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Abstract

This work investigates Standard Sparse Pooling (SSP) methods within Graph Neu-
ral Networks, focusing on their effectiveness in preserving graph-level information
while performing local pooling. We analyze the role of Selection and Reduction
functions in SSP and introduce a new perspective that addresses the shortcomings
of existing methods. We reveal that while SSP is simple, it has limitations in
forming hierarchical representations, leading to potential over-representation in
certain regions. This study provides foundational insights into achieving robust yet
simple sparse pooling without unnecessary complexities.

1 Introduction

Multi-resolution representation processes input data at multiple scales, using local pooling to enhance
local invariance [1]]. Several studies have explored how local pooling on graphs can improve Graph
Neural Networks (GNN), which are the preferred choice for graph-structured data. In graph-level
tasks like classification [2l] and regression [3l 4], some details may be lost when capturing low-
resolution representations, so effective graph pooling must preserve crucial graph-level information
while taking advantage of local pooling. Hierarchical Graph Pooling achieves this by identifying
hierarchical structures, such as clusters, within the feature space of input nodes. Hierarchical graph
pooling can be divided into two categories: Dense methods, which aim to overcome the flat nature
of GNNs by aggregating nodes to form hierarchical clusters, for example, DIFFPOOL [5]], and then
Sparse methods, which select only the nodes necessary to represent the existing hierarchical clusters.

According to the SRC framework [6] pooling operators are composed of 3 functions: Select, Reduce,
and Connect. Select specifies how to select a subset of nodes, Reduce specifies the transformation of
selected node features to output node features, and Connect specifies relations(edges) among output
nodes. The Select function of sparse methods assigns an importance score s; to each node i, then
selects a subset based on the rank determined by scores. We identify a standard setup where the scores
are a function of node attributes z;, i.e., the score is s; = f(x;), Select nodes with Top-K scores,
and Reduce selected node i’ as g(s;/)x; where g is an arbitrary function. We abuse the notation
s; for g(s;) as well, implying the assignment: s; := g(s;). We define methods that adhere to this
setup as Standard-Sparse-Pooling (SSP). We reckon SSP is the simplest form of sparse hierarchical
(differentiable) pooling. TOPKPOOL [7, 18] & SAGPooOL [9] belong to SSP. ToPKPOOL calculate
scores as f(z;) = p' x; and SAGPOOL calculate as f(z;) = p’ GNN(z;) where p is a trainable
vector and GNN is any GNN.

The existing perspective on SSP is to interpret scores as gates, with the objective of pushing s; ~ 1
on selected nodes and s; ~ 0 on discarded nodes. Thus, Sigmoid is usually used as g to match with
this interpretation. Yet, SSP performs well or sometimes even better when individual s; deviates
from these bounds or when g is the identity. This reveals a fundamental gap in our understanding
of SSP’s true objective. This gap matters because recent improvements in sparse pooling (e.g.,
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ASAPPooL [10], KMIS [11]], and EDGEPOOL [12]) have added architectural complexities to SSP
without questioning whether the foundational view of SSP was accurate. By overlooking the real
cause of SSP’s limitations, such methods risk undermining the simplicity of sparse pooling.

In this paper, we introduce a new perspective: aligning SSP’s functions with the formal definition of
pooling, and from that derive the accurate objective of SSP. The accurate objective we derive reveals
that SSP fails to effectively form hierarchical representations due to its tendency to over-represent
certain regions of the signal space, at the expense of balanced representation across the entire space.
We theoretically attribute the cause of over-representation to a phenomenon called partitioning.
Our contribution is not a new pooling operator, but a theoretical framework that (i) redefines SSP’s
objective, (ii) identifies partitioning as the cause of over-representation and, consequently, of SSP’s
failure to build hierarchical representations, and (iii) points to simple strategies, such as avoiding
redundant partitions that improve hierarchical representation without unnecessary complexity. As
mentioned earlier, recent methods increase architectural complexity to explicitly form clusters. See
[A.4) for details of explicit clustering. In contrast, we argue that once partitioning is addressed, SSP’s
implicit cluster formation is sufficient. Our work thus provides foundational insights into SSP’s
behavior and guiding principles for designing robust yet simple sparse pooling methods.

2 Background

2.1 Establishing a New Perspective

Informally, the purpose of pooling is to obtain a compact representation by assimilating a set of
nearby inputs. Unlike the existing perspective, which treats scores as mere gates, our new perspective
views them as factors that drive similar assimilation in SSP. Let 2; € R? and s; € R be the attributes
and the score of node ¢, respectively.

Definition 1: Formal Definition of Pooling [1] Pooling is a transformation of a multiset of
signals on a domain to another multiset of signals on a coarsened domain. Pooling at scale J is
Py : X(Q) = X(Q) where X (Q,C) := {z; : Q@ — C}, same for X (2, C). Q, C denote points on the
domain and channels of the signal, respectively. A function f : X'(£2) — J is said locally stable at
scale J if approximation f =~ f; o Pj is attainable with the composition of function f; : X(Q2) — Y,
and pooling P;.

See Def. 1 of [2] for the formal definition of a multiset. For any pooled representation Z; € X'(€2),
the scaling factor J(&;) signifies the size of the region (number of points) on domain 2 from which
the pooling map to Z;. We call this region Receptive Field (RF) of Z; denoted by RF(z;) C X(Q).
Note, J(Z;) = |RF(Z;)|. The output Z; is the compact representation obtained by assimilating
points in RF(Z;). When the input domain (2 is a grid or sequence, pooling maps the input to the
output at regular intervals, making the RF size constant for all Z ;.

