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Abstract
We introduce a novel one-parameter variational
objective that lower bounds the data evidence and
enables the estimation of approximate fractional
posteriors. We extend this framework to hierar-
chical construction and Bayes posteriors, offering
a versatile tool for probabilistic modelling. We
demonstrate two cases where gradients can be ob-
tained analytically and a simulation study on mix-
ture models showing that our fractional posteriors
can be used to achieve better calibration compared
to posteriors from the conventional variational
bound. When applied to variational autoencoders
(VAEs), our approach attains higher evidence
bounds and enables learning of high-performing
approximate Bayes posteriors jointly with frac-
tional posteriors. We show that VAEs trained with
fractional posteriors produce decoders that are
better aligned for generation from the prior.

1. Introduction
Exact Bayesian inference is intractable for most models of
interest in machine learning. Variational methods (Jordan
et al., 1999; Minka, 2001; Opper & Winther, 2005; Blei
et al., 2017) address this by casting the required integration
as optimisation. These methods have two objectives: to
estimate the marginal likelihood or data evidence (MacKay,
2003) for model comparison or model optimisation; and to
obtain an approximate Bayes posterior for prediction.

The widely used evidence lower bound (ELBO) (Jordan
et al., 1999) often leads to underestimated uncertainty
and suboptimal posterior calibration (Wang & Tittering-
ton, 2005; Bishop, 2006; Yao et al., 2018). These deficien-
cies can be compounded by challenges inherent to general
Bayesian modelling, such as misspecification. Fractional
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posteriors (Grünwald & van Ommen, 2017; Bhattacharya
et al., 2019) have emerged as a generalization of Bayesian in-
ference to address these. Unlike the Bayes posterior, which
fully incorporates the likelihood, a fractional posterior has
an exponent that weighs the likelihood to temper its influ-
ence. This approach has been shown to enhance robustness
in misspecified models and has strong connections to PAC-
Bayesian bounds (Bhattacharya et al., 2019), which control
generalization error in statistical learning.

This work introduces a new variational framework that gen-
eralises conventional variational inference (VI) by allow-
ing the approximation of fractional posteriors, enabling im-
proved posterior flexibility and calibration. As in standard
VI based on ELBO maximisation, our approach provides
a lower bound on the marginal likelihood and extends to
hierarchical construction (Ranganath et al., 2016) and Bayes
posteriors. Thus it offers a flexible trade-off between evi-
dence maximization and posterior calibration, bridging the
gap between standard VI and fractional Bayesian inference.

We explore both analytical and empirical insights into vari-
ational learning of fractional posteriors. First, we identify
cases where gradients can be derived analytically, elim-
inating the need for gradient estimators (Roeder et al.,
2017). Next, we perform a simulation study on mixture
models, demonstrating that fractional posteriors achieve
better-calibrated uncertainties compared to conventional
VI. Finally, we consider variational autoencoders (VAEs)
(Kingma & Welling, 2014), showing that fractional posteri-
ors not only give higher evidence bounds but also enhance
generative performance by aligning decoders with the prior—
a known issue in standard VAEs (Dai & Wipf, 2019).

This work advances the field of approximate Bayesian infer-
ence with a theoretically grounded and empirically validated
approach to fractional variational inference. It demonstrates
that fractional posteriors can improve model calibration and
yield better generative models, and it offers an alternative to
standard variational inference and learning approaches.

Notation We use letter p for model distributions and let-
ters q and r for approximate distributions. The tilde (˜)
accent is for the unnormalised version of the distribution
that it modifies; and the asterisk (*) superscript is for the
optimised versions. The unaccented letter Z is for the nor-
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malising constant, and Z̃ is for an arbitrary scaling constant.
We reserve ELBO for the conventional bound (Jordan et al.,
1999). Boldfaces are used only when needed to distinguish
vectors from scalars. We omit the approximate qualifier
from approximate posterior, unless the context requires it.
When comparing evidence bounds, we use the adjective
tighter if we can ascertain that the bound is closer to a fixed
evidence value; and we use the adjective higher if bounds
cannot be compared for tightness because their correspond-
ing fixed evidences are different. The latter is limited to
sections 5.2 and 5.3 when we optimise the likelihood of the
model. Table 3 in section A lists the bounds in this paper.

2. A Lower Bound with Hölder’s Inequality
The log-evidence Levd

def= log p(D) of data D for a genera-
tive model involving an auxillary variable z is bounded by
the variational Rényi (lower) bound LR

α (Li & Turner, 2016,
Theorem 1) for α > 0:

Levd ≥ LR
α

def=
1

1− α
log

∫
q(z) (p(D, z)/q(z))

1−α
dz.

The Kullback-Leibler divergence (KL, α → 1) is the
only case where the chain rule of conditional probability
holds exactly to get the conventional ELBO LELBO

def=∫
q(z) log p(D|z)dz −

∫
q(z) log(q(z)/p(z))dz. This in-

volves the expected log conditional likelihood (first term)
that encourages data fitting and the KL term between the
approximate posterior q(z) and the prior p(z) (second term)
that acts as a regulariser to bias the posterior towards the
prior. This decomposition is not possible for other values of
α, so LR

α generally cannot be expressed in such terms.

To this end, we revert to the original log-evidence Levd and
apply Hölder’s inequality (Rogers, 1888) in the manner of(
E
[
|X|1/β

])β ≥ E[|XY |] /
(
E
[
|Y |1/γ

])γ
, where β+γ =

1 and β, γ ∈ (0, 1), with

E[·] def=

∫
p(z) · dz, X def= p(D|z)β , Y def= q̃(z)/p(z)

to obtain

Levd =
1

β
log

(∫
p(z) p(D|z)dz

)β

≥ 1

β
log

∫
q̃(z) p(D|z)βdz(∫

p(z) (q̃(z)/p(z))
1/γ

dz
)γ

=
1

1− γ
logZd − γ

1− γ
logZc

def= Lγ , (1)

where we have expressed β in γ, and we have data-fitting
and regularisation (complexity) terms

q̃d(z)
def= q̃(z) p(D|z)1−γ q̃c(z)

def= q̃(z)1/γ p(z)1−1/γ

Zd
def=

∫
q̃d(z)dz Zc

def=

∫
q̃c(z)dz.

The derivation does not require q̃(z) to be a distribution.
However Y must be in Lγ to apply the Hölder’s inequality,
that is, supp q̃ ⊆ supp p. Hence, the q̃ must be consistent
with the prior p, a desideratum. If q̃(z) is a distribution q(z),
that is,

∫
q(z)dz = 1, then the second term of the bound is

the Rényi divergence D1/γ [q(z)∥p(z)].

Our objective Lγ in eq. (1) can be seen as an example of the
generalized variational inference framework (Knoblauch
et al., 2022). However, it is uniquely derived as a lower
bound to the log-evidence, so it naturally encodes the Oc-
cam’s razor principle and can be used for model optimisa-
tion (MacKay, 2003, Chapter 28). We can relate this ob-
jective to the conventional ELBO (Lemma A.3 shows that
limγ→1 Lγ = LELBO using the L’Hôpital’s rule and the
convergence of Rényi to KL divergence) and also provide
two related upper bounds (Lemmas A.1 and A.2).

2.1. Fractional Posteriors

The optimal Lγ is tight at q̃∗(z) = p(D|z)γp(z)/Z̃, where
Z̃ can be the normalising constant:

L∗
γ =

1

1− γ
log Z̃−1

∫
p(D|z) p(z)dz

− γ

1− γ
log Z̃−1/γ

∫
p(D|z)p(z)dz

= log
∫
p(D|z)p(z)dz ≡ Levd.

Since Lγ is a lower bound, this already proves the optimality
of q̃∗ (section A.1 gives a variational derivation). In con-
trast, the gap between Levd and LR

α is the Rényi divergence
Dα[q(z)∥p(z|D)] (section A.2), so LR

α ’s optimal q(z) is the
exact Bayes posterior p(z|D). Nonetheless, Lγ is related to
LR
α by suitable change of distributions (section A.3).

The above shows that the bound is tight at a fractional pos-
terior where the data-likelihood is weighted with γ ∈ (0, 1)
(Bhattacharya et al., 2019). This is more generally known
as the Gibbs posterior (Zhang, 1999; Alquier et al., 2016),
the power posterior (Friel & Pettitt, 2008), or the tempered
posterior (Pitas & Arbel, 2024). As mentioned in the in-
troduction, fractional posteriors are related to robustness in
misspecified models (Bhattacharya et al., 2019).

We have obtained the fractional posterior directly from op-
timising Lγ , which allows approximations to the unnor-
malised fractional posterior via optimisation within an as-
sumed family of non-negative functions. It is achieved
without relying on PAC-Bayes or modifying the likelihood,
and it follows from optimising a lower bound on Levd. It is
an alternative to the approach by Alquier et al. (2016).

2.2. On the choice of γ

It is generally futile to seek a γ∗ giving the tightest bound:
for a given probabilistic model and a fixed posterior q, γ∗
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depends on q. For, if q is close to the exact Bayes posterior,
then γ∗ = 1; if q is close to an exact fractional posterior,
then γ∗ is that fraction. The situation is the same if we learn
q within a family Q. If Q contains all the exact posteriors,
Bayes and fractionals, then all values of γs are optimal
because all give Levd after optimisation. If, however, Q can
approximate only certain fractional posteriors well, then the
corresponding γs will give the tightest bounds.

Nonetheless, if one applies approximate inference analyt-
ically to a problem that is specified with an explicit prior,
such as the normal distribution, it is typical to choose Q
to be in the same family as the prior, such that Q includes
the prior and its neighbourhood. In this case, we expect
optimising with small γ to give consistently tighter bounds.
This is shown in section 5.1 empirically.

In a similar fashion, for challenging data sets for which we
use neural networks, we expect smaller γ to give tighter
bounds for simpler neural networks that can better approxi-
mate the prior and the fractional posteriors than the Bayes
posterior. This is supported in section C.4 empirically.

Considerations other than bounds may influence the choice
of γ. In section 5.1, we use calibration; in section 5.3, we
want a posterior that is close to the prior.

2.3. Extensions to Hierarchical Constructions

We give two extensions to Lγ to allow for more expressive
fractional and Bayes posteriors using mixing. We show
in sections A.5.1 and A.5.2 that degeneracy of the mixing
distribution is not necessary for optimality, in contrast to the
case for ELBO (Yin & Zhou, 2018, Proposition 1).

2.3.1. FRACTIONAL POSTERIOR

Let q̃(z) def=
∫
q̃(z|u)q(u)du be a hierarchical model of the

posterior distribution using mixing variable u. Jensen’s
inequality for convexity of powers above unity gives

Zc =

∫ (∫
q̃(z|u)q(u)du

)1/γ

p(z)1−1/γdz

≤
∫ (∫

q̃(z|u)1/γq(u)du
)
p(z)1−1/γdz

=

∫ (∫
q̃(z|u)1/γ−1q̃(z|u) q(u)du

)
p(z)1−1/γdz

=

∫∫
(q̃(z|u)/p(z))1/γ−1

q̃(z|u)dz q(u)du (2)

We may substitute this into eq. (1) to obtain another bound,
which we shall call Lh

γ . This lower bound allows Monte
Carlo estimates of the integral by only using samples from
the posterior q̃(z|u) (see section 4).

A similar approach has been used to lower bound the ELBO
(Yin & Zhou, 2018, Theorem 1). There, the optimal for

q(u) is known to be the delta distribution located for opti-
mal q(z|u) (Yin & Zhou, 2018, Proposition 1). However,
deviations from this property may happen in practice (see
sections B.2 and C.4).

2.3.2. BAYES POSTERIOR

We can bound the data term in Lγ using Jensen’s inequality
with another variational distribution r(z):

logZd ≥ (1− γ)

∫
r(z) log p(D|z)dz

−
∫

r(z) log
r(z)

q̃(z)
dz

so that logarithm over the product of likelihoods becomes
a sum over the logarithms of each likelihood, and we may
sample over the data points. Section 3.1.3 gives a different
but more specific bound for the mixture model.

The above bound is exact at r∗(z) ∝ q̃(z) p(D|z)1−γ . If
q̃(z) is also optimal, then r∗(z) ∝ p(z)p(D|z), which is the
Bayes posterior. Combining the above bound with eq. (1)
gives a bound on Levd involving both KL and Rényi diver-
gences. We shall denote this bound by Lb

γ .

If we fix r(z) regardless of its optimality, and then optimise
for q̃(z), we obtain q̃∗(z) ∝ r(z)γp(z)1−γ interpolating
between the fixed r(z) and the model prior p(z). This shows
that r(z) has a constraining effect on q̃(z), so the fractional
posteriors approximated by Lb

γ are in general different from
those approximated by using Lγ . In particular, if r(z) itself
is a fractional posterior with fraction γ′, then q̃(z) has at
best fraction γ′γ. This is shown empirically in section 5.2.1.

