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Abstract

Diffusion models have recently emerged as a powerful approach for trajectory
planning. However, their inherently non-sequential nature limits their effectiveness
in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo
Tree Diffusion (MCTD) offers a promising solution by combining diffusion with
tree-based search, achieving state-of-the-art performance on complex planning
problems. Despite its strengths, our analysis shows that MCTD incurs substantial
computational overhead due to the sequential nature of tree search and the cost
of iterative denoising. To address this, we propose Fast-MCTD, a more efficient
variant that preserves the strengths of MCTD while significantly improving its
speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which
enables parallel rollouts via delayed tree updates and redundancy-aware selection;
and Sparse MCTD, which reduces rollout length through trajectory coarsening.
Experiments show that Fast-MCTD achieves up to 100× speedup over standard
MCTD while maintaining or improving planning performance. Remarkably, it even
outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring
no search and yielding weaker solutions. These results position Fast-MCTD as a
practical and scalable solution for diffusion-based inference-time reasoning.

1 Introduction

Diffusion models have recently emerged as a powerful paradigm for trajectory planning, leveraging
offline datasets to generate complex, high-quality trajectories through iterative denoising [1, 2, 12, 36].
Unlike autoregressive planners that generate trajectories sequentially via forward dynamics [3, 10, 11],
diffusion-based approaches like Diffuser [12] generate trajectories holistically, mitigating issues such
as long-term dependencies and cumulative error.

Despite these advantages, diffusion planners often struggle with complex reasoning at test time,
especially in long-horizon tasks. They may produce plausible but suboptimal trajectories that fail
to accomplish complex goals. To address this, inference-time scaling has emerged as a promising
approach to enhance reasoning by adding computational procedures—such as verification and
refinement—during inference [16, 20, 21, 26, 35, 36].
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However, designing a diffusion-based method that supports inference-time scaling remains challeng-
ing. This is primarily due to a fundamental mismatch: while reasoning often requires sequential
or causal processing, diffusion models are inherently non-sequential and generate trajectories in a
non-causal manner by design. As a result, simple strategies such as increasing the denoising depth or
employing best-of-N sampling have been shown to offer only limited improvements [33].

To address this challenge, Yoon et al. [33] proposed Monte Carlo Tree Diffusion (MCTD), which
integrates diffusion-based planning with sequential search through tree-based reasoning, akin to
Monte Carlo Tree Search (MCTS) [7]. MCTD adopts Diffusion Forcing [2] as the backbone and
reinterprets its block-wise denoising as a causal tree rollout, introducing sequential structure while
preserving the global generative strengths of diffusion models. By structuring trajectory generation as
a tree search, MCTD enables systematic exploration and exploitation, helping the model escape local
optima and discover higher-quality trajectories.

While MCTD has demonstrated impressive performance in complex, long-horizon tasks that con-
ventional methods fail to solve, further analysis reveals that it suffers from significant computational
inefficiencies due to two key bottlenecks: the sequential nature of MCTS, which updates tree statistics
after each iteration, and the iterative denoising process inherent to diffusion models. Unfortunately,
this inefficiency is most pronounced in the very long-horizon settings where MCTD’s planning capa-
bilities are most beneficial. Thus, improving the efficiency of MCTD is the most critical challenge for
establishing it as a broadly practical solution for diffusion-based inference-time scaling.

In this paper, we propose Fast Monte Carlo Tree Diffusion (Fast-MCTD), a framework that signifi-
cantly reduces the computational overhead of tree search and iterative denoising while preserving the
strong planning capabilities of MCTD. Fast-MCTD integrates two key optimization techniques: Par-
allel MCTD (P-MCTD) and Sparse MCTD (S-MCTD). P-MCTD accelerates the tree search process
by enabling parallel rollouts, deferring tree updates until multiple searches are completed, introducing
redundancy-aware selection, and parallelizing both expansion and simulation steps. S-MCTD further
improves efficiency by planning over coarsened trajectories, using diffusion models trained on these
compressed representations. This not only reduces the cost of iterative denoising but also lowers
overall search complexity by effectively shortening the planning horizon.

Experimental results show that Fast-MCTD achieves substantial speedups—up to 100× on some
tasks—compared to standard MCTD, while maintaining comparable or superior planning perfor-
mance. Remarkably, Fast-MCTD also outperforms Diffuser in inference speed on some tasks, despite
Diffuser’s lack of search and its substantially inferior performance.

The main contributions of this paper are twofold. First, we introduce Fast-MCTD, a framework that
improves the efficiency of MCTD through parallelization and rollout sparsification. Second, we empir-
ically show that Fast-MCTD achieves substantial speedups—up to two orders of magnitude—while
maintaining strong planning performance, demonstrating its practical effectiveness in challenging
long-horizon tasks.

2 Preliminaries

2.1 Diffusion models for planning

Diffuser [12] formulates planning as a generative denoising process over full trajectories, defined as

x =

[
s0 s1 · · · sT
a0 a1 · · · aT

]
, (1)

where T is the trajectory length and (st, at) denotes the state and action at time t, respectively. During
inference, trajectories are iteratively denoised from noisy samples, effectively reversing a forward
diffusion process. Since the learned denoising model alone does not inherently optimize for returns
or task objectives, Diffuser incorporates a guidance function Jϕ(x) inspired by classifier-guided
diffusion [8]. Specifically, the guidance function biases trajectory generation towards high-return
outcomes by modifying the sampling distribution as:

p̃θ(x) ∝ pθ(x) exp (Jϕ(x)) , (2)

thus explicitly guiding the denoising process toward optimal trajectories at test time.
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Diffusion Forcing [2] extends the Diffuser framework by introducing token-level denoising control
within trajectories. Specifically, Diffusion Forcing tokenizes the trajectory x, enabling different tokens
to be denoised at distinct noise levels. This selective, partial denoising allows the model to generate
only the tokens exhibiting higher uncertainty, such as future plan tokens.

2.2 MCTD: Monte Carlo Tree Diffusion

MCTD unifies tree search and diffusion-based planning by integrating three key concepts.

(1) Denoising as tree rollout. Unlike traditional MCTS, which expands trees over individual states,
MCTD partitions a trajectory x into fixed-length subplans xs, x = (x1, . . . ,xS), each treated as a
high-level node. It applies a semi-autoregressive denoising schedule using Diffusion Forcing, where
earlier subplans are denoised faster, conditioning later ones on previous outputs, approximating:

p(x) ≈
S∏

s=1

p(xs|x1:s−1) (3a) p(x|g) ≈
S∏

s=1

p(xs|x1:s−1, gs) (3b)

where gs is a guidance level (weight) for the classifier-guided sampling [8] (Equation 2). This
preserves the global coherence of diffusion models while enabling intermediate rollouts akin to
MCTS, substantially reducing tree depth.