However, on graphs, fixed-size RFs are not feasible due to structural irregularities, so RFs on graphs
must be adaptive and learned. Our new perspective is that the scores in SSP embody RFs and drive
adaptive learning of RFs on the graph. The following formalism introduces three measures that allow
us to analyze characteristics of RFs in the context of SSP.

Definition 2 Suppose any output Z; = s;x; € X(Q) from the SSP denoted by P such that
P(RF(&;)) = &;, then we introduce following measures to characterize the (i) size, (ii) spread, and
(iii) information loss while the pooling of RF (%), respectively:
1. We introduce e, € R such that s; = es [RF(Z;)].
2. We introduce eg € R such that 37y, cpp(z,) d(2k, ;) = eq, forametricd : X x X —
R+.
3. If there exists a function ® : X(Q) — R? so that ®(X) is unique for each multiset
X C X(Q) then RF(z;) = U(®(RF(&;))) where W is the retraction function of ®. We
introduce e,- € R? such that O®(RF(z;)) =2, + er = siz; + e,
(1) states that the score s; scales with the size of the corresponding RF, enabling SSP to adaptively
learn RFs. Here e; measures deviation from exact proportionality. (2) defines e, which captures
the diversity of points inside the RF by measuring their spread around the anchor node x; using a

metric. (3) states that if a suitable ® exists the vector ®(RF(Z;)) can be retracted to recover the
original RF. In this case, e,, measures the discrepancy between the pooled output z; and this lossless



Input (a) Likely output (b) Desired output

Figure 1: (a) & (b) show 2 possible output graphs when 2 nodes are pooled. Yellow blobs around the
pooled nodes (green circles) represent the RFs of nodes projected onto the output. In contrast to RFs of
(a), RFs of (b) capture both clusters A, B, preserving the hierarchical structure of the graph. Thus (b) is
preferable, whereas SSP yields (a). Assume A is information-dense, so capturing A to the fullest is desirable.
Suppose node xy is selected and both d(zo, z1), d(zo, z2) are greater than € in Eq. (1). Then from Eq. (1),
@(.To, RF(jZo)) > @(xo, RF(JAZo)) and @(:Ih, RF(il)) > @(wo, RF(JAio)) Thus, RF(io)) and RF(.%1)) are
partitions of RF(%¢)), making Zo more likely to be pooled than Zo. If SSP pooled &g it would fully capture A
and then reach B as in (b). Instead, SSP over-represents A by pooling redundant partitions as shown in (a).

representation. Thus, when e, = 0, no information is lost in mapping RF to ;. Together (1), (2) &
(3) suggests how each output ; implicitly encodes corresponding RF. Refer@]for more on Def. 2.

We next examine the conditions under which a GNN layer is maximally expressive. These conditions
must be considered as we analyze the objective of SSP.

Definition 3 [2] Assume the input node feature space is countable. If the condition: The summation
of any subset of output features of a GNN layer is injective to that subset, is satisfied, then that GNN
layer is maximally expressive.

This is a direct derivation from the theoretical framework laid in [2]]. The same work introduces the
GIN layer, which is modelled to satisfy the mentioned condition to achieve maximal expressivity.
Whether GIN or similarly powerful GNN satisfies this condition strictly for any subset is an empirical
concern. But Lemma 5 in [2]] shows theoretically that this is very well possible.

2.2 Objective of SSP

Here, we discuss the underlying objective of an SSP under ideal conditions to maintain the expressivity
of preceding GNN layers. Two conditions need to be met for the ideal condition: (i) There exists a
function @ as in Def. 2 (3) and e, = 0 (i.e, information loss is zero) for all pooled nodes, and (ii)
SSP has maximum local stability (same notion in Def. 1, but here in its maximal form; see@]for
detailed discussion).

Proposition 1 Assume the preceding GNN satisfies the condition in Def. 3 and is therefore
maximally expressive. Under the aforementioned ideal conditions, the objective of SSP is to solve
the following search problem:
7]
{(z,1%)} = Top-K O(x;,r;) where ©O(z,r) = 1
Si,k€S ZijEr d((ﬂ, :Ej) +€ M

Proofs are in the Appendix @ S is a set of tuples with all the possible combinations of s; j, = (x;, 1)
such that z; is the i node in X' () and 1y, is the k™ nonempty subset of X'(£2). If |X ()| = n, then
k <2" —1and|S| =n(2" — 1). Eq. (1) means the selection of Top-K tuples of unique nodes and
RFs such that the sizes of those RFs are maximized while the deviation between the picked node
and nodes within the corresponding RF is minimal. A negligible € ~ 0 is added to avoid division
by zero. It’s easier to understand SSP with a compact description like Prop. 1 more than with the
existing decoupled Select-Reduce scheme. Much of what was discussed so far is based on s; € R™.
In Appendix [A.T] we discuss why Prop. 1 applies to non-linear activated scores as well.

3 Analysis of SSP

In this section, we use Prop. 1 to examine SSP’s drawbacks and potential improvements. To that end,
we define Partitions as follows, and all the notations are the same as in Prop. 1.

