ1, α̂2, α̂3,

α0√
I

}2 = max

{
1

ᾱ2
1

,
1

α̂2
2

,
1

α̂2
3

,
I

α2
0

}
= Imax

{
1

Iᾱ2
1

,
1

Iα̂2
2

,
1

Iα̂2
3

,
1

α2
0

}
≤ IΛ,

where Λ := max
{

1
ᾱ2

1
, 1
α̂2

2
, 1
α̂2

3
, 1
α2

0

}
is a positive constant independent of I , J , and K. Now, putting

this together, we can write equation C.58 alternatively as the bound

K ≥ max

{
J2(1 + J)2IΛ

ρ2f3
,
g̃21J

4

ρ2f3
, J2IΛ

}
, (C.59)

from which it is immediately clear that K ≥ O(J4I).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

(Upper-bounding the remaining terms in equation C.25): We wish to upper-bound Gi1 and Gi2.
We have seen that Gi1 can be given by equation C.33. Using the fact that αi ≤ 1, we have

Gi1 ≤ 1 + L2
Fyz

+ 8L2
y +

L∇yζ

2
:= g1. (C.60)

We can bound Gi2 from equation C.21 similarly by using the choice κi = 4L2
zαi along with the fact

that αi ≤ 1, yielding

Gi2 ≤ 1 + L2
Fyz

+ 8L2
z +

L∇zζ

2
:= g2. (C.61)

Therefore, by choosing the step-sizes αi, βi, and γi according to equation C.57, equation C.40,
and equation C.45, respectively, it follows that A1 is non-negative while A2, A3, and A4 are non-
positive in equation C.25. Therefore, when utilizing the bounds equation C.54, equation C.60, and
equation C.61, we can simplify inequality equation C.25 to

E[Vi+1]− E[Vi] ≤ −αi
2
E[∥∇f(xi)∥2] + Φα2

i +

(
g1
J + 1

2
+ g2 + 2

)
JKγ2i σ

2
∇f3

+

(
2JL2

zxy
+

(
1 + J

(
1

E (1− e−ρf3 )

)
L2
zy

2

)
g1

)
JΥβ2

i

≤ −αi
2
E[∥∇f(xi)∥2] + (Φ + c1 + c2)α

2
i , (C.62)

where the last inequality follows from utilizing the step-sizes βi and γi according to equation C.40
and equation C.45, respectively, along with using the upper-bound defined in equation C.52, where
the constants c1 and c2 are defined as the following:

c1 :=

(
g1
2

+
(g1
2

+ g2 + 2
) 1

J

)
σ2
∇f3 max

{
2,
g̃2
g̃1

}2

,

c2 :=

(
2L2

zxy
+

(
1

J
+

(
1

E (1− e−ρf3 )

)
L2
zy

2

)
g1

)
Υ(2L2

Fyz
+ 16L2

y + L∇yᾱ1ζ)
2

4Γ2
.

(Telescoping): Now, rearranging equation C.62 and telescoping over i = 0, 1, ..., I − 1 leads to

1

2

I−1∑
i=0

αiE[∥∇f(xi)∥2] ≤ V0 − VI +
I−1∑
i=0

(Φ + c1 + c2)α
2
i . (C.63)

Note that αi is a constant that does not depend on i given by equation C.57. Thus, dividing both
sides of equation C.63 by 1

2Iαi, while noting that
∑I−1
i=0 αi = Iαi, and considering that 0 ≤ Vi for

all i ∈ {0, 1, ..., I − 1}, we have

1

I

I−1∑
i=0

E[∥∇f(xi)∥2] ≤
V0 + (Φ + c1 + c2)

∑I−1
i=0 α

2
i

1
2Iαi

≤ 2V0

Iαi
+

2(Φ + c1 + c2)α0√
I

≤ 2V0

Imin{ᾱ1, ᾱ2, ᾱ3}
+

2V0

α0

√
I
+

2(Φ + c1 + c2)α0√
I

,

where the second inequality follows from αi ≤ α0√
I

and the last inequality follows from

2V0

Iαi
=

2V0

I

 1

min
{
ᾱ1, ᾱ2, ᾱ3,

α0√
I

}
 ≤ 2V0

I

(
1

min {ᾱ1, ᾱ2, ᾱ3}
+

1
α0√
I

)
=

2V0

Imin{ᾱ1, ᾱ2, ᾱ3}
+

2V0

α0

√
I
.

Therefore, we have obtained the desired convergence result, completing the proof. □
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C.6 PROOF OF THEOREM B.6

Proof. The start of the proof of this theorem follows the same reasoning that was utilized to ob-
tain equation C.25 in the proof of Theorem B.5 (Appendix C.5), which we restate here as equa-
tion C.64:

E[Vi+1]− E[Vi]

≤ −αi
2
E[∥∇f(xi)∥2] + Φα2

i −
(
αi
2

− LFα
2
i

2
−Gi3α

2
i

)
︸ ︷︷ ︸

A1

E[∥ḡif1∥
2]

+ ((Gi1J + 2) (1− γiρf3)
K − 1)︸ ︷︷ ︸

A2

E[∥zi − z(xi, yi)∥2]

+ (Gi1 (1− ψiβi)
J − 1)︸ ︷︷ ︸

A3

E[∥yi − y(xi)∥2] + (Gi2 (1− γiρf3)
JK − 1)︸ ︷︷ ︸

A4

E[∥zi − z(xi)∥2]

+

(
2JL2

zxy
+

(
1 +

1

2
Jη̂iL

2
zy

)
Gi1

)
JΥβ2

i +

(
Gi1

J + 1

2
+Gi2 + 2

)
JKγ2i σ

2
∇f3 . (C.64)

The definitions of Gi1, Gi2, Gi3, and Φ are restated here as

Gi1 :=

(
1 + αiL

2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2

)
, (C.65)

Gi2 :=

(
1 + αiL

2
Fyz

+ 2κi +
L∇zα

2
i ζ

2

)
, (C.66)

Gi3 :=

(
2L2

y +
L2
y

2ϕi
+
L∇y

2
+ 2L2

z +
L2
z

2κi
+
L∇z

2
+ 4L2

zxy

)
, (C.67)

Φ :=

((
2L2

y +
L∇y

2
+ 2L2

z +
L∇z

2
+ 4L2

zxy

)
τ + ω̃

)
. (C.68)

(Choice of step sizes): In the proof of this theorem, we choose the UL, ML, and LL step sizes to be
the following:

αi :=
1√
I
, (C.69)

βi :=
1√
J
αi =

1√
I
√
J
, (C.70)

γi :=
1√
J
√
K
αi =

1√
I
√
J
√
K
. (C.71)

(Analysis of A1): Now, consider the coefficient A1 of the E[∥ḡif1∥
2] term in equation C.64. We

wish to determine an appropriate bound on αi (in terms of I) such that this term in non-negative. To
that end, we wish to ensure that A1 ≥ 0, which is true if

1

2
−
L2
yαi

2ϕi
− L2

zαi
2κi

−
(
LF
2

+ 2L2
y +

L∇y

2
+ 2L2

z +
L∇z

2
+ 4L2

zxy

)
αi ≥ 0.

Now, choosing
ϕi = 4L2

yαi and κi = 4L2
zαi, (C.72)

we have

αi ≤
1
4

LF

2 + 2L2
y +

L∇y

2 + 2L2
z +

L∇z

2 + 4L2
zxy

=
1

2(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)
.

(C.73)
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Now, recalling our choice for αi given by equation C.69, then from equation C.73 we see that we
must choose I ∈ N such that

4(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)2 ≤ I. (C.74)

Therefore, when choosing I such that the inequality equation C.74 is satisfied, the coefficient A1 of
the E[∥ḡif1∥

2] term in equation C.64 will be non-negative.

(Analysis of A2): Now, consider the coefficient A2 of the E[∥zi − z(xi, yi)∥2] term in equa-
tion C.64. We wish to determine an appropriate bound on γi (in terms of I , J , and K) such that
this term is non-positive. Now, recall from Lemma B.2 that ρf3 =

2µzL∇f3

µz+L∇f3
(see equation C.3 in

Appendix C.2) as well as the assumed bound (imposed in Lemmas B.2, B.3, and B.4)

γi ≤
1

µz + L∇f3
. (C.75)

Utilizing our choice of γi given by equation C.71, this can be satisfied by choosing I , J , andK such
that

(µz + L∇f3)
2 ≤ IJK, (C.76)

Recall the fact that γi and ρf3 are positive, along with equation C.75, which ensures that
0 ≤ 1− γiρf3 ≤ 1. With this, to guarantee that A2 is non-positive, we wish to ensure that

(Gi1J + 2) (1− γiρf3)
K ≤ 1, (C.77)

Now, recall the fact that 1 + a ≤ ea for any a ∈ R. Multiplying both sides of this equation by the
quantity

(
1− a

K

)K
, we can see that

(1 + a)
(
1− a

K

)K
≤ ea

(
1− a

K

)K
≤ ea

(
e−

a
K

)K
= eae−a = 1. (C.78)

Now, to ensure that equation C.77 holds, applying equation C.78 with a = Kγiρf3 , yields the new
inequality we wish to satisfy given by

Gi1J + 2 ≤ 1 +Kγiρf3 . (C.79)

Now, using the fact that αi ≤ 1 along with the choice ϕi = 4L2
yαi, we can upper-bound Gi1 as

Gi1 = 1 + αiL
2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2
≤ 1 + L2

Fyz
+ 8L2

y +
L∇yζ

2
:= g1. (C.80)

Thus, utilizing equation C.80, we can guarantee equation C.79 if Jg1 + 1 ≤ Kγiρf3 is satisfied.
Now, utilizing the choice of γi given by equation C.71, we have

Jg1 + 1

ρf3
≤ K√

I
√
J
√
K

⇒ IJ(Jg1 + 1)2

ρ2f3
≤ K. (C.81)

Therefore, when choosing I , J , and K such that the inequality equation C.81 is satisfied, the coef-
ficient A2 of the E[∥zi − z(xi, yi)∥2] term in equation C.64 will be non-positive.

(Analysis of A3): Now, consider the coefficient A3 of the E[∥yi − y(xi)∥2] term in equation C.64.
We wish to determine an appropriate bound on βi (in terms of I and J) such that this term is non-
positive. Recall from the proof of Lemma B.4 that ρ =

2µyL∇f̄

µy+L∇f̄
(see equation C.7 in Appendix C.4)

and that
βi ≤ 1

µy + L∇f̄
, βi ≤ ρ

2ω̂2 + 1
. (C.82)

Utilizing our choice of βi given by equation C.70, this can be satisfied by choosing I and J such
that

max

{
µy + L∇f̄ ,

2ω̂2 + 1

ρ

}2

≤ IJ. (C.83)

Further, recall from Lemma B.4 that these two upper-bounds ensure that 0 ≤ 1 − ψiβi ≤ 1, where
ψi = ρ−2ω̂2θ2i −βi. With this, we wish to ensure thatGi1 (1− ψiβi)

J ≤ 1. Now, once again using
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the fact that (1 + a)
(
1− a

J

)J ≤ 1 as discussed for the analysis of A2, we need to choose an a such
that 0 ≤ a

J ≤ 1. Choosing a = Jψiβi, we have a
J = Jψiβi

J = ψiβi, which from Lemma B.4, we
know that 0 ≤ ψiβi ≤ 1, and by extension that 0 ≤ a

J ≤ 1. Thus, we have

Gi1 ≤ 1 + Jψiβi ⇒ αiL
2
Fyz

+ 2ϕi +
L∇yα

2
i ζ

2
≤ Jψiβi. (C.84)

Notice that from equation equation C.82, βi is upper-bounded by the constant β̄1 (defined as the
largest value that βi can take) given by

β̄1 := min

{
1,

1

µy + L∇f̄
,

ρ

2ω̂2 + 1

}
. (C.85)

Using the fact that θi = αiβiγi ≤ βi (by αi ≤ 1 and γi ≤ 1) and equation C.85 in the definition of
ψi = ρ− 2ω̂2θ2i − βi, we can define the new lower-bounding constant Γ as

Γ := ρ− 2ω̂2β̄2
1 − β̄1. (C.86)

Notice that 0 ≤ Γ ≤ ψi for all feasible values of θi and βi in ψi. Now, using this definition of Γ, the
fact that αi ≤ 1, and the choice ϕi = 4L2

yαi, we have that the following implies equation C.84:

αi

(
L2
Fyz

+ 8L2
y +

L∇yζ

2

)
≤ JΓβi.