(2) Guidance levels as meta-actions. To address exploration-exploitation trade-offs in large or
continuous action spaces, MCTD introduces meta-actions via guidance schedules. A guidance
schedule g = (g1, . . . , gS) assigns discrete control modes—e.g., GUIDE or NO_GUIDE—to each
subplan, modulating whether it is sampled from an unconditional prior (Equation 3a) or a guided
distribution (Equation 3b). This allows selective guidance within a single diffusion process, enabling
flexible trade-off control.

(3) Jumpy denoising as fast simulation. For efficient simulation, MCTD uses jumpy denoising
(e.g., Denoising Diffusion Implicit Models (DDIM) [28]) to skip denoising steps and rapidly complete
remaining trajectory segments. Given subplans x1:s, the rest x̃s+1:S is coarsely denoised as: x̃s+1:S ∼
p(xs+1:S |x1:s,g), yielding a full trajectory x̃ for evaluation.

The four steps of an MCTD round. These components are instantiated through the four canonical
steps of MCTS adapted to operate over subplans within a diffusion-based planning framework. See
[33] for a detailed pseudocode of the MCTD method.

1. Selection. MCTD traverses the tree from the root to a leaf using a selection strategy like
Upper Confidence Boundary of Tree (UCT) [14]. Each node corresponds to a temporally
extended subplan, not a single state, reducing tree depth and improving abstraction. The
guidance schedule g is updated during traversal to balance exploration (NO_GUIDE) and
exploitation (GUIDE).

2. Expansion. Upon reaching a leaf, a new subplan xs is sampled using the diffusion forcing,
conditioned on the chosen meta-action gs. Sampling may follow an exploratory prior
p(xs|x1:s−1) or a goal-directed distribution p(xs|x1:s−1, gs).

3. Simulation. Fast jumpy denoising (e.g., via DDIM) completes the remaining trajectory x̃
after expansion. Although approximate, this is computationally efficient and sufficient for
plan evaluation using a reward function r(x̃).

4. Backpropagation. The obtained reward is backpropagated through the tree to update value
estimates and refine guidance strategies for future planning rounds. This enables adaptive,
reward-informed control of exploration and exploitation.

3 The planning horizon dilemma

Despite its strong performance on long-horizon and complex planning tasks, MCTD suffers from
a fundamental computational inefficiency. This is because it requires repeated partial denoising
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Figure 1: Planning time vs. success rate. As maze size increases, most diffusion-based planners
degrade in performance. MCTD maintains high success rates but with long planning times, reflecting
the Planning Horizon Dilemma—better performance requires longer planning time. Fast-MCTD
breaks this trade-off, achieving strong performance with much faster planning.

operations to generate feasible subplans. Worse yet, as the planning horizon increases, the search
space grows exponentially, resulting in significantly higher computational cost.

Ironically, the key strength of diffusion-based planning—its capacity for long-horizon reason-
ing—becomes a principal bottleneck when integrated with the inherently sequential nature of Monte
Carlo Tree Search. In effect, the very scenarios where MCTD’s planning capabilities are most ad-
vantageous are also those where it incurs the highest computational cost. We refer to this tension
between the global trajectory reasoning of Diffuser and the step-by-step search process of MCTS as
the Planning Horizon Dilemma.

More formally, consider a diffusion forcing schedule that generates a sequence of subplans. Let Nchild
denote the branching factor at each tree node, corresponding to the cardinality of the meta-action
space. Let Csub be the computational cost of performing partial denoising for a single subplan xs.
Lastly, let s̄ ≤ S be the number of subplans required to reach the goal. Then, the total complexity of
identifying a successful trajectory using MCTD is given by:

CMCTD = O(N s̄
child · Csub) . (4)

Although MCTD’s exploration-exploitation strategy reduces average-case complexity, its computa-
tional cost still grows exponentially with the expected number of subplans s̄.

This inefficiency of MCTD is clearly demonstrated in Figure 1, which compares planning time and
success rates across two maze environments (point mass and ant robot) and two map sizes (medium
and giant). As maze size increases from medium to giant, other diffusion-based planners such as
Diffuser [12] and Diffusion Forcing [2] exhibit substantial drops in performance. In contrast, MCTD
maintains a significant performance advantage due to its strong search capability. However, this ad-
vantage comes at a steep computational cost: in medium-sized mazes, MCTD requires roughly 8–10×
more planning time than Diffuser, which further increases to 30–40× in giant-sized environments.

4 Fast Monte Carlo Tree Diffusion

The Planning Horizon Dilemma reveals two primary sources of inefficiency in MCTD: (1) Between-
rollout inefficiency — partial denoising operations across different rollouts are executed serially,
limiting parallelism; and (2) Within-rollout inefficiency — each rollout requires the Diffusion to
process long trajectories, leading to substantial computational overhead. To address these challenges,
we propose Fast-MCTD, which incorporates two key improvements: Parallel Planning via P-MCTD,
to improve concurrency, and Sparse Planning via S-MCTD, to reduce the effective planning horizon.
The overall processes are illustrated in Figure 2.

4.1 Parallel planning

Independently parallel MCTD via delayed tree update. We begin by parallelizing all four stages
of MCTD through K concurrent rollouts. In this setting, each iteration generates a batch of tree
rollouts, each proceeding independently within the shared search tree. To avoid synchronization
overhead, we adopt a delayed tree update strategy: all rollouts operate on a shared, fixed snapshot of
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the tree, and updates to the tree (e.g., value estimates and visitation counts) are applied only after all
rollouts in the batch are completed.

While this design allows for efficient parallel execution, it introduces a trade-off. As the batch size
increases, the tree statistics used during search become increasingly stale, which can degrade planning
performance by reducing the accuracy of selection and value propagation. To address this inefficiency,
we propose a mitigation strategy in the following section. We further analyze this trade-off empirically
in Section 6.4, identifying the optimal degree of parallelism that balances computational efficiency
and search quality.

Redundancy-Aware Selection. While the delayed tree update enables parallel rollouts, it intro-
duces a critical inefficiency: redundant node selection. That is, multiple rollouts within a batch
independently select and thus may expand the same node, resulting in duplicated computation and
limited exploration diversity. More specifically, this issue arises because the standard node selection
policy in MCTD—Upper Confidence Bound for Trees (UCT) [14]—is designed for sequential search
and does not account for concurrent expansions.

Table 1: Each step time of MCTD
on PointMaze-Giant

MCTD Step Time (sec.)

Selection 3e-4 (0.05%)
Expansion 0.393 (70.9%)
Simulation 0.161 (29.0%)
Backpropagation 1e-4 (0.02%)

To address this issue, we introduce the Redundancy-Aware
Selection (RAS) mechanism. Our key observation motivating
this design is that the time spent on the Selection step, among
the four stages of MCTD, is negligibly small: as shown in
Table 1, it constitutes only 0.05% time of the MCTD steps. This
allows us to remove the Selection (and the Backpropagation)
step from the parallelization pipeline and instead implement it
as a lightweight serial operation.