Partitions For a given s; ;, € S, we define all s;/ ;v € S such that rpy C 7 and O(z;,71) <
O(xir, ry) as partitions of ry. The logical extreme case is r, is fully symmetric i.e. all x; € 7, are
equivalent, where there are |7 | number of partitions and all partitions (z;/, 5 ) satisfy O (z;r, 14 ) =
1/e. Generally, we can expect a sufficiently large 7 to have two or more partitions.



3.1 Over-Representative Regions

Suppose a pair (xy, ry) that satisfies Eq. (1). Note that partitions of 7y, are also valid solutions to
Eq. (1). According to Eq. (1), it’s equally likely to output these partitions instead of (or along with)
r,. We define partitioning as the phenomenon where, instead of the RF rj, alone, the partitions of
ri are also pooled—this redundant pooling within the same region results in over-representation
of that region. Ideally, RFs should cover the entire input space; but pooling from the same region
multiple times, while others are under-represented, breaks the hierarchical property expected of SSP.
When partitioning causes over-representation, the pooled graph fails to robustly encode hierarchical
structures like clusters in the input. Regions with higher degrees of symmetry are the most likely for
such over-representation. We illustrate this drawback with the following example and with Fig. [1]

Example: Suppose Eq. (1) gives Top-3 pairs of outputs (z1,71), (x2,72), (z3,73) where each
r; corresponds to a distinct region. Assume x; € r; and let r; consist of two disjoint symmet-
ric subregions 7| and r{. By symmetry, each region contains at least one element equivalent
to z1. We denote these as z} € r{ and 2} € r{. According to definition } and r{ are par-
titions, such that O(z},r}) = O(aY,rY) = ©(x1,71). In this case, Eq. (1) can instead yield
(), (@, r)), (x2,72) as Top-3 pairs, leaving region 73 excluded in favour of redundant parti-
tions of r.

3.2 Mitigating Partitioning
K

{(zs, 1)} = argnégxz O(x;,ri) — Ag(zi, 1) )]
Si,k

Equation (2)) selects a set of K tuples {(z;, 7%) } from the candidate pool by maximizing the total base
utility ©(x;, 7) minus a set-dependent redundancy penalty A (x;, ry). Here, © is the per-pair score
from Proposition 1 (favouring larger, more compact receptive fields), while A g >0 depends on the
current selected K-tuples and increases when 7, overlaps with or closely resembles receptive fields
already in selected K-tuples. This induces diminishing returns: once one subregion is selected, adding
another from the same area yields a less marginal gain, so the optimizer favours complementary
regions over redundant partitions.

We do not explicitly model Eq. (2) in this paper. But the key takeaway is that one must incorporate
a set-aware operation that promotes diverse region selection. In practice, A g can be implemented
implicitly via a set-aware operation such as layer-wise summaries/readouts, which saturate under
repeated coverage. Saturation then leads to diminishing returns, so the gradient optimizer naturally
prefers picking something different.

Example: Under Eq. (2), the set of K pairs is chosen to maximize . O(z;,rr) — A (zi, 7k),
where the set-dependent penalty A increases when a new selection is redundant with those al-
ready in K pairs. In above example, after selecting (x1,71), taking a partition (z%,7]) incurs a
penalty, so its marginal gain becomes O(z],7]) — Ag (2}, 7]). Same for the partition (z, 7).
If the third region satisfies ©(z3,73) > O(x),r]) — Ax(x),r}), Eq. (2) prefers the diverse set
(x1,71), (x2,72), (T3, 73) Over the redundant (z7,7]), («f,r}), (z2,72). Hence, the penalty term
discourages selecting partitions and promotes complementary coverage.

4 Experiments & Results

We design two experiments to empirically validate our theoretical analysis of SSP.

* Experiment 1 investigates how partitions manifest in practice and provides evidence that it
leads to over-representation.

* Experiment 2 examines whether incorporating summaries of pooled nodes can mitigate
partitioning and yield more balanced hierarchical representations.

Recall, in SSP, nodes are ranked by their scores, and the top-ranked ones are selected for reduction. In
both experiments, we cluster input nodes by features, record how many from each cluster are selected
or left out, and measure the cosine similarity between the weight vector p and the highest-ranked
member of each cluster. The cosine similarity indicates SSP’s selection bias toward that cluster, since
higher alignment with p makes selection more likely. This way, we can analyze how p contributes to
over-representation. For clustering, we used HDBSCAN [13].

4



Pooled | Left | Cos. Value Pooled | Left | Cos. Value

No. Inx
0 592 15 -0.021142 Cos. Value
1 912 0 Pooled | Left | Cos. Value
2 568 -0.032174 0
30 1 0.199028
4 883 2480 2181 0.458036 2 18 0.579876
5 2 394 [ 683 N/A 3 1669 | 1521

(c) DD without G-JK

(a) Airplane(mcs = 20) (d) DD mean G-JK

(b) Car (mcs = 20)

Figure 2: mcs denotes minimum cluster size. The last row quantifies noise: nodes belonging to clusters below
mcs. The columns are - No.: cluster identifier, Inx: index of the first pooled node, Pooled: number of pooled
nodes from the cluster, Left: number of nodes left out, Cos.Value- Cosine similarity between p and 1% member.