For a fixed r(z), Lb
γ is upper bounded by LELBO (see

Lemma A.4), so Lb
γ in itself has limited use. However,

we can use it with the hierarchical posterior model (sec-
tion 2.3.1) to give more expressive posteriors. For this, we
have to go beyond just applying the hierarchical model on
r(z) because this will result in a degenerate mixing distri-
bution for r(z), since the terms involved are exactly the
same as in ELBO. To prevent degeneracy, we apply hier-
archical model to both q̃(z) and r(z), with the same mix-
ing distribution q(u). That is, q̃(z) def=

∫
q̃(z|u)q(u)du

and r(z) def=
∫
r(z|u)q(u)du. Under this setting, we apply

eq. (2) on the Rényi divergence term and the convexity on
the KL term to obtain a bound we call Lbh

γ (see section A.4):

Levd ≥
∫∫

r(z|u)q(u) log p(D|z) dzdu

− 1

1− γ

∫∫
r(z|u)q(u) log r(z|u)

q̃(z|u)
dzdu

− γ

1− γ
log

∫∫
q̃(z|u)q(u)

(
q̃(z|u)
p(z)

)1/γ−1

dzdu.
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3. Learning
Let q̃ be parameterised by θ. Under regularity conditions,

∂Lγ

∂θ
=

1

1− γ

∫
(qd(z)− qc(z))

∂ log q̃(z)

∂θ
dz,

where qd(z)
def= q̃d(z)/Zd and qc(z)

def= q̃c(z)/Zc are nor-
malised distributions, and we have used the log-derivative
trick ∂log q̃/∂θ = (1/q̃)(∂q̃/∂θ). At the optimal q̃∗, both
qc(z) and qd(z) equates the exact Bayes posterior p(z|D).
Setting the gradient to zero entails matching the expectations
of the gradients of log q̃ under qc and qd.

Gradients for Lb
γ and Lbh

γ can be similarly expressed.

3.1. Case Studies

We study three cases of applying Lγ analytically. The first
case where exact inference is possible is illustrative. The
other cases, where exact inference is not, demonstrate where
using Lγ can be useful.

3.1.1. EXPONENTIAL FAMILY

Consider D to be a collection of n independent data
{x1, . . . ,xn} in the exponential family with the conju-
gate prior setting: p(xi|z) = h(xi) exp

(
zTt(xi)− a(z)

)
;

p(z|ν, κ) = g(ν, κ) exp
(
zTν − κa(z)

)
; and q̃(z|µ, λ) =

exp
(
zTµ− λa(z)

)
, with t being the sufficient statistic,

z the natural parameter, a the log-partition function; ν
and κ the parameters for the prior; and µ and λ the pa-
rameters for the posterior. Then ∂ log q̃(z)/∂µ = z and
∂ log q̃(z)/∂ν = −a(z), and

qc(z) ∝ exp
(
zT (µ/γ + (1− 1/γ)ν)− k(κ)a(z)/γ

)
qd(z) ∝ exp

(
zT (µ+ (1− γ)

∑n
i=1 t(xi))− k(n)a(z)

)
,

where k(•) def= λ + (1 − γ)•. The sufficient statistics for
conjugate distributions are z and −a(z), so

Eqc [z] = µ/γ + (1− 1/γ)ν Eqc [−a(z)] = k(κ)/γ

Eqd [z] = µ+ (1− γ)
∑n

i t(xi) Eqd [−a(z)] = k(n).

Zeroing gradients ∂Lγ/∂µ and ∂Lγ/∂λ gives the follow-
ing parameters for q̃ as expected:

µ = ν + γ
∑n

i=1 t(xi) λ = κ+ γn.

The parameters interpolate between the prior and the Bayes
posterior, as a consequence that exact inference is achiev-
able. This is not true for more general models and approxi-
mate inference may be required.

3.1.2. MULTINOMIAL DATA WITH GAUSSIAN PRIOR

In the previous case where exact posteriors can be obtained,
it is not necessary to derive the gradients, since we already
know the functional form of these posteriors.

Where the exact fractional posterior could be complicated,
we assume a functional form for the approximate posterior.
Consider the model with a multinomial logit likelihood for
C classes and a standard Gaussian prior:

p(x|z) = exp zx∑C
c=1 exp zc

; p(z) =

C∏
c=1

1√
2π

exp−z2c
2
.

For n data points, we choose 1/γ = 1 + 1/n and let

q̃(z) =

(
C∏

c=1

N (zc|µc, σ
2
c )

)(
C∑

c=1

exp zc

)n/(n+1)

.

Then

qc(z) ∝
(∏C

c=1 N (zc|mc, s
2
c)
)(∑C

c=1 exp zc

)
=
∑C

c=1 exp zc

(∏C
c′=1 N (zc′ |mc′ , s

2
c′)
)

qd(z) ∝
(∏C

c=1 N (zc|µc, σ
2
c )
)∏n

i=1 exp (zxi
/(n+ 1))

∝
∏C

c=1 N
(
zc|µc +

ncσ
2
c

n+1 , σ
2
c

)
,

where

mc
def=

µc(n+ 1)

n+ 1− σ2
c

s2c
def=

nσ2
c

n+ 1− σ2
c

,

and nc
def=
∑n

i=1 δ(c, xi) is the number of data points of
class c. The last expression of qc has normalising constant∑C

c=1 exp(mc + s2c/2), and the last expression for qd is
normalised because it is a product of independent Gaussian
distributions. The gradients with respect to the parameters
and the required expectations are given in section A.6. This
is an example where we need only the unnormalised density
q̃ during optimisation.

3.1.3. MIXTURE MODEL

A common model in the Bayesian literature is the mixture
model. For n samples {xi}ni=1 and K components with
parameters {uk}Kk=1 independently drawn from p(uk), the
evidence is

∑
c p(c)

∫
p(u)

∏n
i=1 p(xi|ci,u)du (Blei et al.,

2017, Equation 9), where ci ∈ {1, . . . ,K} is the latent as-
signed cluster for the ith sample, and the cis are independent.
The outer sum over Kn cluster assignments makes exact
inference intractable.

Assume a mean-field approximation for the posterior:
q(u, c) =

∏K
k=1 q(uk)

∏n
i=1 q(ci). Like ELBO, we may

apply the Lb
γ bound to convert the innermost product to an

outer sum for the likelihood term. Alternatively, we can first
apply Lγ for the variational posterior q(u) of the compo-
nent means, and then the ELBO for the cluster assignments
c, so that the Zd term in eq. (1) is lower bounded by∫

q(u)

n∏
i=1

K∏
ci=1

(p(xi|ci,u)p(ci)/q(ci))(1−γ)q(ci) du.
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Define the variational parameters φik
def= q(ci = k), i =

1, . . . , n, k = 1, . . . ,K. Simplifying with the mean-field
independence assumption, the lower bound is (section A.7)

K∑
k=1

(
1

1− γ

n∑
i=1

log

∫
q(uk)p(xi|uk)

(1−γ)φikduk

−
n∑

i=1

φik log (φik/p(ci = k))

− γ

1− γ
log

∫
q(uk)

1/γp(uk)
1−1/γduk

)
.

Identifying terms with Lγ , optimality gives q(uk) ∝
p(uk)

∏n
i=1 p(xi|uk)

φikγ . For φik, we first define distri-
butions qi(uk) ∝ q(uk)p(xi|uk)

(1−γ)φik , which introduces
the proportion of the ith sample omitted in q(uk). Then
φik ∝ p(ci) exp (Eqi [log p(xi|uk)]) — in this way, q(ci)
approximates the Bayes posterior by using the full contri-
bution of likelihood due to xi. A full ELBO solution is
obtained by setting γ = 1 for the updates; and in particular,
qi(uk) ≡ q(uk) for all i.

If each conditional likelihood p(xi|uk) is in the exponential
family and the prior p(uk) is conjugate to it, then q(uk) is in
the same conjugate family that have the sufficient statistics
of the data weighted by φik and γ. Consider the Gaussian
mixture model of Blei et al. (2017, §2.1), where the com-
ponent priors are identically normal with mean zero and
variance σ2; the assignment priors are identically uniform;
and the likelihood is unit variance normal centered at uk.
Then q(uk) is normal with mean and variance

γ
∑n

i=1 φikxi

1/σ2 + γ
∑n

i=1 φik
and

1

1/σ2 + γ
∑n

i=1 φik
.

The same expressions are obtained from the approxi-
mate Bayes posterior r(uk) and the prior p(uk) using
r(uk)

γp(uk)
1−γ , but the assignment probabilities φiks

within are different. Section C.2 illustrates the difference.

4. Monte Carlo Estimates
If we have Ns samples zis from distribution q(z) = q̃(z)/Z
for known normalising constant Z, we can use them to esti-
mate Zc and Zd in eq. (1). If we only have the unnormalised
density, then estimating Lγ requires the normalising factor
Z. An alternative is to introduce a mixing distribution and
use the Lh

γ bound:

Lh
γ ≈ 1

1−γ log 1
Ns

∑
i

∑
j p(D|zij)1−γ

− γ
1−γ log 1

Ns

∑
i

∑
j(q(zij |ui)/p(zij))

1/γ−1,

where there are now N ′
s samples from ui ∼ q(u) followed

by Ns/N
′
s samples zij ∼ q(z|ui). In this setting, q̃(z) need

not be known explicitly, but we are required to be able
to draw the (ui, zi)s samples and to know the conditional
q(z|u) exactly. This particular model for q(z) is the semi-
implicit hierarchical construction (Yin & Zhou, 2018).

For Lbh
γ , we also have Ns/N

′
s samples z′ik ∼ r(z|ui). Sec-

tion B provides more details.

5. Experiments
We provide three experiments. The first uses analytical up-
dates to infer the posteriors for a given model, a variational
inference task; the second and third, Monte Carlo sampling
with the reparameterisation trick (Kingma & Welling, 2014)
to infer the posteriors and also learn the hyperparameters of
the model, a variational learning task. For γ = 1.0 we use
the standard ELBO implementation directly. We refer the
reader to Table 3 in section A as a reminder of the bounds
used in the paper and evaluated in this section.

5.1. Calibration Study for Mixture Models

We evaluate the quality of the learnt fractional posteriors by
examining the calibration diagnostics for a one-dimensional
mixture model. We use the Gaussian mixture model (GMM)
of Blei et al. (2017, §2.1), where each observation is drawn
with white noise (that is, variance σ2

obs = 1) from one of the
K components with equal probability, and the component
means have independent and identical Gaussian priors. We
infer posteriors over component means using variational
inference on a set of observations. For a given significance
level α, actual coverage is the long-term frequency that the
1 − α credible interval from a posterior includes the true
component mean. The credible interval is calibrated when
the actual coverage is 1− α. It is known that the posteriors
from ELBO are overconfident (Wang & Titterington, 2005).

We use K=2 components centered at µ1 = −2 and µ2 = 2,
and we compute the empirical coverage κ over 5, 000 repli-
cas of n = 400 observations (Syring & Martin, 2019, §S2).
For each replica, we obtain the approximate fractional pos-
teriors for γ = 0.1 to 0.9 in intervals of 0.1, and the ap-
proximate Bayes posterior using ELBO (see section 3.1.3).
Using α = 0.05, we find that the posteriors from ELBO and
γ = 0.9 are overconfident, that is, κ < 1 − α; and those
from γ ≤ 0.8 are conservative (first set of results in Table 1).
Moreover, the interval lengths ℓs decrease with γ. These
findings conform to our expectations of fractional posteriors,
and they demonstrate that optimising Lγ gives approximate
fractional posteriors with the intended properties.

To see the effect of the interval length ℓ on κ, we measure
the coverages when, for each replica, the component means
are from the Bayes posterior but the component variances
are from fractional posteriors with γ = 0.1, 0.5 or 0.9. We
find the coverages for such conflated models Cγs match that
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Table 1: Calibration study of GMM at α = 0.05 signif-
icance. The empirical coverages κ (higher is better) and
average interval lengths ℓ (shorter better) for each of the
{µ1, µ2} means are shown. The last column gives the
bounds to Levd (higher better). The first set of results is
from modelling with different γs (L1.0 is ELBO). Results
for γ ∈ {0.2, 0.4, 0.6, 0.8} are omitted for brevity, but the
trend remains. The second set is from conflated models
combining the means from ELBO and the variances from
Lγ . The third set is from calibrations of using the first set
of results. The γ values for Rℓ and Rκ are 0.785 and 0.798.

