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ABSTRACT

We approach the issue of robust machine vision by presenting a novel deep-
learning architecture, inspired by work in theoretical neuroscience on how the
primate brain performs visual ‘feature binding’. Feature binding describes how
separately represented features are encoded in a relationally meaningful way, such
as a small edge composing part of the larger contour of an object, or the ear of a
cat forming part of its head representation. We propose that the absence of such
representations from current models such as convolutional neural networks might
partly explain their vulnerability to small, often humanly-imperceptible changes
to images known as adversarial examples. It has been proposed that adversar-
ial examples are a result of ‘off-manifold’ perturbations of images, as the deci-
sion boundary is often unpredictable in these directions. Our novel architecture
is designed to capture hierarchical feature binding, providing representations in
these otherwise vulnerable directions. Having introduced these representations
into convolutional neural networks, we provide empirical evidence of enhanced
robustness against a broad range of L0, L2 and L∞ attacks in both the black-box
and white-box setting on MNIST, Fashion-MNIST, and CIFAR-10. We further
provide evidence, through the controlled manipulation of a key hyperparameter,
synthetic data-sets, and ablation analyses, that this robustness is dependent on the
introduction of the hierarchical binding representations.

1 INTRODUCTION

Adversarial examples are images modified by small (Lp norm constrained) perturbations that cause
machine vision systems to catastrophically misclassify objects (Szegedy et al., 2014). Since their
discovery, various efforts have been made at both explaining their existence, and conferring resis-
tance to them (Goodfellow et al., 2015; Madry et al., 2018; Gilmer et al., 2018; Schott et al., 2019;
Ilyas et al., 2019; Stutz et al., 2019). This includes arguments that adversarial examples represent
perturbations of the input off of the class manifold (Tanay & Griffin, 2016; Khoury & Hadfield-
Menell, 2018; Stutz et al., 2019), and in particular that models with a high co-dimension (difference
in the dimension between the embedding space and the representational manifold), will have many
such directions in which it can be attacked (Khoury & Hadfield-Menell, 2018) (Figure 1a).

We argue that part of the phenomenon of adversarial examples is that model representations often
assume a manifold of the object class that is too low-dimensional. This assumption entails the loss of
low-level spatial details of the input in order to achieve invariance and linear separability of classes.
Thus many adversarial examples appear off-manifold because the model does not represent these
low-level features, even when many of them may represent perceptually visible and class preserving
changes to the object. Without an explicit representation of these features, the decision boundary
can lie close to the low-dimensional manifold (Tanay & Griffin, 2016). We propose that with an
explicit representation, many adversaries could be viewed as on-manifold adversarial examples, after
which robustness is a case of standard generalization (Gilmer et al., 2018; Stutz et al., 2019). We
introduce a novel architecture that, through hierarchical feature binding (defined below), captures
such information alongside invariant representations. The difficulty then is learning a useful decision
boundary in such a high-dimensional space. Our contributions are as follows:
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• We present a mechanism to preserve low-level information about an object representation
through hierarchical binding; these representations are inspired by those predicted to exist
within the primate brain, and offer an explanation for the apparent sensitivity of humans to
adversarial examples under appropriate conditions.

• We present empirical results showing the robustness of these augmented networks to ad-
versarial examples, following the use of techniques to ensure a useful decision boundary.

• We use iterative adjustments of a key hyperparameter (the γ-proportion), a synthetic data-
set, and ablation analyses to provide evidence that the performance boost seen is indeed a
consequence of the low-level representations preserved by hierarchical binding.

Figure 1: The effect of binding on the decision boundary. Red and blue represent two different object
manifolds (e.g. cats and dogs). Adversarial perturbations (light-blue arrows) for the red class move
the input beyond the decision boundary into a region where it is classified as blue. a) A common
assumption for classification is to represent object classes in low-dimensions, which enables linear
decision boundaries that accurately separate them. Unfortunately, the learned decision boundary
can be unpredictable off the manifold. Given the high-dimensional embedding space (e.g. pixel-
space), there may be many such directions vulnerable to small perturbations. b) We argue that
there are additional, class-preserving dimensions of variation to the underlying object manifold,
but that these are difficult to model with typical convolutional neural network (CNN) architectures.
Adding hierarchical binding enables the network to explicitly represent these features alongside the
more abstract dimensions, but due to the sparsity of samples in high-dimensions, further steps are
required for a robust decision boundary. c) Introducing regularization such as label smoothing means
that even sparse data points can inform a more useful decision boundary. d) Complimenting label
smoothing with noise during training helps further address the sampling problem, providing a more
robust decision boundary than in a basic model.

2 RELATED WORK

Binding Feature binding describes the brain’s ability to jointly represent and reason about features
that are encoded separately (such as the colour and shape that jointly describe a yellow triangle)
(Treisman, 1998; Von Der Malsburg, 1999; Gray, 1999). For example, when we look at a cat, we
see not only that it is a cat, but also the particular spatial features of that feline, from edges to the
possible presence of a scarred eye, or the absence of an ear. Similarly, when we look at a letter T, we
can see the vertical and horizontal bars that comprise the letter as distinct elements, as well as the
fact that these constituent elements are part of the letter T itself. Such hierarchical binding captures
the causal relations between multiple scales of abstraction, e.g. that an eye is part of a cat and not a
dog nearby. These features carry meaningful spatial information due to their small receptive fields
and high-dimension, and thereby can encode class-preserving transformations of the object - note in
particular in our example that it is not simply the concept of an eye that is bound to the animal, but
the specific representation localised in space, along with its own hierarchical components such as
edges. We emphasize that we do not discount the importance of invariant features; rather the goal is
to capture a continuum of abstraction jointly. Previous work has been done in encoding binding-like
representations (Reichert & Serre, 2014; Greff et al., 2016; Schlag et al., 2019; Burgess et al., 2019;
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Locatello et al., 2020; Bear et al., 2020; Whittington et al., 2020), albeit using different mechanisms
to those discussed here, and without an investigation of its relevance to adversarial robustness.

Eguchi et al. (2018) proposed a mechanism by which the brain might capture hierarchical binding,
encoding the relations between low-level and high-level features throughout the visual processing
stream. Such binding representations would be consistent with experimentally observed neurons
such as border-ownership cells, which have a small classical receptive field, but whose response is
modulated by what object they form an edge of (Zhou et al., 2000). While Eguchi et al. (2018)
predicted that both the temporal coincidence detection afforded by the spike-timing of biological
neurons, as well as the lateral and top-down connectivity observed in the brain would be essential for
implementing this binding mechanism, we use a non-local algorithm to capture such representations
at the computational level (Marr, 1982), enabling us to explore the significance of these for robust
object classification. We discuss the relationship of our work to the neuroscience and psychology
literature in greater detail in Appendix A.1, including its relevance to the apparent sensitivity of
humans to adversarial examples under appropriate conditions.