4.1 Experiment 1

Evaluation procedure We first test whether SSP exhibits partitioning and over-representation
in practice. We use a Graph Autoencoder (GAE) [14] with SSP as the final encoder layer. Since
GAE minimizes reconstruction error, the pooled graph must retain as much information as possible
from the original, allowing fair evaluation of SSP’s representational limits. See [C.I]for full details
on the GAE setup. We select Airplane, Car & Person point clouds from ModelNet40 [15] for the
experiment.

Results We clearly observe that SSP lacks balanced pooling, exhibiting two distinct partitioning
patterns. Pattern P1: SSP disproportionately pools many smaller clusters, leaving the largest clusters
under-represented. These left-out clusters tend to be located farther from the vector p. Pattern
P2: SSP over-represents the largest clusters, leaving smaller clusters under-represented. In practice,
larger clusters are typically information-dense, so a slight bias toward them is expected. Pattern P1,
however, shows the opposite: instead, p is overwhelmed by partitions of smaller clusters, leaving
fewer chances to pool from larger ones. P2 is an extreme bias toward large clusters, causing loss of
crucial information from smaller ones. In Fig. 2{b), P1 appears as cluster 4 is disproportionately left
out (under-represented) and lies farthest from p in cosine similarity. In (a), P2 occurs as cluster 3 is
disproportionately pooled (over-represented), leaving out moderately large clusters 1 and 4. See[A.2]
for further evidence.

4.2 Experiment 2

Evaluation procedure We next test whether
incorporating summaries of pooled nodes can

Lo . . Models D&D PROTEINS
reduce partitioning effects and improve hierar-
chical representations. A readout produces a ~ NO-POOL 74.2+34 74.8+4.6
single vector summary of the input. Since the  TopkPoOL 58.740.3  T3.145.5
last layer of a graph classifier is itself a read- TopKPOOL-MEAN  75.5+2.7 T4.743.6
out, it is straightforward to incorporate readouts ToPKPOOL-SUM 79.1+3.7 76.2+3.8
from each SSP layer into the final output. In  SAGPooL 70.6+3.2 71.342.7
our setup, we have 2 GNN layers, each followed =~ SAGPOOL-MEAN  75.4+3.3 74.5+3.5
SAGPoOOL-SUM 79.1+3.5 75.74+3.4

by an SSP. Let X be the output node features
of i SSP, then the corresponding readout is

Table 1: Each model has 2 GNN layers. NO-POOL

aggr(X®)|| max(X () where aggr is element-
wise sum or mean, and max is element-wise
max. The final output is obtained by summing
all readouts. We dub this network G-JK-Net.

denotes no pooling. SAGPoOOL, SAGPOOL-MEAN,
SAGPOOL-SUM denote SAGPOOL without G-JK and
G-JK with stated aggregations respectively. Same for
TorKPooL

The rationale behind G-JK is to indirectly en-
code Eq. (2) in the model’s objective. See
for full details on the graph classifier. We use D&D & PROTEINS [16] datasets for the experiment.

Results We evaluate this setup for its effect on partitioning and accuracy, with accuracy serving
as another indicator for the quality of hierarchical representations. Cluster analysis of the first SSP
layer (Fig. 2[c), 2[d)) shows that adding summaries (G-JK-Net using mean or sum aggregation)
avoids the over-representation patterns identified in Experiment 1. Without G-JK, more nodes from



the largest cluster are pooled, leaving less room to capture other clusters or noise. In contrast, with
G-JK, SSP pools more evenly from the largest cluster—even when it is closest to p—indicating p is
not overwhelmed by partitioning and thereby allowing space to include other regions. See[A.3]|for
more evidence from cluster analysis. This more balanced pooling leads to the significant accuracy
improvements reported in Table 1 compared to vanilla SSP.

5 Conclusion and Future Directions

Our analysis shows that the key to robust hierarchical representations in sparse pooling is avoiding
over-representation caused by redundant partitions. Incorporating summaries of pooled nodes, as
in G-JK-Net, demonstrates a simple yet effective way to reduce such redundancy and achieve more
balanced pooling.

Rather than explicitly forming clusters through assignment matrices, as in ASAPPooL [10] and
KMIS [[L1], we argue that SSP can naturally recover hierarchical structure accurately once redun-
dancies are identified and removed. From this perspective, the role of the Select function is not
merely to score nodes, but to actively eliminate redundant nodes. Notably, a recent independent work
applies redundancy handling at the Select function and attains state-of-the-art results on standard
graph benchmarks, further validating this perspective [17]. We therefore encourage future research
to invest in redundancy handling as a guiding principle for sparse pooling design. See for the
rationale in detail. The right redundancy-aware mechanism, combined with SSP’s inherent simplicity,
will yield pooling methods that are both more effective and more efficient than existing approaches.
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Pooled | Left | Cos. Value
No. Inx

7 2963 0 E:l  -0.077716
8 2965 Ly -0.078803
19 1646 1 41| -0.042371
9 3097 0 -0.079881
13 1428 2 -0.024132
15 24 86 0.018040
18 1606 2 -0.047230
25 317 -0.018426
22 91 -0.009497
26 N/A

Pooled

No. Inx

Left | Cos. Value

-

842
386
69 145
41 135

o B 0 N
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0.050565
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(d) Car (mcs = 10)

Pooled

Left | Cos. Value

4 976

2 2543
T S Pooled | Left | Cos. Value
3 2645 No. Inx
9 1340 0o 51 58
6 1186 1 3% 22 0.050846
1 41 2 35 0.059104
8 914 3 138 0.054445
10 189 0.000553 4 924 -0.039293
12 N/A 5 369
(b) Person (mcs = 15) (c¢) Car (mcs = 20)
Pooled | Left | Cos. Value
No. Inx
0 592 -0.021142
1 912
2 568 -0.032174
3 0
4 883 0.041896
5 82 N/A

(e) Airplane (mcs = 20)

(f) Airplane (mcs = 5)

Figure 3: Cluster analysis on Person, Car, Airplane graphs.