Utilizing the choices for αi and βi given by equation C.69 and equation C.70, respectively, it follows
that the bound (

L2
Fyz

+ 8L2
y +

L∇yζ
2

)2
Γ2

≤ J, (C.87)

implies that equation C.84 is satisfied. Therefore, when choosing J such that the inequality equa-
tion C.87 is satisfied, the coefficient A3 of the E[∥yi − y(xi)∥2] term in equation C.64 will be
non-positive.

(Analysis of A4): Now, consider the coefficient A4 of the E[∥zi − z(xi)∥2] term in equation C.64.
We wish to determine an appropriate bound on γi (in terms of I , J , andK) such that this term is non-
positive. That is, we wish to show Gi2 (1− γiρf3)

JK ≤ 1. Now, recall that equation equation C.75
ensures 0 ≤ (1− γiρf3)

JK ≤ 1. With this, and using the same reasoning that was used earlier, we
need to show that

Gi2 ≤ 1 + JKγiρf3 ⇒ αiL
2
Fyz

+ 2κi +
L∇zα

2
i ζ

2
≤ JKγiρf3 . (C.88)

Now, using the fact that αi ≤ 1 along with the choice κi = 4L2
zαi, we can see that equation C.88 is

satisfied if

αi

(
L2
Fyz

+ 8L2
z +

L∇zζ

2

)
≤ JKγiρf3 .

Utilizing the choices for αi and γi given by equation C.69 and equation C.71, respectively, it follows
that the bound (

L2
Fyz

+ 8L2
z +

L∇zζ
2

)2
ρ2f3

≤ JK, (C.89)

implies equation C.88. Therefore, when choosing J and K such that the inequality equation C.89 is
satisfied, the coefficient A4 of the E[∥zi − z(xi)∥2] term in equation C.64 will be non-positive.

(Upper-bounding η̂i): We need an upper-bound on the positive quantity η̂i in the second to last
term of equation C.64. Specifically, we wish to upper bound the term given by

η̂i = 1 +
1

ηi
. (C.90)

Further, recall that 0 ≤ (1− γiρf3)
K
+ ηi ≤ 1 from the assumed bound (imposed in Lemma B.4)

ηi ≤ 1− (1− γiρf3)
K
, (C.91)
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on the positive quantity ηi > 0. To ensure that bound equation C.91 is always satisfied, we can start
by choosing ηi to be

ηi := E(1− (1− γiρf3)
K), (C.92)

for some constant 0 < E < 1. When utilizing the choice of γi given by equation C.71, we have

ηi := E

(
1−

(
1− ρf3√

I
√
J
√
K

)K)
.

Thus, we want to derive an upper-bound on the term 1/ηi. Recall that 1 + a ≤ ea for all a ∈ R.
Letting â :=

ρf3√
I
√
J
√
K

, we have that (1 − â)K ≤ e−Kâ. For simplification, let ā = Kâ =
√
K√
I
√
J
ρf3 . Further, multiplying both sides of the inequality by −1 and adding 1 to both sides, we

obtain 1− (1− â)K ≥ 1− e−ā. Lastly, multiplying by E and inverting, we obtain the inequality

ηi = E(1− (1− â)K) ≥ E(1− e−ā) =⇒ 1

ηi
≤ 1

E(1− e−ā)
. (C.93)

It is clear that as ā → ∞ (i.e.,
√
K approaches infinity faster than

√
I
√
J) then limā→∞ e−ā = 0,

leading to the lower-bounding limit of

lim
K→∞

1

E(1− e−ā)
=

1

E
=⇒ 1

E
≤ 1

ηi
≤ 1

E(1− e−ā)
.

Now, notice that the expression 1
E(1−e−ā) grows toward infinity as ā → 0+ (which will occur when

√
I
√
J approaches infinity faster than

√
K), since limā→0+ e

−ā = 1. Therefore, to prevent the term
ā from approaching 0, we can impose the bound

IJ ≤ K. (C.94)

Thus, when imposing bound equation C.94 and considering that I ≥ 1, J ≥ 1, and K ≥ 1, we can
see that ā =

√
K√
I
√
J
ρf3 is bounded by

ρf3 ≤ ā. (C.95)

Therefore, utilizing the lower-bound in equation C.95 will yield the desired upper-bound on 1/ηi of

1

ηi
≤ 1

E(1− e−ρf3 )
. (C.96)

(Consolidation of bounds): To summarize, we choose the step-sizes αi, βi, and γi according
to equation C.69, equation C.70, and equation C.71, respectively, as well as impose the following
bounds on I , J , and K (defined by equation C.74, equation C.76, equation C.81, equation C.83,
equation C.87, equation C.89, and lastly equation C.94, respectively), restated here for convenience:

4(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)2 ≤ I,

(µz + L∇f3)
2 ≤ IJK,

IJ(Jg1 + 1)2

ρ2f3
≤ K, max

{
µy + L∇f̄ ,

2ω̂2 + 1

ρ

}2

≤ IJ,

(
L2
Fyz

+ 8L2
y +

L∇yζ
2

)2
Γ2

≤ J,

(
L2
Fyz

+ 8L2
z +

L∇zζ
2

)2
ρ2f3

≤ JK, IJ ≤ K.

We can denote the constant lower-bound on J given by equation C.87 as

J ≥ ς :=

(
L2
Fyz

+ 8L2
y +

L∇yζ
2

)2
Γ2

. (C.97)

Using equation C.97, the bounds equation C.74 and equation C.83 are implied by the consolidated
bound

ϖ ≤ I, (C.98)
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where the constant ϖ is defined as

ϖ := max

4(LF + 4L2
y + L∇y + 4L2

z + L∇z + 8L2
zxy

)2,
max

{
µy + L∇f̄ ,

2ω̂2+1
ρ

}2

ς

 .

(C.99)
Similarly, using equation C.97 and equation C.99, we can see that the bounds equation C.76, equa-
tion C.81, equation C.89, and equation C.94 are implied by the following consolidated bound

Ξ(I, J) ≤ K, (C.100)

where the function Ξ : N+ × N+ → R+ is defined as

Ξ(I, J) := max

 (µz + L∇f3)
2

ϖς
,
IJ(Jg1 + 1)2

ρ2f3
,

(
L2
Fyz

+ 8L2
z +

L∇zζ
2

)2
ςρ2f3

, IJ

 , (C.101)

from which it is immediately clear that K ≥ O(J3I).

(Upper-bounding the remaining terms in equation C.64): When choosing the step-sizes αi, βi,
and γi according to equation C.69, equation C.70, and equation C.71, respectively, as well as choos-
ing I , J , and K according to equation C.98, equation C.97, and equation C.100, respectively, it
follows that A1 is non-negative while A2, A3, and A4 are non-positive in equation C.64. Thus, we
can simplify inequality equation C.64 to

E[Vi+1]− E[Vi] ≤ −αi
2
E[∥∇f(xi)∥2] + Φα2

i +

(
Gi1

J + 1

2
+Gi2 + 2

)
JKγ2i σ

2
∇f3

+

(
2JL2

zxy
+

(
1 + J

(
1

E (1− e−ρf3 )

)
L2
zy

2

)
Gi1

)
JΥβ2

i

≤ −αi
2
E[∥∇f(xi)∥2] + (Φ + c1 + c2J)α

2
i , (C.102)

where the last inequality follows from utilizing the step-sizes αi, βi, and γi according to equa-
tion C.69, equation C.70, and equation C.71, respectively, as well as the inequality equation C.80,
recalling that g1 = 1 + L2

Fyz
+ 8L2

y +
L∇yζ

2 , and defining the upper-bound on Gi2 of Gi2 ≤
1 + L2

Fyz
+ 8L2

z +
L∇zζ

2 := g2 (obtained from equation C.66 by using αi ≤ 1 and κi = 4L2
zαi).

Further, the constants c1 and c2 are defined as

c1 := σ2
∇f3

(g1
2

+ g2 + 2
)
+ g1Υ, c2 := 2L2

zxy
Υ+

g1σ
2
∇f3

2
+
g1L

2
zyΥ

2

(
1

E (1− e−ρf3 )

)
.

(Telescoping): Now, rearranging equation C.102 and telescoping over i = 0, 1, ..., I − 1 leads to

1

2

I−1∑
i=0

αiE[∥∇f(xi)∥2] ≤ V0 − VI +
I−1∑
i=0

(Φ + c1 + c2J)α
2
i . (C.103)

Note that αi is a constant that does not depend on i given by equation C.69. Thus, dividing both
sides of equation C.103 by 1

2Iαi, while noting that
∑I−1
i=0 αi = Iαi, and considering that 0 ≤ Vi

for all i ∈ {0, 1, ..., I − 1}, we have

1

I

I−1∑
i=0

E[∥∇f(xi)∥2] ≤
V0 + (Φ + c1 + c2J)

∑I−1
i=0 α

2
i

1
2Iαi

=
2V0 + 2(Φ + c1 + c2J)√

I
.

Therefore, we have obtained the desired convergence result, completing the proof. □
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D BOUNDS ON BIAS, VARIANCE, AND INEXACTNESS

This appendix contains derivations of results that yield bounds on the biasedness and variance of
stochastic terms as well as bounds on the sizes, inexactness, and variances of the UL and ML search
directions. For ease of notation, since all expectations that are present in the proofs of Lemmas D.1,
D.2, and D.3 are conditioned on Fξ, we utilize the short-hand notation of E[·] := E[·|Fξ], unless
stated otherwise.

Lemma D.1 (Bounds on bias of ∇z and ∇2f̄ ) Under Assumptions 3.1, 3.2, 3.4, 3.5,
and 3.6, the stochastic terms ∇xz

ξ, ∇yz
ξ, ∇2

xy f̄
ξ, and ∇2

yy f̄
ξ estimate ∇xz, ∇yz, ∇2

xy f̄ ,
and ∇2

yy f̄ , respectively, with biases that are bounded on the order of O(θ), i.e., there exist positive
constants Ux, Uy , Uxy , and Uyy such that

∥∇xz(x, y)
⊤ − E[∇xz(x, y; ξ)

⊤|Fξ]∥ ≤ Uxθ, (D.1)

∥∇yz(x, y)
⊤ − E[∇yz(x, y; ξ)

⊤|Fξ]∥ ≤ Uyθ, (D.2)

∥∇2
xy f̄(x, y, z)− E[∇2

xy f̄(x, y, z; ξ)|Fξ]∥ ≤ Uxyθ, (D.3)

∥∇2
yy f̄(x, y, z)− E[∇2

yy f̄(x, y, z; ξ)|Fξ]∥ ≤ Uyyθ. (D.4)

Proof. For this proof, we will omit the point (x, y, z) that the terms are evaluated at; we will simply
use a ξ-superscript as short-hand to indicate any random terms. We can obtain the bound on the
biasedness of the estimator ∇xz(x, y; ξ) in equation equation D.1 by utilizing the consistency of
norms along with equation A.3 and Assumption 3.4 to obtain

∥∇xz(x, y)
⊤ − E[∇xz(x, y; ξ)

⊤]∥ = ∥[∇2
zzf3]

−1∇2
zxf3 − E[[∇2

zzf
ξ
3 ]

−1]∇2
zxf3∥

≤ ∥∇2
zxf3∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1]∥
≤ L∇f3Wzzθ := Uxθ, (D.5)

where the last inequality follows from applying Assumptions 3.1 and 3.6. The proof of biased-
ness for the estimator ∇yz(x, y; ξ) in equation equation D.2 can be established following identical
arguments.

