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Abstract

In the context of smooth stochastic optimization with first order methods, we
introduce the stability ratio of gradient estimates, as a measure of local relative noise
level, from zero for pure noise to one for negligible noise. We show that a schedule-
free variant (Stab-SGD) of stochastic gradient descent obtained by just shrinking
the learning rate by the stability ratio achieves real adaptivity to noise levels (i.e.
without tuning hyperparameters to the gradient’s variance), with all key properties
of a good schedule-free algorithm: neither plateau nor explosion at intialization,
and no saturation of the loss. We believe this theoretical development reveals the
importance of estimating the local stability ratio in the construction of well-behaved
(last-iterate) schedule-free algorithms, particularly when hyperparameter-tuning
budgets are a small fraction of the total budget, since noise-adaptivity and cheaper
horizon-free tuning are most crucial in this regime.

We consider the standard Machine Learning setup, where the task of learning a function f : Rq → Rk

from samples (X ∈ Rq, Y ∈ Y) ∼ D is decomposed into a parameterization F : Rd × Rq → Rk

and a loss function ℓ : Y × Rk → R, with the aim to minimize E[ℓ(Y, f(x))|X = x]. A parameter
θ ∈ Rd yields a predicted function fθ = F (θ,−) : Rq → Rk, whose quality is evaluated according
to L(θ) = EX,Y [ℓ(Y, F (θ,X))] defining a loss function L : Rd → R to be minimized.

Typical scenarios include least-squares regression ℓ(u, v) = ∥u− v∥22 for Y = Rk, with functional
optimum x 7→ E[Y |X = x]; and classification with cross-entropy ℓ(y, u) = −uy + log

∑
i exp(ui)

for Y = [k]. The success of deep learning has taken this long past the historically well-studied linear
case of d = q × k, with impressive empirical performance lacking a strong theoretical support.

Using small batches of data to estimate gradients is one of the keys used to scale up such settings,
leading to stochastic iterative algorithms. This randomness induces failures of constant-step gradient
descents, which saturate and fail to minimize the loss past a threshold (e.g. Wilson and Martinez
[2001]). This leads to the use of schedulers to shrink the learning rate over time. Setting it too low
slows down optimization, and too high recovers saturated losses, thus even more hyperparameters are
added to define schedulers of varying decay rates such as ηt = η0 · t−α for α ∈ [0, 1].

Related works. The elimination of such hyperparameters, by a theory-backed choice of algorithm,
has naturally been an active study of research. Such tentatives includes the early “Adagrad” [Duchi
et al., 2011] and “Adadelta” [Zeiler, 2012] adaptive algorithms, but also “AC-SA” [Lan, 2012, Sec
3.1] and its more recent variants such as “Schedule-free SGD” [Defazio et al., 2024]. One branch
of this effort chose to model the loss L as Lipschitz, i.e. having bounded gradients, see for instance
the “COCOB” [Orabona and Tommasi, 2017, Thm 1] and “D-Adapt” algorithms [Defazio and
Mishchenko, 2023, Thm 3] with known Lipschitz constant. Despite the immediate incompatibility
with the least-squares objective, this modeling choice is supported by the Lipschitz-continuity of the
ReLU non-linearity x 7→ max(0, x) which is not differentiable (and thus not smooth) at the origin.
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The Lipschitz-model, typically used with convexity of L in addition, does not produce guarantees
for the last iterate, but for the average 1

T

∑
t xt or ergodic average

∑
t ηtxt/

∑
t ηt of iterates

[Garrigos and Gower, 2023, Thm 9.6 - 9.12]. On the contrary, there is growing evidence that such
aggregation is not mandatory1 (e.g. the same reference Orabona and Tommasi [2017, Algorithm 2]
from the Lipschitz-model branch does not use averaging on neural network experiments), and possibly
detrimental in non-convex cases [Zhou et al., 2020, Figure 4]. Other requirements such as bounded
domain are also questionnable. A second branch of this research effort thus focuses on a smooth
model of the loss L, i.e. Lipschitz-continuous gradients, which yield good last-iterate predictions
(see Garrigos and Gower [2023, Thm 4.3] for the deterministic case and Bach and Moulines [2011,
Thm 4] for the stochastic case with power schedule). By continuous-differentiability, these losses
have gradients converging to zero near the global minimum which naturally leads to smaller steps,
contrary to Lipschitz losses. This lack of averaging is also supported, outside the convex case using
Jensen’s inequality, by the lack of guarantees on the loss of the average iterate, even if the averaged
loss is controlled.

Although this smooth model does not immediately fit the ReLU-based networks, experiments with
smooth non-linearities often match performance of ReLU networks [Clevert et al., 2016, Elfwing
et al., 2018, Sitzmann et al., 2020]. Moreover, any continuously differentiable function is smooth on
compact domains, which supports the idea that this model will also be a good description of training
dynamics naturally constrained to a compact set, e.g. by a regularization.

Contributions. We introduce in Sec. 1 the stability ratio, as a measure of gradient stochasticity, and
as a shrinkage of SGD learning rates to obtain an algorithm adaptive to noise levels, formalized in
Sec. 2. We show that this ratio is computable from samples and give an estimator. We prove in Sec. 3
how this adaptively achieves the optimal last-iterate rates of SGD at various noise levels, without
the need to tune the learning rate to the (unknown) noise level or training horizon. We validate these
statements with experiments in convex and deep learning scenarios in Sec. 4.

1 Stability Ratio: ensuring (strict) expected loss decrease

In gradient descents with large amounts of noise, a common practice is to shrink the step-size, backed
by the standard intuition that lower learning rates are required to converge to low loss values. To
quantify how much lower, we define a measure of “relative” or “normalized” noise level (between
zero and one), inspired by classical smooth stochastic analysis, and show shrinking by this quantity
achieved the desired adaptive result. For a random variable X ∈ Rd (not identically zero) with
0 < E

[
∥X∥22

]
< +∞, we denote as “Stability Ratio” the quantity Stab (X) ∈ [0, 1] defined by

Stab (X) =
∥E [X] ∥22
E [ ∥X∥22 ]

Note, for µ = E [X] ̸= 0, that V[X] = σ2 implies Stab (X) = 1/(1 + σ2/∥µ∥22), thus smaller
variance leads to a stability ratio closer to 1. On the other hand, near-zero mean and non-negligible
variance give stability ratios approaching zero: these are the estimates causing instabilities in the loss.
The lower the stability ratio of the gradient, the lower the step-size must be taken to avoid instability.

For an SGD sequence (θt ∈ Rd), using unbiased2 stochastic gradient estimates Gt+1 ≈ ∇L(θt) to
compute θt+1 = θt − ηtGt+1, the loss variation for a β-smooth function is at most

L(θt+1)− L(θt) ≤ −ηt · (∇L(θt) ·Gt+1) +
β

2
η2t ∥Gt+1∥22

When Gt+1 = ∇L(θt), this is minimized at ηt = 1/β, as in classical smooth deterministic analysis.
In the stochastic case, taking the expectation and minimizing immediately gives ηt = Stab (Gt+1) /β.
Moreover, ηt ≤ Stab (Gt+1) /β ensures that EGt+1

[L(θt+1)]−L(θt) ≤ −ηt∥∇L(θt)∥22/2, and thus
a decrease similar to that of gradient flow. Convergence is slowed down by a factor Stab (Gt+1), that
is equal to 1 in the deterministic regime, and small in the high variance regime (where ∥∇L(θt)∥22 ≈ 0
and E

[
∥Gt+1∥22

]
≫ 1). In what follows, we refer to SGD with such adaptive step-sizes as Stab-SGD,

and discuss how to estimate this stability ratio in practice in Sec. 2.2.
1This claim is also supported for instance by the GPT3 training, which uses Adam without averaging [Brown

et al., 2020, Appendix B p43], and the MuZero training, which uses a momentum version without averaging
Schrittwieser et al. [2019] (see Ancillary file "pseudocode.py", L553).

2formally, satisfying E[Gt+1 | θt ] = ∇L(θt) with finite second moment E[ ∥Gt+1∥22 | θt ] < +∞.
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1.1 Adaptivity to noise level of stability-adjusted learning rates

Two typical regimes of SGD are depicted in Figure 1.1, with quadratic problems and injected additive
gaussian noise ε ∼ N (0, σ2

0I) for gradient estimates (varying σ0), for a total variance of σ2 = σ2
0d.

L : x ∈ Rd 7→ 1

2

∑
i<d

1

1 + i
x2i , x0 = (1)i∈[d] ∈ Rd, d = 250 (QSC)

L : x ∈ Rd 7→ 1

2

∑
i<d

2−i x2i , x0 =
(
2−i
)
i∈[d]

∈ Rd, d = 25 (QWC)

Both losses are smooth with parameter β = 1. Problem QSC has L(x0) ≈ 3.05, and is µ0-strongly
convex with µ0 = 1/250 = 4 · 10−3. On the other hand, Problem QWC has ∥x0 − x⋆∥22 ≈ 1.33,
L(x0) ≈ 0.5714, and is µ1-strongly convex with µ1 = 2−25 ≈ 3 · 10−8, which is too small to play a
quantitative role in experiments, hence it is likely better described by weakly-convex smooth theory.