Preserving Low-Level Information Many methods exist to preserve low-level information in deep
neural networks (Srivastava et al., 2015; Ronneberger et al., 2015; He et al., 2016; Huang et al.,
2017; Jacobsen et al., 2018), spatially enrich feature representations (Sabour et al., 2017; Hinton
et al., 2018) or encourage the encoding of additional factors of variation (Cheung et al., 2015). Our
architecture is novel in that it captures which low-level neurons causally drove high-level represen-
tations, and explicitly encodes such information as layers in their own right for classification. This
explicit encoding is important for down-stream read-out of the representations – architectures using
skip connections, for example, combine information from low and high level layers in an operation
that can obscure their respective contributions and makes classifier read-out of the low-level details
more challenging. Our approach is related to the motivation for (and biological evidence of) disen-
tangled/untangled representations (DiCarlo & Cox, 2007; Gáspár et al., 2019; Higgins et al., 2020)
- our architecture is biased so as to “disentangle as many factors as possible, discarding as little
information about the data as is practical” (Bengio et al., 2013).

Adversarial Examples While there is a large literature on adversarial examples (see e.g. Yuan
et al. (2019) for a review), we focus on those papers that are most relevant to the current work.
The concept of adversarial examples as manifold failures has inspired several defenses (Jalal et al.,
2017; Samangouei et al., 2018; Song et al., 2018; Schott et al., 2019; Jang et al., 2020). Stutz et al.
(2019) showed that typical adversarial examples move orthogonal to the manifold, and Khoury &
Hadfield-Menell (2018) provided evidence in synthetic data-sets that a greater number of directions
normal to the manifold (which can be quantified by the co-dimension) is associated with increasing
vulnerability. This appears to be because the decision boundary can be arbitrary off of the manifold
(Khoury & Hadfield-Menell, 2018), and may indeed lie very close to it (Tanay & Griffin, 2016). Fi-
nally, previous work on extracting hierarchical interpretations for the predictions of neural networks
has shown that these interpretations themselves can be resistant to adversarial attacks (Singh et al.,
2019), although this does not address the issue of robust classification.

3 MODEL DESCRIPTION

Implementing Hierarchical Binding To capture which low-level features causally drove max-
pooled representations, we use the operation known as unpooling, which projects the max-pooled
values into the equivalent positions they occupied in the previous layer, and sets the activations of all
other neurons to zero (Zeiler & Fergus, 2014; Badrinarayanan et al., 2017) (Figure 2a). A modified
version of unpooling, termed ‘ratio unpooling’, has previously been employed in a mixed bottom-up
and top-down network as a means of preserving spatial information (Xu et al., 2019). Importantly
however, this modified form of unpooling does not capture what lower-level features causally drove
higher-level features (i.e. hierarchical binding), consistent with this not being the motivation.

To capture which simple features contributed to abstract representations, we introduce what we
term ‘gradient unpooling’ (Figure 2a). For this operation, the gradient of the activations of the max-
pooled neurons is taken with respect to each neuron in a lower-level layer. Specifically let a(1)i be the
activations of the lower-level layer L(1), and a(2)j the activations of the higher-level layer L(2). The
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gradients are a tensor of the same dimension as L(1), where each unit’s value is the sum
∑

j

∂a
(2)
j

∂a
(1)
i

over the activations a(2)j in L(2). As the gradient is taken over the entire max-pooling layer, a
proportion γ of the largest gradients are then selected with the intent of capturing the most important
driving neurons. Here γ is a hyperparameter between 0 and 1. The winning gradients are used to
generate a Boolean mask applied to the activations of the low-level layer, and this representation
is up-projected. This captures the neurons that contributed to the distributed representation in the
max-pooled layer, although it is only an approximation of the actual causal relations between them.
Better measures of the importance of a low-level neuron to a higher-level representation exist (e.g.
Dhamdhere et al. (2019)), but we use this method due to its computational efficiency. In Figure 2b,
we show how these operations relate to hierarchical feature binding, as described in Eguchi et al.
(2018) and Isbister et al. (2018). In our networks, we concatenate the results of unpooling and
gradient-unpooling along-side the max-pooled activations in the feed-forward stream. This serves
to provide both invariant and spatially detailed representations jointly.

Figure 2: Implementing hierarchical binding in a convolutional neural network. a) ‘Conv.’ is a con-
volution operation with stride of 2. Our depicted representation of gradient unpooling is simplified
for the sake of intuition, as the max-pooling layer in the figure consists of only a single neuron; in
reality, we take the gradient of each low-level activation w.r.t. the entire max-pooled layer and only
use the proportion γ of the largest gradients to apply a Boolean mask to the activations. b) A toy
diagram to demonstrate the connection to hierarchical binding. The desire is to capture which low-
level features (such as a vertical bar or a minimally invariant ‘T’ neuron) causally drove the more
invariant representation of a ‘T’. These hierarchical binding representations are then made available,
alongside the invariant representations, to higher layers.

Model Architectures Both the unpooling and gradient unpooling computations can be introduced
into standard CNN architectures, potentially at multiple levels. This work covers its use for both
the MNIST (LeCun et al., 1998), Fashion-MNIST (FMNIST) (Xiao et al., 2017), and CIFAR-10
(Krizhevsky, 2009) data-sets. The models used for MNIST and FMNIST are based on the LeNet-5
architecture (Lecun et al., 1998). In our Hierarchical Binding CNN (HB-CNN), the LeNet-5 archi-
tecture is augmented with one unpooling and one gradient unpooling layer (see Appendix A.8). The
models used for CIFAR-10 are based on a VGG-like architecture (Simonyan & Zisserman, 2015).
For each architectural variant (including the non-binding control models), hyperparameter tuning for
adversarial robustness was performed on a hold-out data-set (10k examples). To provide an unbiased
measure of the effect on robustness, 30 randomly generated networks for each hyperparameter vari-
ant were then trained on the full training data-set and evaluated on the test data-set, with the median
performance reported in all following results. All our code will be made available at publication.

To regularize the networks we use label-smoothing, a method that punishes over-confident predic-
tions by replacing the typical one-hot label vector with a ‘one-warm’ vector (Szegedy et al., 2016;
Pereyra et al., 2019). Specifically, the target probability of the correct label is assigned as 1 − δ,
while the probability mass δ is uniformly distributed among the other classes. On synthetic data-
sets such as two ‘crescent moons’, introducing label smoothing results in visibly smoother decision
boundaries (Goibert & Dohmatob, 2019), and its use on computer vision tasks has been found to
improve adversarial robustness (Warde-Farley & Goodfellow, 2016; Summers & Dinneen, 2019)
(although used alone, it can also enhance vulnerability to certain attacks (Shafahi et al., 2019)).
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4 ADVERSARIAL ATTACKS

Inspired by the thorough evaluation in Schott et al. (2019), we evaluate our model against a broad
range of black-box and white-box methods, covering L0, L2 and L∞ norm measured attacks (where
the norm is used to quantify the distance between the original and the perturbed image). All attacks
were evaluated using FoolBox v2.4 (Rauber et al., 2017), with hyperparameters specified in Ap-
pendix A.9. As in Schott et al. (2019), our main result is the median distance of adversaries, as this
is less affected by outliers, and unlike when reporting accuracy, is not vulnerable to over-fitting on
an arbitrary threshold; for completeness we also report bounded accuracy. All results presented are
based on adversaries generated from a subset of 512 images from the test data-sets.