A More on the Perspective Shift

A.1 Viability of Relaxing Non-linear Activation on Scores

Graph g MSE Range
Person Tanh 3.13  [-0.81,0.99]
Sig. 2.62 [0.27,0.46]
. 283 [-1.28,4.11]
Alrplanerny 553 [-0.91,0.99]
Sig.  5.16  [0.41,0.99]
Id 537 [-9.30,14.91]

Table 2: Recon. loss comparison. See
[C-T)for the setup.

Recall scores can be followed by an activation g such that s; := g(s;). We repeated the reconstruction
experiment in Sec. 4 with different activations and Table [2] summarizes the MSE scores and the range
of scores taken. Sig. & Id. are Identity & Sigmoid respectively. When we repeated the classification
experiment in Sec. 4 with different activation, we observed that for PROTEINS with both Tanh and
Id. activation, all scores are negative, and for DD, all scores are positive. TableEl summarizes these
results, with the sign shown next to the accuracy.

According to the last column in Table[2} irrespective of the activation, scores don’t converge to 1 on
selected nodes as per the old perspective. Moreover, MSE values suggest having negative scores
or scores falling out of the desired bound (0 or 1) does not impact the performance. These results
suggest that the old perspective is incomplete and the scores may encompass more complexities.
Our new perspective on SSP is that scores relate to RFs. The size of RF of any output Z; = s;x;
satisfy |RF(Z;)| > 1. Thus, assuming any output’s score as s; € RT allows us to build mathematical
formalism around the new perspective. Even though we derive an explanation of SSP: Prop. 1 which
is score-independent, we need to verify if assuming scores as s; € RT is a strong assumption that

g DD PROTEINS
Tanh  75.4+3.3(+) 745+£35(—)
Sig. 76.0 £ 3.5 74.1£4.7

Id. 75.7+£34(+) 744+40(-)

Table 3: Analysing impact of sign. Eval-
uated over 10 folds under the same seed
(777).

would make Prop. 1 inapplicable to rest such as non-linear activated scores.



G-JK-mean G-JK-sum

Pooled | Left [ Cos. Value
No. Inx Left | Cos. Value Cos. Value
0 4189 0 12 | -0.057743
1 0 2001 0.052007 1818  -0.949501 0.246744
2 5533 -0.300271 1 353 -0.971431 1 5465 -0.442812
3 2 1414 | 1056 2
Pooled | Left | Cos. Value Left | Cos. Value Cos. Value
g
g 1636  0.103793 1898  -0.944575 0.410136
§ -0.182092 1 530 -0.905929 1 847 0.254906
2 246 | 178 2 1" 14
Pooled | Left | Cos. Value Pooled | Left | Cos. Value Pooled | Left | Cos. Value
No. No. Inx No. Inx
0 m 0.000088 0 0 -0.836800 0 0 0.430278
1 275 193 0.000297 1 8 537  -0.903089 1 10 0.385546
2 191 | 320 N/A 2 2
Left | Cos. Value
Pooled | Left | Cos. Value Cos. Value
n -0.094549 0.199028 0.653231
2480 2181 0.458036 2 18 1205 1329 0.579876 1 4961 0.258185
3 1669 | 1521 2
Pooled | Left | Cos. Value Pooled | Left | Cos. Value Cos. Value
2= No. Inx
‘3@? n 0.046429 0 990 n 0.406561 0.598310
S:) 700 599  0.598825 1 0 682 627 0.706806 1 753 0.397366
2 152 | 242 N/A 2 170 | 212 N/A 2
Pooled | Left | Cos. Value Pooled | Left | Cos. Value Pooled | Left | Cos. Value
No. No.
0 n 0.650251 545 0.666388 0 0.602154
1 493 537 0.724605 1 821 0.087768 1 0.611372
2 48| 14 N/A 2 2 20| 24 N/A

Figure 4: First column denotes runs without G-JK. Each evaluation in a row is produced by the same
split of data.

Table[2)indicates that identity-activated scores are as effective as non-linear activated scores, so scores
being > 1 or < —1 don’t have a significant impact. Furthermore, the last row of TableE]indicates
that identity-activated scores remain effective even if the signs of scores are all positive or negative.
Altogether suggests that positive identity-activated scores, where g = Id. & sign = +, are sufficient
to reason about the combined hypothesis class {Tanh, Sig., Id.} x {4, —, £} of scores’ activation
and sign. Thus we justify assuming all s; € R™ doesn’t invalidate Prop. 1.

A.2 Empirical Evidence for Partitioning

Recall patterns P1, P2 from Sec. 4. When we say a cluster is pooled or left out, we don’t necessarily
mean entirely but disproportionately. For example, when we say the largest clusters are pooled, we
mean about >90% is pooled. We see P1 in Fig. |§|(c),(d), and (f). For example in (d), the largest
cluster 1 is disproportionately left out and is furthest from p. We see P2 in (a),(b), and (e). For
example in (a), clusters 22 & 25 are completely pooled leaving out modestly large clusters 9, 13, 18.