µ1 µ2

κ ℓ κ ℓ bound

L0.1 1.0000 0.8515 1.0000 0.8987 −832.5
L0.3 0.9994 0.4924 0.9988 0.5200 −833.3
L0.5 0.9876 0.3816 0.9860 0.4029 −834.0
L0.7 0.9694 0.3225 0.9606 0.3406 −834.4
L0.9 0.9438 0.2845 0.9334 0.3004 −834.8
L1.0 0.9278 0.2699 0.9182 0.2850 −834.9

C0.1 1.0000 0.8515 1.0000 0.8987 −839.3
C0.5 0.9878 0.3816 0.9858 0.4029 −834.5
C0.9 0.9436 0.2845 0.9334 0.3004 −834.8

Rℓ 0.9588 0.3046 0.9474 0.3216 −834.6
Rκ 0.9570 0.3021 0.9458 0.3190 −834.6

of the corresponding fractional posteriors in general, but for
a minority of replicas changing the variances is insufficient
(compare the coverages of Cγs to Lγs in Table 1).

Here, we investigate two calibration strategies, one using
interval lengths ℓs and the other using coverages κs. Given
our knowledge of the model, sans the locations of the com-
ponents, we expect n/K observations per component, so
their sample mean has variance Kσ2

obs/n. Combining this
with the critical value for α provides an interval length ℓ∗

that we expect in the ideal case. For each replica and each
component k, we perform linear regression on γ against ℓ
using the results from Lγ to predict γ∗

k at ℓ∗. We average the
γ∗
ks to obtain γ∗ for that replica. The model that optimises

Lγ∗ in then computed, for each replica. We call this Rℓ.

The other strategy, called Rκ, has to be performed after
computing the κs over the replicas. This regresses linearly
γ against κ using the results from Lγ to predict the γ∗

k at
1 − α coverage, for each component k. We then obtain a
single γ∗ by averaging the γ∗

ks. For each replica, the model
that optimises Lγ∗ is then computed.

In this study, we find both Rℓ and Rκ to provide coverages
close to 1 − α (last set of results in Table 1). For Rℓ, the
average value of γ∗ is 0.78, while for Rκ the value is 0.80.

In practice, when replications of data sets are not available,
bootstrapping can be used (Syring & Martin, 2019). Both
Rℓ and Rκ are shown to be effective, and which to use in
practice will depend primarily on the nature of data collec-
tion. Section C.1 gives additional examples; here we note
that analysis for K > 2 components is complicated by the
complex marginal likelihood landscape (Jin et al., 2016).

Bounds With current experimental settings, we perform
importance sampling using 1,000 samples to estimate the
log-evidence to be −827.2. So, while L0.1 is the tightest
(last column in Table 1) in this scenerio, it is still rather
loose. Section C.3 provides more details.

5.2. Variational Autoencoder

Variational autoencoder (VAE) (Kingma & Welling, 2014)
provides a variational objective to learn the the encoder
and decoder neural networks of an autoencoder. Though
there are many variations (for example, Tomczak & Welling
(2018); Higgins et al. (2017)), we compare with the standard
VAE since our aim is to investigate differences with ELBO.
VAE is a local latent variable model that separately applies
ELBO to each datum. This will be the same for our bounds.

We follow the experimental setup and the neural network
models of Ruthotto & Haber (2021) for the gray-scale
MNIST dataset (Lecun et al., 1998). The latent space is
two-dimensional, so we can inspect the posteriors visually.
We make three changes (see section C.4): most significantly
we use the continuous Bernoulli distribution (Loaiza-Ganem
& Cunningham, 2019) as the likelihood function. We use
four values of γs: 1.0 (ELBO), 0.9, 0.5 and 0.1.

For the posterior family, we use an explicit normal dis-
tribution (following Ruthotto & Haber (2021)) and also a
semi-implicit distribution. For the latter we use a three-layer
neural network for the implicit distribution, similar to that
used by Yin & Zhou (2018) (details in section C.4). The
choice of posterior family affects only the encoder structure.

In VAE, the log-evidence Levd depends on the prior and the
likelihood, which in turn depends on the learnt VAE decoder.
Hence, optimising the decoder parameters can be seen as
an ML-II procedure (Wang et al., 2019). Therefore, when
comparing the evidence bounds after optimisation, we can
only say that the optimised models provide certain guaran-
tees on Levd, with higher bounds giving better guarantees.
For tightness of bounds, see section C.4 (Table 7).

We first look at the effect of γ and posterior families, and
where Lγ uses the explicit distributions and Lh

γ uses the
semi-implicit distributions. While the learning objectives
are on the training set, we also examine them on the test set
to assess generalisation. We observe smaller γs gives higher
final evidence bounds (third and fourth columns of Table 2,
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Table 2: Average log-evidences (higher better) over data samples, and its breakdown for VAE on MNIST data sets. We
give the mean and three standard deviations of these averages over ten experimental runs. For Monte Carlo averages, 1,024
samples are used (32× 32 for semi-implicit posteriors). For γ = 1.0, the figures are the same under Test using Objective
and Test using ELBO. For the first eight rows, the columns under Test using ELBO are solely for diagnostics to understand
the learnt posteriors using the same metrics: they are not performance measures. For Lbh

γ , we show the addition of the KL
divergence and Rényi divergence for Test using Objective; and for Test using ELBO we evaluate the Bayes posterior r.

Test using Objective Test using ELBO

Objective γ Train (Total) Total data div Total data div

Lγ 1.0 1614.3±11.0 1583.2±14.6 1588.5±14.5 5.3±0.2 1583.2±14.6 1588.5±14.5 5.3±0.2

0.9 1648.5±5.1 1639.3±4.5 1641.9±4.8 2.6±0.4 1452.6±48.0 1455.0±48.0 2.4±0.3

0.5 1675.9±5.0 1672.8±5.9 1674.7±6.0 1.9±0.3 1318.7±42.1 1320.1±42.2 1.4±0.2

0.1 1680.1±2.9 1677.2±3.4 1679.5±3.4 2.3±0.3 1322.8±49.0 1324.2±49.1 1.3±0.2

Lh
γ 1.0 1639.6±14.6 1609.6±20.6 1614.6±20.5 5.0±0.3 1609.7±20.6 1614.6±20.5 5.0±0.3

0.9 1657.7±6.1 1647.8±5.6 1651.1±5.6 3.3±0.3 1534.6±57.0 1537.8±57.1 3.2±0.3

0.5 1677.4±4.1 1674.4±5.0 1676.4±5.0 2.1±0.2 1366.0±62.0 1367.7±62.2 1.7±0.2

0.1 1681.4±2.7 1678.7±3.1 1681.2±3.2 2.5±0.2 1355.6±37.7 1357.1±37.8 1.6±0.2

Lbh
γ 0.9 1636.2±11.5 1608.8±23.3 1613.4±23.0 4.0±0.2 + 0.6±0.3 1607.7±23.9 1613.4±23.0 5.7±1.0

0.5 1635.2±10.5 1608.0±25.4 1612.7±25.2 4.3±0.2 + 0.4±0.2 1607.4±25.8 1612.7±25.3 5.3±0.6

0.1 1635.5±12.0 1607.5±16.1 1612.4±16.1 4.6±0.1 + 0.3±0.2 1607.3±16.2 1612.4±16.1 5.1±0.2

first two sets of results), showing that Lγ and Lh
γ can be

better than LELBO. This implies that using a range of γs
is useful for model selection, comparison and optimisation.
Moreover, L0.9 with the simpler explicit posterior already
gives higher bound than Lh

1.0 (ELBO) with the semi-implicit
posterior (compare their fourth columns), illustrating that
γ is more impactful than the posterior family. Nonethe-
less, for the same γ, the semi-implicit posterior family gives
higher evidence bounds (compare the first two sets of re-
sults), showing that Lh

γ is a viable approach to learning
within the semi-implicit family.

The Rényi and KL divergences generally increase with γ
(sixth and ninth columns in Table 2). In particular, the trend
for KL validates that we are learning fractional posteriors
closer to the prior for smaller γs. The means of the explicit
posterior distributions have also less spread for smaller γs
(see Fig. 4 in section C); samples from these distributions,
which depends on the learnt variances, also demonstrate the
same (Fig. 5, section C). This also means that the data is
less fitted for smaller γs, which is generally shown from the
data fit term in ELBO (eighth column in Table 2).

There are more clumps in samples from the semi-explicit
posteriors than from the explicit ones (Fig. 5, section C),
demonstrating the mixing property of the former. The sam-
ples from the implicit posteriors shows that the implicit
distribution for γ = 1.0 (ELBO) are mostly concentrated
(Fig. 6a, section C), suggesting frequent degeneracy to the
delta distribution, in broad agreement to theory (Yin & Zhou,
2018). In contrast, those for γ < 1, we find diverse samples

in most cases (Figs. 6b to 6d). This demonstrates that learn-
ing with our bounds is a viable alternative to other methods
(Yin & Zhou, 2018; Titsias & Ruiz, 2019; Uppal et al., 2023)
to prevent collapse of the implicit distributions.

Because of the degeneracy of hierarchical posterior for the
ELBO, we have expected to find the results of Lh

1.0 to be
very similar to that of L1.0. However, this is not the case
here. We postulate that the different gradients and the ad-
ditional implicit samples have led to different learning dy-
namics and allow Lh

1.0 to escape local optimas in the neural
network parameter space. The large variances in the train
objectives across the ten experimental runs support this.

Bounds For a limited comparison on the tightness of the
bounds with respect to a common Levd, we take a single run
of LELBO for the explicit posterior and uses its decoder as
the fixed decoder to train the encoders (or posteriors) for Lγ .
With smaller γs, we obtain tighter bounds and posteriors
closer to the prior. Details are in section C.4.

5.2.1. COMPARING Lbh
γ WITH Lh

γ

We examine the joint learning of Bayes posterior r and
a fractional posterior q using the bound Lbh

γ , where the
posteriors are in the same semi-implicit family. We compare
with using Lh

γ , in both the bounds and the posteriors. The
neural network settings are the same as for Lh

γ .

The train and test objectives of Lbh
γ do not perform better

than those from Lh
γ (and Lγ for γ ̸= 1.0; last three rows in
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(a) Random test samples (b) Lγ , γ = 1; or ELBO (c) Lγ , γ = 10−5 (d) Prior distribution

Figure 1: We train VAEs on the Fashion-MNIST dataset using Lγ for different γs. We obtain mean images from the
decoding latent variables that are systematically sampled by coordinate-wise inverse-CDF (standard normal) transform
from a unit square. Fig. b shows the images using the Bayes posterior (learnt with ELBO), and Fig. c shows those using a
fractional posterior very close to the prior. The last image is the heat map of the corresponding prior densities.

Table 2), even though there are more parameters — those
for the Bayes posterior r. In particular, they do not perform
better than Lh

1.0, as would be suggested by Lemma A.4;
but we qualify that the decoders and hence the probabilistic
models are probably different.

We find KL[r∥q] to be large, and it increases with smaller γ,
as expected (first summand in the sixth column in Table 2).
When we evaluate the Bayes posteriors rs with ELBO, we
find that they are competitive with those obtained by directly
optimising Lh

1.0 (seventh column).

Comparing the Rényi divergences of the fractional posteri-
ors learnt with Lbh

γ to those learnt with Lh
γ (sixth column in

Table 2), we find those learnt with Lbh
γ significantly closer

to the prior. This shows that the fractional posteriors from
Lbh
γ are constrained significantly by the Bayes posteriors

when learnt jointly (see third paragraph in section 2.3.2).

5.3. Improving VAE Decoder via Fractional Posteriors

The decoder of VAE is learnt with latent samples from
the encoder. An encoder from a fractional posterior gives
samples closer to the prior than the Bayes posterior. Hence,
when we generate images from the VAE decoder using
samples from the prior—that is, without using the encoder
that need an input data—we expect the decoder learnt with
a smaller γ to provide better images.

We illustrate this with the Fashion-MNIST dataset (Xiao
et al., 2017), training with Lγ for γ taking values 1.0 (for
Bayes posterior), 10−1, 10−3 and 10−5 (for fractional poste-
rior close to prior). Using latent samples from the prior, the
decoder trained with the Bayes posterior provides images
that are of lower quality then the decoder trained with the
fractional posterior with γ = 10−5 (Fig. 1; and Fig. 7 in
section C.5). To quantify, we generate 10,000 images from
each trained decoder and measure their Fréchet inception

distances (FIDs, Heusel et al. 2017; Seitzer 2020) to the test
set: with decreasing γ, the distances are 83.5, 69.5, 67.8 and
68.8 (smaller is better). This shows that fractional posteriors
can train better decoders for generative modelling.