Now, to prove the biasedness of the estimator ∇2
xy f̄(x, y, z; ξ), referencing equations equation A.1

and equation A.5, utilizing Assumption 3.4, applying the triangle inequality along with the consis-
tency of matrix norms, we have

∥∇2
xy f̄ − E[∇2

xy f̄
ξ]∥

≤ ∥∇3
yzxf3∥∥∇zf2∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1]∥ (D.6)

+ ∥∇3
yzzf3∥∥∇zf2∥∥∇xz

⊤[∇2
zzf3]

−1 − E[∇xz
ξ⊤[∇2

zzf
ξ
3 ]

−1]∥ (D.7)

+ ∥∇2
yzf3∥∥∇zf2∥∥[∇2

zzf3]
−1∇3

zzxf3[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1∇3
zzxf

ξ
3 [∇2

zzf
ξ
3 ]

−1]∥ (D.8)

+ ∥∇2
yzf3∥∥∇zf2∥∥[∇2

zzf3]
−1∇3

zzzf3∇xz
⊤[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1∇3
zzzf

ξ
3∇xz

ξ⊤[∇2
zzf

ξ
3 ]

−1]∥
(D.9)

+ ∥∇2
yzf3∥∥∇2

zxf2∥∥[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1]∥ (D.10)

+ ∥∇2
yzf3∥∥[∇2

zzf3]
−1∇2

zzf2∇xz
⊤ − E[[∇2

zzf
ξ
3 ]

−1∇2
zzf

ξ
2∇xz

ξ⊤]∥. (D.11)

Notice that there are six difference terms here. Applying Assumption 3.1 and 3.6, we can bound
equations equation D.6 and equation D.10 in the following way:

∥∇3
yzxf3∥∥∇zf2∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1]∥ ≤ L∇2f3Lf2Wzzθ, (D.12)

∥∇2
yzf3∥∥∇2

zxf2∥∥[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1]∥ ≤ L∇f3L∇f2Wzzθ. (D.13)
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Now, looking at equation equation D.7, applying Assumption 3.1, adding and subtracting
∇xz

⊤E[[∇2
zzf

ξ
3 ]

−1], and applying the triangle inequality, we have

∥∇3
yzzf3∥∥∇zf2∥∥∇xz

⊤[∇2
zzf3]

−1 − E[∇xz
ξ⊤[∇2

zzf
ξ
3 ]

−1]∥

≤ L∇2f3Lf2∥∇xz
⊤[∇2

zzf3]
−1 − E[∇xz

ξ⊤]E[[∇2
zzf

ξ
3 ]

−1]∥
≤ L∇2f3Lf2∥∇xz

⊤[∇2
zzf3]

−1 −∇xz
⊤E[[∇2

zzf
ξ
3 ]

−1]∥

+ L∇2f3Lf2∥∇xz
⊤E[[∇2

zzf
ξ
3 ]

−1]− E[∇xz
ξ⊤]E[[∇2

zzf
ξ
3 ]

−1]∥

≤ L∇2f3Lf2∥∇xz
⊤∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1]∥+ L∇2f3Lf2∥E[[∇
2
zzf

ξ
3 ]

−1]∥∥∇xz
⊤ − E[∇xz

ξ⊤]∥

≤ L∇2f3Lf2
L∇f3
µz

Wzzθ + L∇2f3Lf2bzzUxθ = L∇2f3Lf2

(
WzzL∇f3

µz
+ bzzUx

)
θ, (D.14)

where the second-to-last inequality follows from the consistency of norms, and the last inequality
follows from applying the derived bound equation D.5, equation equation E.14, and Assumptions 3.5
and 3.6.

Now, looking at equation D.11, applying Assumptions 3.1 and 3.4, adding and subtracting the
term [∇2

zzf3]
−1∇2

zzf2E[∇xz
ξ⊤], applying the triangle inequality, and using the consistency of ma-

trix norms, we have

∥∇2
yzf3∥∥[∇2

zzf3]
−1∇2

zzf2∇xz
⊤ − E[[∇2

zzf
ξ
3 ]

−1∇2
zzf

ξ
2∇xz

ξ⊤]∥

≤ L∇f3∥[∇2
zzf3]

−1∇2
zzf2∇xz

⊤ − [∇2
zzf3]

−1∇2
zzf2E[∇xz

ξ⊤]∥

+ L∇f3∥[∇2
zzf3]

−1∇2
zzf2E[∇xz

ξ⊤]− E[[∇2
zzf

ξ
3 ]

−1]∇2
zzf2E[∇xz

ξ⊤]∥

≤ L∇f3∥[∇2
zzf3]

−1∥∥∇2
zzf2∥∥∇xz

⊤ − E[∇xz
ξ⊤]∥

+ L∇f3∥∇2
zzf2∥∥E[∇xz

ξ⊤]∥∥[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1]∥.

Now, applying Assumptions 3.1, 3.2, and 3.6, along with the derived bound equation D.5, we have

∥∇2
yzf3∥∥[∇2

zzf3]
−1∇2

zzf2∇xz
⊤ − E[[∇2

zzf
ξ
3 ]

−1∇2
zzf

ξ
2∇xz

ξ⊤]∥

≤ L∇f3L∇f2Ux
µz

θ + L∇f3L∇f2bzzL∇f3Wzzθ = L∇f3L∇f2

(
Ux
µz

+ bzzL∇f3Wzz

)
θ, (D.15)

where the last inequality follows from ∥E[∇xz
ξ⊤]∥ = ∥ − E[[∇2

zzf
ξ
3 ]

−1]∇2
zxf3∥ ≤ bzzL∇f3 (from

Assumptions 3.1, 3.4, and 3.5).

Now, looking at equation D.8, applying Assumptions 3.1 and 3.4, adding and subtracting the term
[∇2

zzf3]
−1∇3

zzxf3E[[∇2
zzf

ξ
3 ]

−1], applying the triangle inequality, and using the consistency of ma-
trix norms, we have

∥∇2
yzf3∥∥∇zf2∥∥[∇2

zzf3]
−1∇3

zzxf3[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1∇3
zzxf

ξ
3 [∇2

zzf
ξ
3 ]

−1]∥

≤ L∇f3Lf2∥[∇2
zzf3]

−1∇3
zzxf3[∇2

zzf3]
−1 − [∇2

zzf3]
−1∇3

zzxf3E[[∇2
zzf

ξ
3 ]

−1]∥
+ L∇f3Lf2∥[∇2

zzf3]
−1∇3

zzxf3E[[∇2
zzf

ξ
3 ]

−1]− E[[∇2
zzf

ξ
3 ]

−1]∇3
zzxf3E[[∇2

zzf
ξ
3 ]

−1]∥
≤ L∇f3Lf2∥[∇2

zzf3]
−1∥∥∇3

zzxf3∥∥[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1]∥
+ L∇f3Lf2∥∇3

zzxf3∥∥E[[∇2
zzf

ξ
3 ]

−1]∥∥[∇2
zzf3]

−1 − E[[∇2
zzf

ξ
3 ]

−1]∥

≤ L∇f3Lf2
1

µz
L∇2f3Wzzθ + L∇f3Lf2L∇2f3bzzWzzθ = L∇f3Lf2L∇2f3Wzz

(
1

µz
+ bzz

)
θ,

(D.16)

where the last inequality follows from applying Assumptions 3.1, 3.2, 3.5, and 3.6.

Now, looking at equation D.9, applying Assumptions 3.1 and 3.4, adding and subtracting the term
[∇2

zzf3]
−1∇3

zzzf3∇xz
⊤E[[∇2

zzf
ξ
3 ]

−1], applying the triangle inequality, and using the consistency
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of matrix norms, we have

∥∇2
yzf3∥∥∇zf2∥∥[∇2

zzf3]
−1∇3

zzzf3∇xz
⊤[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1∇3
zzzf

ξ
3∇xz

ξ⊤[∇2
zzf

ξ
3 ]

−1]∥

≤ L∇f3Lf2∥[∇2
zzf3]

−1∇3
zzzf3∇xz

⊤[∇2
zzf3]

−1 − [∇2
zzf3]

−1∇3
zzzf3∇xz

⊤E[[∇2
zzf

ξ
3 ]

−1]∥

+ L∇f3Lf2∥[∇2
zzf3]

−1∇3
zzzf3∇xz

⊤E[[∇2
zzf

ξ
3 ]

−1]− E[[∇2
zzf

ξ
3 ]

−1]∇3
zzzf3E[∇xz

ξ⊤]E[[∇2
zzf

ξ
3 ]

−1]∥
≤ L∇f3Lf2∥[∇2

zzf3]
−1∥∥∇3

zzzf3∥∥∇xz
⊤∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1]∥

+ L∇f3Lf2∥E[[∇2
zzf

ξ
3 ]

−1]∥∥[∇2
zzf3]

−1∇3
zzzf3∇xz

⊤ − E[[∇2
zzf

ξ
3 ]

−1]∇3
zzzf3E[∇xz

ξ⊤]∥

≤
L2
∇f3Lf2L∇2f3

µ2
z

Wzzθ + L∇f3Lf2bzz∥[∇2
zzf3]

−1∇3
zzzf3∇xz

⊤ − E[[∇2
zzf

ξ
3 ]

−1]∇3
zzzf3E[∇xz

ξ⊤]∥,

where the last inequality follows from applying Assumptions 3.1, 3.2, 3.5, and 3.6, along with
equation equation E.14. Now, using nearly identical arguments to those that were used in deriving
the bound on equation D.11, we have

∥∇2
yzf3∥∥∇zf2∥∥[∇2

zzf3]
−1∇3

zzzf3∇xz
⊤[∇2

zzf3]
−1 − E[[∇2

zzf
ξ
3 ]

−1∇3
zzzf

ξ
3∇xz

ξ⊤[∇2
zzf

ξ
3 ]

−1]∥

≤
L2
∇f3Lf2L∇2f3

µ2
z

Wzzθ + L∇f3Lf2bzz

(
L∇2f3

(
Ux
µz

+ bzzL∇f3Wzz

)
θ

)
= L∇f3Lf2L∇2f3

(
L∇f3
µ2
z

Wzz + bzz

(
Ux
µz

+ bzzL∇f3Wzz

))
θ. (D.17)

Finally, substituting the newly-derived upper-bounds equation D.12–equation D.17 in for the
terms equation D.6–equation D.11, we have the desired upper bound equation D.3 as

∥∇2
xy f̄ − E[∇2

xy f̄
ξ]∥ ≤ L∇2f3Lf2Wzzθ + L∇2f3Lf2

(
WzzL∇f3

µz
+ bzzUx

)
θ + L∇f3L∇f2Wzzθ

+ L∇f3Lf2L∇2f3

(
L∇f3
µ2
z

Wzz + bzz

(
Ux
µz

+ bzzL∇f3Wzz

))
θ

+ L∇f3L∇f2

(
Ux
µz

+ bzzL∇f3Wzz

)
θ + L∇f3Lf2L∇2f3Wzz

(
1

µz
+ bzz

)
θ

= Uxyθ,

where

Uxy := L∇2f3Lf2

(
Wzz + bzzUx + L∇f3Wzzbzz + 2

WzzL∇f3
µz

)
+ L∇f3

(
Lf2L∇2f3

(
L∇f3
µ2
z

Wzz + bzz

(
Ux
µz

+ bzzL∇f3Wzz

))
+ L∇f2

(
Ux
µz

+ bzzL∇f3Wzz +Wzz

))
.

(D.18)

The proof of the biasedness errors for the estimator ∇2
xy f̄(x, y, z; ξ) in equation equation D.4 can

be established following nearly identical arguments. □

Lemma D.2 (Bounds on variance of ∇2f̄ ) Under Assumptions 3.1, 3.4, and 3.5, the variances of
the stochastic matrices ∇2

xy f̄
ξ and ∇2

yy f̄
ξ are bounded, i.e., there exist positive constants Vxy and

Vyy such that

E[∥∇2
xy f̄(x, y, z; ξ)− E

[
∇2
xy f̄(x, y, z; ξ)|Fξ]∥2|Fξ

]
≤ Vxy,

E[∥∇2
yy f̄(x, y, z; ξ)− E[∇2

yy f̄(x, y, z; ξ)|Fξ]∥2|Fξ] ≤ Vyy.

Proof. For this proof, we will omit the point (x, y, z) that the terms are evaluated at; we will
simply use a ξ-superscript as short-hand to indicate any random terms. We can obtain the bound on
the variance of ∇2

xy f̄
ξ by first referencing equation A.1 and applying the fact that ∥

∑N
i=1 ai∥2 ≤
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N
∑N
i=1 ∥ai∥2 (for some a ∈ RN ) to the two initial difference terms as well as all of the resulting

terms (leading to a total of 12 terms), Assumption 3.4, and the consistency of matrix norms, to obtain

E[∥∇2
xy f̄

ξ − E[∇2
xy f̄

ξ]∥2]

≤ 12E[∥∇3
yzxf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇zf
ξ
2∥2] + 12∥∇3

yzxf3∥2∥E[[∇2
zzf

ξ
3 ]

−1]∥2∥∇zf2∥2

+ 12E[∥∇3
yzzf

ξ
3∥2]E[∥∇xz

ξ⊤∥2]E[∥[∇2
zzf

ξ
3 ]

−1∥2]E[∥∇zf
ξ
2∥2]

+ 12∥∇3
yzzf3∥2∥E[∇xz

ξ⊤]∥2∥E[[∇2
zzf

ξ
3 ]

−1]∥2∥∇zf2∥2

+ 12E[∥∇2
yzf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇3
zzxf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇zf
ξ
2∥2]

+ 12∥∇2
yzf3∥2∥E[[∇2

zzf
ξ
3 ]

−1]∥2∥∇3
zzxf3∥2∥E[[∇2

zzf
ξ
3 ]

−1]∥2∥∇zf2∥2

+ 12E[∥∇2
yzf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇3
zzzf

ξ
3∥2]E[∥∇xz

ξ⊤∥2]E[∥[∇2
zzf

ξ
3 ]

−1∥2]E[∥∇zf
ξ
2∥2]

+ 12∥∇2
yzf3∥2∥E[[∇2

zzf
ξ
3 ]

−1]∥2∥∇3
zzzf3∥2∥E[∇xz

ξ⊤]∥2∥E[[∇2
zzf

ξ
3 ]

−1]∥2∥∇zf2∥2

+ 12E[∥∇2
yzf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇2
zxf

ξ
2∥2] + 12∥∇2

yzf3∥2∥E[[∇2
zzf

ξ
3 ]

−1]∥2∥∇2
zxf2∥2

+ 12E[∥∇2
yzf

ξ
3∥2]E[∥[∇2

zzf
ξ
3 ]

−1∥2]E[∥∇2
zzf

ξ
2∥2]E[∥∇xz

ξ⊤∥2]

+ 12∥∇2
yzf3∥2∥E[[∇2

zzf
ξ
3 ]

−1]∥2∥∇2
zzf2∥2∥E[∇xz

ξ⊤]∥2.