Specifically, inspired by prior work on parallelized MCTS [17, 19, 25], we implement Redundancy-
Aware Selection (RAS) by modifying the standard UCT-based selection criterion. During each parallel
search phase, we temporarily incorporate an auxiliary visitation count variable N̂i, which sequentially
tracks selections made within the current batch. This variable is reset to zero after the delayed tree
update is applied. The resulting selection policy is defined as follows:

π(i) = argmax
j∈C(i)

(
Vj + β

√
log(Ni + N̂i · w)
Nj + N̂j · w

)
, (5)

where π(i) denotes the node selection policy from node i, C(i) is the set of child nodes of node i, and
Vi, Ni represent the estimated value and visitation count of node i, respectively. The hyperparameter
w adjusts the exploration-exploitation balance for parallel search: when w = 0, the policy reduces to
standard MCTD selection, and higher values of w penalize nodes that have already been selected
during the current batch, encouraging other rollouts to explore different parts of the tree.

Parallel denoising on expansion and simulation. Unlike conventional MCTS, where computa-
tional costs primarily stem from simulations, MCTD incurs substantial overhead in both expansion
and simulation due to the expensive denoising operations. To enhance computational efficiency, we
propose a unified batching strategy, termed parallel denoising, that simultaneously processes multiple
subplans chosen by RAS during the expansion and simulation phases. Specifically, we implement
a common parallel_subplan interface that batches denoising steps by scheduling noise levels
and synchronizing DDIM [28] updates. To handle variable-length subplans and different guidance
levels, subplans are zero-padded and packed into uniformly shaped tensors, enabling high-throughput
parallel execution on GPUs.

4.2 Sparse planning

Another key contributor to the Planning Horizon Dilemma is the within-rollout inefficiency, wherein
the cost of denoising increases with length of the rollout trajectories. This inefficiency persists
even with the parallelization improvements introduced by P-MCTD. To address this issue, we
propose Sparse Monte Carlo Tree Diffusion (S-MCTD). The key idea is to incorporate trajectory
coarsening—operating rollouts at a higher level of abstraction, as suggested in prior work [4, 5]—into
the MCTD framework, thereby reducing the effective rollout length and overall computational cost.

Specifically, prior to training the diffusion model, we construct a dataset of coarse trajectories by
subsampling every H steps from the original trajectories, yielding x′ = [x1, xH+1, x2H+1, . . . ].
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(a) Parallel MCTD (b) Sparse MCTD

Figure 2: Two key components of Fast-MCTD. (a) Parallel MCTD accelerates planning by
performing batched expansion and simulation on a partial denoising tree, followed by delayed tree
updates. (b) Sparse MCTD reduces denoising overhead by planning over abstract sub-trajectories,
significantly decreasing the number of subplans.

These coarse trajectories are then modeled using a specialized sparse diffusion planner. Owing to
the shorter trajectory lengths, the computational cost of denoising each coarse subplan—denoted

Algorithm 1 Fast-MCTD

1: Initialize tree T , selected node set S
2: while not goal reached do
3: Reset N̂i for all node i in T
4: for i = 1 to K do
5: Select node vi from T Equation (5)
6: Update S: S = S ∪ vi
7: end for
8: for i = 1 ∈ S in parallel do
9: Expand node vi via SparseExpand

10: Simulate with SparseJumpySimulate
11: end for
12: for i = 1 to K do
13: Backpropagate rewards through T
14: end for
15: end while
16: return best node from T

as Ccoarse—is significantly lower than that of the
original fine-grained subplans, Csub. Furthermore,
the overall search complexity is reduced, as plan-
ning now involves approximately H times fewer
subplans, i.e., x′ = [x′

1,x
′
2, . . . ,x

′
S′ ], where

S′ ≈ S/H given the original trajectory length S,
as illustrated in Figure 2b. In terms of computa-
tional complexity, S-MCTD offers a substantial
reduction compared to MCTD (Equation (4)):

CS-MCTD = O
(
N

S/H
child · Ccoarse

)
. (6)

We observe that computational efficiency im-
proves exponentially with the interval size H .
However, excessively large intervals may overly
abstract the planning task, potentially leading to
degraded performance. We empirically investi-
gate this trade-off in Section 6.4.

Following prior work [4, 12, 33], we implement low-level control for executing each coarse subplan
x′
s using heuristic controllers [12], value-based policies [4, 33], and inverse dynamics models [33].

4.3 Integrating Parallel and Sparse MCTD

Finally, we integrate the aforementioned Parallel MCTD (P-MCTD; Section 4.1) and Sparse MCTD
(S-MCTD; Section 4.2) approaches into our final proposed method, termed Fast Monte Carlo Tree
Diffusion (Fast-MCTD). We illustrate the details of Fast-MCTD in Algorithm 1.

5 Related work

Diffusion models [27] have demonstrated significant success in long-horizon trajectory planning,
particularly in sparse-reward settings, by learning to generate plan holistically rather than forward
modeling [1, 2, 12, 18, 36]. Given the computational intensity of the denoising process, many
approaches have focused on improving efficiency through methods like hierarchical planning [5, 6, 9].
To address the challenge of generating detailed, short-term actions, Chen et al. [4] integrated value-
learning policies [30] for low-level control. In another direction, Chen et al. [2] introduces causal
noise scheduling with semi-autoregressive planning to improve performance in causality-sensitive
tasks. More recently, research has explored leveraging increased computational budgets at inference
time to enhance plan quality [33, 35]. Both Yoon et al. [33] and Zhang et al. [35] employ tree search
methods within the denoising process. Yoon et al. [33] combines auto-regressive denoising with
guidance scale-based action control for complex long-horizon planning, while Zhang et al. [35]
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Table 2: Maze results. Success rates and planning times (± std) across PointMaze and AntMaze environments
on medium, large giant sized map for navigate datasets. Best results are shown in strong positive colors, compa-
rable ones in mild positives. For planning time, slowest results use strong negatives, and marginally slower ones
use mild negatives.