The β-VAE objective (Higgins et al., 2017) with the appro-
priate parameters also gives fractional posteriors. However,
this objective can be unstable during optimisation, espe-
cially when we seek fractional posteriors very close to the
prior. For the same fractional posteriors with γ set to 10−1,
10−3 and 10−5, we obtain FIDs 77.3, 334.7 and 342.3. Sec-
tion C.5 provides the details.

6. Related Work
Generalised variational inference (Knoblauch et al., 2022)
provides an optimisation framework that generalises ELBO.
Being generic, one need to concretise the individual terms
before applying to specific cases. One example is β-VAE
(Higgins et al., 2017) for learning disentangled represen-
tations in variational autoencoders (VAEs): it weighs the
divergence term more heavily. By construction, the β-VAE
bound is provably not tighter than ELBO, and optimising
it gives a fractional posterior. The importance weighted
ELBO is also not tighter than ELBO (Domke & Sheldon,
2018, eq. 8). In contrast, the variational Rényi bound (Li &
Turner, 2016) can be tighter than ELBO, and optimising it
gives the Bayes posterior. This paper provides a bound that
can be better than ELBO, especially for simpler assumed
family of distributions, and optimising it gives a fractional
posterior. We show this with the calibration and VAE study.

In a standard VAE, the decoder is trained with samples from
the posteriors encoded using the training data, but these are
unavailable for pure generative tasks. Current approaches
overcome this by learning a prior that is accessible during
generation, with the objective for matching the prior to
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the posteriors (Makhzani et al., 2016; Tomczak & Welling,
2018; Tran et al., 2021). The alternative is to train the
decoder via a distribution close to the prior. While the β-
VAE implies such a distribution, its looser bound suggests
that the decoder parameters may be learnt suboptimally. Our
approach uses fractional posteriors and gives bounds higher
than ELBO empirically.

Variational inference can be seen as intentional model mis-
specification (Chen et al., 2018). Fractional posteriors is
one approach to overcome misspecification (Grünwald &
van Ommen, 2017). Such posteriors can be obtained by
sampling with down-weighted likelihood; or one can adjust
the scale parameter of the Bayes posterior (Syring & Martin,
2019). Alternatively, one can optimise the β-VAE objec-
tive (Alquier et al., 2016; Higgins et al., 2017). We have
provided an alternative variational approach to approximate
fractional posteriors, and we have demonstrated calibration
using them within regression procedures. More complex
calibration procedures (Grünwald & van Ommen, 2017;
Syring & Martin, 2019) can be explored.

7. Discussions and Limitations
Misspecification If the prior and likelihood are correctly
given, and if exact inference is possible, then in principle a
Bayesian only needs to compute the exact Bayes posterior.
This seldom happens in practice (Faden & Rausser, 1976).
If either the prior or likelihood or both are misspecified,
then post-Bayesianism efforts, such as generalised Bayes
(Knoblauch et al., 2022), robust Bayesian (Miller & Dunson,
2019) and PAC-Bayes (Masegosa, 2020; Morningstar et al.,
2022), seek to ameliorate the situation. This paper does not
directly address the goals of post-Bayesianism. It has not
evaluated when either the likelihood or the prior is misspec-
ified. Although those for MNIST and Fashion-MNIST are
most probably misspecified, we have not compared to when
they are not. We rely on the works of others to address such
goals. Nonetheless, we make a two connections here.

First, using fractional posteriors is a proposed solution for
misspecification (Grünwald & van Ommen, 2017; Bhat-
tacharya et al., 2019; Medina et al., 2022), and our ob-
jective does this naturally through a lower bound on the
log-evidence. While the objective is not as intuitive as, say,
the β-VAE objective, a lower bound like Lγ that can be
tighter than ELBO can help in selecting or optimising appro-
priately parameterised priors in an empirical Bayes manner
(Berger & Berliner, 1986). Second, our objective uses the
Rényi divergence to quantify the closeness of the prior to the
posterior, and this divergence is well-behaved for robustness
to prior misspecification (Knoblauch et al., 2022, §5.2.1).

When exact inference is not possible, we can use approxi-
mate inference by way of variational optimisation, which is

the main alternative to Monte Carlo approaches. When the
assumed variational family does not include the exact Bayes
posterior, some—but not all—also consider this misspeci-
fication (Chen et al., 2018; Knoblauch et al., 2022). This
paper addresses this by expanding the possibility afforded
by the conventional ELBO, so that we may also have ap-
proximate fractional posteriors as the optimal solutions. At
this point, there is no single recipe to select γ (section 2.2);
we opine that this should be application dependent. For ex-
ample in section 5.1, the best γs are selected for calibration
and not for the tightness of the corresponding bounds.

Posterior collapse With small γ, we might seem to be en-
couraging posterior collapse (Wang et al., 2021). However,
Fig. 4d for γ = 0.1 demonstrates that while the fractional
posteriors as a whole aggregate towards the prior, the pos-
terior for every data point is different. This topic demands
more investigation and discussion than possible here.

Limitations We identify three limitations with Lγ . First,
the conventional ELBO using the KL divergence is usually
more mathematically elegant and convenient. This is be-
cause it can convert a log-sum (or log-integral) to a sum-log
(or integral-log), and a sum or integral is neccessary for
marginalisation. In particular, the variational inference for
the mixture model must rely on the ELBO at some point
(section 3.1.3). Second, the Rényi divergence is finite in less
cases than the KL (Gil et al., 2013). It may be necessary to
consider this when optimising the parameters of the approx-
imate posteriors, though we have not needed to do this for
the presented experiments. Third, when using Monte Carlo
estimates, more than one sample is required to be effective
(section B.1). This can be unrealistic for huge datasets.

Power posteriors This paper focuses on estimating an ap-
proximate fractional posteriors with the lower bound Lγ on
the log-evidence. For power posteriors with γ > 1, we have
upper bounds (Lemma A.1). Similarly, there is no fixed cri-
terion to select such γs (section 2.2). Estimating these pos-
teriors involves minimising the upper bounds, but machine
learning applications will typically require maximising the
minimised upper bounds; executing this is probably more
involved than what is done in this paper.

8. Conclusions
We have presented a novel one-parameter variational lower
bound for the evidence. Maximising the bound within an
assumed family of distributions estimates approximate frac-
tional posteriors. We have given analytical updates for ap-
proximate inference in two intractable models. Empirical
results for calibration and VAE show the utility of our ap-
proach. For the Fashion-MNIST dataset, VAE decoders
learnt with our approach can generate better images.
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A. Proofs
This section collects the proofs for the main paper. For reference, Table 3 lists the bounds used in this paper.

Lemma A.1. Levd is upper bounded the same expression as eq. (1), but with γ > 1.

Proof. Similar to the proof for γ ∈ (0, 1), but we use the reverse Hölder’s inequality in the manner of E
[
|X|1/β′

]β′

≤

E[|XY |] /E
[
|Y |1/γ′

]γ′

, where β′ + γ′ = 1 and β′ < 0, with the same expressions for E[·], X and Y . Set γ ≡ γ′ =

1− β′ > 0.

Lemma A.2. Levd is upper bounded the same expression as eq. (1), but with γ < 0.

Proof. Similar to the proof for Lemma A.1, but now we use β′ > 1, so that γ ≡ γ′ = 1− β′ < 0.

Lemma A.3. limγ→1 Lγ = LELBO.

Proof. The data term in Lγ converges to the expectation of the log likelihood under approximate posterior q when we apply
the L’Hôpital’s rule:

lim
γ→1

log
∫
q̃(z) p(D|z)1−γdz

1− γ
= lim

γ→1

∫
q̃(z) p(D|z)1−γ log p(D|z)dz∫

q̃(z) p(D|z)1−γdz

=

∫
q̃(z) log p(D|z)dz∫

q̃(z)dz

=

∫
q(z) log p(D|z)dz

Moreover, as γ → 1, the Rényi divergence converges to the KL divergence (van Erven & Harremos, 2014).

Lemma A.4. For a fix approximate Bayes posterior, Lb
γ ≤ LELBO.

Proof. For a fixed r(z), Lb
γ is optimal at q̃∗(z) ∝ r(z)γp(z)1−γ . Substituting q̃∗(z) into Lb

γ recovers ELBO. Hence, Lb
γ is

upper bounded by ELBO.

A.1. Variational Derivation of Saddle Point of Lγ

To obtain the functional derivative ∂Lγ/∂q̃, we introduce scalar h and function η(z) and consider

dLγ(q̃ + hη)

dh

∣∣∣∣
h=0

=

(
1

1− γ

∫
η(z) p(D|z)1−γdz∫

(q̃(z) + hη(z)) p(D|z)1−γdz
− 1

1− γ

∫
η(z) (q̃(z) + hη(z))1/γ−1p(z)1−1/γdz∫

(q̃(z) + hη(z))1/γp(z)1−1/γdz

)
h=0

=
1

1− γ

∫
η(z) p(D|z)1−γdz∫
q̃(z) p(D|z)1−γdz

− 1

1− γ

∫
η(z) q̃(z)1/γ−1p(z)1−1/γdz∫

q̃(z)1/γp(z)1−1/γdz

=

∫
1

1− γ

(
p(D|z)1−γ∫

q̃(z′) p(D|z′)1−γdz′
− q̃(z)1/γ−1p(z)1−1/γ∫

q̃(z′)1/γp(z′)1−1/γdz′

)
η(z)dz,

where the integrand sans η(z) is the required derivative. Equating to zero give

q̃(z) = p(D|z)γp(z)/Z̃ Z̃ =

( ∫
q̃(z) p(D|z)1−γdz∫
q̃(z)1/γp(z)1−1/γdz

)γ/(1−γ)

Substituting q̃(z) into the RHS of Z̃ gives

Z̃ =

( ∫
p(z) p(D|z)dz/Z̃∫

p(D|z)p(z)dz/Z̃1/γ

)γ/(1−γ)

= Z̃,
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Table 3: List of lower bounds. Some are expressed differently from the main paper to ease comparison among the bounds.
The β-VAE objective is the weighted KL divergence (Knoblauch et al., 2022, §B.3.1).

Description Notation Expression

Log-evidence Levd log p(D) = log

∫
p(z)p(D|z)dz

ELBO (evidence lower bound) LELBO

∫
q(z) log p(D|z)dz −

∫
q(z) log

q(z)

p(z)
dz

Weighted KL divergence
(β-VAE objective)

Lβ
β

∫
q(z) log p(D|z)dz − β

∫
q(z) log

q(z)

p(z)
dz

Variational Rényi bound LR
α

1

1− α
log

∫
q(z)

(
p(D|z) p(z)

q(z)

)1−α

dz

Our primary bound Lγ
1

1− γ
log

∫
q̃(z)p(D|z)1−γdz − γ

1− γ
log

∫
q̃(z)

(
q̃(z)

p(z)

)1/γ−1

dz

• with hierarchical fractional
posterior

Lh
γ

1

1− γ
log

∫∫
q̃(z|u)q(u)p(D|z)1−γdzdu

− γ

1− γ
log

∫∫
q̃(z|u)q(u)

(
q̃(z|u)
p(z)

)1/γ−1

dz du

• with Bayes posterior Lb
γ

∫
r(z) log p(D|z)dz − 1

1− γ

∫
r(z) log

r(z)

q̃(z)
dz

− γ

1− γ
log

∫
q̃(z)

(
q̃(z)

p(z)

)1/γ−1

dz

• with hierarchical fractional
and Bayes posteriors

Lbh
γ

∫∫
r(z|u)q(u) log p(D|z) dzdu

− 1

1− γ

∫∫
r(z|u)q(u) log r(z|u)

q̃(z|u)
dzdu

− γ

1− γ
log

∫∫
q̃(z|u)q(u)

(
q̃(z|u)
p(z)

)1/γ−1

dzdu

• with hierarchical fractional
and Bayes posteriors
(alternative bound; see
section A.4)

Lbh
γ -alt

∫∫
r(z|u)q(u) log p(D|z) dzdu

− 1

1− γ

∫∫∫
r(z|u)q(u)q(u′) log

r(z|u)
q̃(z|u′)

dzdudu′

− γ

1− γ
log

∫∫
q̃(z|u)q(u)

(
q̃(z|u)
p(z)

)1/γ−1

dzdu
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which is self-consistent. The solution is true for any Z̃, so we may choose Z̃ as the normalising constant. Because of
this, and because the optimal solution is already non-negative, it is not necessary to introduction Lagrange multipliers for
constrained optimisation.