Now, using the result that ∥E[∇xz
ξ⊤]∥2 ≤ ∥E[[∇2

zzf
ξ
3 ]

−1]∥2∥∇2
zxf3∥2 ≤ b2zzL

2
∇f3 (from Assump-

tions 3.1, 3.4, and 3.5 along with the consistency of matrix norms), the result that E[∥∇xz
ξ⊤∥2] ≤

E[∥[∇2
zzf

ξ
3 ]

−1∥2]E[∥∇2
zxf3ξ∥2] ≤ b2zzE[∥∇2

zxf3ξ∥2] (from Assumptions 3.4 and 3.5 along with the
consistency of matrix norms), and applying Assumptions 3.1 and 3.5, we have

E[∥∇2
xy f̄

ξ − E[∇2
xy f̄

ξ]∥2]

≤ 12E[∥∇3
yzxf

ξ
3∥2]b2zzE[∥∇zf

ξ
2∥2] + 12L2

∇2f3
b2zzL

2
f2 + 12E[∥∇3

yzzf
ξ
3∥2]b2zzE[∥∇2

zxf
ξ
3∥2]b2zzE[∥∇zf

ξ
2∥2]

+ 12L2
∇2f3

b2zzL
2
∇f3b

2
zzL

2
f2 + 12E[∥∇2

yzf
ξ
3∥2]b2zzE[∥∇3

zzxf
ξ
3∥2]b2zzE[∥∇zf

ξ
2∥2]

+ 12L2
∇f3b

2
zzL

2
∇2f3

b2zzL
2
f2 + 12E[∥∇2

yzf
ξ
3∥2]b2zzE[∥∇3

zzzf
ξ
3∥2]b2zzE[∥∇2

zxf
ξ
3∥2]b2zzE[∥∇zf

ξ
2∥2]

+ 12L2
∇f3b

2
zzL

2
∇2f3

b2zzL
2
∇f3b

2
zzL

2
f2 + 12E[∥∇2

yzf
ξ
3∥2]b2zzE[∥∇2

zxf
ξ
2∥2] + 12L2

∇f3b
2
zzL

2
∇f2

+ 12E[∥∇2
yzf

ξ
3∥2]b2zzE[∥∇2

zzf
ξ
2∥2]b2zzE[∥∇2

zxf
ξ
3∥2] + 12L2

∇f3b
2
zzL

2
∇f2b

2
zzL

2
∇f3 .

Finally, with all of the remaining expectation terms, we can apply the definition of variance (i.e.,
E[X2] = Var[X] + E[X]2) followed by Assumption 3.4 to upper-bound the variance term along
with Assumptions 3.1 and 3.4 to upper-bound the E[X]2 term. These bounds are given as:

E[∥∇3
yzxf

ξ
3∥2] ≤ σ2

∇3f3
+ L2

∇2f3
, E[∥∇3

yzzf
ξ
3∥2] ≤ σ2

∇3f3
+ L2

∇2f3
,

E[∥∇3
zzxf

ξ
3∥2] ≤ σ2

∇3f3
+ L2

∇2f3
, E[∥∇3

zzzf
ξ
3∥2] ≤ σ2

∇3f3
+ L2

∇2f3
,

E[∥∇2
zxf

ξ
3∥2] ≤ σ2

∇2f3
+ L2

∇f3 , E[∥∇2
yzf

ξ
3∥2] ≤ σ2

∇2f3
+ L2

∇f3 ,

E[∥∇2
zzf

ξ
3∥2] ≤ σ2

∇2f3
+ L2

∇f3 , E[∥∇zf
ξ
2∥2] ≤ σ2

∇f2 + L2
f2 .

Applying these bounds, we will obtain

E[∥∇2
xy f̄

ξ − E[∇2
xy f̄

ξ]∥2]
≤ 12(σ2

∇3f3
+ L2

∇2f3
)b2zz(σ

2
∇f2 + L2

f2) + 12L2
∇2f3

b2zzL
2
f2

+ 12(σ2
∇3f3

+ L2
∇2f3

)b2zz(σ
2
∇2f3

+ L2
∇f3)b

2
zz(σ

2
∇f2 + L2

f2)

+ 12L2
∇2f3

b2zzL
2
∇f3b

2
zzL

2
f2 + 12(σ2

∇2f3
+ L2

∇f3)b
2
zz(σ

2
∇3f3

+ L2
∇2f3

)b2zz(σ
2
∇f2 + L2

f2)

+ 12L2
∇f3b

2
zzL

2
∇2f3

b2zzL
2
f2 + 12(σ2

∇2f3
+ L2

∇f3)b
2
zz(σ

2
∇3f3

+ L2
∇2f3

)b2zz(σ
2
∇2f3

+ L2
∇f3)b

2
zz(σ

2
∇f2 + L2

f2)

+ 12L2
∇f3b

2
zzL

2
∇2f3

b2zzL
2
∇f3b

2
zzL

2
f2 + 12(σ2

∇2f3
+ L2

∇f3)b
2
zz(σ

2
∇2f3

+ L2
∇f3) + 12L2

∇f3b
2
zzL

2
∇f2

+ 12(σ2
∇2f3

+ L2
∇f3)b

2
zz(σ

2
∇2f3

+ L2
∇f3)b

2
zz(σ

2
∇2f3

+ L2
∇f3) + 12L2

∇f3b
2
zzL

2
∇f2b

2
zzL

2
∇f3

:= Vxy. (D.19)
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This completes the proof for the variance bound on ∇2
xy f̄

ξ.

The proof of the variance bound on ∇2
yy f̄

ξ follows nearly identical arguments. □

Lemma D.3 (Bounds on bias and variance of UL direction) Recalling the definition of g̃if1 in
equation equation 2.5, define ḡif1 = E[g̃if1 |Fi]. Then, under Assumptions 3.1, 3.2, 3.4, 3.5, and 3.6,
there exist positive constants ω and τ such that

∥∇f(xi, yi+1, zi+1)− ḡif1∥ ≤ ωθi and E[∥g̃if1 − ḡif1∥
2|Fi] ≤ τ.

Proof. For this proof, we will omit the point (xi, yi+1, zi+1) that the terms are evaluated at; we
will simply use a ξi-superscript as short-hand to indicate any random terms. Similarly, we will
use the notation (·)ξi to denote that every term in the parenthesis is a random variable. To prove
the upper-bound on the biasedness of g̃if1 , we can begin by referring to equation 2.2 and applying
Assumption 3.4, yielding

ḡif1 = E[g̃if1 ] = E[∇f(xi, yi+1, zi+1; ξi)]

= ∇xf1 −∇2
xzf3E[[∇2

zzf
ξi

3 ]−1]∇zf1 − E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇yf1

+ E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1]∇zf1.

Now, to derive a bound on the biasedness ∥∇f(xi, yi+1, zi+1)− ḡif1∥, we can begin by utilizing the
triangle inequality, the consistency of matrix norms, and Assumption 3.1 and 3.6, yielding

∥∇f(xi, yi+1, zi+1)− ḡif1∥

≤ L∇f3Lf1Wzzθi + Lf1∥E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]−∇2
xy f̄ [∇2

yy f̄ ]
−1∥︸ ︷︷ ︸

T
(1)
1

+ Lf1∥∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1 − E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1]∥︸ ︷︷ ︸
T

(1)
2

,

(D.20)

(Analysis of T (1)
1 ): Now, to upper-bound T (1)

1 in equation D.20, we begin by adding and subtract-
ing the term ∇2

xy f̄E[[∇2
yy f̄

ξi ]−1], applying the triangle inequality, and utilizing the consistency of
matrix norms to obtain

Lf1T
(1)
1 ≤ Lf1∥E[[∇2

yy f̄
ξi ]−1]∥∥E[∇2

xy f̄
ξi ]−∇2

xy f̄∥+ Lf1∥∇2
xy f̄∥∥E[[∇2

yy f̄
ξi ]−1]− [∇2

yy f̄ ]
−1∥

≤ (byyUxy + TxyWyy)Lf1θi, (D.21)

where the last inequality follows by applying Assumptions 3.1, 3.5, and 3.6 along with Lemma D.1,
and where ∥∇2

xy f̄∥ ≤ Txy , which follows from the following reasoning (applying the triangle in-
equality, the consistency of matrix norms, along with Assumptions 3.1 and 3.2, and equation equa-
tion E.14):

∥∇2
xy f̄∥

≤ ∥∇2
yxf2∥+ ∥∇2

yzf2∇xz
⊤∥+ ∥∇3

yzxf3∇2
zzf

−1
3 ∇zf2∥+ ∥∇3

yzzf3∇xz
⊤∇2

zzf
−1
3 ∇zf2∥

+ ∥∇2
yzf3[∇2

zzf3]
−1∇3

zzxf3[∇2
zzf3]

−1∇zf2∥+ ∥∇2
yzf3[∇2

zzf3]
−1∇3

zzzf3∇xz
⊤[∇2

zzf3]
−1∇zf2∥

+ ∥∇2
yzf3[∇2

zzf3]
−1∇2

zxf2∥+ ∥∇2
yzf3[∇2

zzf3]
−1∇2

zzf2∇xz
⊤∥

≤
(
L∇f2 +

L∇2f3Lf2
µz

)(
1 +

2L∇f3
µz

+
L2
∇f3
µ2
z

)
:= Txy. (D.22)

(Analysis of T (1)
2 ): Now, to upper-bound T (1)

2 in equation D.20, we begin by adding and subtract-
ing the term ∇2

xy f̄ [∇2
yy f̄ ]

−1∇2
yzf3E[[∇2

zzf
ξi

3 ]−1], applying the triangle inequality, along with the
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consistency of matrix norms to obtain

Lf1T
(1)
2 ≤ Lf1∥∇2

xy f̄∥∥[∇2
yy f̄ ]

−1∥∥∇2
yzf3∥∥[∇2

zzf3]
−1 − E[[∇2

zzf
ξi

3 ]−1]∥

+ Lf1∥∇2
yzf3∥∥E[[∇2

zzf
ξi

3 ]−1]∥∥∇2
xy f̄ [∇2

yy f̄ ]
−1 − E[∇2

xy f̄
ξi ]E[[∇2

yy f̄
ξi ]−1]∥

≤ Lf1L∇f3

(
TxyWzz

µy
+ bzz (byyUxy + TxyWyy)

)
θi, (D.23)

where the last inequality follows from applying Assumptions 3.1, 3.3, 3.5, and 3.6, the bound
∥∇2

xy f̄∥ ≤ Txy we derived in equation D.22, and the bound we derived on the term T
(1)
1 in equa-

tion D.21.

Finally, substituting the bounds equation D.21 and equation D.23 on the terms T (1)
1 and T (1)

2 , re-
spectively, back into equation D.20, we obtain the desired bound on the biasedness as

∥∇f(xi, yi+1, zi+1)− ḡif1∥

≤ Lf1

(
L∇f3Wzz + byyUxy + TxyWyy + L∇f3

(
TxyWzz

µy
+ bzz (byyUxy + TxyWyy)

))
θi := ωθi.