Success Rate ↑ (%) Planning Time ↓ (sec.)
Env. Method medium large giant medium large giant

PointMaze

Diffuser 58 ± 6 44 ± 8 0 ± 0 6.6 ± 0.1 6.5 ± 0.1 6.4 ± 0.1

Diffuser-Replan 60 ± 0 40 ± 0 0 ± 0 40.6 ± 2.7 55.1 ± 1.8 137.8 ± 0.4

Diffusion Forcing 65 ± 16 74 ± 9 50 ± 10 9.8 ± 1.0 12.5 ± 0.5 45.6 ± 3.2

MCTD 100 ± 0 98 ± 6 100 ± 0 59.2 ± 27.1 174.6 ± 27.2 264.2 ± 33.8

P-MCTD (Ours) 96 ± 8 100 ± 0 100 ± 0 7.4 ± 1.1 7.0 ± 0.6 9.8 ± 1.3

S-MCTD (Ours) 100 ± 0 84 ± 8 100 ± 0 9.7 ± 1.2 226.1 ± 114.4 18.9 ± 2.8

Fast-MCTD (Ours) 100 ± 0 80 ± 0 100 ± 0 3.6 ± 0.6 4.1 ± 0.4 2.4 ± 0.1

AntMaze

Diffuser 36 ± 15 14 ± 16 0 ± 0 6.2 ± 0.1 6.5 ± 0.1 6.5 ± 0.1

Diffuser-Replan 40 ± 18 26 ± 13 0 ± 0 60.3 ± 4.2 73.7 ± 1.9 193.0 ± 0.4

Diffusion Forcing 90 ± 10 57 ± 6 24 ± 12 14.0 ± 3.8 24.1 ± 1.8 67.0 ± 3.4

MCTD 100 ± 0 98 ± 6 94 ± 9 68.0 ± 3.8 132.1 ± 12.7 214.5 ± 11.0

P-MCTD (Ours) 96 ± 8 90 ± 10 89 ± 16 2.8 ± 0.2 3.1 ± 0.1 4.2 ± 0.1

S-MCTD (Ours) 94 ± 1 68 ± 13 82 ± 14 12.5 ± 0.7 40.1 ± 2.6 40.3 ± 2.9

Fast-MCTD (Ours) 98 ± 6 77 ± 14 90 ± 16 2.2 ± 0.1 2.2 ± 0.1 2.5 ± 0.1

develops a tree search method with learnable energy functions for value estimation, applying it to
reasoning tasks such as Sudoku. However, as inference-time scaling in diffusion denoising has only
recently been explored, optimizing efficiency in this context remains relatively understudied. Our
work addresses this gap by drawing inspiration from established principles for improving efficiency,
namely sparse planning and the acceleration of Monte Carlo Tree Search (MCTS).

Monte Carlo Tree Search (MCTS) [7] has a long history of success in decision-making domains,
particularly when integrated with learned policies or value networks [24, 25]. It has also been applied
to Large Language Models (LLMs) to enhance reasoning required task performances [31, 32, 34].
To address MCTS’s inherent inefficiency in sequential search, various enhancements have been
proposed, including parallel search methods [19], novel node selection policies [17], and visited-node
penalization in parallel searches [25]. Our work adapts these established principles of parallelization
and efficient exploration to the unique computational structure of diffusion-based planners.

6 Experiments

We evaluate Fast-MCTD using tasks from the Offline Goal-conditioned RL benchmark (OG-
Bench) [22], aligning with the setup in MCTD [33]. These include tasks such as point and
ant maze navigation with long horizons, robot arm multi-cube manipulation, and visually and
partially observable mazes. In all tasks, we use the same guidance function following MCTD,
J (x) =

∑T
i=1 ||xi − g||2 where xi is the i-th state and g is the target goal. This design encourages

trajectories that reach the goal as quickly as possible. For consistency and fair comparison, we use this
distance-based guidance function for all baselines. The weight of J , which serves as the guidance
level, corresponds to the meta-action of MCTD and Fast-MCTD. Metrics reported are mean success
rate (%) and planning time (sec), averaged over 50 runs (5 tasks × 10 seeds), including mean ±
standard deviation. Detailed configurations and control settings are available in Appendix A.

Baselines. Besides MCTD, we include Diffuser [12], its replanning variant Diffuser-Replan, and
Diffusion Forcing [2], which uses the causal noise schedule like MCTD but without explicit search.

6.1 Long-horizon planning in maze

We evaluate our methods’ efficiency in extensive horizon scenarios using PointMaze and AntMaze
tasks from OGBench [22], requiring up to 1000-step trajectories in medium, large, and giant mazes.
Following [33], PointMaze employs a heuristic controller [12], and AntMaze uses a learned value-
based policy [30]. Results in Table 2 highlight that Diffuser and Diffusion Forcing exhibit performance
degradation as maze sizes increase, while MCTD maintains effectiveness but at significantly increased
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Table 3: Robot task results. Success rates and planning times (± std) across increasing task difficulty.

Success Rate ↑ (%) Planning Time ↓ (sec.)

Method Single Double Triple Single Double Triple

Diffuser 78 ± 23 12 ± 10 8 ± 10 6.3 ± 0.1 6.4 ± 0.1 6.5 ± 0.1
Diffuser-Replan 92 ± 13 12 ± 13 4 ± 8 21.4 ± 2.4 71.2 ± 5.1 130.9 ± 11.6
Diffusion Forcing 100 ± 0 18 ± 11 16 ± 8 2.9 ± 0.2 15.2 ± 2.2 15.9 ± 1.2

MCTD-Replan 100 ± 0 78 ± 11 40 ± 21 9.2 ± 0.9 38.8 ± 4.7 102.0 ± 6.9
P-MCTD-Replan (Ours) 100 ± 0 80 ± 9 50 ± 21 2.9 ± 0.2 6.5 ± 2.3 11.4 ± 2.8
S-MCTD-Replan (Ours) 100 ± 0 75 ± 3 42 ± 11 8.5 ± 0.5 35.7 ± 18.2 58.7 ± 33.0
Fast-MCTD-Replan (Ours) 100 ± 0 77 ± 11 50 ± 16 3.0 ± 0.2 5.9 ± 1.7 9.1 ± 1.8

S-MCTD

MCTD

steps 25 50 75 100 125 150 175 200 225 250 275 300 325 goalstart

Figure 3: Planning visualization. Sparse planning (top row) allows for more effective long-horizon
trajectories than the dense (bottom row).

computational costs, illustrating the planning horizon dilemma clearly. For instance, MCTD exceeds
4 minutes to solve PointMaze-Giant.

In contrast, Fast-MCTD demonstrates approximately 80-110× speedups relative to MCTD on giant
maps with minimal performance loss. Surprisingly, Fast-MCTD is even faster than Diffuser, which
employs straightforward denoising without search. Despite generally superior performance, Fast-
MCTD encounters performance degradation on large maps due to sparse diffusion model limitations
arising from insufficient start-position training data when subsampled every H steps. Nevertheless,
Sparse MCTD (S-MCTD) and Parallel MCTD (P-MCTD) achieve notable efficiency gains, in
particular, P-MCTD reaches a 50× speedup on AntMaze-Giant.

6.2 Robot arm manipulation

We evaluate efficiency of our methods in compositional planning tasks involving multiple cube
manipulations from OGBench [22]. Tasks require strategic manipulation sequences, such as stacking
cubes in a specific order. High-level planning utilizes diffusion planners, and local actions are executed
via value-learning policies [30], enhanced by object-wise guidance and replanning methods [33].