Gradient-Based Attacks Intuitively, a basic gradient-based attack can use knowledge of the model
to perform gradient ascent of the loss with respect to the input pixels; contrast this with training
where one performs gradient descent of the loss w.r.t. the weights. Given this privileged access
to the model, these are known as white-box attacks. Various methods have been developed within
this class that can be used to minimize both the L2 and L∞ norm; as in the Schott et al. (2019)
evaluation protocol, we use the Fast Gradient Method (FGM), Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015), L2 and L∞ Basic Iterative Method (BIM) (Kurakin et al., 2019), L2

and L∞ DeepFool (Moosavi-Dezfooli et al., 2016), and Momentum Iterative Method (MIM) (Dong
et al., 2018). For MNIST and FMNIST, these attacks are also repeated using the method for numeri-
cally estimated gradients used in Schott et al. (2019). Finally, for MNIST we also include Projected
Gradient Descent (PGD, closely related to BIM), using multiple random starts.

Decision-Based Attacks These rely only on the decision output of the network, and are therefore
a form of black-box attack. A particularly powerful method is the Boundary Attack (Brendel et al.,
2018); intuitively, an image is first perturbed by noise until it is misclassified, after which the Bound-
ary Attack iteratively moves the adversary closer to the original image while ensuring it remains
misclassified. By taking sufficiently small steps, it can treat the decision boundary as approximately
linear and move along it. As in Schott et al. (2019), we include the Boundary Attack, their L0 and
L2 Pointwise attack, the Salt&Pepper noise attack and the Gaussian noise attack.

Transfer Attacks Transfer attacks leverage the empirical observation that adversaries generated for
one network can often transfer to other networks, even those with different architectures (Papernot
et al., 2016). Together with decision-based attacks, greater resistance to these methods provides
evidence that a model’s robustness is not simply a result of gradient masking (Papernot et al., 2017;
Athalye et al., 2018), a common but less interesting method of resisting white-box methods. Our
main addition to the assessment protocol in Schott et al. (2019) is that we derive transfer attacks from
both a standard substitute network, and one with our proposed architecture. This is to ensure that
transfer attack robustness isn’t simply a result of the HB-CNN having an exotic architecture, while
still being vulnerable to transfer attacks derived from other HB-CNNs. Specifically, adversaries are
generated using the FGSM, L∞ BIM, FGM, and L2 BIM attacks against both a standard substitute
network and one augmented with binding (see Appendix A.8). When attacking a network, all of
these adversarial candidates are leveraged. Using the same line-search from Schott et al. (2019), im-
ages are iteratively perturbed from the baseline image until they are misclassified, and the minimally
perturbed, successful transfer image is used in all distance and accuracy measures.

5 EXPERIMENTS

Hierarchical Binding Alone and the Decision Boundary Our opening assumption is that the input
is high-dimensional, but that the true manifold representing object transformations is also reason-
ably high-dimensional, and that capturing this would improve robustness. In Appendix A.2, we
demonstrate our main premise with a synthetic data-set that builds on the results of Khoury &
Hadfield-Menell (2018) to model this assumption; in particular, representing additional dimensions
of variation can enhance model robustness, even if the features do not perfectly separate the classes.
For an image-based data-set, the HB-CNN architecture affords the possibility of learning decision
boundaries along these additional dimensions of variation. Importantly however, decision bound-
aries in high dimension are challenging to learn due to the sampling complexity (i.e. the chance
of sampling along a particular dimension becomes vanishingly small). What then is the effect of
introducing binding representations? Rather than attempting to visualise high-dimensional decision
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Table 1: Boundary Attack and Non-Linear Decision Boundaries

LeNet HB-CNN HB-CNN + S LeNet + Noisy Logits
L2-metric (ε = 1.5) 1.6 (57%) 7.2 (98%) 5.3 (96%) 3.5 (95%)

Shown is the median L2 distance of an adversary (median across 30 networks) for each condition,
followed by the median bounded accuracy (at the given ε) across 30 networks. S = label smoothing.

boundaries directly, we can use the model’s performance on the Boundary Attack as a proxy. Given
the sparse sampling along the hierarchical binding dimensions, we would expect the augmented
model to have a more non-linear (and not particularly useful) decision boundary (Figure 1b). Con-
sistent with this, there is no general improvement to robustness, and in fact some attacks are more
successful (Table 4 in Appendix A.4); clearly the decision boundaries are not very useful and can
in fact be worse than those of a standard model. However, as a result of both the new feature di-
mensions and the actual operations introduced by gradient-unpooling and unpooling, we observe a
considerable increase in resistance to the Boundary Attack (Table 1). In particular, as the Boundary
Attack attempts to navigate the decision boundary, it frequently becomes stuck in local minima and
encounters regions where it must decrease its step-size for the boundary to behave linearly. We ex-
clude the possibility of stochastic elements explaining this result with a control included in Table 1
and described in Appendix A.3.

Hierarchical Binding with Regularization To improve the decision boundary, we regularize with
label-smoothing, with the hope that sparse sampling in the high-dimensional space can still inform
useful decision boundaries (Figure 1c). We also apply label-smoothing to the control network so
as to ensure a fair comparison to a robust model. As expected, we observe an improvement on a
range of attacks (Table 2), although the model also appears more vulnerable to others; without noisy
training data (our next step), the regularized decision boundary can sit close to clean examples and
be worse than a standard boundary. Introducing label smoothing, one would also predict that the
decision boundary would behave more linearly, and consistent with this, it reduces the resistance of
the HB-CNN to the Boundary Attack (Table 1).

Hierarchical Binding with Regularization and Noisy Training Data Given the spectrum of ro-
bustness following label-smoothing, a major component of the effect could be explained by gradient
masking, and the proposed defense is limited. To better sample the new high-dimensional space,
we introduce Gaussian (STD=0.3) and salt-and-pepper (120/784) noise during training (Figure 1d).
As shown in Table 2, this creates a network with enhanced robustness to virtually all attacks, and
the wide range of black and white-box attacks for which robustness is improved suggests this result
cannot be explained as gradient masking alone.