(D.24)

Now, to bound the variance of g̃if1 , we can begin by using the fact that ∥a + b + c + d∥2 ≤
4
(
∥a∥2 + ∥b∥2 + ∥c∥2 + ∥d∥2

)
, with a, b, c, and d real-valued vectors, to obtain (it bears men-

tioning that for ease of notation, we will use (·)ξi to denote that all terms in the parenthesis are
random variables)

E[∥g̃if1 − ḡif1∥
2] = E[∥g̃if1 − E[g̃if1 |Fi]∥

2]

≤ 4E[∥∇xf
ξi

1 − E[∇xf
ξi

1 ]∥2]︸ ︷︷ ︸
T

(2)
1

+4E[∥E[
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi
]−
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi ∥2]︸ ︷︷ ︸
T

(2)
2

+ 4E[∥E[
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi
]−
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi ∥2]︸ ︷︷ ︸
T

(2)
3

+ 4E[∥
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1
)ξi − E[

(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1
)ξi

]∥2]︸ ︷︷ ︸
T

(2)
4

.

(D.25)

(Analysis of T (2)
1 ): Notice that the term T

(2)
1 in equation D.25 can be bounded by Assumption 3.4

4E[∥∇xf
ξi

1 − E[∇xf
ξi

1 ]∥2] ≤ 4σ2
∇f1 := τ1. (D.26)

(Analysis of T (2)
2 ): Now dealing with the contents of the term T

(2)
2 , we can apply Assumption 3.4

and re-factorize to obtain

E[
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi
]−
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi
= ∇2

xzf3E[[∇2
zzf

ξi

3 ]−1]∇zf1 −∇2
xzf

ξi

3 [∇2
zzf

ξi

3 ]−1∇zf
ξi

1

= (∇2
xzf3 −∇2

xzf
ξi

3 )E[[∇2
zzf

ξi

3 ]−1]∇zf1

+∇2
xzf

ξi

3 (E[[∇2
zzf

ξi

3 ]−1]− [∇2
zzf

ξi

3 ]−1)∇zf1

+∇2
xzf

ξi

3 [∇2
zzf

ξi

3 ]−1(∇zf1 −∇zf
ξi

1 ).

By using this, the fact that ∥a + b + c∥2 ≤ 3
(
∥a∥2 + ∥b∥2 + ∥c∥2

)
, with a, b, and c real-valued

vectors, along with the consistency of matrix norms, and Assumptions 3.1, 3.5, and 3.4, we can see

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

that the term T
(2)
2 is upper-bounded by

4E[∥E[
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi
]−
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi ∥2]
≤ 12σ2

∇2f3
b2zzL

2
f1 + 12E[∥∇2

xzf
ξi

3 ∥2]E[∥E[[∇2
zzf

ξi

3 ]−1]− [∇2
zzf

ξi

3 ]−1∥2]L2
f1

+ 12E[∥∇2
xzf

ξi

3 ∥2]b2zzσ2
∇f1 . (D.27)

Consider the term E[∥∇2
xzf

ξi

3 ∥2] in equation D.27. Using the definition of variance (i.e., E[X2] =
Var[X] + E[X]2) along with Assumptions 3.4 and 3.1, we have

E[∥∇2
xzf

ξi

3 ∥2] = E[∥∇2
xzf

ξi

3 − E[∇2
xzf

ξi

3 ]∥2] + E[∥E[∇2
xzf

ξi

3 ]∥2] ≤ σ2
∇2f3

+ L2
∇f3 . (D.28)

Consider the term E[∥[∇2
zzf

ξi

3 ]−1 − E[[∇2
zzf

ξi

3 ]−1]∥2] in equation D.27. Using the fact that ∥a +
b∥2 ≤ 2

(
∥a∥2 + ∥b∥2

)
, with a and b real-valued vectors, and applying Assumption 3.5, we have

E[∥[∇2
zzf

ξi

3 ]−1 − E[[∇2
zzf

ξi

3 ]−1]∥2] ≤ 2E[∥[∇2
zzf

ξi

3 ]−1∥2] + 2E[∥E[[∇2
zzf

ξi

3 ]−1]∥2] ≤ 4b2zz.
(D.29)

Now substituting the bounds equation D.28 and equation D.29 back into equation D.27, we obtain
the bound on the term T

(2)
2 as

4E[∥E[
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi
]−
(
∇2
xzf3[∇2

zzf3]
−1∇zf1

)ξi ∥2]
≤ 12σ2

∇2f3
b2zzL

2
f1 + 48(σ2

∇2f3
+ L2

∇f3)b
2
zzL

2
f1 + 12(σ2

∇2f3
+ L2

∇f3)b
2
zzσ

2
∇f1 := τ2. (D.30)

(Analysis of T (2)
3 ): Applying similar reasoning that was used in bounding the term T

(2)
2 , along with

utilizing Lemma D.2 and Assumptions 3.1, 3.5, and 3.4, we have

4E[∥E[
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi
]−
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi ∥2]
≤ 12Vxyb

2
yyL

2
f1 + 12E[∥∇2

xy f̄
ξi∥2]E[∥E[[∇2

yy f̄
ξi ]−1]− [∇2

yy f̄
ξi ]−1∥2]L2

f1

+ 12E[∥∇2
xy f̄

ξi∥2]b2yyσ2
∇f1 . (D.31)

Consider the term E[∥[∇2
yy f̄

ξi ]−1 − E[[∇2
yy f̄

ξi ]−1]∥2] in equation D.31. Applying the same rea-
soning that was used to derive equation D.29, we have

E[∥[∇2
yy f̄

ξi ]−1 − E[[∇2
yy f̄

ξi ]−1]∥2] ≤ 4b2yy. (D.32)

Consider the term E[∥∇2
xy f̄

ξi∥2] in equation D.31. Using the definition of variance (i.e., E[X2] =

Var[X] + E[X]2) and applying Lemma D.2, we have

E[∥∇2
xy f̄

ξi∥2] ≤ Vxy + ∥E[∇2
xy f̄

ξi ]∥2. (D.33)

Now, consider the ∥E[∇2
xy f̄

ξi ]∥2 term in equation D.33. Noticing that E[∇xz
ξi⊤] =

E[[∇2
zzf

ξi

3 ]−1]∇2
zxf3 (from Assumption 3.4), we can apply the triangle inequality along with the

consistency of matrix norms and Assumptions 3.1, 3.4, and 3.5 to obtain

∥E[∇2
xy f̄

ξi ]∥ ≤ L∇f2 + bzz(L
2
∇f2 + Lf2L∇2f3(1 + 2bzzL∇f3 + b2zzL

2
∇f3) + L∇f3L∇f2(1 + bzzL∇f3))

:= T̃xy. (D.34)

Finally, squaring both sides of this inequality, we have

∥E[∇2
xy f̄

ξi ]∥2 ≤ T̃ 2
xy. (D.35)

Thus, substituting equation D.35 back into equation D.33, we have E[∥∇2
xy f̄

ξi∥2] ≤ Vxy + T̃ 2
xy .

Finally, substituting this and bound equation D.32 back into equation D.31, we obtain the bound on
the term T

(2)
3 as

4E[∥E[
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi
]−
(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇yf1

)ξi ∥2]
≤ 12Vxyb

2
yyL

2
f1 + 48(Vxy + T̃ 2

xy)b
2
yyL

2
f1 + 12(Vxy + T̃ 2

xy)b
2
yyσ

2
∇f1 := τ3. (D.36)
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(Analysis of T (2)
4 ): Now, dealing with the contents of the norm in term T

(2)
4 , we can apply Assump-

tion 3.4 and re-factorize to obtain(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1
)ξi − E[

(
∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1
)ξi

]

= (∇2
xy f̄

ξi − E[∇2
xy f̄

ξi ])[∇2
yy f̄

ξi ]−1∇2
yzf

ξi

3 [∇2
zzf

ξi

3 ]−1∇zf
ξi

1

+ E[∇2
xy f̄

ξi ] ([∇2
yy f̄

ξi ]−1∇2
yzf

ξi

3 [∇2
zzf

ξi

3 ]−1 − E[[∇2
yy f̄

ξi ]−1]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1])︸ ︷︷ ︸
T̂

(2)
4

∇zf
ξi

1

+ E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1](∇zf
ξi

1 −∇zf1). (D.37)

We can further re-factorize the term T̂
(2)
4 in equation D.37 to obtain

T̂
(2)
4 = ([∇2

yy f̄
ξi ]−1 − E[[∇2

yy f̄
ξi ]−1])∇2

yzf
ξi

3 [∇2
zzf

ξi

3 ]−1 + E[[∇2
yy f̄

ξi ]−1](∇2
yzf

ξi

3 −∇2
yzf3)[∇2

zzf
ξi

3 ]−1

+ E[[∇2
yy f̄

ξi ]−1]∇2
yzf3([∇2

zzf
ξi

3 ]−1 − E[[∇2
zzf

ξi

3 ]−1]). (D.38)

Substituting equation D.38 for T̂ (2)
4 in equation D.37, we have

(∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1)
ξi − E[(∇2

xy f̄ [∇2
yy f̄ ]

−1∇2
yzf3[∇2

zzf3]
−1∇zf1)

ξi ]

= (∇2
xy f̄

ξi − E[∇2
xy f̄

ξi ])[∇2
yy f̄

ξi ]−1∇2
yzf

ξi

3 [∇2
zzf

ξi

3 ]−1∇zf
ξi

1

+ E[∇2
xy f̄

ξi ]([∇2
yy f̄

ξi ]−1 − E[[∇2
yy f̄

ξi ]−1])∇2
yzf

ξi

3 [∇2
zzf

ξi

3 ]−1∇zf
ξi

1

+ E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1](∇2
yzf

ξi

3 −∇2
yzf3)[∇2

zzf
ξi

3 ]−1∇zf
ξi

1

+ E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇2
yzf3([∇2

zzf
ξi

3 ]−1 − E[[∇2
zzf

ξi

3 ]−1])∇zf
ξi

1

+ E[∇2
xy f̄

ξi ]E[[∇2
yy f̄

ξi ]−1]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1](∇zf
ξi

1 −∇zf1). (D.39)

Finally, substituting equation D.39 back into the norm for T (2)
4 in equation D.25 and using the fact

that ∥a+b+c+d+e∥2 ≤ 5
(
∥a∥2 + ∥b∥2 + ∥c∥2 + ∥d∥2 + ∥e∥2

)
, with a, b, c, d, and e real-valued

vectors, along with the consistency of matrix norms, and applying Assumptions 3.1, 3.4, 3.5, along
with Lemma D.2 and bounds equation D.29, equation D.32, and equation D.35, to obtain

T
(2)
4 ≤ 20b2yyb

2
zzVxyE[∥∇2

yzf
ξi

3 ∥2]E[∥∇zf
ξi

1 ∥2] + 80b2zzT̃
2
xyb

2
yyE[∥∇2

yzf
ξi

3 ∥2]E[∥∇zf
ξi

1 ∥2]

+ 20b2yyσ
2
∇2f3

b2zzT̃
2
xyE[∥∇zf

ξi

1 ∥2] + 80b2yyL
2
∇f3b

2
zzT̃

2
xyE[∥∇zf

ξi

1 ∥2] + 20b2yyL
2
∇f3b

2
zzσ

2
∇f1 T̃

2
xy.

(D.40)

Consider the terms E[∥∇2
yzf

ξi

3 ∥2] and E[∥∇zf
ξi

1 ∥2] in equation D.40. Applying nearly identical
reasoning that was used to derive equation D.28, we have

E[∥∇2
yzf

ξi

3 ∥2] ≤ σ2
∇2f3

+ L2
∇f3 , (D.41)

E[∥∇zf
ξi

1 ∥2] ≤ σ2
∇f1 + L2

f1 . (D.42)

Now substituting the bounds equation D.41 and equation D.42 back into equation D.40, we obtain
the bound on the term T

(2)
4 as

4E[∥(∇2
xy f̄ [∇2

yy f̄ ]
−1∇2

yzf3[∇2
zzf3]

−1∇zf1)
ξi − E[(∇2

xy f̄ [∇2
yy f̄ ]

−1∇2
yzf3[∇2

zzf3]
−1∇zf1)

ξi ]∥2]
≤ 20b2yyb

2
zzVxy(σ

2
∇2f3

+ L2
∇f3)(σ

2
∇f1 + L2

f1) + 80b2zzT̃
2
xyb

2
yy(σ

2
∇2f3

+ L2
∇f3)(σ

2
∇f1 + L2

f1)

+ 20b2yyσ
2
∇2f3

b2zzT̃
2
xy(σ

2
∇f1 + L2

f1) + 80b2yyL
2
∇f3 T̃

2
xyb

2
zz(σ

2
∇f1 + L2

f1) + 20b2yyL
2
∇f3b

2
zzσ

2
∇f1 T̃

2
xy

:= τ4. (D.43)

The proof is completed by substituting the derived bounds for T
(2)
1 , T (2)

2 , T (2)
3 , and T

(2)
4

(bounds equation D.26, equation D.30, equation D.36, and equation D.43, respectively) back
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into equation D.25, yielding the desired variance bound (including the omitted σ-algebra Fi that
the expectation is conditioned on):

E[∥g̃if1 − ḡif1∥
2|Fi] ≤ τ, where τ := τ1 + τ2 + τ3 + τ4. (D.44)

□

Lemma D.4 (Boundedness of UL direction) Under Assumptions 3.1, 3.2, 3.4, 3.5, and 3.6, there
exists a positive constant ζ such that

E[∥g̃if1∥
2|Fi] ≤ ζ.