(a) Problem QSC, low noise (σ2 = 10−16 · d)
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(b) Problem QWC, high noise (σ2 = d)
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Figure 1: Mean excess loss of SGD and variants. The hyperparameter of SGD (both constant and
scheduled) is tuned by grid search at 103 iterations (vertical dashed line). Bounds of Sec. 3 are
presented with dotted lines. Details of all experimental protocols deferred to Sec. 4.

In (near-)deterministic settings, large step sizes are necessary, and decreasing too much gives slow
asymptotic convergence (see Fig. 1a). Fast-decreasing schedulers emulating these large (near-
constant) learning rates need huge initial learning rates, causing initial explosions which are pro-
hibitive in deep learning. On the contrary, in more noisy settings (see Fig. 1b), shrinking the learning
rate sufficiently is necessary, and constant learning rates trying to lower the saturation threshold will
use much lower learning rates causing large initial plateaus. In both cases, the trajectory of Stab-SGD
seems a more reasonable balance to strive for: no explosion, no initial plateau, no saturation.

(a) Constant ηt = η0
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(b) Schedule ηt = η0 · t−1/2
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(c) Schedule ηt = η0 · t−1
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Figure 2: Mean excess loss of various SGD schedulers on Problem QWC, σ2 = d. Horizon-dependent
hyperparameters are still needed, with high sensitivity to perturbations of the noise-dependent η0.

The use of schedulers does not eliminate the need to tune the learning rate (see Fig. 2b) and selection
of learning rate decrease speed is not trivial (compare with Fig. 2c). Typical prescriptions are tuned
to the target horizon T ∈ N, e.g. with the constant but horizon-dependent rate ηt = C σ−1 T−1/2.
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2 Stab-SGD: Stochastic Gradient Descent with stability-adapted step-sizes

We build our formal statements in the rigorous formalism of stochastic processes, motivated by the
crucial part that the step-sizes ηt must depend on the local stability ratio of gradient estimates, which
itself is a function of the iterates, therefore the step-sizes are random and must be handled carefully.

We take (Ω,A,P) to be a probability space, with a filtration (Fn)n∈N of A. A sequence of random
variables (Xn)n∈N is said to be “adapted” to F if Xi is Fi-measurable for all i ∈ N.

Intuition. The standard informal interpretation is that F models the passage of time, and X is adapted
to F if Xi is “known” at time i ∈ N. In our case, if the sequence of iterates (θn)n is adapted to F ,
then any deterministic function Yt = ϕ(θt, . . . , θ0) of previous iterates is adapted to F as well.
Definition 1 (Stochastic Gradient Descent, with unbiased gradients and stochastic stepsizes).
A stochastic gradient descent of L : Rd → R is an F-adapted sequence of random variables
(θn ∈ Rd)n∈N together with two F -adapted sequences (Gn ∈ Rd)n∈N and (ηn ∈ R+)n∈N, such that
for all t ∈ N, it holds θt+1 = θt − ηt ·Gt+1 and E [Gt+1 | Ft ] = ∇L(θt)
Definition 2 (Conditional Stability Ratio). The Stability Ratio of a random variable X ∈ Rd

conditionally on Ft is defined for any t ∈ N as: Stab (X | Ft) = ∥E [X | Ft ] ∥22 /E
[
∥X∥22

∣∣Ft

]
.

2.1 Stab-SGD: A noise-adaptive algorithm with stability oracles

The Stab-SGD iterates (θt ∈ Rd)t∈N of loss L : Rd → R are defined3 as

θt+1 = θt − ηt ·Gt+1 ηt =
1

β
Stab (Gt+1 | Ft)

for any adapted sequence (Gt)t satisfying E [Gt+1 | Ft ] = ∇L(θt) and V [Gt+1 | Ft ] < +∞.
Note that Stab-SGD has a single hyperparameter β ∈ R+, which must be set below the smoothness
constant of L. There is no noise-hyperparameter and no horizon-hyperparameter, contrary to SGD
bounds typically4 using step-size ηt ∝ σ−1/

√
T to give bounds at horizon T ∈ N under variance σ2.

Stab-SGD is a noise-adaptive algorithm (conditionally on access to stability ratios), in the sense
that it depends on the realized noise level only through the stability ratio, which can be adaptively
estimated at every step. This single algorithm adaptively achieves all the convergence rates of Table 1.

Table 1: Convergence rate of Stab-SGD under affine variance V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2.

E [L(θT+1) ]− L⋆ E
[

1
T

∑
t<T ∥∇L(θt)∥22

]
Noise Convex β-smooth µ-strongly convex β-smooth Non-convex β-smooth

σ2 = 0 O
(
T−1

)
O
(
exp

(
− 1

1+α
µ
βT
))

O
(
T−1

)
σ2 > 0 O

(
T−1/3

)
O
(
T−1

)
O
(
T−1/2

)
Rates in Table 1 are presented in expectation for the last iterate. In particular, the O(T−1/3) rate
in the weakly-convex smooth setting matches Bach and Moulines [2011, Theorem 4] (conjectured
to be the optimal horizon-free last-iterate rate for SGD with schedule ηt = η0 t

κ and achieved for
κ = −2/3, see reference for details5). The weakly-convex case additionally assumes that there exists
θ⋆ ∈ Rd such that L(θ⋆) = L⋆ = inf L, see Theorem 1 for the complete statement.

2.2 Estimations of Stability Ratio from samples

A natural estimator for Stab (X) consists in replacing expectations with averages over n iid samples.
Unfortunately, this estimator is strongly biased towards 1 when the number of samples is small. We
thus propose another estimator using Jackknife resampling for the numerator [Quenouille, 1956].

3Without loss of generality, we can assume that no Gt+1 is identically zero by skipping such iterations.
4See Garrigos and Gower [2023, Thm 5.5] after canceling gradients with respect to step-size.
5A slighly altered ηt = min(1/2β, η0/

√
t) was shown to break this conjecture in Liu and Zhou [2023],

reaching improved rate O(log(T )/
√
T ). But it does not reach the σ = 0 or µ > 0 fast rates without modifying

ηt. Thus the question of getting improved rate for the bottom-left case while retaining adaptivity is left open.
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Definition 3. The Jackknife estimator of Stab (X) from iid samples (Xi ∈ Rd)i∈[n] is

Rn =
1

n− 1

∑
i

∑
j ̸=i⟨Xi, Xj⟩∑
i∥Xi∥22

This can be computed by constructing the sequences (Mi ∈ Rd)i∈[n+1] and (Zi ∈ Rd)i∈[n+1] from
M0 = 0 ∈ Rd and Z0 = 0 ∈ R, as Mi+1 = Mi + (Xi −Mi)/(i + 1) to compute the mean, and
Zi+1 = Zi + (∥Xi∥22 − Zi)/(i + 1) for the second moment, then Rn = n

n−1 (∥Mn∥22 − Zn)/Zn.
This gives a numerically stable algorithm with O(1) space complexity to estimate the stability ratio.

Lemma 1 (Relative error of stability estimation). Let (Xi ∈ Rd)i∈[n] be iid random variables. Define
Jn = 1

n(n−1)

∑
i̸=j Xi ·Xj ∈ R and Zn = 1

n

∑
i∥Xi∥22 ∈ R+, thenRn = clip[0,1](Jn/Zn) ∈ [0, 1].

Let µ = E [X], and σ2 = E
[
∥X − µ∥22

]
, and κ = E

[
∥X∥42

]
/E
[
∥X∥22

]2
. If R⋆ = Stab (X) ̸= 0,

E

[(
Rn −R⋆

R⋆

)2
]
≤ R−1

⋆

44 + 4κ

n− 1
+R−2

⋆ exp
(
− n

8κ

)
In particular (when clipping to [0, 1]), Rn → R⋆ = Stab (X) with high probability, so this estimator
is consistent. This lemma is a direct consequence of Lemma A.9. Note that for isotropic multivariate
normal random variables X ∈ Rd, such as X ∼ N (0, σ2I), it holds6 κ ≤ 1 + 3/d (for any σ). Thus
the number of samples needed to estimate a stability ratio R⋆ > 0 is often of order n ∝ R−1

⋆ . The
kurtosis7 κ is used to quantify the number of samples needed to estimate the variance.