Fast-MCTD maintains or exceeds MCTD performance with significantly improved efficiency. Specif-
ically, it shows better efficiency than Diffuser on single and double cube tasks. However, in triple
cube tasks, Fast-MCTD is slower than Diffuser due to the increased task difficulty which demands
more extensive search. Nevertheless, it remains approximately 10× faster than MCTD, underscoring
its significant computational advantages.

6.3 Visual planning

To assess efficiency in high-dimensional, partially observable contexts, we evaluate Fast-MCTD using
visual maze environments where agents observe RGB image pairs depicting start and goal states [33].
Observations are encoded with a pretrained VAE [13], actions derived via inverse dynamics models
in latent space, and approximate positional hints are provided by pretrained estimators.

As shown in Table 4, Fast-MCTD demonstrates a substantial efficiency improvement (25-60× faster
than MCTD), even outperforming it on larger mazes. This is because the abstract trajectory
planning through Sparse MCTD (S-MCTD) reduces rollout horizon complexity and improves credit
assignment in latent transitions [18] as shown in Figure 3. Consequently, S-MCTD surpasses both
MCTD and P-MCTD on larger maps. By integrating both sparse and parallel search, Fast-MCTD
maximizes these efficiency gains. Replanning further enhances MCTD but at significant computa-
tional cost, whereas Fast-MCTD achieves superior performance with relatively minimal overhead,
comparable to Diffuser-Replan.
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Table 4: Visual maze results. Mean success rate (%) and planning time (seconds) on medium and large mazes.

Success Rate ↑ (%) Planning Time ↓ (sec.)

Method Medium Large Medium Large

Diffuser 8 ± 13 0 ± 0 7.0 ± 0.3 6.7 ± 0.3
Diffuser-Replan 8 ± 10 0 ± 0 26.4 ± 1.0 26.0 ± 0.4
Diffusion Forcing 66 ± 32 8 ± 12 14.5 ± 1.7 17.1 ± 0.7

MCTD 76 ± 20 2 ± 6 98.8 ± 36.2 320.1 ± 7.6
P-MCTD (Ours) 86 ± 16 0 ± 0 6.8 ± 0.4 7.6 ± 0.1
S-MCTD (Ours) 82 ± 14 31 ± 16 40.1 ± 32.0 168.7 ± 46.2
Fast-MCTD (Ours) 80 ± 18 32 ± 19 4.0 ± 0.2 5.1 ± 0.3

MCTD-Replan 86 ± 13 31 ± 10 129.8 ± 53.1 419.7 ± 49.1
Fast-MCTD-Replan (Ours) 84 ± 28 38 ± 30 14.3 ± 2.3 26.7 ± 3.7

Table 5: Planning times for Redundancy-Aware vs. Unaware Selec-
tion in PointMaze.

Planning Time ↓ (sec.)
Redundancy Medium Large Giant

Aware 8.5 ± 1.6 7.4 ± 1.3 12.8 ± 2.5

Unaware 6.6 ± 1.0 7.8 ± 0.6 18.4 ± 0.9

Table 6: Planning time with different
weight w in PointMaze-Giant.

Weight (w) Planning Time ↓ (sec.)
0.0 221.3 ± 109.6

0.1 14.0 ± 2.5

1.0 12.8 ± 2.3

5.0 12.5 ± 2.1

6.4 Ablation studies

Redundancy-unaware selection. To assess the impact of Redundancy-Aware Selection (RAS)
on planning efficiency, we ablate the constraint that prevents multiple rollouts from expanding the
same node simultaneously. In this redundancy-unaware selection variant, rollouts still share visitation
counts but can repeatedly expand the same node. Table 5 presents planning times of P-MCTD across
different PointMaze sizes, measured under a generous computational budget with 100% success rates.
By avoiding repeated expansion of the same node, RAS prevents excessive exploitation, which can
dominate exploration when paths are harder to discover, especially in larger environments. In smaller
environments, simple exploitation can still be effective, making the benefit of RAS less pronounced.

Visitation count weight. We further investigate the impact of RAS during the selection phase by
ablating the visitation count weight w from Equation (5), which balances exploration and exploitation
in parallel search. Table 6 presents the planning times in the PointMaze-Gaint for different w values.
In the standard UCT setting (w = 0), which lacks visitation count sharing, planning times exceed 220
seconds with high variance. In contrast, with RAS, planning times remain consistently low (12-14
seconds) across a wide range of w values, suggesting that redundancy awareness is more critical than
fine-tuning this hyperparameter.

Parallelism degree and interval size. We also study two key hyperparameters: the parallelism
degree (number of concurrent rollouts) and the subsampling interval size (steps skipped between
coarsen states). Figure 4 shows the performance of Fast-MCTD in different configurations. Increasing
the parallelism degree initially reduces planning time through efficient parallelization, but high
degrees (above 200) degrade success rates due to delayed tree updates and selection redundancy.
For interval size, larger interval sizes significantly boost efficiency but risk performance loss if the
abstractions become too coarse for accurate low-level control [33].

7 Limitations and discussion

While our Fast Monte Carlo Tree Diffusion framework significantly enhances performance, it in-
troduces certain trade-offs. Optimal parallelization for P-MCTD benefits from high-performance
computing, yet substantial efficiency gains are achievable even with modest parallel capabilities
on standard hardware. Our approach also introduces new hyperparameters, namely the parallelism
degree and interval size. However, our ablation studies confirm the robustness of these parameters and
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Figure 4: Ablation studies for parallelism degree and interval size. Success rates (%) and planning
time (seconds) as the parallelism degree and interval size increase for maze giant tasks.

provide clear guidelines for their effective configuration. Furthermore, our sparse planning approach
requires training a dedicated diffusion model on coarsened trajectories, which represents an additional
upfront computational cost. The computational advantages of Fast-MCTD substantially outweigh the
minor overhead of parameter tuning and additional training, enabling the practical deployment of
diffusion-based planning in time-sensitive applications where it was previously infeasible.