Proof. For this proof, we may omit the point (xi, yi+1, zi+1) that the terms are evaluated at; we
will simply use a ξi-superscript as short-hand to indicate any random terms. From the definition of
variance along with using Lemma D.3, we have

E[∥g̃if1∥
2|Fi] = ∥ḡif1∥

2 + E[∥g̃if1 − ḡif1∥
2|Fi] ≤ ∥ḡif1∥

2 + τ. (D.45)

Now, considering the ∥ḡif1∥ term in equation D.45, we can apply the triangle inequality, Assump-
tion 3.4, along with the consistency of matrix norms, to obtain

∥ḡif1∥ ≤ ∥∇xf1∥+ ∥∇2
xzf3E[[∇2

zzf
ξi

3 ]−1|Fi]∇zf1∥+ ∥E[∇2
xy f̄

ξi |Fi]E[[∇2
yy f̄

ξi ]−1|Fi]∇yf1∥

+ ∥E[∇2
xy f̄

ξi |Fi]E[[∇2
yy f̄

ξi ]−1|Fi]∇2
yzf3E[[∇2

zzf
ξi

3 ]−1|Fi]∇zf1∥

≤ Lf1 + L∇f3Lf1∥E[[∇2
zzf

ξi

3 ]−1|Fi]∥+ Lf1∥E[∇2
xy f̄

ξi |Fi]∥∥E[[∇2
yy f̄

ξi ]−1|Fi]∥

+ L∇f3Lf1∥E[∇2
xy f̄

ξi |Fi]∥∥E[[∇2
yy f̄

ξi ]−1|Fi]∥∥E[[∇2
zzf

ξi

3 ]−1|Fi]∥
≤ Lf1 + L∇f3Lf1bzz + Lf1 T̃xybyy + L∇f3Lf1 T̃xybyybzz,

where the second inequality follows from applying Assumption 3.1 and the last inequality follows
from applying Assumption 3.5 along with the derived bound equation D.34 from Lemma D.3. Fur-
ther, squaring both sides, we have the bound ∥ḡif1∥

2 ≤ (Lf1 + L∇f3Lf1bzz + Lf1 T̃xybyy +

L∇f3Lf1 T̃xybyybzz)
2. Substituting this back into equation D.45, we obtain the bound

E[∥g̃if1∥
2|Fi] ≤ ζ, where ζ := (Lf1+L∇f3Lf1bzz+Lf1 T̃xybyy+L∇f3Lf1 T̃xybyybzz)

2+τ.
(D.46)

□

Lemma D.5 (Bounds on bias and variance of ML direction) Recalling the definition of g̃i,jf2 in
equation equation 2.4, define ḡi,jf2 = E[g̃i,jf2 |Fi,j ]. Then, under Assumptions 3.1, 3.4, 3.5, and 3.6,
there exist positive constants ω̂ and τ̂ such that

∥∇y f̄(x
i, yi,j , zi,j+1)− ḡi,jf2 ∥ ≤ ω̂θi and E[∥g̃i,jf2 − ḡi,jf2 ∥

2|Fi,j ] ≤ τ̂ .

Proof. For this proof, we may omit the point (xi, yi,j , zi,j+1) that the terms are evaluated at; we will
simply use a ξi,j-superscript as short-hand to indicate any random terms. From Assumption 3.4, we
have

∥∇y f̄ − ḡi,jf2 ∥ = ∥∇yf2 −∇2
yzf3[∇2

zzf3]
−1∇zf2 − (∇yf2 −∇2

yzf3E[[∇2
zzf

ξi,j

3 ]−1|Fi,j ]∇zf2)∥

= ∥∇2
yzf3(E[[∇2

zzf
ξi,j

3 ]−1|Fi,j ]− [∇2
zzf3]

−1)∇zf2∥

≤ L∇f3Lf2∥E[[∇2
zzf

ξi,j

3 ]−1|Fi,j ]− [∇2
zzf3]

−1∥,

where the inequality follows from Assumption 3.1 along with the consistency of matrix norms.
Utilizing Assumption 3.6, we obtain the desired first result of

∥ḡi,jf2 −∇y f̄∥ ≤ ω̂θi, where ω̂ := L∇f3Lf2Wzz. (D.47)
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Now, to estimate the variance of g̃i,jf2 , we can apply Assumption 3.4 and the fact that ∥a + b∥2 ≤
2∥a∥2 + 2∥b∥2, with a and b real-valued vectors, yielding

E[∥g̃i,jf2 − ḡi,jf2 ∥
2|Fi,j ] = E[∥g̃i,jf2 − E[g̃i,jf2 |Fi,j ]∥

2|Fi,j ]

= E[∥∇yf
ξi,j

2 −∇yf2 +∇2
yzf3E[[∇2

zzf
ξi,j

3 ]−1|Fi,j ]∇zf2 −∇2
yzf

ξi,j

3 [∇2
zzf

ξi,j

3 ]−1∇zf
ξi,j

2 ∥2|Fi,j ]

≤ 2σ2
∇f2 + 2E[∥∇2

yzf3E[[∇2
zzf

ξi,j

3 ]−1|Fi,j ]∇zf2 −∇2
yzf

ξi,j

3 [∇2
zzf

ξi,j

3 ]−1∇zf
ξi,j

2 ∥2|Fi,j ],
(D.48)

Now, dealing with the contents of the norm in the right-most term of equation D.48, we have

∇2
yzf3E[[∇2

zzf
ξi,j

3 ]−1|Fi,j ]∇zf2 −∇2
yzf

ξi,j

3 [∇2
zzf

ξi,j

3 ]−1∇zf
ξi,j

2

= (∇2
yzf3 −∇2

yzf
ξi,j

3 )E[[∇2
zzf

ξi,j

3 ]−1|Fi,j ]∇zf2 + ∇2
yzf

ξi,j

3 (E[[∇2
zzf

ξi,j

3 ]−1|Fi,j ]− [∇2
zzf

ξi,j

3 ]−1)∇zf2

+∇2
yzf

ξi,j

3 [∇2
zzf

ξi,j

3 ]−1(∇zf2 −∇zf
ξi,j

2 ).

Using this, the fact that ∥a+b+c∥2 ≤ 3
(
∥a∥2 + ∥b∥2 + ∥c∥2

)
, with a, b, and c real-valued vectors,

along with the consistency of matrix norms, and applying Assumptions 3.1, 3.5, 3.4, and 3.6, we
can see that the norm term in equation D.48 can be bounded as

E[∥∇2
yzf3E[[∇2

zzf
ξi,j

3 ]−1|Fi,j ]∇zf2 −∇2
yzf

ξi,j

3 [∇2
zzf

ξi,j

3 ]−1∇zf
ξi,j

2 ∥2|Fi,j ]

≤ 3σ2
∇2f3

b2zzL
2
f2 + 3E[∥∇2

yzf
ξi,j

3 ∥2|Fi,j ]W 2
zzθ

2
iL

2
f2 + 3E[∥∇2

yzf
ξi,j

3 ∥2|Fi,j ]E[∥[∇2
zzf

ξi,j

3 ]−1∥2|Fi,j ]σ2
∇f2

≤ 3σ2
∇2f3

b2zzL
2
f2 + 3(σ2

∇2f3
+ L2

∇f3)W
2
zzθ

2
iL

2
f2 + 3(σ2

∇2f3
+ L2

∇f3)(W
2
zzθ

2
i + b2zz)σ

2
∇f2 ,

where the last inequality follows from using E[∥∇2
yzf

ξi,j

3 ∥2|Fi,j ] = Var[∇2
yzf

ξi,j

3 |Fi,j ]
+ ∥E[∇2

yzf
ξi,j

3 |Fi,j ]∥2 ≤ σ2
∇2f3

+ L2
∇f3 (by the definition of variance along with As-

sumptions 3.1 and 3.4) and by using E[∥[∇2
zzf

ξi,j

3 ]−1∥2|Fi,j ] = Var[[∇2
zzf

ξi,j

3 ]−1|Fi,j ] +
∥E[[∇2

zzf
ξi,j

3 ]−1|Fi,j ]∥2 ≤W 2
zzθ

2
i + b2zz (by the definition of variance along with Assumptions 3.5

and 3.6). Plugging this expression back into equation D.48 and using the fact that 0 ≤ θ2i ≤ 1, we
obtain the desired result

E[∥g̃i,jf2 − ḡi,jf2 ∥
2|Fi,j ]

≤ 2σ2
∇f2 + 6σ2

∇2f3
b2zzL

2
f2 + 6(σ2

∇2f3
+ L2

∇f3)W
2
zzL

2
f2 + 6(σ2

∇2f3
+ L2

∇f3)(W
2
zz + b2zz)σ

2
∇f2

:= τ̂ . (D.49)

□

Lemma D.6 (Boundedness of ML direction) Under Assumptions 3.1, 3.2, 3.4, 3.5, and 3.6, there
exists the positive constant Υ such that

E[∥g̃i,jf2 ∥
2|Fi,j ] ≤ Υ and ∥ḡi,jf2 ∥

2 ≤ Υ.

Proof. From the definition of variance, we have E[∥g̃i,jf2 ∥
2|Fi,j ] = ∥ḡi,jf2 ∥

2 + E[∥g̃i,jf2 − ḡi,jf2 ∥
2|Fi,j ].

Now, adding and subtracting ∇y f̄(x
i, yi,j , zi,j+1) to the first term, followed by utilizing the fact

that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, with a and b real-valued vectors, along with Lemma D.5, we have

E[∥g̃i,jf2 ∥
2|Fi,j ] ≤ 2∥ḡi,jf2 −∇y f̄(x

i, yi,j , zi,j+1)∥2 + 2∥∇y f̄(x
i, yi,j , zi,j+1)∥2 + τ̂ . (D.50)

Referencing equation A.4 and equation A.9, the ∥∇y f̄(x
i, yi,j , zi,j+1)∥ term can be bounded by

applying the triangle inequality, the consistency of matrix norms, and Assumptions 3.1 and 3.2,
yielding

∥∇y f̄(x
i, yi,j , zi,j+1)∥ ≤ Lf2 +

L∇f3Lf2
µz

=⇒ ∥∇y f̄(x
i, yi,j , zi,j+1)∥2 ≤

(
Lf2 +

L∇f3Lf2
µz

)2

.
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Substituting this back into equation D.50, utilizing Lemma D.5, and letting W := Lf2 +
L∇f3

Lf2

µz
,

yields
E[∥g̃i,jf2 ∥

2|Fi,j ] = 2ω̂2θ2i + ϕ̂, where ϕ̂ := 2W 2 + τ̂ . (D.51)

Finally, using the fact that 0 < θ2i ≤ 1, it follows that

E[∥g̃i,jf2 ∥
2|Fi,j ] ≤ Υ, where Υ := 2ω̂2 + ϕ̂. (D.52)

The second result follows from the definition of variance and applying bound equation D.52, yield-
ing

∥ḡi,jf2 ∥
2 = E[∥g̃i,jf2 ∥

2|Fi,j ]− E[∥g̃i,jf2 − ḡi,jf2 ∥
2|Fi,j ] ≤ E[∥g̃i,jf2 ∥

2|Fi,j ] ≤ Υ.

□

E LIPSCHITZ CONTINUITY PROPERTIES

This appendix contains all of the statements of derived Lipschitz continuity properties of the func-
tions, gradients, Hessians, and Jacobians involved in the trilevel adjoint gradient equation 2.2. All
of their corresponding proofs are provided in Appendix B.5 of the PhD thesis Kent (2025) .