3 Convergence analysis

The tactic used for all following proofs closely tracks the continuous-time analogue by integra-
tion along gradient flows (i.e. [dΦ(Lt) · ∂tL ≤ −1⇒ Φ(Lt) ≤ Φ(L0)− t] for any desingularizer
Φ : R∗

+ → R, such as Φ = log). This is done by leveraging the “sufficient decrease” inequality8

E [L(θt+1) | Ft ]− L(θt) ≤ − 1
2ηt∥∇L(θt)∥

2
2 (obtained by construction of Stab-SGD) together with

the variance control assumption V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2, to obtain an “average sufficient
decrease” inequality E [L(θt+1]− E [L(θt)] ≤ − 1

2βψ
(
E
[
∥∇L(θt)∥22

])
, for a well-chosen convex

and increasing function ψ, namely ψ : u 7→ u2/(σ2 + (1 + α)u) for this affine variance control.

This result can be composed with any bound of the form E
[
∥∇L(θt)∥22

]
≥ φ (E [L(θt) ]− L⋆),

to bound the optimization gap ∆t = E [L(θt) ] − L⋆ as ∆t ≤ Φ−1 (Φ(∆0) + t/(2β)), where Φ
is obtained by integration of dΦ(u) = 1/(ψ ◦ φ)(u). Different assumptions, leading to various
choices of φ, yield different convergence speeds, as integrated into the function Φ. In particular, local
Kurdyka-Łojasiewicz inequalities ∥∇L(θ)∥22 ≥ φ(L(θ)− L⋆) for convex functions φ immediately
satisfy the previous condition in expectation (such as φ(x) = 2µx for µ-strong convexity).

3.1 Convergence statements with stability oracles

Assumption 1 (Stab-SGD with stability oracle and affinely-bounded variance).
This set of assumptions is satisfied if there are constants β ∈ R∗

+, α ∈ R+ and σ ∈ R+ such that:

• L : Rd → R is differentiable and uniformly β-smooth

• (θt ∈ Rd, Gt ∈ Rd, ηt ∈ R∗
+)t∈N is an SGD of L (Definition 1)

• ∀t ∈ N, V [Gt+1 | Ft ] ≤ α ∥∇L(θt)∥22 + σ2 (affinely bounded variance)

• ∀t ∈ N, ηt = Stab (Gt+1 | Ft) /β (strong stability condition)

In such a case, the sequence of random variables θ : N→ Rd are called Stab-SGD iterates.
6See Lemma A.10 in appendix.
7Variables with low kurtosis κ := E

[
∥X∥42

]
/E

[
∥X∥22

]2
= 1/ Stab

(
∥X∥22

)
have empirical estimates of

variance close to true variance, while high kurtosis requires more samples for accurate estimation of variance.
8See Beck [2014, Lemma 4.3 and Sec 4.7.3] for the classical deterministic analysis leveraging this condition.
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The following theorems are derived from Corollary A.1, Corollary A.2, and Proposition A.3.
Theorem 1 (Weakly convex smooth rate). If L : Rd → R is convex, uniformly β-smooth, and if
there exists θ⋆ ∈ Θ such that L⋆ = L(θ⋆), then for any Stab-SGD iterates θ : N → Rd satisfying
Assumption 1, and if

T ≥ 2

3

βD4
0σ

2

ε3
+ (1 + α)

βD2
0

ε
then E [L(θT+1) ] ≤ L⋆ + ε, where D2

0 = E
[
∥θ0 − θ⋆∥22

]
measures initial distance to optimum.

Theorem 2 (Strongly convex smooth rate). If L : Rd → R is uniformly β-smooth and µ-strongly
convex, then any Stab-SGD iterates θ : N→ Rd satisfying Assumption 1, and if

T ≥ σ2β

2µ2ε
+ (1 + α)

β

µ
log

(
∆0

ε

)
then E [L(θT+1) ] ≤ L⋆ + ε, where ∆0 = E [L(θ0) ]− L⋆ measures the initial optimization gap.
Theorem 3 (Non-convex rate). If L : Rd → R is uniformly β-smooth, for any Stab-SGD iterates
θ : N→ Rd satisfying Assumption 1,

∀T ∈ N, E

[
1

T

∑
t<T

∥∇L(θt)∥22

]
≤ (1 + α)

2β∆0

T
+

√
2β∆0σ2

T

where ∆0 = E [L(θ0) ]− L⋆ measures the optimization gap at initialization.

3.2 Inline Stability Estimation

To incorporate the estimation of the gradient’s stability ratio in the algorithm at little overhead cost,
we propose Algorithm 1, with access to noisy gradients but without a stability oracle.

This algorithm uses three parame-
ters to control estimation overhead:
• a sample overhead ζ ∈ R∗

+
(of order 10 to 100)

• a time step κ ∈ R∗
+

• a time exponent γ ∈ [0, 1]

The most conservative configura-
tion (γ = 0, κ = 1) estimates the
stability ratio at every step. How-
ever, if the stability ratio is expected
to be relatively continuous, then a
looser configuration (γ = 1) will
perform only logarithmically many
estimations with respect to the hori-
zon, which is a minimal overhead.

In looser configurations, incorrect
ratios could yield temporary satu-
rations (overestimation), or tempo-
rary slowdowns (underestimation).

Input : x0 ∈ Rd, η0 ∈ R∗
+, ζ ≥ 1, κ ∈ R∗

+, γ ∈ [0, 1]
(S, T )← (S0 = 1 ∈ [0, 1], T0 = 1 ∈ R∗

+)
for k ∈ N do

if (k = 0) or (k ≥ T ) then
n← ⌈ζ/S⌉ ∈ N
(M0, Z0)← (0 ∈ Rd, 0 ∈ R)
for i ∈ [n] do

vi ← Gk,i ∈ Rd [estimate of ∇L(xk)]
Mi+1 ←Mi + (vi −Mi)/(i+ 1)
Zi+1 ← Zi + (∥vi∥22 − Zi)/(i+ 1)

end

S ← n

n− 1

∥Mi∥22 − Zi

Zi
[Stab estimator]

T ← T + κ · T γ

end
mk ← Gk ∈ Rd [fresh estimate of ∇L(xk)]
xk+1 ← xk − (η0 · S) ·mk

end
Algorithm 1: Inline Stab-SGD

While we can’t guarantee the quality of the looser configurations without additional assumptions such
as continuity of noise variance, we observe empirically that loose options such as (γ = 1, κ = 0.5)
still display all key properties of Stab-SGD: no intial plateau or explosion, and no saturation.

Note on overhead cost. For a total of T gradients queried at stability ratios above s⋆ > 0, at most
a fraction c/(1 + c) ∈ ]0, 1[ of queries are dedicated to stability estimation, where c ∈ R+ can be
controlled by tuning κ (e.g. set to c ≤ 1). If γ = 1, then c ≤ ζ s−1

⋆ κ−1 log(T )/T is vanishing with
T . If γ = 0, then c ≤ ζ s−1

⋆ κ−1. For the exponent α, the movement’s characteristic timescale is
estimated using E [∥Gt+k+1∥|Ft] ≤ (∥∇L(θt)∥2 + σ2)1/2 (unrigorously) without expectations for
a quick approximation, and smoothness as ∥∇L(x)∥22 ≤ 2β(L(x)− L⋆) with L⋆ = 0 for simplicity,

∥θt+∆t − θt∥ ≤
∑
k≤∆t

ηt∥Gt+k+1∥ ⪅
∑
k≤∆t

1

β

∥∇L(θt+k)∥2

(∥∇L(θt+k)∥2 + σ2)
1/2
≤ 2

σ

∑
k≤∆t

L(θt+k)
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If L(θt) ≤ C0 t
−1/3, this bound is at most C1 ∆t · t−1/3, so the unit-scale movements’ characteristic

time is at most ∆t ≈ C−1
1 t1/3. This quick calculation suggests that even in the worst case, γ = 1/3

should remain a safe option. Similarly, a rate L(θt) ≤ C0 t
−1 could use γ = 1 safely, but we

conjecture that such loose settings will be useable far outside this regime. Characterisation of precise
noise-continuity hypotheses under which such choices are provably safe is left for future work.

4 Experiments

Methods.9 We perform experiments in two stages, first training for T0 ∈ N (tuning horizon) iterations
on a grid of hyperparameters (log η0 from -7 to +5 by increments of 0.5, a total of k = 25 values).
We then select the best hyperparameter (at T0) and train with this value for T ∈ N iterations. The
fraction of the total budget spent on hyperparameter tuning is thus k T0/(k T0 + T ), and the tuning
overhead (excess cost of tuning relative to training) is k T0/T . These quantities are rarely reported
on large-scale experiments failing to take hyperparameter-tuning costs into account, but there is a
common intuition that popular algorithms require a massive fraction of budget allocated to tuning.

4.1 Comparisons with concurrent schedule-free algorithms

Cheap regime: low noise, strong convexity. Fig. 3 presents loss as a function of tuning horizon.

Vertical gaps within curves in-
dicate the final gap in loss if
less budget is spent on tuning.

The sensitivity of SGD is vis-
ible on the right (the noise-
dominated regime). The long-
horizon optimal learning rate
cannot be selected well on
short tuning horizons (which
do not enter the noise regime),
a property that is likely shared
by deep learning settings.
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Figure 3: Mis-tuning cost on Problem QSC, σ2 = 10−16 · d.
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Figure 4: Evolution of the loss on Problem QSC, σ2 = 10−16 · d. Tuning horizon as dashed line.