8 Conclusion

We introduced Fast Monte Carlo Tree Diffusion (Fast-MCTD), a framework that resolves the crit-
ical efficiency bottleneck of Monte Carlo Tree Diffusion (MCTD), a state-of-the-art method for
inference-time scalable planning. By synergizing parallelized tree search (P-MCTD) with sparse
trajectory abstraction (S-MCTD), our method unlocks significant inference-time acceleration without
compromising planning quality. Our experiments demonstrate that Fast-MCTD achieves up to a
100-fold speedup over prior work on challenging long-horizon tasks, such as maze navigation and
robotic manipulation, while maintaining or even improving performance. These gains are driven by
algorithmic innovations like search-aware parallel rollouts and a coarse-to-fine diffusion process over
abstract plans. While Fast-MCTD alleviates key efficiency bottlenecks, future work could explore
further improvements by integrating learned value function. Ultimately, our findings demonstrate that
test-time scalability and structured reasoning are not mutually exclusive, opening new avenues for
developing fast, deliberative agents in high-dimensional domains.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our proposed method shows the efficiency gain while generally sustaining or
sometimes exceeding the baseline performances, which is corresponded to the claims made
in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitation as a separate section in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the implementation in the appendix including the
hyperparameters and benchmark settings.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
The source code is publicly available at https://github.com/ahn-ml/mctd.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed information for the experiments in our appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the standard deviation on our performance and efficiency evalua-
tion.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: All experiments were conducted on a high-performance computing server
equipped with 8 NVIDIA RTX 4090 GPUs, 512GB system memory, and a 96-thread
CPU. Model training required approximately 3-6 hours per model, while inference for each
experimental evaluation took approximately up to 5 minutes.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We checked the NeurIPS Code of Ethics and followed them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification:This paper presents foundational research in efficient algorithmic approaches
for diffusion-based planning methods, which is primarily focused on theoretical and com-
putational efficiency improvements rather than specific applications with direct societal
implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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(a) Maze Environment (b) Robot Cube

Initial Observation Goal

(c) Visual Maze

Figure 5: Task Illustrations: (a) long-horizon maze navigation, (b) multi-object robotic manipulation
requiring compositional planning, and (c) visual maze planning from raw RGB observations.

A Experiment details

A.1 Computation resources

The experiments were conducted on a server equipped with 8 NVIDIA RTX 4090 GPUs, 512 GB of
system memory, and a 96-thread CPU. Model training required approximately 3–6 hours per model,
while inference for each evaluation took up to 5 minutes.

A.2 Environment details

Following prior work [33], we evaluate our methods (P-MCTD, S-MCTD, and Fast-MCTD) on
challenging scenarios from the OGBench [22] goal-conditioned benchmark. These include long-
horizon maze navigation, robot arm manipulation, and visual maze navigation, as illustrated in
Figure 5. All evaluation tasks were unseen during training, requiring the models to generalize their
planning capabilities to novel scenarios at inference time.

A.2.1 Long-horizon maze

To assess performance over long planning horizons, we test our methods on point-mass and ant
robot navigation in three increasingly complex environments: medium, large, and giant mazes. The
models were trained on the navigate dataset, which contains long trajectories but lacks specific task
information. At inference, the models must leverage their learned dynamics to solve these unseen
maze configurations, thereby testing their generalization for complex, long-horizon problems.

A.2.2 Robot arm manipulation

The robot manipulation tasks demand compositional planning to move multiple objects in a specific
sequence. For instance, when tasked with stacking objects in a predetermined order, the model must
generate a coherent plan that adheres to these sequential constraints. As shown in prior work [33],
holistic diffusion-based planners often struggle with such compositional tasks without explicit search
or reward guidance. We evaluated Fast-MCTD in this domain, focusing on improving efficiency within
a replanning framework while preserving MCTD’s strong compositional planning performance.

A.2.3 Visual maze

Following Yoon et al. [33], we evaluate performance in high-dimensional, partially observable settings
using the Visual Antmaze task from OGBench [22]. In this task, the agent navigates from an initial
observation to a goal, where both are represented as 64× 64 RGB images. These images are encoded
into an 8-dimensional latent space using a Variational Autoencoder (VAE) [13], providing a compact
representation for efficient planning.
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Table 7: Hyperparameter configurations for the Diffuser.
Hyperparameter Value

Training configuration

Learning rate 2× 10−4

EMA decay 0.995
Precision (training/inference) 32-bit (FP32)
Batch size 32
Max training steps 20,000

Diffusion & guidance

Beta schedule Cosine
Diffusion objective x0-prediction
Guidance scale 0.1

Planning configuration

Planning horizon Task-dependent (see Sec A.7)
Open loop horizon 50 (for replanning)

Model architecture (U-Net)

Depth 4
Kernel size 5
Channel dimensions (32, 128, 256)

A.3 Baselines

We compared Fast-MCTD against several diffusion-based planning approaches:

• Diffuser [12]: We implemented the standard Diffuser with classifier-guided generation [8]
as a baseline, ensuring comparable guidance mechanisms across all methods.

• Diffuser-Replan: To strengthen the Diffuser baseline, we incorporated periodic replanning
(details are in Appendix A.4). This variant regenerates the entire plan at fixed intervals,
allowing it to adapt to intermediate state observations.

• Diffusion Forcing [2]: This approach utilizes causal noise scheduling with tokenized
trajectories but omits an explicit search mechanism. Its default implementation includes
replanning, making it a strong comparative baseline.

• MCTD [33]: As our primary baseline, MCTD represents the state-of-the-art in inference-
time scaling for diffusion planning. It integrates causal noise scheduling with a tree-based
search. While effective, it exhibits significant computational inefficiencies in complex
planning scenarios.

• MCTD-Replan: This variant applies the replanning strategy (Appendix A.4) to MCTD,
allowing it to adapt to intermediate state observations while maintaining high-quality plan-
ning. However, this process incurs significant computational overhead compared to other
baselines, serving as a powerful but costly baseline.

A.4 Replanning strategy

The replanning strategy is applied to our replanning-based baselines: Diffuser-Replan, Diffusion
Forcing, and MCTD-Replan. In this variant, the agent generates a new full-horizon plan (e.g., 500
steps in length) at each interval but executes only the first 50 steps before replanning from the updated
state. This process is repeated until the task is completed.

A.5 Model hyperparameters

We maintain consistency with the hyperparameter configurations from prior work [33] and describe
the detailed hyperparameters here to enhance reproducibility. We highlight the key parameters specific
to our methods; complete implementation details will be made available.
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Table 8: Hyperparameters for the value-learning policy.
Hyperparameter Value

Optimizer settings

Learning rate 3× 10−4

Gradient clipping norm 7.0
Learning eta 1.0

Training strategy

Training epochs 2,000
Target steps 10
Data sampling randomness (p) 0.2
Reward tuning cql_antmaze

Q-learning details

Max Q backup False
Top-k 1

Table 9: Hyperparameters for the Diffusion Forcing.
Hyperparameter Value

Training & Optimizer Settings

Learning Rate 5× 10−4

Weight Decay 1× 10−4

Warmup Steps 10,000
Batch Size 1024
Max Training Steps 200,005
Training Precision 16-bit Mixed
Inference Precision 32-bit (FP32)

Model Architecture (Transformer)

Hidden Size 128
Number of Layers 12
Attention Heads 4
Feedforward Dimension 512
Frame Stack Size 10
Causal Masking Not Used