A.3 Cluster Analysis with G-JK

Fig. @ provides more cluster analysis related to Experiment 2. We show 3 out of the 10 total runs that
best represent the common patterns. In many G-JK-mean and G-JK-sum instances, we observe that
SSP pools fewer nodes from the largest cluster, allowing chance to pool from other clusters or noise.
This is happening while p being located close to these pooled large clusters confirms the effectiveness
of enforcing summation. This is a clear improvement compared to when no G-JK is used. Even if the
above pattern is not present, in G-JK-Sum and G-JK-mean there is less gap between the pooled and
left-out amounts than when no G-JK is used. For example, see rows 5,6 for G-JK-mean and rows 1,5
for G-JK-sum. Moreover, we observe that G-JK-Sum and G-JK-mean form clusters more effectively
than when no G-JK is used. In some no G-JK instances, all the nodes belong to noises.

Remark: Ideal conditions aren’t strictly needed to utilize Prop. 1 for insights. Note that the evidence
given so far is observed under a general setup. Therefore insights coming from Prop. 1 are not
exclusive to ideal conditions.

A.4 Opinion: Think Redundancy Handling Instead of Clustering
A.4.1 Explicit Clustering

Explicitly forming clusters means that pooling learns an assignment matrix S € R™**, where each
entry S; ; denotes the assignment score of node 7 to supernode j. Each supernode therefore contains
multiple member nodes. By contrast, SSP does not construct such an assignment matrix, which is
what makes it simple. If we reinterpret SSP in this framework, the selected nodes themselves can
be viewed as supernodes, each containing only a single member. In other words, only the diagonal
entries S/ ;+ corresponding to selected nodes have nonzero values.

A.4.2 Redundancy Handling

Our analysis shows that many of these supernodes are redundant. If the Select function of SSP
were enhanced to identify and eliminate these redundancies, then, combined with SSP’s inherent
adaptability, we would obtain a set of supernodes that capture clusters more effectively. We therefore
encourage future research to focus on redundancy handling, as the right mechanism, together with
SSP’s simplicity, may ultimately outperform explicit clustering approaches.

B Proofs

B.1 Definitions

Definition 2:  The relation between s; and |RF(Z;)| is defined in Def. 2 (1). e, is the measurement
of deviation between s; and |RF(&;)|. Informally, a pooled node is an assimilation of points of its
RF; thus, we additionally need a characterization of RFs using a notion of metric, as in Def. 2 (2).
The metric d in Def. 2 (2) measures the deviation between a node feature and the input feature x;, and
eq 18 the summation of deviations over all the features in RF(Z;). Thus, eq4 captures how different
assimilated features in the RF are from the input feature.

Local Stability:  We are concerned about signal deformation. Suppose we are approximating a
function f : X — ) with a model f’ such that f'(x) = f(x) = y. Signal deformation stability is the
property that if a deformation ¢ is added to the input 2 (such that the semantic meaning of « does not
change), then f’(z + §) = y should still hold.

Maximal Local Stability: Among the various options for modeling f’, the one that yields the
greatest stability is considered to achieve maximally stable approximation. This concept can also be
applied locally, referred to as maximal local stability. If the parameters of f” are stable, f is more
likely to produce consistent outputs when small, non-semantic deformations are applied to the input.
This consistency is essential for maximal deformation stability.

10



B.2 Proofs

Lemma 1 Assume the preceding GNN satisfies the condition in Def. 3. In the limits, lim e, —
0Alimes — 1= limeg — O[]

Proof. With our assumption, we have a well defined ® for Def. 2 (3) such that ®(RF(z;)) =
ZkaERF(:Ej) xy. Consider SSP pooling RF(Z;): P(RF(&;)) = s;z;. According to Def. 2 (3),
e, = Zv.rkeRF( &) Tk — Sii. If e, = 0 then the following relation holds:

E T = Si%4

Vzp €RF

This is satisfied when both x, = x; for all z;, € RF(%;) and s; = |RF(&;)| i.e. e, = 1. LH.S
summation is unique to the multiset i.e. RF(Z;), therefore there can not be another multiset that
satisfies the relation. This means if e,, = 0 and e; = 1, all RF elements must be equivalent to z; in
R.H.S. Thus ¢4 = 0. O

Claim 2 Under mild conditions, SSP learns to capture RF(Z;) by s;z; such that z; € RF(Z;).

SSP includes x; from which the respective receptive field is approximated. We say RF(Z;) contains
x; and its nearby points. This aligns with the objective of pooling to assimilate nearby points.

Lemma2 Assume X' C R. If P(RF(%;)) = s;x; then s; < |RF(Z;)|.