We note of course that the result that both the control and HB-CNN models are resistant to some
gradient-based L∞ attacks above a perturbation of 0.5 indicates that some gradient masking is
clearly occurring. We emphasize that the interesting result is the broad range of enhanced robustness
seen, in particular to black-box attacks, and across multiple Lp norms. To control for the possibility
that the greater number of parameters in the HB-CNN simply enables it to fit the noisy training data
better, we also train a larger CNN with an equivalent number of parameters to the HB-CNN (results
in Appendix A.4). Its performance is not comparable, and in many cases simply adding parameters
appears to make the model more vulnerable. Finally, we compare our model to adversarial training
(Madry et al., 2018). We highlight that our model beats adversarial training on all black-box attacks,
the All L2 metric, and the All L0 metric, but at a smaller cost in clean classification accuracy.

We do not include the robust Analysis by Synthesis (ABS) model (Schott et al., 2019) due to the
computational resources required to run it (around three orders of magnitude more time for a forward
pass on our GPUs in comparison to the HB-CNN). Based on the results in Table 1 of Schott et al.
(2019), our network outperforms their non-binary ABS model on 13 of 17 attacks (not considering
the latent descent attack), and beats their state-of-the-art (SOTA) All L2 result (median distance 2.3
for ABS vs median distance 2.7 for ours). Our results are thus in keeping with SOTA robustness
on MNIST, however we are hesitant to make a strong claim due to the difficulties of a fair, head-
to-head comparison - beyond controlling for the number of samples and transfer images used, it is
unclear for example what effect Gaussian/salt-and-pepper noise in training or non-linear boundary
behaviour might have on the performance of the ABS model. Indeed our basic, non-binding model
with noisy training data and label smoothing already performs comparable to ABS and adversarial
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Table 2: MNIST Results

CNN+S HBCNN+S CNN+S+N HBCNN+S+N CNN+AT
Clean accuracy 99.17% 99.08% 99.10% 99.05% 98.40%
L2-metric (ε = 1.5)
Transfer 4.4 (92%) 4.6 (94%) 5.8 (97%) 6.6 (98%) 5.0 (97%)
Gaussian Noise 6.8 (98%) 5.5 (98%) 10.0 (99%) 10.5 (99%) 5.3 (97%)
Boundary 1.5 (50%) 5.3 (96%) 2.5 (88%) 9.2 (98%) 1.4 (42%)
Pointwise 3.4 (95%) 2.7 (93%) 4.4 (96%) 4.5 (97%) 1.9 (73%)
FGM 8.9 (91%) 9.1 (92%) 8.9 (95%) 9.6 (96%) 9.0 (98%)
FGM w/GE 8.8 (93%) 8.6 (94%) 8.8 (95%) 9.3 (96%) ∞ (97%)
DeepFool 4.5 (82%) 5.5 (84%) 7.3 (91%) 8.1 (93%) 9.4 (94%)
DeepFool w/GE 6.5 (88%) 4.8 (86%) 7.3 (93%) 7.7 (94%) 9.5 (94%)
BIM 2.4 (67%) 3.2 (73%) 3.6 (84%) 4.0 (86%) 4.9 (93%)
BIM w/GE 2.4 (67%) 3.1 (77%) 3.6 (84%) 4.0 (87%) 4.5 (93%)
PGD 1.3 (41%) 1.6 (54%) 2.5 (77%) 2.8 (79%) 2.8 (86%)
All L2 1.1 (29%) 1.6 (53%) 2.1 (75%) 2.7 (79%) 1.4 (39%)
L∞-metric (ε = 0.3)
Transfer 0.33 (58%) 0.33 (55%) 0.41 (76%) 0.52 (88%) 0.44 (96%)
FGSM 0.46 (70%) 0.46 (73%) 0.48 (76%) 0.62 (82%) 0.44 (95%)
FGSM w/GE 0.46 (72%) 0.46 (74%) 0.50 (78%) 0.63 (83%) ∞ (95%)
DeepFool 0.37 (60%) 0.43 (67%) 0.83 (81%) 1.0 (85%) 0.46 (94%)
DeepFool w/GE 0.59 (75%) 0.44 (65%) 1.0 (86%) 1.0 (86%) 0.71 (94%)
BIM 0.19 (37%) 0.29 (48%) 0.34 (56%) 0.44 (66%) 0.36 (93%)
BIM w/GE 0.18 (35%) 0.29 (48%) 0.34 (57%) 0.45 (67%) 0.63 (93%)
MIM 0.21 (37%) 0.30 (50%) 0.32 (54%) 0.42 (66%) 0.34 (93%)
MIM w/GE 0.21 (37%) 0.30 (50%) 0.35 (56%) 0.44 (68%) 0.44 (94%)
PGD 0.09 (6%) 0.12 (7%) 0.22 (28%) 0.24 (33%) 0.33 (91%)
All L∞ 0.09 (5%) 0.12 (6%) 0.21 (24%) 0.23 (29%) 0.33 (91%)
L0-metric (ε = 12)
Pointwise 13 (50%) 9 (25%) 22 (75%) 23 (79%) 5 (5%)
Salt&Pepper Noise 48 (92%) 17 (67%) 142 (97%) 135 (97%) 14 (57%)
All L0 13 (50%) 9 (25%) 22 (75%) 23 (79%) 5 (5%)

Shown is the median Lp distance of a successful adversary for the different attacks (rows), provided
as the median performance across 30 networks for each model condition (columns). In parentheses
is the median accuracy (at the given ε) across 30 networks. The All-L0, All-L2 and All-L∞ distances
show the minimal adversarial distance across all attacks for each image. Bold indicates the best per-
formance between the CNN+S+N, Size-Controlled CNN+S+N (Appendix A.4) and HBCNN+S+N;
blue indicates the best performance across all networks. AT=adversarial training; S=label smooth-
ing; N=Gaussian and Salt-and-pepper noise during training; GE=Gradient Estimation.

training on several metrics, a marked improvement that has been separately reported when these
methods are combined (Shafahi et al., 2019). It is unsurprising that our control model would benefit
from the boundary improvements introduced by label smoothing and noisy training data - the key
difference however is that without hierarchical binding, it lacks the expressive power to realise the
same magnitude of improvement.