Figure 4 depicts the evolution of the loss over time for a tuning horizon at T0 = 103. Algorithms
designed for the noisy regime alone (such as COCOB and D-Adapt, which use iterate-averaging) fail
to take advantage of strong convexity, leaving them 8 orders of magnitude behind at 104 iterations.

9The source code to reproduce all experiments of this section and the next is available online at
https://www.github.com/robindar/2025-NeurIPS_Stab-SGD.

10Algorithm 1 with (loose) γ = 1, κ = 1, and ζ = 50. Iteration count is total number of gradients queried.
Results overlap with Stab-SGD (with stability oracles), both tuned and pre-set to η = β−1, hardly visible.

11Results overlap with D-Adapt (both settings). Both COCOB and D-Adapt are average-iterate algorithms,
the averaging slows down convergence in this regime, yielding very similar speeds.
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Expensive regime: smooth with high noise. Figure 5 presents mean loss as a function of tuning
horizon for Problem QWC. Each training run at 107 iterations takes about one hour on our CPUs.

Slope indicates sensitivity of
the hyperparameter to the tun-
ing horizon. Algorithms with
large slopes are only usable if
essentially all budget is spent
tuning the sensitive parameter.

At high noise with this train-
ing horizon (107), SGD only
outperforms Stab-SGD if at
least 71% of the total budget is
spent on hyperparameter tun-
ing, i.e. if an extra +250% of
the training budget is spent
tuning at T0 = 106 horizon.
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Figure 5: Mis-tuning cost on Problem QWC, σ2 = d.

Algorithms previously well-performing (such as “Schedule-Free SGD”) are not as good in this regime,
sometimes even indistinguishable from equivalently-tuned SGD. On the contrary, algorithms designed
for this setting (e.g. COCOB) perform much better. This leaderboard reversal induces a difficulty to
choose the best algorithm with unknown noise level. Stab-SGD gives consistent performance in both
settings. The price of this adaptivity is apparent in both cases, but not necessarily prohibitive.
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“Schedule-free SGD”13: γ = 10−3.5

Figure 6: Evolution of the loss on Problem QWC, σ2 = d. Tuning horizon as dashed line.

Although its asymptotic performance is slightly suboptimal compared to other methods, and does not
achieve the minimax optimal rate of averaging methods, the complete absence of noise-dependent
tuning of the hyperparameter, and reasonable properties (no plateau, no explosion, no saturation) of
the Stab-SGD trajectory make it an interesting research direction for schedule-free settings aiming
for those properties, particularly when the hyperparameter-tuning cost is taken into account.

The proof of last-iterate expected loss matching these observations also highlights the importance of
the stability ratio of gradients in the development of smooth optimization with last-iterate guarantees,
possibly better suited to the study of non-convex models such as neural networks.

We conjecture that it will be possible to construct accelerated noise-adaptive algorithms which will
be competitive not only on low tuning budgets, but also on high tuning budgets (right end of Figure 5)
where Stab-SGD and its stability-oracle-free variant Algorithm 1 are found to be lacking, possibly due
to a suboptimal asymptotic rate. Nonetheless, works on accelerated stochastic algorithms typically
use hyperparameters with convoluted dependence on noise parameters, see for instance Jain et al.
[2018, Thm 1] with impressive speed but four noise-dependent hyperparameters for the case of
quadratic problems alone. Therefore, we suspect that an accelerated noise-adaptive horizon-free
extension of Stab-SGD could be a vastly more complicated algorithm than the ones presented here.

12Algorithm 1 with (loose) γ = 1, κ = 1, and ζ = 50. Iteration count is total number of gradients queried.
13Results almost perfectly overlap with SGD, difference hardly visible
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4.2 ResNet training experiments on CIFAR-10

Methods. We perform experiments on the CIFAR-10 image classification dataset [Krizhevsky, 2009]
with the ResNet-56 architecture14 [He et al., 2015a, Sec 4.2]. We compare with the aforementioned
original ResNet publication, which uses a learning rate 10−1 for 32k iterations, then 10−2 for the
next 16k and 10−3 for the last 16k, totaling 64k iterations (thresholds depicted by dashed vertical
lines). We use batches of size 128 sampled without replacement for each epoch (391 batches / epoch).
We restrict the hyperparameter search for log10(η0) to a grid from−3 to +1 by steps of 0.5, informed
by choices in the original reference. We use an ℓ22 weight decay with λ = 10−4 for all runs.

We run Algorithm 1 with η0 = 10+1, with the configuration κ = 10−1, γ = 1 and ζ = 100. To
evaluate the overhead cost of stability-estimation, we provide both curves: oracle where the number
of iterations is the number of weight-updating steps (effective iterations); and raw where iterations
corresponds to the total number of gradients queried, including gradients used for stability estimation.
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Figure 7: ResNet-56 on CIFAR-10. Evolution of accuracy and loss, presented as medians and
quartiles for error bars, for 20 seeds of Algorithm 1. Average runtime of 4h to 5h per seed on GPU.

The results presented in Figure 7 show performance comparable between the oracle variant and SGD
with tuned schedule. Without the need to tune a scheduler, this algorithm has correctly used a first
large step-size then much lower, allowing it to break past the mid-training plateau incurred by SGD
(visible at 32k iterations). Nonetheless, the variance across seeds is significantly increased, and taking
into account the cost of stability-ratio estimation (with the raw variant) we can estimate that it needs
on the order of twice as many iterations for similar performance in this experiment. For context, the
choice of scheduler must have been guided by experiments, say k ∈ N∗ runs15, thus the total cost
comparison with noise-dependent scheduler tuning is between k× T for the scheduled SGD, and 2T
for Algorithm 1 (raw), which is in favor of the adaptive algorithm presented here as soon as k > 2.

Although not competitive on such problems at this stage
of development, Alg. 1 remains a promising research direc-
tion, since it maintains in this non-convex setting the desired
properties: no initial explosion or plateau, and no saturation
requiring large learning rate shrinkage. It reaches lower loss
than SGD with η = 10−1 (before first threshold) without
tuning a threshold (at 32k) or shrinking factor (×0.1).

Fig. 8 shows evolution of the Stability Ratio along trajec-
tories. Shrinkage behavior is consistent with the original:
small variations up to 104 then decreasing by several orders
of magnitude. The original tuned schedule shrinked learning
rates at 32k and 48k. More details in Appendix C.2.
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Figure 8: Stability along trajectory

14Note that the numbering refers to the CIFAR-targeting architectures [He et al., 2015a, Sec 4.2], contrary to
the much larger ResNet-18 and ResNet-30 [He et al., 2015a, Sec 4.1], which target ImageNet [Deng et al., 2009].

15The number of tuning runs k ∈ N∗ is not given in the original reference, and left for the reader to estimate.
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Figure 9: ResNet-56, loss and accuracy as a function of learning rate for SGD.

This is consistent with convex experiments, indicating that Stab-SGD enables selection of a larger
base learning rate, which is automatically adapted to the noise level. Indeed, with the initial Stability
Ratio around 10−1, the effective learning rate of the first 103 iterations is around 100, which is not
far from the optimum observed for SGD over that period (see Fig. 9). The performance of the oracle
variant (i.e. ignoring stability-estimation costs) showcases the competitive behavior that could be
reachable for future works achieving cheaper stability estimations.

Conclusion. We introduced the Stability Ratio, a natural measure of local relative noise of stochastic
gradient estimates, yielding a schedule-free variant of SGD achieving real adaptivity to the noise level.
We presented new theoretical tools to analyze this stochastic-step algorithm in convex, strongly convex
and non-convex settings, with strong last-iterate guarantees in expectation, obtained by a stochastic
version of Kurdyka-Łojasiewicz integration. We validated the adaptivity of this proposed algorithm
with convex experiments showing that it outperforms algorithms not achieving the fast rate on strongly
convex problems (such as COCOB or D-Adapt, developped for less regular settings), and that it
remains in the competitive range without the need for a noise-dependent tuning of hyperparameters.
We measured performance on ResNet networks for CIFAR-10 which further strenghtened that when
taking hyperparameter-tuning budgets into account, this last-iterate noise-adaptive algorithm retains
reasonable performance on non-convex deep learning problems. This shows that future algorithms
leveraging this idea together with improved estimates of the stability ratio along a training trajectory
will likely be able to outperform extensively-tuned learning rate schedulers in deep learning scenarios.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Schedule-free and noise-adaptive results of Sec. 3 are present in the abstract,
along with matching experiments, as claimed.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See end of Section 4.1
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: See Section 3, where Theorem 1, Theorem 2 and Theorem 3 use assumptions
Assumption 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4, “methods” paragraph.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Data is openly available, all instructions to reproduce experiments are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4, “methods” paragraphs, and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Deep learning experiments feature error bars. Convex experiments with more
replications do not display error bars because these would be imperceptibly small.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Both theoretical contributions and experiments with publicly available and
widely used data conform with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Foundational and theoretical optimization research does not have specific
positive or negative societal impacts beyond those of all the field of optimization.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable, no data or models relased.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 4 for credits of publicly available assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used in the making of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

In all the appendix, L : Rd → Rd is a β-smooth function for some β ∈ R∗
+, and (θt ∈ Rd)t∈N

is a stochastic gradient descent of L (Definition 1) with gradient estimates (Gt+1 ∈ Rd)t∈N and
step-sizes (ηt ∈ R∗

+)t∈N satisfying θt+1 = θt − ηt ·Gt+1 and E [Gt+1 | Ft ] = ∇L(θt), where F is
the time filtration.