A.2. Gap between Log-evidence and Variational Rényi Bound

log p(D)− 1

1− α
log

∫
q(z) (p(D, z)/q(z))

1−α
dz =

1

1− α
log

p(D)1−α∫
q(z) (p(D, z)/q(z))

1−α
dz

=
1

α− 1
log

∫
q(z) (p(D, z)/q(z))

1−α

p(D)1−α
dz

=
1

α− 1
log

∫
q(z)αp(z|D)1−αdz,

A.3. Divergences

Following the definition of Levd and its lower bound Lγ , we may define a divergence Dfrac
γ from distribution p2 to distribution

p1 with respect to an underlying distribution p0:

Dfrac
γ [p2∥p1] def= Levd − Lγ .

Here, p0 participates as the prior, p1(z) ∝ ℓ(z)γp0(z) as the target fractional posterior with likelihood ℓ(z), and p2 ≡ q as
the approximating posterior. By definition, the divergence is non-negative because Lγ is a lower bound, and the divergence
is zero when p2 = p1 because Lγ is tight.

Let Z be the normalising constant of p1. We have ℓ(z) = Z1/γ(p1(z)/p0(z))
1/γ . By substitution and simplification,

Levd =
1

γ
logZ + log

∫
p1(z)

1/γp0(z)
1−1/γdz

Lγ =
1

γ
logZ +

1

1− γ
log

∫
p2(z)p1(z)

1/γ−1p0(z)
1−1/γdz − γ

1− γ
log

∫
p2(z)

1/γp0(z)
1−1/γdz.

Therefore,

Dfrac
γ [p2∥p1] = log

∫
p1(z)

1/γp0(z)
1−1/γdz − 1

1− γ
log

∫
p2(z)p1(z)

1/γ−1p0(z)
1−1/γdz

+
γ

1− γ
log

∫
p2(z)

1/γp0(z)
1−1/γdz,

and Z is not required.

We may also obtain a divergence without the notion of fractional posterior. Continuing from above, let p̃i(z)
def=

pi(z)
1/γp0(z)

1−1/γ/Zi, for i = 1, 2 and where Zis are normalising constants. Then, by substituting into and simpli-
fying expressions in the right side of the above equation, we have

1

γ − 1
log

∫
p̃2(z)

γ p̃1(z)
1−γdz,

which is the Rényi divergence Dγ [p̃2∥p̃1].

Observe that p̃1(z) ∝ ℓ(z)p0(z) is the Bayes posterior. So, in minimising the Rényi divergence, we obtain p̃2 as an
approximate Bayes posterior. We recover an approximate fractional posterior p2 by using the definition of p̃2, where the
prior p0 is needed. Therefore, if we are to change the subject of optimisation from the fractional posterior to the Bayes
posterior, we recover the variational Rényi bound (Li & Turner, 2016).

Throughout this section, the precise definition of Lγ has allowed normalising constants to be cancelled. Also, we can derive
Lγ as a lower bound retrospectively by reading this section in reverse.
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A.4. Derivations for Lbh
γ

The data term is because p(D|z) is not dependent on u. The Rényi divergence term follows from eq. (2). We address the KL
divergence term below.

We use the convexity of KL[p∥q] in the pair (p, q). This provides −
∫
r(z) log(r(z)/q(z))dz ≥

−
∫ (∫

r(z|u) log(r(z|u)/q(z|u))dz)
)
q(u)du for the KL divergence term in Lbh. The overall bound requires a dou-

ble integral because we have a hierarchical construction, involving random variables u and z given u.

An alternative derivation gives Lbh
γ -alt in the last row in Table 3. The function −x log x is concave, so we

have −
∫
r(z) log r(z)dz ≥ −

∫ (∫
r(z|u) log r(z|u)dz)

)
q(u)du. Similarly, log x is concave, so we also have∫

r(z) log q̃(z)dz ≥
∫
r(z)

(∫
q(u′) log q̃(z|u′)dz)

)
du′. Introducing u′ to the entropy term and u to the negative cross-

entropy term and then summing the two gives an alternative KL divergence term in Lbh. The triple integral in the KL term
comes from the independently mixing of r(z|u) and q̃(z|u) with the same distribution q(u).

A.5. Non-degeneracy of the Implicit Distributions within the Semi-implicit Distributions

This section shows the existence of non-degenerate implicit distributions when optimising for Lh
γ , Lbh

γ and Lh
γ-alt. A

common theme is that the Rényi divergence is expressed as a log-integral rather than an integral-log, so the optimsation for
the implicit distribution cannot be factored out.

A.5.1. FOR FRACTIONAL POSTERIORS USING Lh
γ

For this section, let f(u) def=
∫
q(z|u)p(D|z)1−γdz and g(u) def=

∫
(q(z|u)/p(z))1/γ−1q(z|u)dz, so that Lh

γ(q) =
(log

∫
f(u)q(u)du)/(1 − γ) − (log

∫
g(u)q(u)du)γ/(1 − γ), where q is just for the distribution of u. We introduce

scalar h and function η(u). The functional derivative ∂Lh
γ/∂ log q is the integrand sans η(u) of the expression

dLh
γ(log q + hη)

dh

∣∣∣∣∣
h=0

=

∫ (
1

1− γ

f(u)∫
f(u′)q(u′)du′ −

γ

1− γ

g(u)∫
g(u′)q(u′)du′

)
q(u)η(u)du

Together with the normalisation constraint which introduces a Lagrange multiplier λ, we require(
1

1− γ

f(u)∫
f(u′)q(u′)du′ −

γ

1− γ

g(u)∫
g(u′)q(u′)du′ + λ

)
q(u) = 0.

Integrating with respect to u yield 1 + λ = 0, so we have(
1

1− γ

f(u)∫
f(u′)q(u′)du′ −

γ

1− γ

g(u)∫
g(u′)q(u′)du′ − 1

)
q(u) = 0. (3)

This means that q(u) will collapse to zero if the left term is not zero. Though it is not necessary that q(u) degenerates to a
delta distribution, a delta distribution satisfies the above constraint readily.

For further illustration, consider q(u) supported at only two locations u1 and u2. Using qi, fi and gi to denote evaluations
of f and g at these locations, we have

q1 =
(1− γ)f2g2 − f1g2 + γf2g1
(1− γ)(f1 − f2)(g1 − g2)

q2 =
(1− γ)f1g1 − f2g1 + γf1g2
(1− γ)(f1 − f2)(g1 − g2)

,

which is satisfiable with different values of fis and gis.

A.5.2. FOR BAYES AND FRACTIONAL POSTERIORS USING Lbh
γ

For this section, let

f(u) def=

∫
r(z|u) log p(D|z)dz g(u) def=

∫
(q(z|u)/p(z))1/γ−1q(z|u)dz

h(u) def=

∫
r(z|u) log r(z|u)dz d(u) def=

∫
r(z|u) log q(z|u)dz,
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so that

Lbh
γ (q) =

∫
f(u)q(u)du− 1

1− γ

∫
h(u)q(u)du+

1

1− γ

∫
d(u)q(u)du− γ

1− γ
log

∫
g(u)q(u)du,

where q is just for the distribution of u. Taking derivative with respect to log q(u) and imposing normalisation constraint
with the Lagrange multiplier λ, we require(

f(u)− 1

1− γ
h(u) +

1

1− γ
d(u)− γ

1− γ

g(u)∫
g(u′)q(u′)du′ − λ

)
q(u) = 0. (4)

Integrating with respect to u fix

λ =

∫
f(u)q(u)du− 1

1− γ

∫
h(u)q(u)du+

1

1− γ

∫
d(u)q(u)du− γ

1− γ
.

A delta distribution satisfies eq. (4) readily. However, other solutions are also possible in general. As an example, consider
q(u) supported at only two locations u1 and u2, and let ∆f def= f(u1)−f(u2), ∆h def= h(u1)−h(u2), ∆d def= d(u1)−d(u2),
and ∆g def= g(u1)− g(u2). In these settings, and using q(u1) + q(u2) = 1, eq. (4) may be written as(

∆f − 1

1− γ
∆h+

1

1− γ
∆d− γ

1− γ

∆g

g(u1)q(u1) + g(u2) + q(u2)

)
q(u1)q(u2) = 0

Since q(u1) ̸= 0 and q(u2) ̸= 0, the first term must be zero. This can be expressed as

g(u1)q(u1) + g(u2)q(u2) =
γ∆g

(1− γ)∆f −∆h+∆d
.

Using q(u2) = 1− q(u1), the explicit expression for q(u1) is

q(u1) =
γ

(1− γ)∆f −∆h+∆d
− g(u2).

A.5.3. FOR BAYES AND FRACTIONAL POSTERIORS USING Lbh
γ -ALT

We define f , g and h as for Lbh
γ in section A.5.2, but we now have d(u, u′) def=

∫
r(z|u) log q(z|u′)dz, so that

Lbh
γ -alt(q) =

∫
f(u)q(u)du− 1

1− γ

∫
h(u)q(u)du+

1

1− γ

∫∫
d(u, u′)q(u)q(u′)du′du

− γ

1− γ
log

∫
g(u)q(u)du,

where q is just for the distribution of u. Taking derivative with respect to log q(u) and imposing normalisation constraint
with the Lagrange multiplier λ, we require(

f(u)− 1

1− γ
h(u) +

1

1− γ

∫
(d(u, u′) + d(u′, u))q(u′)du′ − γ

1− γ

g(u)∫
g(u′)q(u′)du′ − λ

)
q(u) = 0. (5)

Integrating with respect to u fix

λ =

∫
f(u)q(u)du− 1

1− γ

∫
h(u)q(u)du+

2

1− γ

∫∫
d(u, u′)q(u)q(u′)du′du− γ

1− γ
.

A delta distribution satisfies eq. (5) readily. However, other solutions are also possible in general. As an example,
consider q(u) supported at only two locations u1 and u2, and let ∆f def= f(u1) − f(u2), ∆h def= h(u1) − h(u2), ∆d def=∫
(d(u1, u

′) + d(u′, u1))q(u
′)du′ −

∫
(d(u2, u

′) + d(u′, u2))q(u
′)du′, and ∆g def= g(u1) − g(u2). We proceed as the

example for section A.5.2 under these definitions.
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A.6. Gradients and Expectations for the Multinomial Example

The gradients with respect to the parameters are

∂ log q̃(z)

∂µc
=

zc − µc

σ2
c

∂ log q̃(z)

∂σ2
c

= − 1

2σ2
c

+
(zc − µc)

2

2σ4
c

and the required expectations are

Eqc [zc] = mc + ρcs
2
c Eqc

[
z2c
]
= s2c +m2

c + s2c(s
2
c + 2mc)ρc

Eqd [zc] = µc + σ2
c nc/(n+ 1) Eqd

[
z2c
]
= σ2

c +
(
µc + σ2

c nc/(n+ 1)
)2

,

where

ρc
def=

exp(mc + s2c/2)∑C
c′=1 exp(mc′ + s2c′/2)

.

These can be used for gradient ascend to learn the parameters of q̃.

A.7. Derivation for the Mixture Model

The marginal likelihood or evidence is

expLevd =

∫
p(u)

∑
c

p(c)

n∏
i=1

p(xi|ci,u)du.

Applying eq. (1) on Levd focusing on the posterior for p(u) gives

Levd ≥ 1

1− γ
log

∫
q(u)

[∑
c

p(c)

n∏
i=1

p(xi|ci,u)

]1−γ

du− γ

1− γ
log

∫
q(u)1/γp(u)1−1/γdu. (6)

Applying ELBO on the logarithm of the term within the brackets above and then exponentiating the result get us to

Levd ≥ 1

1− γ
log

∫
q(u)

[
n∏

i=1

K∏
ci=1

(
p(xi|uci)

p(ci)

q(ci)

)q(ci)
]1−γ

du− γ

1− γ
log

∫
q(u)1/γp(u)1−1/γdu.

The argument of the logarithm in the first summand is the first displayed expression in section 3.1.3. In the first summand,
we bring the products out of the logarithm:

Levd ≥ 1

1− γ

n∑
i=1

K∑
ci=1

log

∫
q(u)

(
p(xi|uci)

p(ci)

q(ci)

)(1−γ)q(ci)

du− γ

1− γ
log

∫
q(u)1/γp(u)1−1/γdu.

In the first summand, the density ratios p(ci)/q(ci) are independent of u and taken out to give the KL divergence. So the
bound is written as

1

1− γ

n∑
i=1

K∑
ci=1

log

∫
q(u) p(xi|uci)

(1−γ)q(ci)du−
n∑

i=1

K∑
ci=1

q(ci) log
q(ci)

p(ci)
− γ

1− γ
log

∫
q(u)1/γp(u)1−1/γdu.