To confirm that the observed effects generalize to a more complex setting, we apply the same archi-
tectures to FMNIST, albeit with γ = 0.3 rather than 0.4 (Appendix A.5), and implement a VGG style
HB-CNN for the CIFAR-10 data-set with γ = 0.1 (Table 3, model details in appendix). While there
are a few attacks where we fail to generalize the effect of the HB-CNN being stronger than the robust
control (FMNIST: Gaussian noise, Pointwise L2, DeepFool attacks, All L∞; CIFAR-10: Pointwise
L2, MIM, All L0), the trend of enhanced robustness above the control model and across multiple
attacks is observed. Interestingly, the HB-CNN surpasses the clean accuracy of the control model on
FMNIST. This is hardly a fair comparison, as the HB-CNN has more parameters, but it supports the
proposal that when binding representations are included, adversarial robustness becomes a question
of on-manifold generalization error, making robustness compatible with clean classification accu-
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Table 3: CIFAR-10 Results
Vanilla-VGG VGG+S+N HB-VGG+S+N ResNet+AT

Clean 86.51% 86.43% 86.07% 87.25%
L2-metric (ε = 1.5)
Transfer 0.68 (26%) 0.99 (36%) 1.03 (38%) 6.23 (80%)
Gaussian Noise 2.31 (69%) 3.89 (80%) 4.12 (79%) 7.50 (82%)
Boundary 0.27 (3%) 0.42 (5%) 4.81 (84%) 1.11 (36%)
Pointwise 1.60 (53%) 1.91 (60%) 1.88 (60%) 2.11 (62%)
FGM 0.37 (19%) 0.58 (28%) 0.67 (32%) 2.01 (59%)
DeepFool 0.17 (0%) 0.44 (14%) 0.49 (14%) 0.97 (35%)
BIM 0.14 (1%) 0.22 (1%) 0.23 (2%) 0.66 (21%)
All L2 0.14 (0%) 0.22 (0%) 0.23 (1%) 0.66 (20%)
L∞-metric (ε = 8/255)
Transfer 0.19 (34%) 0.030 (48%) 0.031 (50%) 0.153 (82%)
FGSM 0.07 (17%) 0.010 (26%) 0.012 (30%) 0.037 (54%)
DeepFool 0.005 (1%) 0.013 (28%) 0.015 (28%) 0.039 (56%)
BIM 0.004 (1%) 0.006 (4%) 0.007 (5%) 0.028 (46%)
MIM 0.004 (1%) 0.007 (4%) 0.007 (6%) 0.029 (47%)
All L∞ 0.004 (0%) 0.006 (3%) 0.007 (5%) 0.028 (46%)
L0-metric (ε = 12)
Pointwise 7 (35%) 9 (42%) 10 (43%) 11 (45%)
Salt&Pepper Noise 15 (53%) 21 (57%) 21 (57%) 27 (57%)
All L0 7 (34%) 9 (42%) 9 (43%) 11 (45%)

racy (Stutz et al., 2019). Finally, we note that on CIFAR-10, while the observed improvement is
broad-spectrum, it does not match the highly established method of adversarial training.

We conclude by noting that it is possible that an approach such as even more random starts to PGD
or an advanced attack method would find better adversaries than the attacks we’ve leveraged - our
proposal does not guarantee the absence of vulnerable spaces in the decision boundary, it rather aims
to reduce the number of directions in which these are found. Consistent with this, our results show
that the model is more robust across a variety of methods and distance measures, in particular to
transfer attacks, i.e. when using directions that are successful against other models, supporting the
notion of fewer vulnerable dimensions (Tramèr et al., 2017).

The Importance of Binding Dimension and Causality We have claimed that a) the dimension of
the binding representations contributes to robustness by augmenting the low-dimensional representa-
tions already present in a standard network, and that b) these representations are meaningful because
they capture how low-level features causally drive higher-level features. An alternative possibility,
however, is that the novel architecture described here simply makes the gradients of the network
more challenging to use. For example, gradient unpooling has similarities to k-Winner-Take-All ap-
plied directly to activations, which is associated with enhanced robustness to gradient-based attacks
(Xiao et al., 2020). In Figure 3, we show a benefit even without masking, the importance of the
dimension of the binding representations, and the significance of their causal role in the network
activity, thereby arguing against this possibility. Specifically, as the proportion of largest gradients
used is increased, the network shows a rapid rise in its robustness, presumably as the key causally
important dimensions are captured. Increasing it further appears to eventually cause the model ro-
bustness to decrease slightly. As γ approaches 1.0, we lose the sparse representation of the low-level
features that were causally involved (by our approximate measure) in the high-level representation
– the classifier should be influenced by dimensions that describe the object, not noise contributed
by other low-level feature detectors that may be co-active (Guo et al., 2018; Ahmad & Scheinkman,
2019), although alternative explanations for the modest drop in robustness are possible, such as re-
moving discontinuities in the network (Xiao et al., 2020). Using a higher γ-proportion also reduces
the non-linearity of the model’s decision boundary, making it more vulnerable to the Boundary
Attack. Importantly however, the model is still more robust than the baseline. Using the same al-
gorithm but with the γ-smallest gradients to derive the binding information confers no robustness
to the BIM attacks until virtually all activations are up-projected (i.e. finally capturing the bottom
portion of the important features), suggesting that the operation itself is not the source of robustness.
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In Appendix A.6, we also provide ablation analyses showing the importance of all three represen-
tational layers (max-pooling, unpooling, and gradient unpooling) for robustness, supporting that
it is the combined high-dimensional representation that is beneficial. If the majority of the effect
observed was a result of gradient masking, one would predict that inactivating the max-pooling
representations would actually enhance robustness. Finally, our earlier observation that there is no
enhanced resistance to gradient-based attacks prior to regularization and noise further supports that
our main effect cannot be explained by previous defences such as Xiao et al. (2020).

Figure 3: The effect of hierarchical binding dimension and causal role on robustness. We systemat-
ically vary the γ-proportion of gradients used to mask the gradient unpooling representations along
the x-axis; results are shown from using both the largest (blue-solid) and smallest (red-dashed) γ
gradients. 0.0 is equivalent to the LeNet control model we study, while 1.0 means no masking is
applied and all low-level activations are up-projected (indicated in purple). Each point represents the
median distance of a successful adversary, provided as the median performance across 30 networks
trained on MNIST without unpooling. Error bars show the 95% confidence interval of the median.

6 DISCUSSION

We have demonstrated the implementation of a novel CNN architecture, inspired by recent work in
theoretical neuroscience (Eguchi et al., 2018; Isbister et al., 2018). This architecture seeks to capture
hierarchical binding representations that encode the causal relations between lower-level and higher-
level visual features of an object. Within the framework of adversarial examples as off-manifold
perturbations, we provided empirical evidence of enhanced robustness following the introduction
of these representations. Through principled hyper-parameter scaling, a synthetic data-set, and ab-
lation analyses, we demonstrated that the introduction of these representations is fundamental to
the observed adversarial robustness. A key strength of the proposed approach is the broad range of
attack types against which adversarial robustness is enhanced, including L0, L∞ and L2 norms, all
within both black box and white box settings. In of itself, the method does not cause a considerable
drop in clean classification accuracy, and these benefits come at relative computational efficiency.
Finally, in Appendix A.1, we detailed how hierarchical binding representations could help explain
the apparent sensitivity of humans to adversarial examples under specific experimental conditions.