When appropriate, the variable T ∈ N denotes a horizon, L⋆ = inf L is the infimum of the loss, and
θ⋆ ∈ Rd is a global optimum L(θ⋆) = L⋆ when it is assumed to exist.

A.1 Rates with stability oracle

Lemma A.1 (Base reduction).
If for all t ≤ T , it holds ηt ≤ β−1 Stab (Gt+1 | Ft) (weak stability condition), then it holds

∀t ≤ T, E [L(θt+1) | Ft ] ≤ L(θt)−
ηt
2
∥∇L(θt)∥22

Proof. By β-smoothness of L, then simplifying conditional expectations,

L(θt+1) ≤ L(θt)− ηt∇L(θt) ·Gt+1 +
1

2
βη2t ∥Gt+1∥22

E [L(θt+1) | Ft ] ≤ E
[
L(θt)− ηt∇L(θt) ·Gt+1 +

1

2
βη2t ∥Gt+1∥22

∣∣∣∣F2

]
≤ L(θt)− ηt∇L(θt) · E [Gt+1 | Ft ] +

1

2
βη2t E

[
∥Gt+1∥22

∣∣Ft

]
≤ L(θt)− ηt ∥∇L(θt)∥22 +

1

2
βη2t

∥∇L(θt)∥22
Stab (Gt+1 | Ft)

≤ L(θt)− ηt ∥∇L(θt)∥22 +
1

2
ηt ∥∇L(θt)∥22

≤ L(θt)−
ηt
2
∥∇L(θt)∥22

Lemma A.2. For all (σ, α) ∈ R2
+, the function ψ : R+ → R+ is strictly increasing and convex.

ψ : u 7→ u2

σ2 + (1 + α)u

Proof. By continuity at zero and twice-differentiability of ψ on R∗
+, it suffices to check, for every

u ∈ R∗
+, that dψ(u) > 0 (strict increase) and d2ψ(u) ≥ 0 (convexity). Write c = 1+α and compute

dψ(u) =
2u(σ2 + cu)− cu2

(σ2 + cu)
2 =

2uσ2 + cu2

(σ2 + cu)
2 > 0

Then the second derivative of ψ is observed to be non-negative, which concludes the proof.

d2ψ(u) =
(2σ2 + 2cu)(σ2 + cu)2 − (2uσ2 + cu2) · 2c(σ2 + cu)

(σ2 + cu)4

=
(2σ2 + 2cu)(σ2 + cu)− 2c(2uσ2 + cu2)

(σ2 + cu)3

=
2σ4 + 4σ2cu+ 2c2u2 − (4σ2cu+ 2c2u2)

(σ2 + cu)3
=

2σ4

(σ2 + cu)3
≥ 0

Lemma A.3. For all (σ, α) ∈ R2
+, the function ψ : u ∈ R+ 7→ u2 · (σ2 + (1 + α)u)−1 admits an

inverse ψ−1 : R+ → R+, and for all x ∈ R+, it holds ψ−1(x) ≤ (1 + α)x+ σ
√
x.
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Proof. By Lemma A.2, ψ is strictly increasing and has ψ(u)→ 0 when u→ 0, and ψ(u)→ +∞
when u→∞, therefore ψ is bijective and admits an inverse, which is also strictly increasing.

Moreover, defining z = (1 + α)x+ σ
√
x, observe that

ψ(z) =
z2

σ2 + (1 + α)z
=

(1 + α)x2 + 2(1 + α)x
√
x+ σ2x

σ2 + (1 + α)2x+ (1 + α)σ
√
x

= x+
(1 + α)x

√
x

σ2 + (1 + α)2x+ (1 + α)σ
√
x
≥ x

Therefore x ≤ ψ(z), which implies ψ−1(x) ≤ z and concludes the proof.

Lemma A.4 (Key reduction).
If for all t ≤ T , it holds V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2 (affinely bounded variance), and
ηt = β−1 Stab (Gt+1 | Ft) (strong stability condition), then it holds

∀t ≤ T, E [L(θt+1)]− E [L(θt)] ≤ −
1

2β
ψ
(
E
[
∥∇L(θt)∥22

])
where ψ : u 7→ u2/(σ2 + (1 + α)u) is a convex and increasing function.

Proof. Starting from Lemma A.1, and using the affinely bounded variance asssumption to obtain
the inequality E

[
∥Gt+1∥22

∣∣Ft

]
≤ ∥E [Gt+1 | Ft ]∥22 + V [Gt+1 | Ft ] ≤ (1 + α)∥∇L(θt)∥22 + σ2,

substituted in the stability ratio, we obtain

E [L(θt+1) | Ft ]− L(θt) ≤ −
ηt
2
∥∇L(θt)∥22

≤ − 1

2β

∥∇L(θt)∥22
σ2 + (1 + α)∥∇L(θt)∥22

∥∇L(θt)∥22

≤ − 1

2β
ψ
(
∥∇L(θt)∥22

)
Therefore, taking expectations, and using convexity of ψ (Lemma A.2) as E[ψ(U)] ≥ ψ(E[U ]),

E [L(θt+1) ]− E [L(θt) ] ≤ −
1

2β
E
[
ψ
(
∥∇L(θt)∥22

) ]
≤ − 1

2β
ψ
(
E
[
∥∇L(θt)∥22

])

Lemma A.5 (KŁ stochastic integration).
If for all t ≤ T , it holds V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2 (affinely bounded variance), and
ηt = β−1 Stab (Gt+1 | Ft) (strong stability condition), and if it holds for some increasing function
φ : R+ → R+ that E

[
∥∇L(θt)∥22

]
≥ φ (E [L(θt) ]− L⋆), then it holds

∀t ≤ T, E [L(θt+1)]− L⋆ ≤ Φ−1

(
Φ(E [L(θ0) ]− L⋆) +

t

2β

)
where Φ : R∗

+ → R is the16 function defined as dΦ(u) = −
(
σ2 + (1 + α)φ(u)

)
· φ(u)−2.

In particular, if T ≥ 2β (Φ(ε)− Φ(∆0)) for ∆0 = E [L(θ0) ]− L⋆, then E [L(θT+1) ] ≤ L⋆ + ε.

Proof. Starting from Lemma A.4, and using the last assumption since ψ is increasing,

E [L(θt+1)]− E [L(θt)] ≤ −
1

2β
ψ
(
E
[
∥∇L(θt)∥22

])
≤ − 1

2β
(ψ ◦ φ) (E [L(θt) ]− L⋆)

Note that by definition dΦ(u) = −1/(ψ ◦ φ)(u). We will use this to simplify the above equation,
but also to observe that dΦ is increasing since (ψ ◦ φ) is increasing as a composition of increasing

16uniquely defined only up to a constant, the bound is invariant by change of such additive constant
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functions. Therefore, Φ is a convex function (since it has increasing derivative) which can be used as
Φ(y)− Φ(x) ≥ dΦ(x) · (y − x) to further simplify

dΦ (E [L(θt) ]− L⋆) · (E [L(θt+1)]− E [L(θt)]) ≥
1

2β

Φ (E [L(θt+1) ]− L⋆)− Φ (E [L(θt) ]− L⋆) ≥ 1

2β

Observing that Φ is decreasing (since it has negative derivate), this implies

E [L(θt+1) ]− L⋆ ≤ Φ−1

(
Φ (E [L(θ0) ]− L⋆) +

t

2β

)
Defining ∆0 = E [L(θ0) ] − L⋆ and injecting T ≥ 2β(Φ(ε) − Φ(∆0)) in the previous equation
yields the final claim, by decrease of Φ.