Proof. Suppose S is the assimilation desired to be modeled by s;z;. S = v, crp(z,) @rtr € Ris

a linear combination of RF(Z;) where 0 < a4, < 1 signifies the contribution of each z;, € RF(Z;).
According to Def. 1, this assimilation S is the input to f;. Since scores are parameterized and
adaptive, the following relations hold for all z;, € RF(Z;) and their scores s:

Sk = 5 (3
Tk

dsk 1

—_r 4

From Eq. , for each 2, € RF(Z;) has a score sy, that can be learned to model a given .S. Therefore
all z;, € RF(Z;) are plausible candidates for z; to model any S. If a small distortion is added to
the input, then .S will also be distorted. While learning, weights of s; shouldn’t abruptly change
against small distortions in input so the weights are more resilient and yield stable X — Y. Eq. (4)
shows how each s; changes with the assimilation .S, roughly quantifying how s; changes with the
input as well. Even though all 2, € RF(Z;) are plausible for x;, to satisfy maximal local stability
(ideal condition), Eq. (4) must be minimal. Hence (ideally) z; = max(RF(Z,)). For s;, x; following
holds:

S = sjz; < |RF(Z;)| max(RF(Z;)) Q)

Equality holds iff all ;, € RF(Z;) are equivalent and .S is summation of RF(Z;). Under ideal
conditions:

s;max(RF(Z;)) < |RF(Z;)| max(RF(Z,)) 6)
Hence we prove for the restricted case X C R, s; is upper bounded by the corresponding receptive
field size. O

Theorem 1 Assume the preceding GNN satisfies the condition in Def. 3. Under the ideal conditions,
SSP satisfies the following;

i. lime, > 0= lime, > 1for ¥ C R
ii. Je > Osuch thatlime, — 0 = lime, — 1 +efor ¥ C R™, Vn € Nt

'A & = denotes logical AND and implication respectively.
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Proof. In the light of changing from one receptive field to another likely receptive field, we see how

e, and e, interplay. Consider SSP pooling RF(Z;): P(RF(Z;)) = s;x;. With our assumption, we

have a well defined ® for Def. 2 (3) such that ®(RF(Z;)) = > _y,, crr(s,) Tk According to Def. 2

(3) the following relation holds:

There is a nonempty set P; C X, such that z;, = x; Vi € P; and X/ P; N x; = (. Suppose there is

at least one x; € P; which is not inside RF(Z;).

According to claim 2, RF(3);) = RF(Z;) U {x;} is a likely RF. Then, as per Def. 2 (3):
B(RF(F)) = s, + ¢ + o

gil’i + ér = (Si + 1).%1 + e,
Notice that node ¢ has not changed, only the RF has changed. With Def. 2 (1) and rearrangement we
derive;

(1+s;—8)xi=¢ —er
(1+es [RF(Z;)| — & |RF(Z))|)zs = &, — ey (10
Since RF (7)) = RF(Z;) U {w;}, we derive:
(1 + € [RF(3;)| - & {RP(@,)] + 1})ai = & — e -

(14 (es — &5) IRF(Z,)| — és)xs = &, — ey
It’s clear if e, — 0, &, — O then (€, — e,) — 0. Similarly for a given R = |RF(%;)| > 0 and
x; #0, Lr(es, €s) = {1+ (es —é5)R—és} — Oase, — 0, & — 0. Hence asymptotics v, g of
es, €5 respectively satisfy the following.
dim {1+ (es—€és)R—¢é53=0 (12)
€s5,E5 01,002
Ves, €s € R, Lr(es, €) is continuous, hence by substitution we get;
1+(a1—a2)R—a2:O (13)
R+1 1
a1 = + Qg — — (14)
Note, in SSP, s; is a function s : X — R of x; or more specifically on the node 7. s; which is used
to approximate RF(Z;), remains unchanged as long as the node ¢ or «; remains unchanged. Which
means s; = §;. Hence with Def. 2 (1);

R
sz-:§i:>Res:(1+R)és:>Rf_’_les:éséeszés (15)

Equality holds iff s; = §; = 0 yielding e; = é5 = 0.

Even though (20) implies there are infinitely many «, ae pairs, (21) implies ey, €5 can only reach to
a ap, (o pair such that a a; > ao. From (20) we see:

R+1a —l>a
R 2 R/ 2
1 1 (16)
_ >
R“®7 R
as =1 (R>0)

For & C R from Lemma 2, we can say:
5m < |RF(i})| = & |[RF(%))| < |RF(%))]
= és < 1= (o7 < 1

Combining results (22) and (23), we say 1 < ap < 1, which implies as = 1. Hence we prove the
first part of the theorem that in the case of X C R, as e,, — 0, then asymptotically e; — 1. For the
general X C R™, from (22) we can say, as e, — 0, then asymptotically e; — 1 +efore > 0. [

7)

Claim3 For X C R™ where n > 1, in limit e,, — 0, e5 converges to 1 + o(1).

Consider SSP pooling RF(%;): P(RF(Z;)) = s;x;. Recall Lemma 2 proof. For X C R",
we can’t guarantee above z; will be max(RF(Z;)) so that Eq. (4) is minimal, due to multidi-
mensionality. However, z; must still agree to z;[k] ~ max(RF(z;))[k] for all k, for a higher
local stabilityE] For X C R", similar to Eq. @ we say the following for x;: For all k,

2k denote the index of vector elements.min and max over a set of vectors denote element wise min/max.
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si(x;[k]) < |RF(Z;)| (max(RF(Z;))[k]). This implies s; < |RF(Z;)| + €, for some error € > 0
such that it holds the following monotonic relation:

max(RF(z;))[k]

nl )

€ o max(
v
Moreover for X C R”, s; < |RF(Z;)| with € = 0 iff ; = max(RF(Z;)). Knowing that pooling
assimilates x; and features similar to x; inside the RF, we can restate that x;[k] is arbitrarily closer
to max(RF(&;))[k] for all k. Thus € becomes arbitrarily small, which means ¢ in Theorem 1 (ii)
becomes arbitrarily small.