Proposition E.1 Under Assumptions 3.1–3.2, there exist positive constants Lz , Lzxy
, and Lzy , such

that the following Lipschitz continuity properties hold:

∥z(x1)− z(x2)∥ ≤ Lz∥x1 − x2∥, (E.1)
∥z(x1, y1)− z(x2, y2)∥ ≤ Lzxy∥(x1, y1)− (x2, y2)∥, (E.2)

∥z(x, y1)− z(x, y2)∥ ≤ Lzy∥y1 − y2∥. (E.3)

Proposition E.2 Under Assumptions 3.1–3.3, there exist positive constantsLy , L∇z , LF̄ , LF̄y
, LF̄z

,
L∇2

yxf̄
, L∇2

yy f̄
, LF , LFyz , and L∇y , such that the following Lipschitz properties hold:

∥y(x1)− y(x2)∥ ≤ Ly∥x1 − x2∥, (E.4)
∥∇z(x1)−∇z(x2)∥ ≤ L∇z∥x1 − x2∥, (E.5)

∥∇y f̄(x1)−∇y f̄(x2)∥ ≤ LF̄ ∥x1 − x2∥, (E.6)

∥∇y f̄(x, y1)−∇y f̄(x, y2)∥ ≤ LF̄y
∥y1 − y2∥, (E.7)

∥∇y f̄(x, y, z1)−∇y f̄(x, y, z2)∥ ≤ LF̄z
∥z1 − z2∥, (E.8)

∥∇2
yxf̄(x1, y(x1))−∇2

yxf̄(x2, y(x2))∥ ≤ L∇2
yxf̄

∥x1 − x2∥, (E.9)

∥∇2
yy f̄(x1, y(x1))−∇2

yy f̄(x2, y(x2))∥ ≤ L∇2
yy f̄

∥x1 − x2∥, (E.10)

∥∇f(x1)−∇f(x2)∥ ≤ LF ∥x1 − x2∥, (E.11)
∥∇f(x, y1, z1)−∇f(x, y2, z2)∥ ≤ LFyz

∥(y1, z1)− (y2, z2)∥, (E.12)

∥∇y(x1)−∇y(x2)∥ ≤ L∇y∥x1 − x2∥. (E.13)

A useful intermediary result of Proposition E.1 is the following:

∥∇xz(x, y(x))∥ ≤ L∇f3
µz

and ∥∇yz(x, y(x))∥ ≤ L∇f3
µz

, (E.14)

where µz is the constant of the strong convexity of f3 (Assumption 3.2).

F NUMERICAL EXPERIMENTAL SETUP

F.1 COMPUTING THE TSG ADJOINT GRADIENT INEXACTLY

Let us rewrite the adjoint gradient equation 2.2 in x as follows:

∇f = a−AB−1b, (F.1)
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where a = ∇xf1 − ∇2
xzf3∇2

zzf
−1
3 ∇zf1, A = ∇2

xy f̄ , B = ∇2
yy f̄ , and b = ∇yf1 −

∇2
yzf3∇2

zzf
−1
3 ∇zf1. Note that this is the same structure arising in the adjoint gradient of a BLO

problem. Two approaches have been proposed in the BLO literature to deal with B−1. One op-
tion is to compute the adjoint gradient by first solving the linear system given by the adjoint equa-
tion B λ = b for the adjoint variables λ, and then calculating a − Aλ. The second option is to
truncate the Neumann series given by B−1 =

∑∞
h=0(I − B)h, which requires the assumption

of ∥B∥2 < 1 to guarantee the convergence of the series. Note that the same two approaches can be
used to deal with ∇2

zzf
−1
3 in a and b in equation F.1, as well as in the expression for ∇y f̄ , given

in equation F.2 below. The expression for the adjoint gradient ∇y f̄ follows from equation A.9 in
Appendix A, together with equation A.4:

∇y f̄(x, y) = ∇yf2 −∇2
yzf3∇2

zzf
−1
3 ∇zf2, (F.2)

where all gradients and Hessians on the right-hand side are evaluated at (x, y, z(x, y)).

F.2 TSG-N-FD

Our first proposed method, TSG-N-FD, solves the adjoint systems in equation 2.2 and equation F.2
by using an iterative method where each Hessian-vector product is approximated with an FD scheme.
In particular, let us rewrite equation 2.2 and equation F.2 by highlighting the adjoint systems as
follows:

∇f = (∇xf1 −∇2
xzf3 ∇2

zzf
−1
3 ∇zf1︸ ︷︷ ︸
λz

)−∇2
xy f̄ ∇2

yy f̄
−1(∇yf1 −∇2

yzf3 ∇2
zzf

−1
3 ∇zf1︸ ︷︷ ︸
λz

)

︸ ︷︷ ︸
λy

,

(F.3)

∇y f̄ = ∇yf2 −∇2
yzf3 ∇2

zzf
−1
3 ∇zf2︸ ︷︷ ︸
λ̄z

. (F.4)

Specifically, the adjoint systems in equation F.3 are ∇2
zzf3λz = ∇zf1 and ∇2

yy f̄λy = ∇yf1 −
∇2
yzf3λz . The adjoint system in equation F.4 is ∇2

zzf3λ̄z = ∇zf2.

First, we focus on equation F.3. In TSG-N-FD, the adjoint system ∇2
zzf3λz = ∇zf1 is solved

for the adjoint variables λz by using the linear CG method, with ∇2
zzf3λz being approximated as

follows:

∇2
zzf3(x

i, yi,j , zi,j,k; ξi,j,k)λz ≈
∇zf3(x

i, yi,j , zi,j,k+ ; ξi,j,k)−∇zf3(x
i, yi,j , zi,j,k− ; ξi,j,k)

2ε
,

(F.5)
where zi,j,k± = zi,j,k ± ελz, with ε > 0. Then, the adjoint equation ∇2

yy f̄λy = ∇yf1 −∇2
yzf3λz

is solved for the adjoint variables λy by using the linear CG method again, with ∇2
yzf3λz being

approximated via an FD scheme similar to equation F.5, and ∇2
yy f̄λy being approximated as follows:

∇2
yy f̄(x

i, yi,j , zi,j+1; ξi,j)λy ≈
∇y f̄(x

i, yi,j+ , zi,j+1; ξi,j)−∇y f̄(x
i, yi,j− , zi,j+1; ξi,j)

2ε
, (F.6)

where yi,j± = yi,j ± ελy, with ε > 0. Then, the adjoint gradient is calculated from

∇f ≈ (∇xf1 −∇2
xzf3λz)−∇2

xy f̄λy, (F.7)

where ∇2
xzf3 λz and ∇2

xy f̄ λy are approximated via FD schemes similar to equation F.5 and equa-
tion F.6, respectively.

Let us now focus on equation F.4. The adjoint system ∇2
zzf3λ̄z = ∇zf2 is solved for the adjoint

variables λ̄z by using the linear CG method, with ∇2
zzf3λ̄z being approximated as in equation F.5.

Then, the adjoint gradient is calculated from

∇y f̄ ≈ ∇yf2 −∇2
yzf3λ̄z, (F.8)

where ∇2
yzf3 λ̄z is approximated via an FD scheme similar to equation F.5.
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The schema of BSG-N-FD is included in Algorithm 4. The “N” in the algorithm name refers to the
Newton-type system defined by the adjoint equation, while the “FD” refers to the finite-difference
approximations we use. We set the FD parameter value to ε = 0.1.

Algorithm 4 TSG-N-FD

TSG-N-FD is obtained from Algorithm 3 with the following modifications:

In Step 1, replace Step 2 of Algorithm 2 with the following:
Step 2. Compute an approximation g̃i,jf2 , using equation F.8.

In Step 3, replace the content with the following:
Step 3. Compute an approximation g̃if1 , using equation F.7.

F.3 TSG-AD

Our second proposed method, TSG-AD, is based on the truncated Neumann series approach.
We will illustrate such an approach by applying it to the two terms from the adjoint gradi-
ent equation 2.2 that require it, i.e., ∇2

xzf3∇2
zzf

−1
3 ∇zf1 and ∇2

xy f̄∇2
yy f̄

−1b, where b = ∇yf1 −
∇2
yzf3∇2

zzf
−1
3 ∇zf1. A similar approach can be applied to handle the term ∇2

yzf3∇2
zzf

−1
3 ∇zf2

in equation F.2.

Let us start with ∇2
xzf3∇2

zzf
−1
3 ∇zf1 from equation 2.2. Approximating ∇2

zzf
−1
3 using a Neumann

series (i.e., B−1 =
∑∞
h=0(I − B)h, where B plays the role of ∇2

zzf3) requires ∥∇2
zzf3∥2 < 1,

which is a strong assumption in practice. However, recall that f3 is thrice continuously differ-
entiable and ∇zf3 is Lipschitz continuous in z with some constant C0 > 0 by Assumption 3.1,
implying that ∥∇2

zzf3∥ < C0 (Beck, 2017, Theorem 5.12). Therefore, following a common ap-
proach in the BLO literature Ji et al. (2020), we apply the truncated Neumann series to approxi-
mate [(1/C0)∇2

zzf3]
−1.

Given an accuracy level Q > 0, we can write the truncated Neumann series as B−1 ≈
∑Q
h=0(I −

B)h =
∑Q
h=0

∏Q
ℓ=Q−h+1(I − B), where we define

∏Q
ℓ=Q+1(·) = I for simplicity. Therefore, we

can approximate ∇2
zzf

−1
3 ∇zf1 as follows

∇2
zzf

−1
3 ∇zf1 ≈ (1/C0)

 Q∑
h=0

Q∏
ℓ=Q−h+1

(I − (1/C0)∇2
zzf3(x

i, yi,j , zi,j,k; ξi,j,kℓ ))

∇zf1,

(F.9)
with ξi,j,kℓ representing the ℓ-th sample (or batch of samples) from the sequence of random vari-
ables {ξi,j,k}. The expression on the right-hand side of equation F.9 can be efficiently computed
using the AD procedure detailed in Algorithm 5. Then, given vz returned by Algorithm 5, we can
compute the desired term as follows

∇2
xzf3∇2

zzf
−1
3 ∇zf1 ≈ d

dx
(∇zf3(x

i, yi,j , zi,j,k; ξi,j,k)⊤ vz), (F.10)

where differentiation with respect to x is performed using AD (note that ∇zf3 is a function of x
and vz is fixed).
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Algorithm 5 Automatic differentiation procedure to compute ∇2
zzf

−1
3 ∇zf1

Input: (xi, yi,j , zi,j,k).

For ℓ = 1, 2, . . . , Q do
Gℓ(z

i,j,k) = zi,j,k − (1/C0)∇zf3(x
i, yi,j , zi,j,k; ξi,j,kℓ ).

End
Set r0 = ∇zf1(x

i, yi,j , zi,j,k; ξi,j,k).
For h = 0, 1, . . . , Q− 1 do

Calculate rh+1 = d
dz (Gh+1(z

i,j,k)⊤rh) = (I − (1/C0)∇2
zzf3(x

i, yi,j , zi,j,k; ξi,j,kh+1 )) rh,
where differentiation with respect to z is performed using AD (note that Gh+1 is a function of z
and rh is fixed).
End

Output: vz = (1/C0)
∑Q
h=0 rh.

Let us now focus on ∇2
xy f̄∇2

yy f̄
−1b from equation 2.2. Recall that f2 is twice continuously differ-

entiable and ∇y f̄ is Lipschitz continuous in y with some constant C1 > 0 as a consequence of equa-
tion E.7 in Proposition E.2 of Appendix E (such a proposition implies that C1 is equal to LF̄y

, but
we prefer to use C1 for generality). Similar to equation F.9, we apply the truncated Neumann series
to [(1/C1)∇2

yy f̄ ]
−1, which allows us to approximate ∇2

yy f̄
−1b as follows:

∇2
yy f̄

−1b ≈ (1/C1)

 Q∑
h=0

Q∏
ℓ=Q−h+1

(I − (1/C1)∇2
yy f̄(x

i, yi,j , zi,j+1; ξi,jℓ ))

 b, (F.11)

where ξi,jℓ represents the ℓ-th sample (or batch of samples) from the sequence of random vari-
ables {ξi,j}. The expression on the right-hand side of equation F.9 can be efficiently computed
using the AD procedure detailed in Algorithm 6. Then, given vy returned by Algorithm 6, we can
compute the desired term as follows

∇2
xy f̄∇2

yy f̄
−1b ≈ d

dx
(∇y f̄(x

i, yi,j , zi,j+1; ξi,j)⊤ vy), (F.12)

where differentiation with respect to x is performed using AD (note that ∇y f̄ is a function of x
and vy is fixed).

Algorithm 6 Automatic differentiation procedure to compute ∇2
yy f̄

−1b

Input: (xi, yi,j , zi,j+1).