E [L(θT+1) ]− L⋆ ≤ Φ−1

(
Φ (∆0) +

T

2β

)
≤ ε

Lemma A.6 (Squared distance to optimum is a submartingale).
If L : Rd → R is convex, and there exists θ⋆ ∈ Rd such that L(θ⋆) = L⋆, and if for all t ≤ T , it
holds ηt ≤ β−1 Stab (Gt+1 | Ft) (weak stability condition), then it holds

∀t ≤ T, E
[
∥θt − θ⋆∥22

]
≤ E

[
∥θ0 − θ⋆∥22

]
Proof. Define the random variable Dt ∈ R as D2

t = ∥θt − θ⋆∥22. Observe that expanding the square,

D2
t+1 −D2

t = −2ηtGt+1 · (θt − θ⋆) + η2t ∥Gt+1∥22
Thus taking conditional expectations and using the weak stability condition,

E
[
D2

t+1

∣∣Ft

]
−D2

t = −2ηt∇L(θt) · (θt − θ⋆) + η2t ∥∇L(θt)∥22/ Stab (Gt+1 | Ft)

≤ −2ηt∇L(θt) · (θt − θ⋆) +
ηt
β
∥∇L(θt)∥22

By convexity of L, the first term can be bounded with L⋆ − L(θt) ≥ −∇L(θt) · (θt − θ⋆), and the
second term can be bounded by β-smoothness of L as ∥∇L(θt)∥22 ≤ 2β(L(θt)− L⋆), thus

E
[
D2

t+1

∣∣Ft

]
−D2

t ≤ −2ηt (L⋆ − L(θt)) + 2ηt (L(θt)− L⋆) ≤ 0

Hence E
[
D2

t+1

∣∣Ft

]
≤ D2

t and by induction E
[
D2

t+1

]
≤ E

[
D2

0

]
, which concludes the proof.

Corollary A.1 (Convex smooth rate).
If L : Rd → R is convex and there exists θ⋆ ∈ Rd such that L(θ⋆) = L⋆, and if for all t ≤ T , it holds
ηt = β−1 Stab (Gt+1 | Ft) (strong stability condition), and V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2

(affinely bounded variance), then it holds

∀t ≤ T, E [L(θt+1)]− L⋆ ≤ Φ−1

(
Φ(E [L(θ0) ]− L⋆) +

t

2β

)
where Φ : u 7→ C2σ2

3u3
+ (1 + α)

C

2u
for C = E

[
∥θ0 − θ⋆∥22

]
∈ R+.

Therefore, T ≥ 2
3βC

2σ2(ε−3 −∆−3
0 ) + (1 + α)βC(ε−1 −∆−1

0 ) implies E [L(θT+1) ] ≤ L⋆ + ε,
which is a rate of O(T−1/3) if with additive noise σ2 > 0, and O(T−1) in the case σ2 = 0.

Proof. Define C = E
[
∥θ0 − θ⋆∥22

]
and φ : u 7→ u2/C. In order to use Lemma A.5, let us show that

E
[
∥∇L(θt)∥22

]
≥ φ(E [L(θt)− L⋆ ]). By convexity of L and then by Cauchy-Schwarz inequality.

L(θt)− L⋆ ≤ ∇L(θt) · (θt − θ⋆)
E [L(θt)− L⋆ ]

2 ≤ E
[
∥∇L(θt)∥22

]
· E
[
∥θt − θ⋆∥22

]
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Using additionally Lemma A.6 to get E
[
∥θt − θ⋆∥22

]
≤ E

[
∥θ0 − θ⋆∥22

]
, this concludes the first

part of the proof, that E
[
∥∇L(θt)∥22

]
≥ φ(E [L(θt)− L⋆ ]).

For the second part of the proof, apply Lemma A.5, with desingularizer Φ obtained by integration

dΦ(u) = −σ
2 + (1 + α)φ(u)

φ(u)2
= −σ

2 + (1 + α)C−1u2

C−2u4

Φ(u) =
C2σ2

3u3
+ (1 + α)

C

2u

Bound inversion: the condition to obtain E [L(θT+1) ] ≤ L⋆ + ε with T as a function of ε, i.e.

Tε ≥
2

3
βC2σ2(ε−3 −∆−3

0 ) + (1 + α)βC(ε−1 −∆−1
0 )

can be rewritten with ε as a function of T , as in the original statement of Corollary A.1, in the form

εT ≤ Φ−1

(
Φ (∆0) +

T

2β

)
with a = C2σ2/3 and b = (1 + α)C/2 defining Φ(u) = au−3 + bu−1. This expression can be
simplified at y = Φ(∆0) +

T
2β with the intermediate variables p = − b2

3y2 and q = 2b3

27y3 + a
y using

Φ−1(y) =
3

√
q

2
+

√(q
2

)2
+
(p
3

)3
+

3

√
q

2
−
√(q

2

)2
+
(p
3

)3
+

b

3y
(CVX-INV)

This expression of εT = Φ−1(y) is not any easier to use, hence our statement in the other Tε form.
Corollary A.2 (Strongly-convex smooth rate).
If L is µ-strongly convex, and if for all t ≤ T , it holds V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2 (affinely
bounded variance), and ηt = β−1 Stab (Gt+1 | Ft) (strong stability condition), then it holds

∀t ≤ T, E [L(θt+1)]− L⋆ ≤ Φ−1

(
Φ(E [L(θ0) ]− L⋆) +

t

2β

)
where Φ : u 7→ σ2

4µ2

1

u
− 1 + α

2µ
log(u).

For T ≥ σ2β
2µ2 (ε

−1 −∆−1
0 ) + (1 + α)βµ log(∆0/ε), where ∆0 = E [L(θ0) ]− L⋆, this implies that

E [L(θT+1) ] − L⋆ ≤ ε. This is a rate of O(T−1) with additive noise σ2 > 0 and a linear rate
O(exp(−κT/(1 + α))) for κ = µ/β in the noiseless / multiplicative-noise case σ2 = 0.

Proof. The proof is a straightforward application of Lemma A.5 with φ : u 7→ 2µu, which satisfies
E
[
∥∇L(θt)∥22

]
≥ φ(E [L(θt)− L⋆ ]), because by strong convexity of L, it holds for all x ∈ Rd

that ∥∇L(x)∥22 ≥ 2µ(L(x)− L⋆). It remains to compute the desingularizer Φ by integration

dΦ(u) = −σ
2 + (1 + α)φ(u)

φ(u)2
= −σ

2 + 2(1 + α)µu

4µ2u2

Φ(u) =
σ2

4µ2

1

u
− 1 + α

2µ
log(u)

Proposition A.3 (Non-convex rate).
If for all t ≤ T , it holds V [Gt+1 | Ft ] ≤ α∥∇L(θt)∥22 + σ2 (affinely bounded variance), and
ηt = β−1 Stab (Gt+1 | Ft) (strong stability condition), then writing ∆0 = E [L(θ0) ]−L⋆, it holds

E

[
1

T

∑
t<T

∥∇L(θt)∥22

]
≤ (1 + α)

2β∆0

T
+

√
2β∆0σ2

T
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Proof. Starting from Lemma A.4 (valid by strong stability condition and affinely bounded variance),

E [L(θt+1) | Ft ]− L(θt) ≤ −
1

2β
ψ
(
∥∇L(θt)∥22

)
where ψ : u 7→ u2 ·(σ2+(1+α)u)−1 is a convex increasing function. Thus, taking total expectations
and summing over iterates t ∈ [T ] to telescope (a), and then using convexity of ψ to bound (b),

ψ

(
E

[
1

T

∑
t<T

∥∇L(θt)∥22

])
≤
(b)

E

[
1

T

∑
t<T

ψ
(
∥∇L(θt)∥22

) ]
≤
(a)

2β∆0

T

where ∆0 = E [L(θ0) ]− L∗ is the expected initial optimization error. It remains to use the bound
ψ−1(x) ≤ (1 + α)x+ σ

√
x (Lemma A.3), to obtain

E

[
1

T

∑
t<T

∥∇L(θt)∥2
]
≤ 2(1 + α)β∆0

T
+

√
2β∆0σ2

T
.

We thus recover the classical deterministic and stochastic regimes in, respectively, O(1/T ) and
O(1/

√
T ) depending on whether the additive variance term σ2 is positive or equal to 0.

The same analysis would hold in a more general setting in which Stab (Gt+1 | Ft) ≥ φ(∥∇L(θt)∥2)
and x 7→ x · φ(x) is a positive, increasing and convex function.

A.2 Estimation of stability ratio

Lemma A.7. Let B > 0 and (Xi)i∈[n] be i.i.d. real random variables such that, for all i ∈ [n], it
holds E [Xi ] = 0 and Xi ≤ B almost surely. Then, for any t > 0, we have

P

 1

n

∑
i∈[n]

Xi ≥ t

 ≤ exp

(
− nt2

2B2f (V[X1]/B2)

)
, (1)

where f(x) = (1 + x)2/4 if x < 1, and f(x) = x otherwise. (In particular, ∀x, f(x) ≤ 1 + x)

Proof. Use Fan et al. [2015, Corollary 2.7] with Ui−1 = B, note that B2f(V[X]/B2) = C2
i−1

exactly matches the definition in the reference’s notation, thus following the reference and simplifying
constants Ci, we get for v2 = n

∑n
i=1 C

2
i−1 = nB2 f(V[Xi]/B

2), that it holds

P

∑
i∈[n]

Xi ≥ x

 ≤ exp

(
− x2

2v2

)
The result follows using x = nt.