Finally, use the mean-field approximation for q(u) and rewriting the indexing for the cis as indexing for k to give

1

1− γ

n∑
i=1

K∑
k=1

log

∫
q(uk) p(xi|uk)

(1−γ)q(ci=k)duk −
n∑

i=1

K∑
k=1

q(ci = k) log
q(ci = k)

p(ci = k)

− γ

1− γ

K∑
k=1

log

∫
q(uk)

1/γp(uk)
1−1/γduk. (7)

Swapping the order of the summations and using variational parameter φik for q(ci = k) gives the second displayed
expression in section 3.1.3.
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A.7.1. FRACTIONAL POSTERIORS FOR CLUSTER ASSIGNMENTS

For approximate inference to be tractable for the mixture model, it seems that we ultimately cannot avoid using ELBO for c.
Nonetheless, this does not preclude us from also having a fractional posterior for c. Instead of applying ELBO on eq. (6),
we apply the Lb

γ′ in section 2.3.2 to the same term:

log
∑
c

p(c)

n∏
i=1

p(xi|ci,u) ≥
∑
c

r(c) log

n∏
i=1

p(xi|ci,u)−
1

1− γ′

∑
c

r(c) log
r(c)

q(c)

− γ′

1− γ′ log
∑
c

q(c)1/γ
′
p(c)1−1/γ′

,

where r(c) is the approximate Bayes posterior and q(c) is the approximate fractional posterior. Following through derivations
similar to before with mean-field approximations, we obtain

Levd ≥ 1

1− γ

n∑
i=1

K∑
k=1

log

∫
q(uk) p(xi|uk)

(1−γ)r(ci=k)duk − 1

1− γ′

n∑
i=1

K∑
k=1

r(ci = k) log
r(ci = k)

q(ci = k)

− γ′

1− γ′

n∑
i=1

log

K∑
k=1

q(ci = k)1/γ
′
p(ci = k)1−1/γ′

− γ

1− γ

K∑
k=1

log

∫
q(uk)

1/γp(uk)
1−1/γduk.

As reasoned in section 2.3.2, the optimal fractional posteriors q(ci)s interpolate between the r(ci)s and the p(ci)s: q(ci) ∝
r(ci)

γ′
p(ci)

1−γ′
. At this setting, we recover eq. (7) with a change of notation for the approximate Bayes posterior. This is

expected since there is no constraint on fractional posteriors q(ci)s other than normalisation.

B. Monte Carlo Estimates
Suppose we have Ns samples zis from distribution q(z) = q̃(z)/Z for known normalising constant Z. Then

Lγ ≈ 1

1− γ
log

1

Ns

∑
i

p(D|zi)1−γ − γ

1− γ
log

1

Ns

∑
i

(q(zi)/p(zi))
1/γ−1.

Ideally, one should draw separate samples for estimating Zc and Zd, but in practice, one trades this off with computational
efficiency. We currently employ this approach.

If we only have the unnormalised density, then approximating the lower bound requires the normalising factor Z:

Lγ ≈ logZ +
1

1− γ
log

1

Ns

∑
i

p(D|zi)1−γ − γ

1− γ
log

1

Ns

∑
i

(
q̃(zi)

p(zi)

)1/γ−1

.

The normalising constant cannot be avoided, and one may estimate it with, for example, importance sampling from a
distribution for which the normalising constant is known (Gelman & Meng, 1998).

An alternative is to introduce a mixing distribution and use the Lh
γ bound:

Lh
γ ≈ 1

1− γ
log

1

Ns

∑
i

∑
j

p(D|zij)1−γ − γ

1− γ
log

1

Ns

∑
i

∑
j

(
q(zij |ui)

p(zij)

)1/γ−1

,

where there are now N ′
s samples from ui ∼ q(u) followed by Ns/N

′
s samples zij ∼ q(z|ui). In practice, there can be

different number of z samples for each ui, but we simplify the notation here. In this setting, q̃(z) need not be known
explicitly, but we are required to be able to draw the (ui, zi)s samples and to know the conditional q(z|u) exactly.

For Lbh
γ , we similarly have N ′

s samples from ui ∼ q(u) and Ns/N
′
s samples zij ∼ q(z|ui), but we now also have Ns/N

′
s

samples z′ik ∼ r(z|ui):

Lbh
γ ≈ 1

Ns

∑
i

∑
k

log p(D|z′ik)−
1

1− γ

1

Ns

∑
i

∑
k

log
r(z′ik|ui)

q(z′ik|ui)
− γ

1− γ
log

1

Ns

∑
i

∑
j

(
q(zij |ui)

p(zij)

)1/γ−1

.
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For the alternative Lbh
γ -alt bound (last row in Table 3), we suggest the following mechanism. We have the same samples, but

further, for each ui sample, we associate with it a subset Ui from the set
{
u1, . . . , uN ′

s

}
. Then we estimate this alternate

bound with

1

Ns

∑
i

∑
k

log p(D|z′ik)−
1

1− γ

1

Ns

∑
i

∑
k

log r(z′ik|ui)

+
1

1− γ

1

Ns

∑
i

∑
k

1

|Ui|
∑

uj∈Ui

log q(z′ik|uj)−
γ

1− γ
log

1

Ns

∑
i

∑
j

(
q(zij |ui)

p(zij)

)1/γ−1

.

If q(u) is a continuous distribution such that there is zero probability of having two samples with the same value, then it is
important that Ui excludes ui. Similarly, if |Ui| is small, then a systematic instead of random selection of the subsamples
should be better. The method of unbiased implicit variational inference (Titsias & Ruiz, 2019) similarly requires a nested
summation of independent samples from q(u), but the proposal there is to sample Ui separately. The trade-off between
computational cost and more faithful Monte Carlo estimates depends on, for example, the cost of sampling from q(u). Yet
another approach is the Gaussian approximation based on linearisation (Uppal et al., 2023).

B.1. On Single Samples

If Ns = 1, as commonly done for local latent variable models (see section 5.2), then the above estimates for Lγ and Lh
γ

revert to ELBO because the exponents within the logarithms cancel the multiplicative factors on the logarithms. Therefore,
these bounds require Ns > 1 to be effective.

For Lbh
γ , the 1/(1− γ) factor remains for the KL divergence from r to q. The implications may be subject to future work.

B.2. Considerations for Learning

If we are using the above estimates within an automatic differentiation procedure for learning the parameters of the
distributions, it is critical that any sampling distributions (that is, q(z), or q(z|u) and q(u)) be driven from standard
distributions with fixed parameters so that we may apply the Law of the Unconscious Statistician, also known as the
reparameterisation trick (Kingma & Welling, 2014).

In addition, for the semi-implicit constructions, we find learning to be effective when Ns/N
′
s > 1, that is more than one

sample of z for each sample of u.

For ELBO with semi-implicit posteriors, although a delta distribution is known to be optimal (Yin & Zhou, 2018), variances
in sampling may lead to a mixture of delta distributions located at the optimal and the near-optimal locations. This is further
exacerbated by the variance in stochastic gradient methods. The parameterisation of the implicit posteriors may also give a
region of lower probabilities “bridging” these locations. Fig. 6 in section C.4 provides an illustration based on VAE on the
MNIST data set.

C. Experiments
This section collects additional details and results for the experiments.

C.1. Calibration

For the calibration experiment (section 5.1), we initialise the estimated posterior with means −1 and 1, and variances n/K.
The prior standard deviations of the component means are 3. The experiment is not sensitive to the precise settings of these
quantities.

C.1.1. STRATEGY USING INVERSE SQUARED LENGTH

For a prior p(z) and a corresponding exact Bayes posterior p(z|D), the exact fractional posterior is given by the interpolation
p(z)1−γp(z|D)γ . For Gaussian distributions, the precision of this fractional posterior is (1− γ)/σ2

0 + γ/σ2
1 , where σ2

0 and
σ2
1 are the variances of the prior and the Bayes posterior. In the context of calibration, precision is inversely proportional to

the square of the interval length.
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(a) The histogram of the logarithm of the mean-squared differences.
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(b) An example of precisions for one data set. The straight line
(with squares) is the interpolated precision, while the curved line
(with circles) is obtained from the posterior learnt with Lγ .

Figure 2: Differences between the precisions of the fractional posteriors for the first component of the mixture model.

This suggests us to perform linear regression against ℓ−2 to target the required interval length, using the results from the
approximate posteriors. For the experimental setup in section 5.1, this strategy, called Rℓ−2 , gives κs (resp. ℓs) with 0.9320
(resp. 0.2735) and 0.9220 (resp. 0.2888) for µ1 and µ2. While Rℓ−2 does gives interval lengths closest to the ideal of
0.2772, the coverages are lower. The γ for this is 0.974 with evidence bound −834.9.

That strategy Rℓ−2 is not necessary best in all respects reminds us that we are dealing with a mixture model and not a
Gaussian model. The difference is empirically elaborated in section C.2.

C.1.2. DIFFERENT EXPERIMENTAL SETTINGS

We find the results and conclusions to be similar when the number of observations n per data set is different, albeit with
different interval lengths. Table 4a gives the results for the same experiment but with n = 30 (versus the 400 in section 5.1).
This is similar for closer component means at −1/2 and 1/2, though now with different coverages (Table 4b), and only the
more comprehensive Rκ that gives γ = 0.38 is effective for calibration in this more difficult setting.

The picture is more complex with K = 4 components, centred at −2, −1/2, 1/2 and 2:1 the coverages for components
at ±1/2 are noticeably smaller than for components at ±2, more so for larger γs (Table 4c). Again, only Rκ that gives
γ = 0.26 is close to effective for calibration.

This extended study highlights the need to consider fractional posteriors, especially for difficult problems.

C.2. Differences with Fractional Posteriors obtained by Interpolation

We seek to illustrate that a fractional posterior obtained by our bounds is in generally different from that obtained by
interpolating between the prior and the Bayes posterior (see section C.1.1). We follow section 5.1 and section C.1, but with
K = 2, n = 20 and component centres −1/2 and 1/2 in order to make the differences more noticeable.

With compute the approximate Bayes posterior r learnt by optimising ELBO (L1.0), we interpolate with prior to obtain a
fractional posteriors p1−γrγ . This is compared with the approximate fractional posterior qγ obtained from optimising Lγ . It
is sufficient to examine the precisions for the first component to show the differences.

We compute mean-squared differences between the precisions of the two set of fractional posteriors at γ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Figure 2a plots the histogram, across the 5000 data sets, of the base-10 log-
arithm of the mean-squared differences; and Fig. 2b plots the precisions for a particular data set. The plots demonstrate that
the interpolated posteriors and the learnt posteriors are different, in general.

1The posterior means are initialised at ±1 and ±1/4.

21



Variational Learning of Fractional Posteriors

Table 4: Calibration study of the Gaussian mixture model at α = 0.05 significance level, for different settings.

(a) For n = 30. The γ values for Rℓ, Rℓ−2 and Rκ are 0.789,
0.965 and 0.849.

µ1 µ2

κ ℓ κ ℓ bound

L0.1 1.0000 3.0111 1.0000 3.1774 −69.2
L0.2 0.9998 2.1644 0.9998 2.2901 −69.1
L0.3 0.9990 1.7770 0.9978 1.8822 −69.4
L0.4 0.9968 1.5433 0.9936 1.6355 −69.7
L0.5 0.9922 1.3826 0.9876 1.4658 −69.9
L0.6 0.9844 1.2636 0.9780 1.3399 −70.2
L0.7 0.9746 1.1708 0.9672 1.2418 −70.4
L0.8 0.9620 1.0958 0.9524 1.1624 −70.5
L0.9 0.9498 1.0336 0.9382 1.0966 −70.7
L1.0 0.9328 0.9810 0.9234 1.0408 −70.8

C0.1 1.0000 3.0111 1.0000 3.1774 −74.7
C0.5 0.9920 1.3826 0.9874 1.4658 −70.4
C0.9 0.9494 1.0336 0.9378 1.0966 −70.7

Rℓ 0.9628 1.1035 0.9538 1.1706 −70.5
Rℓ−2 0.9398 0.9983 0.9296 1.0595 −70.8
Rκ 0.9570 1.0642 0.9464 1.1290 −70.6

(b) For µ1 = −1/2, µ2 = 1/2. The γ values for Rℓ, Rℓ−2 and Rκ

are 0.785, 0.998 and 0.379.