For ℓ = 1, 2, . . . , Q do
Gℓ(y

i,j) = yi,j − (1/C1)∇y f̄(x
i, yi,j , zi,j+1; ξi,jℓ ).

End
Set r0 = b.
For h = 0, 1, . . . , Q− 1 do

Calculate rh+1 = d
dy (Gh+1(y

i,j)⊤rh) = (I − (1/C1)∇2
yy f̄(x

i, yi,j , zi,j+1; ξi,jh+1)) rh,
where differentiation with respect to y is performed using AD (note that Gh+1 is a function of y
and rh is fixed).
End

Output: vy = (1/C1)
∑Q
h=0 rh.

The schema of TSG-AD is included in Algorithm 7.
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Algorithm 7 TSG-AD

TSG-AD is obtained from Algorithm 3 with the following modifications:

In Step 1, replace Step 2 of Algorithm 2 with the following:
Step 2. Compute an approximation g̃i,jf2 by applying to ∇2

yzf3∇2
zzf

−1
3 ∇zf2 the same

approach that was used to compute ∇2
xzf3∇2

zzf
−1
3 ∇zf1 in equation F.10.

In Step 3, replace the content with the following:
Step 3. Compute an approximation g̃if1 , using equation F.10 and equation F.12.

F.4 SYNTHETIC TRILEVEL PROBLEMS

Given hx ∈ Rn, hy ∈ Rm, and hz ∈ Rt, the UL and ML objective functions for both the quadratic
and quartic synthetic trilevel problems considered in the experiments are respectively given by

f1(x, y, z) = h⊤x x+ h⊤y y + h⊤z z + 0.5x⊤Hxxx+ x⊤Hxyy + x⊤Hxzz, (F.13)

f2(x, y, z) = 0.5 y⊤Hyyy − y⊤Hyxx− y⊤Hyzz, (F.14)

whereHxx ∈ Rn×n andHyy ∈ Rm×m are symmetric positive definite matrices, andHxy ∈ Rn×m,
Hxz ∈ Rn×t, Hyx = H⊤

xy , and Hyz ∈ Rm×t are arbitrary matrices. The LL objective functions of
the two problems are respectively defined as follows

f3(x, y, z) = 0.5 z⊤Hzzz − z⊤Hzxx− z⊤Hzyy, (F.15)

f3(x, y, z) = 0.5∥z⊤Hzzz − z⊤Hzxx− z⊤Hzyy∥2, (F.16)

where Hzz ∈ Rt×t is a symmetric positive definite matrix, and Hzx = H⊤
xz and Hzy = H⊤

yz are
arbitrary matrices.

In all the numerical experiments, we considered the same dimension at all levels (i.e., n = m = t =
50) for the quadratic problem, and varying dimensions (i.e., n = m = 5 and t = 1) for the quartic
problem. In equation F.13, the components of the vectors hx, hy , and hz were randomly generated
from a uniform distribution between 0 and 10 for the quadratic problem, and between 0 and 0.1 for
the quartic problem. We set all matrices in equation F.13–equation F.16 equal to identity matrices,
except for Hyy in equation F.14, which was set to four times the identity matrix.

When using equation F.15, our choices for the matrices in equation F.13–equation F.15 ensure
that f3, f̄ , and f have unique solutions.† When using equation F.16, the resulting LL problem has
two optimal solutions: z(x, y) = 0 and z(x, y) = Hzxx+Hzyy. Our choice for the initial points x0,
y0,0, and z0,0,0 ensures that the methods considered in the experiments converge to the LL optimal
solution z(x, y) = Hzxx+Hzyy. Specifically, the components of the initial points were randomly
generated from a uniform distribution over the interval [0, 20] when using equation F.15, and over
the intervals [-0.4, 0], [-0.2, 0], and [-0.6, 0] (for the UL, ML, and LL variables, respectively) when
using equation F.16.

All algorithms (i.e., TSG-H, TSG-N-FD, and TSG-AD) were compared using a decaying step size
at each level. Specifically, we used αi = ᾱ/i, βj = β̄/j, and γk = γ̄/k, where ᾱ, β̄, and γ̄ are
positive scalars carefully chosen to ensure good performance for each algorithm (without conducting
extensive, time-consuming grid searches at all levels, as our goal is not to compare our algorithms
against others). The values of ᾱ, β̄, and γ̄ are provided in Table 2.

F.4.1 ADDITIONAL FIGURES AND DISCUSSION FOR THE SYNTHETIC TRILEVEL PROBLEMS

In the deterministic case, Figures 8 and 9 break down the behavior of TSG-H, TSG-N-FD, and TSG-
AD at the UL, ML, and LL levels. Specifically, such figures plot the sequence of f(xi) values
(upper plot), f̄(xi, yi,j) values (middle plot), and f3(x

i, yi,j , zi,j,k) values (lower plot). They

†We have z(x, y) = H−1
zz (Hzxx + Hzyy), y(x) = (Hyy − 2HyzH

−1
zz Hzy)

−1(Hyx + HyzH
−1
zz Hzx),

∇y f̄(x, y) = Hyyy − Hyxx − HyzH
−1
zz (Hzxx + 2Hzyy), and ∇2

yy f̄(x, y) = Hyy − 2HyzH
−1
zz Hzy . We

omit the expressions of ∇f(x) of ∇2f(x) for brevity.
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Table 2: Details of the stepsizes (αi = ᾱ/i, βj = β̄/j, γk = γ̄/k) used across algorithms for the
synthetic quadratic and quartic trilevel problems

Problem Algorithm Case ᾱ β̄ γ̄

Quadratic

TSG-H Deterministic 0.3 0.2 0.1
TSG-N-FD Deterministic 0.01 0.1 0.05
TSG-AD Deterministic 0.01 0.1 0.1
TSG-H Stochastic 0.1 0.1 0.1
TSG-N-FD Stochastic 0.01 0.1 0.1
TSG-AD Stochastic 0.01 0.1 0.1

Quartic

TSG-H Deterministic 0.3 0.2 0.1
TSG-N-FD Deterministic 0.3 0.2 0.0001
TSG-AD Deterministic 0.3 0.2 0.0001
TSG-H Stochastic 0.3 0.2 0.1
TSG-N-FD Stochastic 0.01 0.01 0.001
TSG-AD Stochastic 0.3 0.2 0.0001

also include the values f(x∗) (only for the quadratic problem, where it can be computed ana-
lytically), with x∗ denoting the optimal solution of the trilevel problem, as well as f̄(xi, y(xi))
and f3(xi, yi,j , z(xi, yi,j)). The goal is for the sequences of f , f̄ , and f3 values to converge to
their respective dashed lines. In the middle- and lower-level plots, the horizontal axis represents
cumulative ML and LL iterations, respectively.

As evident from Figure 8, for the quadratic problem, the sequences of function values at the UL
and ML problems converge when the function values at the ML and LL problems, respectively, also
converge. As evident from Figure 9, for the quartic problem, the sequences of function values at all
levels converge after a few iterations.
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Figure 8: Breakdown of the algorithms, quadratic problem, deterministic case.
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Figure 9: Breakdown of the algorithms, quartic problem, deterministic case.

F.5 TRILEVEL HYPERPARAMETER ADVERSARIAL TUNING

Let us denote the whole learning dataset used in the experiments by D = {(uj , vj), j ∈
{1, . . . , N}}, which consists of N pairs given by a feature vector uj and the corresponding true
label vj . We denote the datasets used for training and validation as DD and Dval, which respec-
tively consist of ND and Nval pairs extracted from the original dataset D (with additional pairs set
aside for testing). Let ϕ(uj ; θ) be the prediction function, where θ is a vector of parameters. The
adversarial training problem can be written according to the following minimax formulation (see,
e.g., Madry et al. (2017)):

min
θ

1

ND

∑
(u,v)∈DD

max
∥δu∥≤ϵ

ℓ(ϕ(u+ δu; θ), v), (F.17)

where δu is a perturbation vector associated with each sample u in the training set, and ϵ is a pos-
itive threshold. Introducing δ = (δu | (u, v) ∈ DD), we propose the following TLO problem for
hyperparameter adversarial tuning, inspired by Sato et al. (2021):

min
λ∈R, θ∈Rm, δ∈Rt

1

Nval

∑
(u,v)∈Dval

ℓ(ϕ(u; θ), v)

s.t. θ, δ ∈ argmin
θ∈Rm, δ∈Rt

1

ND

∑
(u,v)∈DD

ℓ(ϕ(u+ δu; θ), v) + Φ(θ;λ)

s.t. δ ∈ argmax
δ∈Rt

1

ND

∑
(u,v)∈DD

ℓ(ϕ(u+ δu; θ), v)−Ψ(δ),

(F.18)

where λ is a penalty coefficient, and Φ(θ;λ) = (eλ∥θ∥1⋆)/m (with ∥ · ∥1⋆ being a smooth approxi-
mation of the ℓ1-norm (Saheya et al., 2019, Eq. (18) with µ = 0.25)) and Ψ(δ) = (c∥δ∥2)/(mND)
(with c = 0.1 being a penalty coefficient) are penalty terms that penalize large values of θ and δ,
respectively. To convert the LL problem into a minimization problem, we switch to argmin by
multiplying the objective function by −1. Following Sato et al. (2021), we use a linear prediction
function and mean squared error (MSE) as the loss function in our experiments.

Regarding the datasets used in the experiments, the red and white wine quality datasets Cortez et al.
(2009) contain 1,599 and 4,898 samples, respectively, each with 11 features, while the California
housing dataset Pace & Barry (1997) contains 20,640 samples and 8 features. Each dataset is split
into training, validation, and test sets in proportions of 70%, 15%, and 15%, respectively.

For TSG-N-FD and TSG-AD, we use the same configuration described in Section 4.2, including
decaying stepsizes (αi = ᾱ/i, βj = β̄/j, and γk = γ̄/k), where the positive scalars ᾱ, β̄, and γ̄
are selected via grid search over the set {0.1, 0.01, 0.001}. For the BSG-AD algorithms, which are
derived from TSG-AD to solve the BLO problems obtained from equation F.18, we once again use
decaying stepsizes selected via grid search over {0.1, 0.01, 0.001}. Specifically, the values of ᾱ,
β̄, and γ̄ are provided in Table 3. In all experiments, the algorithms use a minibatch size of 64 for
training, and the results presented in the figures are averaged over 10 runs.
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Table 3: Details of the stepsizes (αi = ᾱ/i, βj = β̄/j, γk = γ̄/k) used across algorithms, formula-
tions, and datasets in the trilevel hyperparameter adversarial tuning experiments

Algorithm Formulation Dataset ᾱ β̄ γ̄

TSG-N-FD Sato et al. (2021) Red Wine 0.1 0.1 0.1
TSG-AD Sato et al. (2021) Red Wine 0.01 0.01 0.01
TSG-AD equation F.18 Red & White Wine 0.1 0.01 0.1
TSG-AD equation F.18 California Housing 0.01 0.001 0.01
BSG-AD (without UL) equation F.18 Red & White Wine – 0.01 0.1
BSG-AD (without UL) equation F.18 California Housing – 0.001 0.1
BSG-AD (without LL) equation F.18 Red & White Wine 0.1 0.01 –
BSG-AD (without LL) equation F.18 California Housing 0.1 0.001 –

F.5.1 ADDITIONAL FIGURES AND DISCUSSION FOR TRILEVEL HYPERPARAMETER
ADVERSARIAL TUNING

In Figure 10, we assess the TLO problem for hyperparameter adversarial tuning proposed in Sato
et al. (2021), which can be obtained by swapping the ML and LL problems in equation F.18. The
results on the red wine dataset demonstrate that both TSG-N-FD and TSG-AD exhibit essentially
similar performance in terms of test MSE. However, the test MSE values are consistently worse or
comparable to those obtained using the formulation in equation F.18 (see Figure 5), which is why
we discontinued testing the formulation from Sato et al. (2021).

When using equation F.18, TSG-N-FD does not perform well and is therefore excluded from further
analysis. This outcome is not surprising, as the results from the synthetic problems in Section 4.2
indicated that TSG-N-FD is more affected by noise in ∇f3 than TSG-AD. In equation F.18, the
noise is further amplified by the fact that the size of δ corresponds to the number of rows times the
number of columns of the entire dataset, making ∇f3 more susceptible to minibatch sampling.
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Figure 10: Trilevel adversarial learning formulation proposed in Sato et al. (2021), red wine quality
dataset. The two left plots correspond to noise with standard deviation 0, and the two right plots to
standard deviation 5.
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