Lemma A.8. Let (Di)i∈[n] be non-negative i.i.d. random variables with E
[
D2

i

]
< +∞ and

E [Di ] = D ∈ R∗
+. Then, for κ = E

[
D2

i

]
/E [Di ]

2 ∈ [1,∞[, it holds

P

 1

n

∑
i∈[n]

Di ≤ D/2

 ≤ exp
(
− n

8κ

)

Proof. Let Xi = D −Di. Observe that E [Xi] = 0, and Xi ≤ D almost surely. Additionally, by
expanding the square, V[Xi] = E

[
D2

i

]
−D2.

Apply Lemma A.7 with B = D and t = D/2 and use f(x) ≤ 1 + x to simplify the denominator
with D2f(V[Di]/D

2) ≤ D2 + V[Di] = E
[
D2

i

]
. Therefore,

P

 1

n

∑
i∈[n]

Di ≤ D/2

 ≤ exp

(
− nD2/4

2E [D2
i ]

)
= exp

(
− n

8E [D2
i ] /D

2

)
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Lemma A.9 (Relative error of stability estimation). Let (Xi ∈ Rd)i∈[n] be iid random variables.
Define J = 1

n(n−1)

∑
i ̸=j Xi ·Xj ∈ R, Z = 1

n

∑
i∥Xi∥22 ∈ R+, then S = clip[0,1](J/Z) ∈ [0, 1].

Write µ = E [X ] ∈ Rd and σ2 = E
[
∥X − µ∥22

]
, and κ = E

[
∥X∥42

]
/σ4. If R = ∥µ∥22/σ2 ̸= 0,

and if n ≥ 1 + a/R for a constant a ≥ 1, then

E

[ ∣∣∣∣S −RR
∣∣∣∣2
]
≤ 48 + 4(κ− 1)

a
+

1

R2
exp

(
− n

8κ

)
At κ = 3 (for a centered gaussian) and neglecting the fast-decreasing second term, this is a relative
squared error of 56/a, i.e. a relative error of order 7.48/

√
a, which is below 1 as low as a = 100.

Proof. Let N = ∥µ∥22 and D = E
[
∥X∥22

]
be the numerator and denominator in R = N/D. Note

that E [J ] = N and E [Z] = D. Proceed then by case disjunction: if on one hand Z ≤ D/2, then
|S −R| ≤ 1 (both are in [0, 1]), while on the other hand if Z ≥ D/2, then

|S −R| ≤
∣∣∣∣ JZ −R

∣∣∣∣ = ∣∣∣∣J −NZ +N

(
1

Z
− 1

D

)∣∣∣∣ ≤ |J −N |Z
+
N

D

|Z −D|
Z

≤ |J −N |
D/2

+
N

D

|Z −D|
(D/2)

= 2R
|J −N |
N

+ 2R
|Z −D|
D

Therefore joining both cases after taking squares,∣∣∣∣S −RR
∣∣∣∣2 ≤ 4

∣∣∣∣J −NN
∣∣∣∣2 + 4

∣∣∣∣Z −DD

∣∣∣∣2 + 1

R2
1{Z ≤ D/2}

Hence, after taking expectations and applying Lemma A.12 (numerator sample control) and
Lemma A.11 (denominator variance), it holds for n ≥ 1 + a/R that

E

[ ∣∣∣∣S −RR
∣∣∣∣2
]
≤ 4

(
4

a2
+

8

a

)
+ 4

κ− 1

n
+

1

R2
P(Z ≤ D/2)

Additionally, by Lemma A.8, P(Z ≤ D/2) ≤ exp
(
− n

8s

)
where s = E

[
∥Xi∥4

]
/D2 = κ. Thus,

E

[ ∣∣∣∣S −RR
∣∣∣∣2
]
≤ 4

(
4

a2
+

8

a

)
+ 4

R(κ− 1)

a
+

1

R2
exp

(
− n

8κ

)
The result follows by using a ≥ 1 and R ≤ 1.

Lemma A.10 (Uncentered kurtosis of isotropic normal distribution). Let X ∈ Rd be a random
variable with X ∼ N (0, σ2I). It holds E

[
∥X∥22

]
= dσ2 and E

[
∥X∥42

]
/E
[
∥X∥22

]2
= d−1

d + 3
d

Proof. By expanding the sum,

E
[
∥X∥22

]
= E

[∑
i

X2
i

]
=
∑
i

E
[
X2

i

]
= dσ2

E
[
∥X∥42

]
= E

(∑
i

X2
i

)2
 =

∑
i,j

E
[
X2

iX
2
j

]
=
∑
i

E
[
X4

i

]
+
∑
i ̸=j

E
[
X2

i

]
E
[
X2

j

]
= d · 3 · σ4 + d(d− 1)σ4

The result follows by taking the quotient of both.

Lemma A.11 (Kurtosis bound for the denominator).
Let (Xi ∈ Rd)i∈[n] be iid random variables with E

[
∥X∥22

]
= Q, and Z = 1

n

∑
i∈[n]∥Xi∥2. Then

E
[
|Z −Q|2

]
=

1

n

(
E
[
∥X∥42

]
− E

[
∥X∥22

]2)
and thus for κ =

E[∥X∥42]
E[∥X∥22]2

(uncentered kurtosis of X), it holds P(|Z −Q| > τQ) ≤ κ− 1

n τ2
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Proof of the expectation is just expansion of the square and linearity of expectation. The second
proposition is Chebyshev’s inequality.

Lemma A.12 (Numerator sample control).
Let (Xi ∈ Rd)i∈[n] be iid random variables with E [X ] = µ, and J = 1

n(n−1)

∑
i ̸=j Xi · Xj . If

µ ̸= 0 and if n ≥ 1 + c · E
[
∥X − µ∥22

]
/∥µ∥22 then it holds

E
[ ∣∣J − ∥µ∥22∣∣2 ]
∥µ∥42

≤ 4

c2
+

8

c

This is an immediate corollary of the following lemma.

Lemma A.13 (Variance bound for the Jackknife numerator).
Let (Xi ∈ Rd)i∈[n] be iid random variables with E [X ] = µ ∈ Rd, and J = 1

n(n−1)

∑
i ̸=j Xi ·Xj .

Then it holds E [ J ] = ∥µ∥22, and

E
[ ∣∣J − ∥µ∥22∣∣2 ] ≤ 4

E
[
∥X − µ∥22

]2
n(n− 1)

+
8

n
E
[
∥X − µ∥22

]
· ∥µ∥22

Proof.

J − E[J ] =
1

n(n− 1)

∑
i ̸=j

(
Xi ·Xj − µ2

)
=

1

n(n− 1)

∑
i ̸=j

(
(Xi − µ) · (Xj − µ) + (Xi +Xj)µ− 2µ2

)

=
1

n(n− 1)

∑
i ̸=j

(Xi − µ) · (Xj − µ)

+

(
2(n− 1)

∑
i

Xi · µ

)
− 2n(n− 1)µ2


=

1

n(n− 1)

∑
i ̸=j

(Xi − µ) · (Xj − µ)

+ 2

(
1

n

∑
i

Xi − µ

)
· µ

:= A+B

As a sanity check, observe that E [ J − E [ J ] ] = 0 because E [A ] = 0 and E [B ] = 0.

We will use the (crude) bound E
[
|J − µ2|2

]
≤ 2E

[
A2
]
+ 2E

[
B2
]
. Let us compute each.

E
[
B2
]
= 4E

(( 1

n

∑
i

Xi − µ

)
· µ

)2
 ≤ 4E

∥∥∥∥∥ 1n∑
i

Xi − µ

∥∥∥∥∥
2

2

 · µ2 ≤ 4
σ2

n
µ2

On the other hand, by Lemma A.14, E
[
A2
]
≤ 2E

[
∥X − µ∥22

]2
/(n(n− 1)). Thus the conclusion,

E
[ ∣∣J − ∥µ∥22∣∣2 ] ≤ 2E

[
A2
]
+ 2E

[
B2
]
≤ 4

E
[
∥X − µ∥22

]2
n(n− 1)

+
8

n
E
[
∥X − µ∥22

]
· ∥µ∥22
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Figure 10: Empirical measurements of E
[
|Jn − E [ Jn ]|2

]
as a function of n (mean and 5-sigma

confidence interval for the mean, 103 samples) vs Lemma A.13 upper-bound, for isotropic gaussians
in dimension d = 10 with noise σ0 = 102 per coordinate, thus σ2 = d σ2

0 = 105, and ∥µ∥22 = d.

Lemma A.14 (Variance of the squared-mean U-statistic).
Let (Ci ∈ Rd)i∈[n] be iid random variables with E [Ci ] = 0 and E

[
∥Ci∥22

]
= σ2 ∈ R+. Define

A = 1
n(n−1)

∑
i ̸=j Ci · Cj . Then E

[
A2
]
≤ 2σ4/(n(n− 1)).