Diffusion & Sampling Settings

Beta Schedule Linear
Objective x0-prediction
Scheduling Matrix Pyramid
DDIM Sampling η 0.0

Planning & Guidance Settings

Planning Horizon Task-dependent (see Sec A.7)
Open-loop Horizon 50
Guidance Scale 3.0 (medium mazes), 2.0 (others)
Stabilization Level 10

A.6 Diffusion model training protocol

We follow the training protocol established by prior diffusion planners [2, 12]. Concretely, the model
is trained on offline trajectory datasets from OGBench [22]. The training objective is a standard
denoising loss (e.g., L2 loss), where the model learns to predict the original trajectory x0 from a
noised version. We employ a Transformer-based architecture. All hyperparameters, including learning
rates and batch sizes, are fully reported in Appendix A.5.
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Table 10: Hyperparameters for MCTD and its variants.
Hyperparameter Value

Training & Optimizer Settings

Learning Rate 5× 10−4

Weight Decay 1× 10−4

Warmup Steps 10,000
Batch Size 1024
Max Training Steps 200,005
Training Precision 16-bit Mixed
Inference Precision 32-bit (FP32)

Model Architecture (Transformer)

Hidden Size 128
Number of Layers 12
Attention Heads 4
Feedforward Dimension 512
Frame Stack Size 10
Causal Masking Not Used

Diffusion & Sampling Settings

Beta Schedule Linear
Objective x0-prediction
Scheduling Matrix Pyramid
Partial Denoising Steps 20
Jumpy Denoising Interval 10
DDIM Sampling η 0.0

Planning & Search Settings

Max Search Iterations 500
Stabilization Level 10
Planning Horizon Task-dependent (see Sec A.7)
Open-loop Horizon 50 (for replanning), otherwise full horizon
Guidance Set Task-dependent (see Sec A.7)

Method-Specific Settings

Parallelism Degree 200 (P-MCTD, Fast-MCTD), 1 (otherwise)
Parallel Search Weight (w) 1.0
Subsampling Interval (H) 5 (S-MCTD, Fast-MCTD), 1 (otherwise)

A.7 Evaluation details

Our experimental setup, including all hyperparameters and environmental settings, is consistent with
prior work [33]. The specific configurations for each task are detailed below.

A.7.1 Maze navigation with point-mass and ant robots

Planning parameters. For the point-mass maze tasks, we use a guidance scale set of
{0, 0.1, 0.5, 1, 2}, while for the antmaze evaluations, the set is {0, 1, 2, 3, 4, 5}. The planning horizon
is set to 500 for medium and large mazes and is extended to 1000 for giant mazes.

Low-level controller. For the point-mass maze tasks, we employ the heuristic controller from Janner
et al. [12]. For the antmaze tasks, we utilize the diffusion-based value-learning policy from Chen et al.
[4], which functions as a low-level controller to navigate the agent toward a given subgoal. A new
subgoal is assigned every 10 steps, contingent upon the successful arrival at the previous one.

Reward function for tree search-based planners. For the maze navigation tasks, we adopt the
reward function from Yoon et al. [33]. This function assigns a reward of zero to physically implausible
trajectories, such as those with excessively large changes between consecutive states. For a valid
trajectory that reaches the goal at timestep t, the reward is calculated as r = (H`t)/H , where H
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Table 11: Leaf parallelization ablation study results. Success rates and planning times (± std) across
PointMaze environment on medium, large giant sized maps.

Success Rate ↑ (%) Planning Time ↓ (sec.)
Env. Method medium large giant medium large giant

PointMaze No Leaf Par. (P-MCTD) 100 ± 0 100 ± 0 100 ± 0 8.5 ± 1.6 7.4 ± 1.3 12.8 ± 2.5

Leaf Par. 98 ± 6 100 ± 0 100 ± 0 7.4 ± 0.9 6.7 ± 0.6 17.0 ± 2.8

is the maximum horizon length. This reward structure incentivizes the discovery of shorter, more
efficient paths.

A.7.2 Robot arm cube manipulation

Planning parameters and low-level controller. For each object, we utilize a set of guidance scales
{1, 2, 4}. As MCTD employs object-wise guidance [33], the total number of guidance combinations
scales with the number of objects. The planning horizon is set to H = 200 for single-cube tasks and
H = 500 for all multi-cube manipulation tasks. We employ the same value-learning policy as in the
antmaze tasks, following Wang et al. [30].

Redundant plans. Consistent with Yoon et al. [33], we implement redundant plans to resolve
inconsistencies arising from object-wise planning. These plans are inserted between object-wise
plan segments and execute pre-defined actions, such as opening the gripper to release an object or
returning to a default position. This prevents infeasible actions, for instance, attempting to grasp a
new object while another is already held or moving to a distant, unrelated location.

Reward function for tree search-based planners. We adopt the reward function from Yoon
et al. [33] for the robot arm manipulation tasks. This function assigns a reward of zero to physically
implausible outcomes, including: (1) moving multiple cubes simultaneously; (2) leaving a cube
suspended in mid-air; (3) causing collisions between cubes; or (4) grasping a cube that is obstructed
by another. For trajectories that successfully complete the task at timestep t, a positive reward of
r = (H`t)/H is assigned, where H is the maximum horizon length.

A.7.3 Visual point-mass maze

Framework for visual environment. For the visual maze tasks, we introduce a framework consist-
ing of three pre-trained components. First, a Variational Autoencoder (VAE) [13] is pre-trained to
encode visual observations into a compact 8-dimensional latent representation, z. This representation
serves as the input for our planning and control models. Second, an MLP-based inverse dynamics
model, finv, is pre-trained to predict the action ât required for a transition. To infer velocity from static
observations, the model is conditioned on three consecutive latent states: ât = finv(zt−1, zt, zt+1).
This model functions as the low-level controller. Third, we pre-train an MLP-based position estimator
to predict the agent’s coordinates from the latent state z. This estimator provides a positional signal
for planning guidance without compromising the task’s partial observability.

Planning parameters. We use a set of guidance scales {0, 0.1, 0.5, 1, 2}. Guidance is applied in
the state space using the coordinates inferred by the pre-trained position estimator. This approach
allows us to employ the same guidance function used in our other tasks (Section 6). A fixed planning
horizon of H = 500 is used for both the medium and large maze environments.

B Additional experimental results

B.1 Leaf parallelization ablations

We conduct an ablation study to compare our method against leaf parallelization, a common MCTS
strategy that expands multiple children from a single node in parallel [19]. The motivation for this
approach is to reduce selection overhead by performing multiple expansions per selection operation.