Nevertheless, we must highlight some notable limitations of this work. The proposed architecture
adds a significant number of additional parameters, in particular for larger models, as well as a hy-
perparameter (the γ-proportion) that for optimal performance requires tuning. In general, a more
complex data-set appears to benefit from a smaller proportion (MNIST=0.4, FMNIST=0.3, CIFAR-
10=0.1). In the setting of CIFAR-10, the effect size vs. the control was more subtle, it was more
sensitive to the hyper-parameters used, and the robustness was not comparable to adversarial train-
ing. It is possible that unsupervised pre-training (Hénaff et al., 2019; Chen et al., 2020) to make use
of unlabelled data would help with some of the core challenges of the proposed architecture, such
as the sampling complexity. Finally, the adversarial examples that fool the HB-CNN do not appear,
on-average, to be more meaningful than for the robust control model (Appendix A.10). Notwith-
standing these limitations, our analysis indicates that vulnerability to adversarial attacks is at least
partly due to the absence of the hierarchical representations described herein.
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A APPENDIX

A.1 RELEVANCE TO NEUROSCIENCE AND ADVERSARIAL EXAMPLES IN HUMANS

We have argued that the primate brain’s high-dimensional representations of objects may be im-
portant for robustness to adversarial examples, yet the notion of object representations as high-
dimensional may seem counter-intuitive to some traditional concepts of vision. It is clear that many
aspects of primate vision rely primarily on abstract, low-dimensional representations (Hebart et al.,
2020), which is consistent with our proposal here, and that vision can be impoverished e.g. outside
of attention. What we have described however is the primate perception of “objects along with their
detailed features” (Lu et al., 2018). For example, even in the periphery, humans are sensitive to
low-level image changes when these impact scene-like content as opposed to textures (Wallis et al.,
2019). Primates have access to such low/mid-level information in higher processing, such as local
border ownership (Kim & Feldman, 2009). Thus the representations we’ve described are consis-
tent with “vision with scrutiny”, rather than coarse object recognition (Hochstein & Ahissar, 2002).
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Previous work measuring low-dimensional object representations in primates, such as Lehky et al.
(2014), is compatible with our proposal here, as they measured neural activity in anterior inferotem-
poral cortex. Based on current evidence, it is likely that the neural binding representations would be
predominantly distributed in lower-levels of the visual cortex (Zhou et al., 2000; Lu et al., 2018).

Our arguments re. the dimensionality of primate object representations due to hierarchical binding
can then be connected to the perception of adversarial examples. Humans without time-constraints
do not appear to be sensitive to adversarial perturbations (see e.g. recent limitations identified by
Dujmović et al. (2020) regarding Zhou & Firestone (2019)), and as such the only experimental
evidence for human sensitivity to adversarial examples is from Elsayed et al. (2018). While the
effect on classification was not comparable to the dramatic shift seen in machine vision systems, they
measured significant drops in accuracy when humans were constrained to view adversarial images
for a very short duration (around 60-70ms) followed by masking intended to limit recurrent and
top-down processing. However, the introduction of recurrent activity in a CNN designed to better
match the primate ventral stream (CORNet-S) (Kubilius et al., 2019) is not associated with enhanced
robustness – rather the base CORNet-S architecture appears to be more vulnerable than a standard
CNN such as AlexNet to adversarial examples (Dapello et al., 2020). Given that recurrence alone
in a CNN is not sufficient to enable robustness, this raises the question of what specific computation
was actually hindered experimentally in Elsayed et al. (2018) to explain their results. As noted in
our introduction, it has been predicted that top-down and lateral activity in a spiking neural network
would be needed to implement the proposed hierarchical binding algorithm in a biological system,
and so the disruption of such processing provides an alternative hypothesis for the observed effect.

There have been some valuable contributions to explain human robustness to adversarial examples,
but we feel these still leave important questions unanswered. Vuyyuru et al. (2020) examined the
effect of non-uniform retinal sampling and varying receptive field sizes with eccentricity, which
could certainly contribute to human robustness, but their effect was specific to small perturbations,
and the evaluation of black-box attacks did not assess whether transfer attack robustness was greater
for the proposed model vs. an undefended one. Tadros et al. (2020) examined the effect of sleep-like
algorithms on robustness, and again while this might account for some of the difference between
humans and artificial systems, their method actually increased the vulnerability of the model on
MNIST to the Boundary Attack (see their Table 1), with no evaluation of other black-box methods
such as transfer attacks or the Pointwise attack. Finally, in Dapello et al. (2020), various aspects
of early primate visual processing were explored as defence methods, but the primary benefit was
accounted for by V1 stochasticity, and again there was no analysis of transfer attacks. In summary,
we believe our work helps address an explanatory gap re. human robustness to adversarial examples,
in particular to transfer attacks – the one method that has been leveraged against humans, and a threat
setting where our method performs consistently.

A.2 PARTIALLY INFORMATIVE FEATURES AND CO-DIMENSION

Our opening assumption was that a higher-dimensional manifold would be helpful for robustness,
even if features do not perfectly separate the classes. To model this in a synthetic setting, we cre-
ated a data-set with 32 dimensions, of which the first two features are Gaussians with virtually no
overlap between the two classes, analogous to the invariant, low-dimensional representations in a
CNN (Figure 4a; means 0 and 1, STD=0.15). For the other 30 dimensions, these either take the
form of a feature with no information about the class (like those used in Khoury & Hadfield-Menell
(2018), and which therefore increase the co-dimension), or features that carry some, albeit imper-
fect information about the class (represented with partially overlapping Gaussians; means 0 and 0.5,
STD=0.15). These latter features are roughly analogous to the binding representations. We model
the effect of introducing hierarchical binding by replacing uninformative features with partially in-
formative ones, while maintaining a constant total input dimension. For each variant of the input, we
train multiple multi-layer perceptrons with two 100-unit hidden layers and label smoothing (0.25)
on the synthetic data-set, and evaluate their robustness to the L2 BIM attack. Our results show that
as the dimension of the class manifold vs. the input increases, so too does the robustness of the
model (Figure 4b). This builds on Khoury & Hadfield-Menell (2018) by replicating their result with
the introduction of features that are imperfect for class discrimination.
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Figure 4: The effect of additional features on robustness in a synthetic data-set. a) In our synthetic
data-set of Gaussians, two dimensions separate the data well (like the ‘Dog-ness’ dimension), while
others carry either no information (like ‘Pixel-45’), or some information about class identity (like
‘Ear-size’). The proposal is that explicitly including features such as ‘Ear-size’ can help inform a
better decision boundary in otherwise vulnerable directions. b) By keeping the total input dimension
fixed, but having a greater number of partially informative features (varied along the x-axis), we see
an improved robustness to L2 BIM attacks as the co-dimension decreases (shown is the median L2

distance of an adversary, given as the median performance across 100 networks for each condition).

A.3 BOUNDARY ATTACK RESISTANCE AND STOCHASTICITY

As has been pointed out elsewhere (Brown et al., 2018), an uninteresting means of resistance to the
Boundary Attack would be the presence of noise in a model’s predictions. No stochastic elements
were introduced into the HB-CNN model, and indeed we analysed the logits from multiple runs of
the network to confirm no numerical instability or other forms of noise were inadvertently present.
As a further control, we trained a normal LeNet-5 model where Gaussian noise of mean 0 and
standard-deviation 0.01 is added to the logits (orders of magnitude more noise than would fail our
own checks for numerical instability), but it does not show comparable robustness (Table 1).