This is the usual analysis of variance of a U-statistic by intersection disjunction, see for instance the
lecture notes Jordan [2007] for Berkeley’s Stat 210B, or the more conventional reference Asymptotic
Statistics [Vaart, 1998]. An empirical verification and tightness evaluation is performed in Figure 11.

Proof. Starting from the definition of A

A2 =
1

n2(n− 1)2

∑
i ̸=j

∑
k ̸=l

(Ci · Cj)(Ck · Cl)

Proceed by case disjuction:

• if {i, j} ∩ {k, l} = ∅, then E [ (Ci · Cj)(Ck · Cl) ] = E [Ci · Cj ]E [Ck · Cl ] = 0.

• if #({i, j} ∩ {k, l}) = 2, then E [ (Ci · Cj)(Ck · Cl) ] = E
[
(Ci · Cj)

2
]
, and by Cauchy-

Schwarz inequality, it holds E
[
(Ci · Cj)

2
]
≤ E

[
C2

i C
2
j

]
≤ E

[
C2

i

]
E
[
C2

j

]
≤ σ4.

• if #({i, j} ∩ {k, l}) = 1, then without loss of generality i = k and j ̸= l. Therefore
E [ (Ci · Cj)(Ck · Cl) ] = E [ ((Ci · Cl)Ci) · Cj ] = E [ (Ci · Cl)Ci ] · E [Cj ] = 0

It remains to take expectations and count the number of size-2 intersections.

E
[
A2
]
≤ 1

n2(n− 1)2

∑
i ̸=j

2σ4 ≤ 2σ4

n(n− 1)
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Figure 11: Empirical measurements of E
[
A2

n

]
as a function of n (mean and 5-sigma confidence

interval for the mean, 500 samples) versus upper-bound used in Lemma A.14, for isotropic gaussians
in dimension d = 10 with noise σ0 = 100 per coordinate, thus E

[
∥Ci∥22

]
= σ2 = d σ2

0 = 105.
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B Influence of learning rate parameters (η-scan) on Problem QWC

We present results of all algorithms on Problem QWC at various noise levels, for all learning
rate parameters tried in our experimental protocol. Flatter lines indicate less sensibility to the
hyperparameter, aligned minima indicate ability to tune on short horizons. The smooth standard limit
step β−1 = 1 is displayed as a vertical dotted line, for all algorithms with smooth claims.

B.1 SGD with constant, scheduled, or stability-adjusted learning rates
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(b) SGD: ηt = η0 · t−1/2
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Figure 12: Problem QWC with additive gaussian noise of variance σ2 = d. Excess loss versus base
learning rate η0 ∈ R∗

+ and training time T ∈ N.
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(b) SGD ηt = η0 · t−1/2
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Figure 13: Problem QWC with additive gaussian noise of variance σ2 = 10−4 · d. Excess loss versus
base learning rate η0 ∈ R∗

+ and training time T ∈ N.
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Figure 14: Problem QWC with additive gaussian noise of variance σ2 = 10−16 · d. Excess loss
versus base learning rate η0 ∈ R∗

+ and training time T ∈ N.
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Fig. 12, Fig. 13 and Fig. 14 show evolution of the mean excess loss as a function of the base learning
rate η0 (before applying any scheduler) and the total training time T ∈ N (a.k.a. “horizon”).
The dependence of the optimal base learning rate on the horizon T is visible for both SGD with
constant learning rate and with t−1/2 schedule. Additionally, these optimal base learning rates are
seen to shift between the two figures, when the noise levels vary. In particular, this means that the
learning rate of mini-batch SGD must be re-tuned if the batch size (i.e. noise level) is altered.

Consistently with other experiments, the optimal learning rates for long horizons (T ≥ 107) are
associated with a long plateau at initialization. This implies that models tuned for long horizons are
essentially unusable at mid-training (no better than initialization), thus it is meaningless to consider
an “optimal trajectory”, or a horizon-independent “optimal learning rate”; on the contrary, the horizon
plays a central role in evaluating the quality of the model. This effect is much less pronounced with
Stab-SGD, with little to no movement around the prescribed rate η0 = β = 100 across noise levels.

B.2 D-Adapt

We repeat the experiment at multiple noise levels with the D-adapt algorithm, Defazio and Mishchenko
[2023, Algorithm 2]. We run the experiment with the hyperparametersD = 2 andD = 200 separately,
and sweep over all “learning rates” G−1 for each case.
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Figure 15: Performance of D-adapt algorithm, for D=2, on Problem QWC at various noise levels.
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Figure 16: Performance of D-adapt algorithm, for D=200, on Problem QWC at various noise levels.

B.3 "Schedule-free SGD"

We repeat the experiments with the "Schedule-free SGD" algorithm from "The Road Less Scheduled",
as it is described in the main text: Defazio et al. [2024, Sec. 2, Eq 3-5], i.e. with hyperparameters
β = 0.9 and x-step schedule ct = 1/(t+ 1) as prescribed in Sec. 2 §2.
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Figure 17: Performance of the "Schedule-free SGD" algorithm, on Problem QWC at various noise
levels. We observe saturation at all noise levels, this is inconsistent with the idea that this algorithm
can be used instead of a scheduler for SGD.

To contrast this with the theoretical predictions in the reference, note that Defazio et al. [2024,
Thm 1] only gives convergence (in the Lipschitz model) with the horizon-dependent hyperparameter
γ = DT−1/2. The smooth result Defazio et al. [2024, Appendix Corollary 2] uses a time-varying
parameter βt, such as βt = 1/(5(t+1)) (obtained by injecting the bounds onwt and αt of Corollary 2
into their definition in Thm 5), to guarantee speed O(D2β/T 2 +Dσ/

√
T ), and uses an “optimistic

online learning algorithm” for z – the one given in appendix Sec D.1 uses a vanishing learning rate.

B.4 COCOB - Coin-betting approach

We perform the same experiments with the Continuous Coin-Betting algorithm (COCOB) Orabona
and Tommasi [2017, Algorithm 1], designed for the setting of convex online learning with Lipschitz
losses and almost surely bounded gradients. Although this experiment uses smooth losses with
gaussian noise (unbounded with finite variance), the performance of both this algorithm and its
“Backprop” version more adapted to the non-convex setting remain competitive.
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Figure 18: Performance of the "COCOB" algorithm, on Problem QWC at various noise levels. The
algorithm uses a hyperparameter (Li)i ∈ Rd

+, which we set identically for all directions for this
experiment, this being the only reasonable choice without a canonical basis.

As observed in Fig. 18, the alignement of the optimal hyperparameter across training horizons is
excellent, despite the mismatch in settings (Lipschitz objective in the theory, versus quadratic loss in
the experiment, which is uniformly 1-smooth but not Lipschitz on the entire domain). The value of
the limit learning rate however is perhaps not so intuitive, since it is no longer directly linked to β−1.

Fig. 19 shows the results of COCOB-Backprop Orabona and Tommasi [2017, Algorithm 2].
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Figure 19: Performance of the "COCOB-Backprop" algorithm, on Problem QWC at various noise
levels. The vertical line depicts the default value (α = 10+2) suggested to make this algorithm
completely “parameter-free” (in the sense that is has no parameters to tune).

The sensitivity to the hyperparameter is essentially non-existant except near the initialization. The
performance does not quite match that of SGD. For instance at σ2 = 10−16 · d, SGD (both constant-
step and t−1/2-scheduled) reach 10−17 after 107 iterations (cf. Figure 14), while COCOB-Backprop
reaches only 10−15. The observation of such a gap on a single problem does not allow general
conclusions on the behavior of the algorithm (usually evaluated only in worst-case performance) but
remains marginally informative. The gap in performance was most apparent on Problem QSC.

C ResNet Training Experiments

Methods (additional details). Consistently with the original experimental protocol He et al. [2015a,
Section 3.4], we use the initialization taken from He et al. [2015b], also known as “Kaiming”
initialization. This explains in particular the large initial loss, due to large values in the last layer at
initialization under such scheme. Since the number of samples is not perfectly divisible by the batch
size, our last batch in each epoch is smaller, we do not use a multiplicative correction for this altered
size. We present in the following pictures results over 20 random seeds. Since one in those twenty
essentially failed to train (loss nearly stalled at initial value), we present median and quartiles for
error bars instead of means, which are less sensitive to large but rare values.

C.1 Loss and accuracy across multiple runs (full scale)
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Figure 20: median (and quartiles as error bars) of the training loss as a function of iterations.
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Figure 21: Median (and quartiles as error bars) of the test accuracy as a function of iterations.

C.2 Stability ratio along trajectory, and kurtosis estimations

Fig. 22 shows the Stability Ratio and estimated kurtosis of gradients along the trajectory. Except for
one run with very high kurtosis (> 40), all observed values are below 10 for most of the trajectory,
leading to an error of 44 + 4κ ≤ 84 (Lemma 1) which is below our choice of ζ = 100.
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Figure 22: Stability ratio and kurtosis along trajectory (10 random seeds).
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