As shown in Table 11, this strategy exhibits inconsistent performance across environment scales.
While it offers marginal speedups in the medium (8.5s vs. 7.4s) and large (7.4s vs. 6.7s) mazes, it
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(a) Varying noise levels per subplan (b) Uniform noise levels per subplan

Figure 6: Distillation challenges in MCTD. Trajectory quality from distilled diffusion models varies
significantly based on the noise level distribution during training. (a) Using variable noise levels
(required for causal scheduling) leads to poor trajectory quality. (b) Using uniform noise levels
produces cleaner trajectories but is incompatible with MCTD’s causal scheduling requirements.

significantly increases planning time in the giant maze (12.8s vs. 17.0s), degrading performance in
the most computationally demanding setting.

We attribute this degradation to a disruption of the exploration-exploitation balance managed by our
search-aware selection mechanism (Equation 5). By forcing the expansion of multiple children from
the same node, leaf parallelization concentrates computational resources on potentially suboptimal
branches. This effect is particularly detrimental in larger search spaces where strategic exploration is
crucial. These findings validate our design choice to parallelize across disparate tree branches rather
than within a single node’s children, especially for complex, long-horizon planning tasks.

B.2 Distillation of diffusion planner ablations

We investigated diffusion model distillation, a prominent technique for accelerating the denoising
process [23], as a potential optimization for MCTD. We trained a student model to predict the output
of two teacher denoising steps, following the progressive distillation method.

However, this approach produced low-quality trajectories (Figure 6a). We posit that this failure
stems from a fundamental incompatibility: standard distillation methods assume a uniform noise
level across the entire data sample, whereas MCTD’s causal scheduling applies heterogeneous,
per-subplan noise levels. This transforms the distillation task into a more complex learning problem,
as the student must learn a mapping that is conditioned on a non-uniform noise schedule.

Our findings suggest that successfully distilling MCTD is a non-trivial task that requires novel
distillation techniques capable of handling such heterogeneous noise distributions. We leave the
development of these methods to future work.

C Further discussion

C.1 On the choice of fixed-interval subsampling

S-MCTD employs a fixed-interval subsampling strategy for temporal abstraction. This approach
contrasts with the semantic or hierarchical subgoal definitions typical of the classical options frame-
work [29], yet aligns with recent trends in diffusion-based planners, such as Hierarchical Dif-
fusers [5, 9] and PlanDQ [4]. This design choice provides a simple yet general mechanism for
abstracting trajectories.

Our empirical results corroborate the efficacy of this fixed-interval scheme. Notably, prior work [5]
has shown that fixed-interval subsampling can outperform adaptive subgoal selection methods like
HDMI [15]. These findings suggest that a simple, uniform subsampling strategy can be more effective
than complex, learned subgoal discovery techniques in certain domains.

C.2 Limitations and trade-offs of sparse planning

While sparse planning enhances the efficiency of Fast-MCTD, the level of abstraction, controlled
by the hyperparameter H , introduces a trade-off with performance. We empirically identified two
primary failure modes:

25



1. Excessively coarse abstraction: As shown in Figure 4, the success rate degrades sig-
nificantly when the abstraction interval H exceeds 20. This trend, observed across both
PointMaze-Giant and AntMaze-Giant, highlights the limitations of sparse guidance in
scenarios requiring fine-grained control.

2. Tasks requiring high precision: As reported in Table 2, S-MCTD achieves a 100% success
rate in PointMaze-Medium and Giant but drops sharply to 8% in PointMaze-Large, despite
using an identical planning architecture. We hypothesize this discrepancy is due to the task’s
geometric constraints, such as narrow corridors, which demand high-precision maneuvering.
The coarse temporal abstraction may cause the planner to overlook critical intermediate
states required to navigate these tight spaces successfully.

C.3 Generalization

A key feature of Fast-MCTD is its ability to perform high-quality planning efficiently at inference
time. This design enables zero-shot adaptation to novel goals and initial states without requiring any
retraining. However, consistent with other models trained on a fixed data distribution [2, 12, 33],
its performance may degrade when deployed in environments with significant dynamics shifts or
out-of-distribution states.

C.4 Future work

A promising avenue for future research is the integration of learned value functions or policy priors
to guide the search process. Such guidance could significantly enhance planning efficiency by
pruning unpromising branches of the search tree, thereby reducing redundant rollouts. However, a
key challenge lies in integrating these components without compromising the simplicity and parallel
scalability of Fast-MCTD’s sparse planning framework.

Another compelling direction is extending Fast-MCTD to multi-agent planning domains. While
the core framework is theoretically applicable, a naive extension would face challenges from the
combinatorial explosion of the joint action and state spaces. Here, learned value functions or factored
representations could be crucial for tractably managing the search complexity.

Finally, exploring more flexible temporal abstractions is a promising direction. While S-MCTD uses
a fixed-interval subsampling for its simplicity and parallelization benefits, adaptive interval selection
could dynamically enhance efficiency and accuracy. This might mitigate over-abstraction issues in
tasks requiring high precision. However, this must be balanced against added complexity and findings
that simple fixed-interval schemes can outperform adaptive methods in some cases. Investigating this
trade-off remains a valuable area for future research.
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D Algorithms

Algorithm 2 Fast Monte Carlo Tree Diffusion
1: procedure FAST-MCTD(root, iterations, parallelism_degree, jump_interval)
2: for i = 1 to iterations by parallelism_degree do
3: nodes_to_expand← [ ]
4: temp_visit_counts← {} ▷ Track parallel selections
5: for j = 1 to parallelism_degree do ▷ Search-aware selection
6: node← root
7: while ISFULLYEXPANDED(node) and not ISLEAF(node) do
8: node← SEARCHAWAREUCT(node, temp_visit_counts)
9: temp_visit_counts[node]← temp_visit_counts.get(node, 0) + 1

10: end while
11: APPEND(nodes_to_expand, node)
12: end for
13: expansions← [ ]
14: for node ∈ nodes_to_expand in parallel do ▷ Parallel expansion phase
15: if ISEXPANDABLE(node) then
16: gs ← SELECTMETAACTION(node)
17: APPEND(expansions, (node, gs))
18: end if
19: end for
20: new_children← BATCHDENOISESUBPLANS(expansions, jump_interval)
21: for (node, child) ∈ new_children do
22: ADDCHILD(node, child)
23: end for
24: simulations← [ ]
25: for (node, child) ∈ new_children in parallel do ▷ Parallel simulation phase
26: partial← GETPARTIALTRAJECTORY(child)
27: APPEND(simulations, (node, child, partial))
28: end for
29: rewards← BATCHFASTSPARSEDENOISING(simulations, jump_interval)
30: for (node, child, reward) ∈ rewards do ▷ Delayed tree update
31: current← child
32: while current ̸= null do
33: current.visitCount← current.visitCount+ 1
34: current.value← MAX(current.value, reward)
35: UPDATEMETAACTIONSCHEDULE(current, reward)
36: current← current.parent
37: end while
38: end for
39: end for
40: return BESTCHILD(root)
41: end procedure
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