Corollary 1 Under the ideal conditions i.e when e, — 0 and local stability is maximal, s; —
|RF(z,)| and eq — O for a pooled node Z; = s;x; from SSP.

Proof. From Theorem 1 and Claim 3 altogether: As e, — 0, s; — |[RF(Z;)| thatis e, — 1. With
Lemma 1 this consequently means eq — 0. Thus proves the above for SSP. O

Proposition 1

Proof. According to Corollary 1, since e; — 1, Top-K score selection in SSP is equivalent to finding
the largest & RFs in input node space and at the same time since e; — 0, in addition to being the
largest these RFs must have low variance. Thus SSP can be viewed as a search problem where each
element s; ;, = (z;, 1)) in the search space S is weighted by the importance given by:

|7k
(S) Iz =
(zi,7%) S va cry A0 75) + €

Why Top-K? A score s; is modeled solely on local information i.e. node itself or local neighborhood.
Hence we can’t expect that SSP would favor an RF 7, over an RF 7 located locally to ; where
|ri| >> |r}| even if the corresponding O, -) are the same. To model much larger rj, requires more
information further to z;. This weakens the possibility of a summation in place of Top-K in Eq. (1).
While we rely completely on Top-K for simplicity, a combination of Top-K and summation, with a
bias toward the former, is also possible. O

C Architectures & Training Details

C.1 Setup for Experiment 1

Architecture: The encoder of GAE contains a single pooling layer from which the final encoded
representation of the input graph is obtained. The architecture of the encoder is as follows;
X, A+—gG
Xin <+ MLP;,(X)
Xin <+ GCNj, (A, Xin )
Xpool < POOL (A, Xip)
Suppose the pooled graph is G’ = (Xpoot; Apoot)s X € RV*? & X, € RP*? where P is the

number of pooled nodes. The decoder contains an Unpool layer that upscales the row dimensionality
of X, 1.e. P to the original node count N. Following is the architecture of the decoder.

X,p + UNPOOL (Xpo01)
Xoul — GCNout (Aa Xup)
Xout — MLPout (Xout)

Motive is if features in X,,,,; contain hierarchical-level information such that each node feature in
X001 aggregates features of nodes under its hierarchy, then by inverting this aggregation we should
be able to recover the original features. This aggregation can be expressed as Xpo01 = S T Xin. Then
inverse of the aggregation as X, = U X001, Where U = ST is the pseudo inverse of matrix .S. The
original adjacency matrix A is used instead of Apool as input by GCNgy to limit the experiment on
the expressivity of node features alone.
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Dataset Gavg Cavg Vavg Eavg

D&D 1178 2 284.32  715.66

PROTEINS 1113 2 39.06 72.82
Table 4: Statistics of datasets used for graph classification. Gayg ,Cavg » Vavg -Fave denote number of
graphs, number of classes, average number of vertices and average number of edges respectively.

Graph Nodes Edges Avg. degree

Airplane 1333 2611 391
Car 1920 2372 2.47
Person 3305 9055 5.47

Table 5: Statistics of graphs used for GAE experiment

Training: We train the GAE to minimize MSE between the input and output features with a learning
rate of 0.0005, early stopping on the training loss with a 1000 epochs patience and a tolerance of
10~°. Each experiment was conducted 3 times and obtained the average MSE.

C.2 Setup for Experiment 2

Architecture: The architecture contains two blocks of the following. Note that the input to the
27 plock is not Xeaqour, but outputs Xpool> Apool Of the previous POOL. When no G-JK is used we
remove the X cadour from the block.

X + GCN(4, X)
Apoola Xpool <— POOL(A, X)
Xreadout — AGGR(Xpool) H MAX(XPOOI)

All GCN layers have the same output feature dimension. POOL is either SAGPool or TopKPool.
AGGR is the column-wise mean & sum of Xpo01 € RP*4 for G-JK-mean & G-JK-sum respectively.
MAX is column-wise max. || denotes concatenation. Tanh is used for gating. Readouts of the two
blocks are summed and passed to a final MLP block of the following form: NN;, — Dropout,_ 5 —
NNj, /2 — NN,. c denotes the number of classes. When there are no readouts i.e. no G-JK case, the
outputs of the final pooling layer are summed column-wise as a Global Pooling layer (GPL). This is
followed by the same MLP block.

Training: All the models are evaluated using 10-fold stratified splitting over a single repetition.
10% of training data is used as validation data. Hyperparameters space is- Batch Size: {32, 64, 128},
Hidden dimension: {32, 64, 128}, Learning rate: {le=2,1e~3}, L2 regularization: {5¢~*}. Best
models are selected using cross-validation on validation data. The number of total epochs is 100k.
The model training stops (early) if the validation loss doesn’t improve for 50 epochs, and the model
is restored to the epoch with the least validation loss on which test data is evaluated.

C.3 Description of Datasets

PROTEINS [[16, 18] and D&D [[16} [19] datasets are retrieved from the TUDataset collection [20]].
See Table@for dataset statistics. From ModelNet40 [15]], sample 151 for Airplane, sample 75 for
Car, sample 83 for Person are chosen. See Table [5|for graph statistics.
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