A.4 ADDITIONAL MNIST RESULTS

We provide our results from the size-controlled CNN with label smoothing and noisy training data
in Table 4, along with ‘vanilla’ LeNet and HB-CNN models (i.e. without label smoothing or noise).

A.5 FASHION-MNIST AND CIFAR-10

The protocol for FMNIST is largely the same as that used for MNIST (see Appendix A.8 for details),
including the addition of Gaussian (STD=0.3) and salt-and-pepper (120/784) noise. Results are
shown in Table 5.

In order to preserve clean classification accuracy on CIFAR-10, our noise-augmented training regime
uses only Gaussian noise an order of magnitude smaller (STD=0.03 vs 0.3). With the exception of
the ‘vanilla’ model, we also use weight decay (Ng, 2004) in the VGG models to further regularize
the decision boundaries (see hyper-parameter details in Appendix A.8). We note that the optimal
weight-decay value was tuned for robustness for both the control and the binding-augmented models
separately.

A.6 ABLATION ANALYSES

To elucidate the relative influence of the two forms of binding, we performed ablation analyses.
Trained HB-CNNs were taken and the activations of either the unpooling, gradient unpooling, or
both layer’s activations set to 0 on all forward passes. No further training was applied, and the
networks were analysed for both robustness and classification accuracy on the clean MNIST test set
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Table 4: Additional MNIST Results
Vanilla-CNN Vanilla-HBCNN Size-Controlled CNN+S+N

Clean 99.25 99.13 99.43%
L2-metric (ε = 1.5)
Transfer 2.8 (88%) 2.9 (90%) 5.5 (98%)
Gaussian Noise 7.1 (98%) 5.9 (98%) 9.7 (99%)
Boundary 1.6 (57%) 7.2 (98%) 2.1 (84%)
Pointwise 3.4 (96%) 2.9 (93%) 4.2 (97%)
FGM 3.7 (90%) 3.3 (88%) 10.0 (97%)
FGM w/GE 4.0 (92%) 5.2 (92%) 9.8 (97%)
DeepFool 1.4 (46%) 1.4 (39%) 3.6 (89%)
DeepFool w/GE 1.7 (59%) 1.6 (54%) 4.6 (91%)
BIM 1.3 (37%) 1.3 (34%) 3.0 (85%)
BIM w/GE 1.2 (34%) 1.5 (51%) 3.1 (84%)
PGD 1.0 (13%) 1.0 (12%) 1.9 (71%)
All L2 1.0 (12%) 1.0 (12%) 1.8 (69%)
L∞-metric (ε = 0.3)
Transfer 0.23 (21%) 0.23 (18%) 0.39 (65%)
FGSM 0.18 (15%) 0.18 (20%) 0.50 (76%)
FGSM w/GE 0.23 (38%) 0.40 (54%) 0.51 (76%)
DeepFool 0.12 (0%) 0.12 (0%) 0.32 (54%)
DeepFool w/GE 0.14 (0%) 0.13 (1%) 0.45 (73%)
BIM 0.10 (0%) 0.10 (0%) 0.25 (31%)
BIM w/GE 0.10 (9%) 0.11 (29%) 0.25 (31%)
MIM 0.10 (0%) 0.10 (0%) 0.25 (33%)
MIM w/GE 0.10 (9%) 0.13 (27%) 0.26 (38%)
PGD 0.08 (0%) 0.08 (0%) 0.15 (0%)
All L∞ 0.08 (0%) 0.08 (0%) 0.15 (0%)
L∞-metric (ε = 12)
Pointwise 13 (55%) 10 (36%) 21 (76%)
Salt&Pepper Noise 56 (93%) 22 (73%) 156 (98%)
All L0 13 (55%) 10 (36%) 21 (76%)

Bold indicates the best performance between CNN+S+N, Size-Controlled CNN+S+N and
HBCNN+S+N; blue indicates the best performance across all networks.

(Figure A.6). Both binding layers and the max-pooling layer are important to the robustness; only
with this combined representation is the network more resistant than the LeNet model, and ablating
any one layer causes a considerable drop in performance.

A.7 PERFORMANCE DISTRIBUTIONS

To visualise the distribution of performance across the 30 networks we trained for each configura-
tion, we include histograms for several black-box attacks, as well as the all-attacks measure for each
distance metric (Figure 6).

A.8 MODEL DETAILS

All models were implemented in TensorFlow 1.14 (Abadi et al., 2016), and used the ReLU activation
function (Nair & Hinton, 2010). The LeNet-5 model used as the vanilla and label smoothing control
for MNIST consists of two convolution (6 and 16 channels) and two max-pooling layers, followed
by two fully connected layers of size 120 and 84. When we introduced noise in training, we used two
fully connected layers of dimension 256 and 128. For the HB-CNN, the unpooling layer is applied
to the last max-pooling layer, while the gradient-unpooling layer is between the last max-pooling
layer and the pre-convolution activations proceeding it (Figure 7a). For the size-controlled CNN for
MNIST (877,440 parameters vs the 850,070 in the HB-CNN - see Table 6), the two convolutions had
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Table 5: Fashion-MNIST Results
Vanilla-CNN CNN+S+N HBCNN+S+N CNN+AT

Clean 90.87% 87.38% 88.26% 88.46%
L2-metric (ε = 1.5)
Transfer 1.7 (55%) 3.7 (78%) 4.2 (81%) 3.1 (80%)
Gaussian Noise 2.9 (76%) 8.4 (86%) 8.1 (86%) 3.9 (87%)
Boundary 0.4 (7%) 1.6 (52%) 4.5 (84%) 0.9 (23%)
Pointwise 2.3 (70%) 4.0 (83%) 4.0 (82%) 1.7 (59%)
FGM 1.0 (37%) 3.0 (67%) 3.4 (69%) 4.7 (84%)
FGM w/GE 1.1 (41%) 3.0 (68%) 3.6 (71%) 5.4 (83%)
DeepFool 0.4 (12%) 1.6 (52%) 1.6 (52%) 2.3 (66%)
DeepFool w/GE 0.5 (1%) 2.1 (58%) 1.9 (56%) 2.3 (65%)
BIM 0.3 (1%) 1.0 (36%) 1.1 (39%) 1.8 (58%)
BIM w/GE 0.3 (8%) 1.0 (35%) 1.3 (46%) 1.8 (57%)
All L2 0.3 (0%) 1.0 (32%) 1.1 (38%) 0.9 (21%)
L∞-metric (ε = 0.1)
Transfer 0.09 (45%) 0.22 (77%) 0.23 (78%) 0.18 (87%)
FGSM 0.04 (24%) 0.13 (57%) 0.15 (60%) 0.24 (80%)
FGSM w/GE 0.05 (30%) 0.13 (58) 0.16 (62%) 0.32 (80%)
DeepFool 0.03 (2%) 0.13 (58%) 0.12 (56%) 0.26 (79%)
DeepFool w/GE 0.03 (2%) 0.16 (62%) 0.13 (57%) 0.27 (79%)
BIM 0.02 (1%) 0.07 (37%) 0.08 (41%) 0.15 (76%)
BIM w/GE 0.02 (9%) 0.07 (36%) 0.08 (42%) 0.16 (76%)
MIM 0.02 (1%) 0.07 (38%) 0.08 (41%) 0.15 (76%)
MIM w/GE 0.02 (8%) 0.08 (38%) 0.09 (46%) 0.16 (76%)
All L∞ 0.02 (0%) 0.07 (35%) 0.07 (39%) 0.15 (76%)
L0-metric (ε = 12)
Pointwise 8 (32%) 24 (69%) 26 (68%) 4 (17%)
Salt&Pepper Noise 23 (63%) 167 (85%) 133 (84%) 16 (54%)
All L0 8 (32%) 24 (69%) 26 (68%) 4 (17%)