µ1 µ2

κ ℓ κ ℓ bound

L0.1 0.9996 0.8740 0.9986 0.8743 −625.8
L0.2 0.9946 0.6188 0.9898 0.6190 −624.9
L0.3 0.9828 0.5055 0.9682 0.5057 −624.9
L0.4 0.9642 0.4379 0.9434 0.4380 −625.0
L0.5 0.9382 0.3917 0.9176 0.3918 −625.2
L0.6 0.9082 0.3576 0.8884 0.3577 −625.3
L0.7 0.8816 0.3311 0.8598 0.3312 −625.4
L0.8 0.8558 0.3097 0.8378 0.3098 −625.6
L0.9 0.8320 0.2920 0.8212 0.2921 −625.7
L1.0 0.8126 0.2771 0.7972 0.2771 −625.8

C0.1 0.9990 0.8740 0.9978 0.8743 −630.2
C0.5 0.9372 0.3917 0.9176 0.3918 −625.4
C0.9 0.8314 0.2920 0.8212 0.2921 −625.7

Rℓ 0.8596 0.3127 0.8414 0.3128 −625.6
Rℓ−2 0.8128 0.2773 0.7974 0.2774 −625.8
Rκ 0.9686 0.4501 0.9486 0.4503 −625.0

(c) For K = 4, with component means −2, −1/2, 1/2, 2. The γ values for Rℓ, Rℓ−2 and Rκ are 0.785, 0.995 and 0.263.

µ1 µ2 µ3 µ4

κ ℓ κ ℓ κ ℓ κ ℓ bound

L0.1 0.9990 1.2259 0.9876 1.2369 0.9696 1.2377 0.9994 1.2309 −820.7
L0.2 0.9942 0.8712 0.9046 0.8757 0.8904 0.8757 0.9956 0.8740 −817.3
L0.3 0.9862 0.7126 0.7980 0.7152 0.8310 0.7151 0.9814 0.7147 −816.7
L0.4 0.9710 0.6176 0.7188 0.6195 0.7864 0.6194 0.9660 0.6194 −816.7
L0.5 0.9514 0.5527 0.6558 0.5542 0.7410 0.5540 0.9434 0.5542 −816.8
L0.6 0.9328 0.5047 0.6076 0.5059 0.7018 0.5057 0.9234 0.5061 −817.0
L0.7 0.9120 0.4674 0.5746 0.4684 0.6656 0.4682 0.9020 0.4687 −817.2
L0.8 0.8878 0.4373 0.5436 0.4382 0.6384 0.4380 0.8846 0.4385 −817.4
L0.9 0.8654 0.4123 0.5126 0.4131 0.6126 0.4130 0.8660 0.4134 −817.6
L1.0 0.8422 0.3912 0.4864 0.3919 0.5970 0.3918 0.8484 0.3923 −817.8

C0.1 0.9988 1.2259 0.9830 1.2369 0.9684 1.2377 0.9996 1.2309 −826.4
C0.5 0.9504 0.5527 0.6530 0.5542 0.7412 0.5540 0.9460 0.5542 −817.0
C0.9 0.8650 0.4123 0.5106 0.4131 0.6174 0.4130 0.8664 0.4134 −817.6

Rℓ 0.8922 0.4414 0.5478 0.4423 0.6412 0.4421 0.8860 0.4426 −817.4
Rℓ−2 0.8432 0.3922 0.4884 0.3929 0.5926 0.3927 0.8500 0.3932 −817.8
Rκ 0.9904 0.7610 0.8404 0.7642 0.8506 0.7641 0.9870 0.7633 −816.8
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Table 5: Importance sampling to estimate the log-evidence L̂evd of Gaussian mixture models using approximate posteriors.
We use the four experimental settings from section 5.1 and section C.1.2. For each setting, and for ten values of γ (including
γ = 1.0 for ELBO), we have the bound Lγ from the variational optimisation, L̂evd, and the coefficient of variation CV of
the weights used to compute L̂evd.

n = 400, µi = ±2 n = 30, µi = ±2 n = 400, µi = ±1/2 n = 400, 4 components

γ Lγ L̂evd CV Lγ L̂evd CV Lγ L̂evd CV Lγ Levd CV

0.1 −813.0 −806.9 2.2 −65.7 −60.2 2.0 −602.1 −593.1 84.0 −805.2 −786.3 87.6
0.2 −812.9 −806.9 1.5 −64.6 −60.2 1.3 −601.0 −593.4 23.7 −801.8 −786.3 83.0
0.3 −813.2 −806.9 1.1 −64.5 −60.2 1.0 −600.9 −593.4 19.8 −801.1 −786.2 62.8
0.4 −813.5 −806.9 1.0 −64.5 −60.2 0.8 −601.0 −593.4 31.5 −801.1 −786.4 36.8
0.5 −813.7 −806.9 0.9 −64.6 −60.2 0.6 −601.2 −593.4 24.3 −801.2 −786.6 19.4
0.6 −813.9 −806.9 0.9 −64.7 −60.2 0.5 −601.3 −592.8 163.0 −801.4 −786.2 83.9
0.7 −814.1 −806.9 1.0 −64.8 −60.2 0.4 −601.4 −592.8 130.9 −801.6 −786.6 26.6
0.8 −814.3 −806.9 0.8 −64.9 −60.2 0.3 −601.6 −593.5 12.0 −801.8 −786.8 16.9
0.9 −814.4 −806.9 1.1 −65.0 −60.2 0.3 −601.7 −593.2 96.9 −802.0 −786.8 17.0
1.0 −814.5 −806.9 1.2 −65.1 −60.2 0.3 −601.8 −593.6 15.5 −802.2 −786.8 23.0

C.3. The Tightness of Bounds for the Gaussian Mixture Models

We use importance sampling to estimate the evidence of the Gaussian mixture models (GMMs) using approximate posteriors.
For the log-evidence of −827.24 reported in section 5.1, we draw Ns = 1, 000 samples from the approximate posteriors
q(u, c) to estimate the log-evidence L̂evd

def= log
∑Ns

i=1 wi/Ns, where weights wi
def= p(ui, ci)p(x|ui, ci)/q(ui, ci). The

average log-evidence of −827.24 is obtained over the 5, 000 replications. The same value, up to five significant figures, is
obtain with every one of the ten fractional or Bayes posteriors.

We perform more experiments with four settings: the one in section 5.1 and the three in section C.1.2. We use one of the
5,000 replications for this. For each setting, we draw Ns = 100, 000 importance samples from the approximate posteriors
q(u, c) to estimate L̂evd. We also compute the coefficient of variation (CV) of the weights to give an indication of the
quality of the estimates. By central limit theorem, this is

√
Ns times the the coefficient of variation of the evidence exp L̂evd.

The results demonstrate that there is no guarantee that lower γ will give better bounds (columns Lγ in Table 5), as we have
reasoned in section 2.2, though the best bounds are typically not with ELBO (γ = 1.0).

There is also a substantial gap between L̂evd and the best bounds (comparing columns Lγ and L̂evd in Table 5). We opine
that this is because (1) the approximate posterior q(u, c) is factorised into q(u)q(c) where only q(u) is the approximate
fractional posterior while q(c) is still the approximate Bayes posterior; and (2) in our GMM settings c has a larger role
because there are n ≥ 30 data points while for u we have at most 4 one-dimensional components.

For the quality of importance sampling, the CVs are significantly smaller when the true means are more separated (first
two columns of CV versus the last two columns of CV in Table 5). This is expected because better separation suggests
multi-modality in the true Bayes posterior is less pronounced. In addition, for the purpose of better importance sampling in
GMMs to obtain L̂evd, using Lγ has only a slight advantage — we attribute this again to q(c) being an approximate Bayes
posterior and that c is a larger role.

If the end goal is to perform better importance sampling using fractional posteriors, we may use the fractional posteriors for
the cluster assignments, which are interpolations between the approximate Bayes posteriors and the priors (section A.7.1).

C.4. Variational Autoencoder

We make three experimental changes from Ruthotto & Haber (2021). One, we use the continuous Bernoulli distribution
(Loaiza-Ganem & Cunningham, 2019) as the likelihood function instead of the cross-entropy loss function. Two, we draw
100 samples from the approximate posterior per datum during training instead of the one sample that they use, because
otherwise there is no difference between the ELBO and some of our bounds (see section B.1). Three, we train for 500
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Table 6: Average log-evidences (higher better) over data samples, and its breakdown for VAE on MNIST data sets, for Lbh
γ

and Lbh
γ -alt. We give the mean and three standard deviations of these averages over ten experimental runs. For Monte Carlo

averages, 1,024 samples are used (32× 32 for semi-implicit posteriors). We show the addition of the KL divergence and
Rényi’s divergence for Test using Objective; and for Test using ELBO we evaluate the Bayes posterior r.

Test using Objective Test using ELBO

Objective γ Train (Total) Total data div Total data div

Lbh
γ 0.9 1636.2±11.5 1608.8±23.3 1613.4±23.0 4.0±0.2 + 0.6±0.3 1607.7±23.9 1613.4±23.0 5.7±1.0

0.5 1635.2±10.5 1608.0±25.4 1612.7±25.2 4.3±0.2 + 0.4±0.2 1607.4±25.8 1612.7±25.3 5.3±0.6

0.1 1635.5±12.0 1607.5±16.1 1612.4±16.1 4.6±0.1 + 0.3±0.2 1607.3±16.2 1612.4±16.1 5.1±0.2

Lbh
γ -alt 0.9 1639.4±9.4 1609.1±21.1 1613.6±21.0 4.0±0.1 + 0.6±0.2 1608.0±21.6 1613.6±21.0 5.6±0.8

0.5 1639.4±10.6 1608.2±24.6 1612.9±24.5 4.3±0.1 + 0.4±0.2 1607.6±24.8 1612.9±24.5 5.3±0.5

0.1 1639.2±10.4 1608.8±26.6 1613.7±26.3 4.7±0.1 + 0.3±0.2 1608.6±26.6 1613.7±26.3 5.1±0.3

epochs instead of the 50 epochs that they have used, so that we obtain results closer to convergence to reduce doubts on the
comparisons.

For the semi-implicit posterior family, we use three layers neural network for the implicit distribution, similar to that used by
Yin & Zhou (2018) with the following changes: we reduce the noise dimensions to 15, 10 and 5, and the hidden dimensions
to 28, 14 and 2 so that we can visualise the samples from the implicit distribution; we use normal with mean 0.5 and standard
deviation 1 instead of Bernoulli for the noise distribution to better match the gray-scale images that we use; we use leaky
ReLU activations (Maas et al., 2013) for the hidden units to reduce degeneracy due to the learning dynamics, and we use
sigmoid for the output unit so that we can visualise the distribution within a unit square.

For training the explicit posteriors with Lγ , we use 100 samples per datum. For the semi-implicit posteriors with Lh
γ , we

draw 10 samples from the implicit distribution per datum, then 10 latent variables from the explicit distribution per implicit
sample. For Lbh

γ involving semi-implicit fractional and Bayes posteriors, we additionally use 5 of the 10 implicit samples to
estimate the cross entropy term. Batch size of 64 is used for training with the Adam optimizer, where the learning rate and
weight decay are set to 10−3 and 10−5.

We use ten experimental runs to obtain Table 2. The neural networks in each run are iniitlised with a different seed for the
pseudo-random number generator. The results in the table are the mean and three standard deviations of these ten runs. The
overall relatively small variations among the ten runs suggests the stability of the results.

We also perform the same experiments for the Lbh
γ -alt bound (last row of Table 3), and the results are compared with those

of Lbh
γ in Table 6). We find their results to be very similar.

Bounds We take a single run of LELBO for the explicit posterior and uses its decoder as the fixed decoder to train the
encoders (or posteriors) for Lγ for γ ∈ {0.1, 0.5, 0.9, 1.0}. The encoder neural networks are initialised randomly and
optimised for 50 epochs with the same number of Monte Carlo as before during training. Since the decoder and hence
likelihood models are now fixed together with the prior, we may compare the train and test objectives as bounds on a single
fixed log-evidence. With smaller γ, we obtain tighter evidence bounds and posteriors closer to the prior (second, third and
eighth columns of Table 7). The results for the reference LELBO (that is, first row in the table with (reference) 1.0) are that
for joint optimisation with the decoder for 500 epochs, and are used for Table 2. Comparing the figures for the two instances
of γ = 1.0, we see that the dynamics of jointly training decoder and encoder can give better objectives.