Bold indicates the best performance between CNN+S+N and HBCNN+S+N; blue indicates the best
performance across all networks. S = label smoothing; N = Gaussian noise during training; AT =
adversarial training.

Table 6: Number of Trainable Parameters in HB-CNN+S+N vs Size-Controlled CNN+S+N

HB-CNN Size-Controlled CNN
# of Parameters # input/output # of Parameters # input/output

1st Conv. 156 1/6 c 832 1/32 c
2nd Conv. 2416 6/16 c 51264 32/64 c
1st FC 813312 400+1600+1176/256 u 819712 1600/512 u
2nd FC 32896 256/128 u 5632 512/10 u
3rd FC 1290 128/10 u 0 n/a
Total 850,070 877,440

Abbreviations: Conv. = convolution; FC = fully connected; c = channels; u = units

channel sizes 32 and 64, and the fully connected component consisted of a single layer of dimension
512. For FMNIST, we used the same architectures with the larger fully connected layers.

The adversarially trained models for MNIST and CIFAR-10 were loaded from the MadryLab Chal-
lenge repositories (https://github.com/MadryLab/mnist_challenge) and (https:
//github.com/MadryLab/cifar10_challenge), the latter of which is based on a Wide
ResNet (Zagoruyko & Komodakis, 2016). These were generated by the original authors of Madry
et al. (2018), and use the adversarial training with PGD described therein. The adversarially trained
model for FMNIST was loaded from the repository from Croce et al. (2020)) (https://github.
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Figure 5: The effect of layer-wise ablations. We normalize the values of the three different metrics
so they can be compared side by side (median clean accuracy and median distances of adversaries
for BIM-L2 and BIM-L∞ attacks across 30 networks). For any given metric, the best performance
corresponds to 1 and the worst to 0. For comparison to other results in this paper, the performance
of the un-ablated HB-CNN and LeNet model is as shown in Table 2 (no noise in training data). The
worst performing ablation (all binding) corresponds to a clean accuracy of 94.43%, BIM L∞ of
0.05, and BIM-L2 of 0.6. GU = gradient unpooling.

com/max-andr/provable-robustness-max-linear-regions); these were trained
using PGD attacks (40 iterations), with 50% adversarial images, and 50% clean images in each
batch, for 100 epochs.

For the VGG architectures (Figure 7b), we used three blocks, each containing two convolutions and
one max-pooling (channel dimensions 32, 32, 64, 64, 128, 128), followed by two fully connected
layers of dimension 120 and 84. For the HB-CNN VGG variant we used two un-pooling layers
(corresponding to the 2nd and 3rd blocks), and two gradient unpooling layers (from the 3rd max-
pooling layer to the 1st and 2nd max-pooling layers respectively).

All of our models used dropout of 0.25, label smoothing of 0.1, and batch-size of 128. We used
the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 (MNIST and FMNIST)
and 0.0005 (CIFAR-10). Training was performed for 45 epochs (vanilla MNIST model, and LeNet-
based models with smoothing), 90 epochs (all other LeNet-based models), and 500 epochs (all VGG
models). For VGG models with smoothing (used as surrogates), we used an L2 regularization of
10−5 on the weights from the final max-pooled layer (standard and binding-augmented), and 10−4

for the binding-representations. For VGG models with smoothing and noise in the training data,
we used L2 regularization of 10−3 (standard) or 10−5 (HB-CNN) for the weights from the final
max-pooled layer, and 10−3 for the binding-representations. For VGG models, we also augmented
the training data with random shifts and horizontal flipping. Surrogates for all three data-set transfer
attacks were based on the respective standard and HB-CNN architectures with label smoothing,
except for the vanilla CNN and HB-CNN models on MNIST, where vanilla surrogates were used.

A.9 HYPERPARAMETERS FOR ADVERSARIAL ATTACKS

For PGD we used 20 random starts (selecting the best outcome for each image), 250 iterations, and
an initial step-size of 0.01. For BIM we used 10 iterations with an initial step-size of 0.05. MIM
was applied with 10 iterations, an initial step-size of 0.06, and a decay factor of 1.0. For PGD, BIM,
and MIM, the step-size and epsilon were automatically adapted in Foolbox using a binary search.
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Figure 6: Distributions of the Median Performance of Networks. Red is the HB-CNN/VGG+S+N,
blue is the standard CNN/VGG+S+N. Note that for some of these attacks we reported no improve-
ment in the main text, such as the Pointwise L2 attack metric on Fashion-MNIST.

For DeepFool we used 100 iterations. For the Boundary attack we used 1,000 iterations, a step-
adaptation size of 1.5, and initial adversaries generated with the Blended Uniform Noise attack; we
checked the performance against one of the HB-CNN+S+N networks using 25,000, 100,000, and
1,000,000 iterations (tuning the step adaptation size for each), but this did not significantly improve
its performance, and it remained uncompetitive against the HB-CNN model in comparison to other
attacks.
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Figure 7: Integration of Unpooling and Gradient Unpooling in a Hierarchical Binding CNN. The
diagram shows the architecture for a) MNIST and Fashion-MNIST and b) CIFAR-10. Note that it is
not necessary to use unpooling or gradient-unpooling representations from every layer, thus deeper
architectures can select intermittent representations to use for unpooling or gradient-unpooling,
avoiding an excessive growth in parameters.

A.10 CHERRY PICKED EXAMPLES

From among 300 MNIST adversarial examples for the 30 models of the LeNet and HB-CNN net-
works with label smoothing and noisy training data, we selected what we thought to be (in our
potentially biased view) the 10 most semantically convincing adversaries generated by the BIM L2

attack for each model (Figure 8). We feel there are convincing examples for both models, with no
obvious systematic difference.
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Figure 8: Cherry-picked, semantically meaningful adversaries for the control and HB-CNN models.
The annotation shows the original class followed by the prediction of the network following the
adversarial perturbation.
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