Image generation We perform further investigation by plotting figures from a single run each. Figure 3 gives the images
from the learnt decoders for the VAE experiments using latent variables sampled from the prior in a regular manner. We do
not see any significant quality to the decoded images from the different values of γ tried. Differences are more visible for
the harder Fashion-MINST data set (section 5.3). There are two reasons why the images in the figure (except for Fig. 3i) are
not sharper: (1) we use simple neural networks for the decoder and encoders (Ruthotto & Haber, 2021) with only 88,837
parameters for the case of Lγ ; and (2) the images are mean images from the decoded latent variables, that is, the parameters
of the continuous Bernoulli distributions, and not samples.
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(a) L, γ = 1.0 (b) L, γ = 0.9 (c) L, γ = 0.5 (d) L, γ = 0.1

(e) Lh, γ = 1.0 (f) Lh, γ = 0.9 (g) Lh, γ = 0.5 (h) Lh, γ = 0.1

(i) Test samples (j) Lbh, γ = 0.9 (k) Lbh, γ = 0.5 (l) Lbh, γ = 0.1

(m) Lbh-alt, γ = 0.9 (n) Lbh-alt, γ = 0.5 (o) Lbh-alt, γ = 0.1

Figure 3: Mean images from decoded latent variables obtained by coordinate-wise inverse-CDF (standard normal) transform
from a unit square. For the last row, the first image are samples from the test set. The quality of the images are visually
similar across γs and posterior families, and they are all not as sharp as the real test images. The VAE is trained on the
MNIST dataset.
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Table 7: Log-evidences (higher better) over data samples for a single run, and its breakdown for VAE on MNIST data
sets, for Lγ where the decoders are fixed to be the same as that optimised for ELBO (first row in table). For Monte Carlo
averages, 1,024 samples are used.

Test using Objective Test using ELBO

γ Train (Total) Total data div Total data div

(reference) 1.0 1616.814 1591.401 1596.695 5.294 1591.407 1596.700 5.293

1.0 1580.006 1558.188 1562.939 4.751 1558.189 1562.940 4.751
0.9 1625.566 1620.629 1624.170 3.541 1551.088 1554.442 3.354
0.5 1638.652 1636.510 1639.442 2.933 1451.295 1453.317 2.022
0.1 1641.655 1639.472 1642.944 3.472 1427.995 1429.871 1.876

(a) γ = 1.0 (b) γ = 0.9 (c) γ = 0.5 (d) γ = 0.1

Figure 4: Means of the explicit posteriors for 5,000 sampled MNIST test images, colour-coded by the class labels. All axes
ranges from −4 to 4.

Posteriors Figure 4 gives the means of the explicit posterior, and Fig. 5 gives the samples from the posteriors, explicit and
semi-implicit. For Lγ and Lh

γ , the posteriors are visually closer to the prior for smaller gamma, except for between γ = 0.5

and 0.1: their KL divergences are similar in Table 2. The scatter plots for Lbh
γ and Lbh

γ -alt (Figs. 5i to 5n) are for the Bayes
posteriors, and they seems to have more clumps than Lh

1.0’s (Fig. 5e).

Figure 6 plots the samples from the implicit distributions of Lh
γ , Lbh

γ and Lbh
γ -alt separately for 16 test images, that is, one

plot for each test image in each setting. We see diversity in the implicit distributions in majority of the cases for Lh
γ with

γ < 1.0 (Figs. 6b to 6d). This is diversity is seldom for ELBO (Lh
1.0, Fig. 6a), but not totally absent despite the theory for

otherwise (Yin & Zhou, 2018), probably because of noise in learning with Monte Carlo samples and the neural network
parameters giving similar optimum values.

For Lbh
γ and Lbh

γ -alt (Figs. 6e to 6j), we see almost lack of diversity in the implicit samples. We attribute this to the larger
magnitude of the data-fit term in the objective over the divergence (about 340 times larger in Table 2) causing the theoretical
degeneracy of the ELBO to be prominent.

To have a broad overview of the distributions of the implicits, we compute the sample covariance for the implicit distributions
of each test image with 500 samples after transforming with arcsine-square-root. Each sample covariance is used to compute
the generalised variance and total variation, and we summarise them over the 10,000 test images using the following
descriptive statistics (Table 8): median, maximum, mean, coefficient of variation (CV) and skewness (Fisher-Pearson
coefficient). We caution that this assumes single modes in the two-dimensional implicit distributions. We find the medians,
maximums and means of the generalised variances to be significantly smaller than that of the total variations, which indicates
that most distributions approximately degenerate and can hardly be considered two-dimensional distributions. Moreover,
looking at the medians of the total variations, total degeneracy to delta-distributions occurs for more than half of the implicit
distributions of Lh

γ with γ = 1.0 (ELBO), Lbh
γ with γ = 0.1 and Lbh

γ -alt with γ = 0.9. These agree with the plots in Fig. 6
and show that our approach cannot prevent degeneracies. Nonetheless, if we compare among the statistics for the Lh

γs, we
find that settings with γ < 1 give less degenerate distributions than ELBO (γ = 1.0).

The coefficient of variations are at least 1.9, indicating very different implicit distributions for the test samples. The skewness
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(a) L, γ = 1.0 (b) L, γ = 0.9 (c) L, γ = 0.5 (d) L, γ = 0.1

(e) Lh, γ = 1.0 (f) Lh, γ = 0.9 (g) Lh, γ = 0.5 (h) Lh, γ = 0.1

(i) Lbh, γ = 0.9 (j) Lbh, γ = 0.5 (k) Lbh, γ = 0.1

(l) Lbh-alt, γ = 0.9 (m) Lbh-alt, γ = 0.5 (n) Lbh-alt, γ = 0.1

Figure 5: 5,000 samples from the posteriors of the MNIST test images. For Lbh and Lbh-alt, the Bayes posteriors are used.
All axes ranges from −4 to 4.
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(a) Lh, γ = 1.0 (b) Lh, γ = 0.9 (c) Lh, γ = 0.5 (d) Lh, γ = 0.1

(e) Lbh, γ = 0.9 (f) Lbh, γ = 0.5 (g) Lbh, γ = 0.1

(h) Lbh-alt, γ = 0.9 (i) Lbh-alt, γ = 0.5 (j) Lbh-alt, γ = 0.1

Figure 6: 500 samples from the implicit posteriors for 16 MNIST test images: one small square is for one image. All axes
ranges from 0 to 1, which is the range of the samples by design.
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Table 8: Descriptive statistics, over the test images, of the generalised variance and total variation of the transformed implicit
distributions. Figures less than 10−10 are treated as zero. For a number a× 10b, we express it as ab, except that we use 0
when a = 0 and a when b = 0.

Generalised Variance Total Variation

Objective γ Median Max Mean CV Skew Median Max Mean CV Skew

Lh 1.0 0 5.4−3 3.2−6 3.01 4.51 0 8.2−1 2.0−3 1.11 1.81
0.9 4.8−8 1.9−1 1.3−3 6.8 1.11 3.0−3 1.1 5.5−2 2.3 3.6

0.5 0 1.9−1 1.8−3 5.5 9.3 9.8−3 1.2 1.0−1 1.9 2.6

0.1 0 1.5−1 1.3−3 6.4 9.7 3.8−5 1.0 5.9−2 2.3 2.9

Lbh 0.9 0 1.1−2 1.5−6 7.41 9.71 4.5−9 4.5−1 1.3−3 9.9 1.61
0.5 0 1.5−2 2.5−6 6.31 8.71 3.9−8 4.8−1 1.7−3 1.01 1.71
0.1 0 8.2−2 2.4−5 4.31 6.61 0 5.9−1 7.2−3 5.9 8.1

Lbh-alt 0.9 0 1.5−2 3.2−6 5.21 7.91 0 5.6−1 4.3−3 7.8 1.11
0.5 0 2.5−3 6.3−7 4.51 7.41 1.4−7 5.3−1 1.8−3 1.01 1.71
0.1 0 7.4−3 4.1−6 3.21 4.11 3.0−6 5.6−1 4.2−3 7.4 1.11

are positive, indicating high proportion of very low variance implicit distributions, and this is also shown by the medians
being smaller than the means. In particular, the skewness for ELBO is about five times more than for Lh

γ with γ = 0.9.

C.5. Improving the VAE Decoder by Learning Fractional Posterior

Figures 7a to 7d provide sample images for the decoders trained with γ taking values 1.0 (for ELBO), 10−1, 10−3 and 10−5.
Visually, the best samples are provided by γ = 10−5 (Fig. 7d). For decreasing γ, the FIDs are 83.5, 69.5, 67.8 and 68.8
(smaller is better). While the FIDs for the fractional posteriors are similar, they are all significantly better than the Bayes
posterior’s.

Since the β-VAE at its theoretical optimum also gives a power posterior, we also evaluate training with its objective, called
Lβ
β . The fractional posterior for Lβ

β corresponds directly to that for Lγ with β = 1/γ, so we use 101, 103 and 105 for β.
The FIDs in increasing β are 77.3, 334.7 and 342.3. While the FIDs for Lβ

10 (corresponding to γ = 10−1) improves over the
83.5 of ELBO’s, it is significantly worse than the 69.5 of L10−1 . Moreover, increasing β to 103 and 105 appears to cause
degeneracy to a different and worse optima, in contrast to the stability afforded by Lγ . Figures 7f to 7h provide the sample
images. We further tried 5 and 102 for β, giving FIDs 78.4 and 99.1.

Table 9 provides the statistics of the bounds to the data evidence for the trained VAEs. Similar to the results for MNIST
(Table 2), Lγ with smaller γ give tighter bounds and the learnt posteriors are closer to the prior. For Lβ

10, the bounds are
looser than ELBO’s, as expected. For Lβ

β with β ∈
{
103, 105

}
, the direct multiplication of the divergence term in Lβ

β has
cause instability such that the empirical divergence computed by sampling becomes negative — more samples than the
1,024 used here could resolve this issue for β-VAE.

All the preceding results are with two-dimensional latent space. We tested a case of four-dimensional latent space using our
bound with γ set to 1.0 (for ELBO), 10−3 and 10−5. With this more expressive model, the evidences are larger (last three
row in Table 9), and the FIDs are better at 58.3, 56.8 and 55.8. Again, we see an advantage for γ < 1.0, though now the
benefits are much less significant.

C.6. Source Codes and Data Sets

Other than the standard Python and PyTorch (https://pytorch.org/), including Torchvision, packages, we take
reference from and make use of the following source codes:

VAE https://github.com/EmoryMLIP/DeepGenerativeModelingIntro

SIVI https://github.com/mingzhang-yin/SIVI
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(a) L, γ = 1 (b) L, γ = 10−1 (c) L, γ = 10−3 (d) L, γ = 10−5

(e) Test samples (f) Lβ , β = 101 (g) Lβ , β = 103 (h) Lβ , β = 105

Figure 7: Mean images from decoded latent variables obtained by coordinate-wise inverse-CDF (standard normal) transform
from a unit square. The VAE is trained on the Fashion-MNIST dataset. The top row uses the bound introduced in this paper;
the bottom row (sans the first figure) uses the objective from β-VAE.

Table 9: Average log-evidences (higher better) over data samples, and its breakdown for VAE on Fashion-MNIST data sets.
For Monte Carlo averages, 1,024 samples are used. For γ = 1.0, the figures are the same under Test using Objective and
Test using ELBO. The columns under Test using ELBO are solely for diagnostics to understand the learnt posteriors using the
same metrics: they are not performance measures. For ease of comparison, we also add the last column of FID scores of the
10,000 generated images.

Test using Objective Test using ELBO

dim(z) Obj. γ or β Train (Total) Total data div Total data div FID

2 Lγ 1.0 1152.30 1118.15 1123.11 4.96 1118.15 1123.11 4.96 83.5
10−1 1180.08 1171.38 1173.97 2.59 902.79 904.56 1.77 69.5
10−3 1179.68 1171.05 1173.91 2.87 915.56 917.30 1.74 67.8
10−5 1183.97 1175.29 1178.04 2.75 853.45 855.16 1.71 68.8

Lβ
β 5.0 1135.83 1103.29 1121.04 17.76 1117.50 1121.05 3.55 78.4

101 1120.62 1086.02 1117.13 31.11 1114.01 1117.12 3.11 77.3
102 937.29 921.26 1067.22 145.95 1065.74 1067.20 1.46 99.1
103 754.34 752.08 598.54 −153.54 598.69 598.54 −0.15 334.7
105 15946.58 15952.71 598.53 −15354 598.69 598.54 −0.15 342.3

4 Lγ 1.0 1220.04 1200.40 1207.98 7.58 1200.40 1207.98 7.58 58.3
10−3 1231.16 1219.11 1225.14 6.04 1147.20 1151.29 4.09 56.8
10−5 1231.02 1219.24 1225.36 6.12 1147.87 1152.03 4.16 55.8
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FID https://github.com/mseitzer/pytorch-fid

The above PyTorch code for FID is recommended by the original authors of FID at https://github.
com/bioinf-jku/TTUR. Our source codes are available at https://github.com/csiro-funml/
Variational-learning-of-Fractional-Posteriors/. They are executable on a single NVIDIA T4 GPU,
which are available free (with limitations) on Google Collab, Kaggle and Amazon SageMaker Studio Lab at the point of
writing. A single training run of the 500 epochs for the VAE experiments for Lγ is currently achievable within 12 hours on
Kaggle.

The MNIST and Fashion-MNIST data sets are available via Torchvision.
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