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ABSTRACT

Bayesian Flow Networks (BFNs) represent an emerging class of generative mod-
els that exhibit promising capabilities in modeling continuous, discretized, and
discrete data. In this paper, we develop Guided-BFNs to integrate BFNs with
conditional guidance and gradient guidance to facilitate the effective application
of such models in trajectory planning tasks. Based on our developments, we can
better comprehend BFNs by inspecting the generation dynamics of the planning
trajectories. Through extensive parameter tuning and rigorous ablation experi-
ments, we systematically delineate the functional roles of various parameters and
elucidate the pivotal components within the structure of BFNs. Furthermore, we
conduct a comparative analysis of the planning results between diffusion models
and BFNs, to discern their similarities and differences. Additionally, we under-
take efforts to augment the performance of BFNs, including developing a faster
and training-free sampling algorithm for sample generation. Our objectives en-
compass not only a comprehensive exploration of BFNs’ structural insights but
also the enhancement of their practical utility.

1 INTRODUCTION

Generative models (Shocher et al., 2023; Ho et al., 2020; Goodfellow et al., 2014; Kingma & Dhari-
wal, 2018) have achieved remarkable progress in multimodal generation, with GPTs (OpenAI, 2023;
Brown et al., 2020; Radford et al., 2019; 2018) and Stable Diffusion (Rombach et al., 2022; Podell
et al., 2023) as the representative examples. The underlying technical foundations include Auto-
Regressive Models (Vaswani et al., 2017; Beltagy et al., 2020; Kitaev et al., 2020; Liu et al., 2021;
Parmar et al., 2018), Diffusion Models (Ho et al., 2020; Sohl-Dickstein et al., 2015a; Nichol &
Dhariwal, 2021; Song et al., 2020a;b; Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Luo, 2022;
Ramesh et al., 2022), etc. However, issues exist that the generative modeling of both continuous and
discrete data have not been effectively unified.

Bayesian Flow Networks (BFNs) (Graves et al., 2023) are an emerging type of deep generative
model for addressing such an issue. They are conceived from the principles of data compression
theory (Lelewer & Hirschberg, 1987; Jain, 1981; Welch, 1984). In BFNs, the parameters of a set of
independent distributions are modified with Bayesian inference in the light of noisy data samples,
then passed as input to a neural network that outputs a second, interdependent distribution. Start-
ing from a simple prior and iteratively updating the two distributions yields a generative procedure
similar to the reverse process of diffusion models; however it is conceptually simpler in that no
forward process is required. The network inputs for discrete data lie on the probability simplex,
and are therefore natively differentiable. The loss function directly optimises data compression
and places no restrictions on the network architecture. In the experiments BFNs achieve competi-
tive log-likelihoods for image modelling on dynamically binarized MNIST(LeCun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2009), and outperform all known discrete diffusion models on the
text8 (Shannon, 1951; Cover & King, 1978; Zipf, 2013) character-level language modelling task.

However, the previous empirical studies on CIFAR-10 and text8 expose rare insights into the be-
havior of BFNs and opportunities for further enhancement. We urgently need a good way to better

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

inspect BFNs and to chase an in-depth understanding, which aids in bringing BFNs to the masses to
unleash their maximal potential. This paper takes the first step toward bridging the gap.

We first identify a reasonable way to visualize the internal behavior of BFNs—adapting them for
policy modeling and evaluating in long-horizon decision-making scenarios in several reinforcement
learning (RL) settings. Given that BFNs employ multi-step sampling in their generation process,
akin to diffusion models (DMs), we have chosen to assess them within the context of policy plan-
ning tasks for trajectory generation. This decision is made in favor of planning trajectory generation
as a testbed for BFNs, primarily because it allows humans to more readily discern and appreciate
the properties and nuances of the intermediate planning results. In contrast, generating images in-
volves alterations at the pixel level that are less traceable and exhibit reduced controllability. We
choose several RL settings, including the Maze-2D environment (Fu et al., 2020), the block stacking
tasks (Garrett et al., 2022), and the D4RL locomotion benchmark (Fu et al., 2020), then launch ex-
periments following the fundamental framework of Diffuser (Janner et al., 2022), a diffusion-based
method employed for trajectory planning problem. Under this framework, planning trajectories
and sampling from data become essentially equivalent. We will treat "planning" and "sampling" as
interchangeable terms in the following paragraphs.

This paper represents the pioneering effort to apply BFNs in RL settings, contributing to the visual-
ization and understanding of BFNs in this context. Our contributions are listed as follows:

First, We introduce a methodology called Guided-BFNs, that integrates additional conditions from
the datasets into the model in addressing RL settings using BFNs. In the sampling process, we devise
a novel classifier-guided approach to implement gradient-guided and conditional-based sampling
with BFNs.

Furthermore, through extensive parameter tuning and comprehensive ablation experiments, we have
elucidated the critical components within BFNs’ structure and how various parameters function.
Utilizing a straightforward and intuitive visualization approach, we visualize the input distribution,
output distribution, the sender distribution and the Bayesian update process (Graves et al., 2023),
which are the key components of BFNs’ sampling process. We also investigated the impact of vari-
ous factors on BFNs. These factors include the min variance on training loss, planning performance
and sample diversity, as well as the interplay between time steps and sample steps during sampling.

Additionally, we conduct a comparative analysis of trajectories generated by both DMs and BFNs
within identical RL planning settings. Employing the same network architecture and training pa-
rameters allows us to discern the similarities and differences between the two approaches, provid-
ing further insights into the functioning of BFNs. Experimental results across various RL settings
demonstrate that Guided-BFNs based on the brand new BFNs achieve competitive results compared
to extensively optimized DMs.

In the ablation studies, we investigate the effects of the conditional scaling factor and gradient scal-
ing factor on planning performance to demonstrate the effectiveness of the method of Guided-BFNs
applied in trajectory planning tasks. These insights significantly contribute to our enhanced under-
standing of BFNs.

Finally, we tried a interpolation method for training-free faster sampling and compare several in-
terpolation ratios. Our findings on Guided-BFNs in the testbed of RL policy planning settings can
be directly transferred to the original testbed focused on image and text data, and we leave that for
future research. We hope our findings may shed light on the developing of more effective BFNs’
variants and optimization on BFNs’ architecture and acceleration on BFNs’ sampling process.

2 BACKGROUND

In this section, we elucidate the RL policy planning problem setting and provide an overview of
BFNs.

2.1 PROBLEM SETTING

Consider a system governed by the discrete-time dynamics stp+1 = f(stp ,atp) at state stp given an
action atp . Trajectory optimization involves determining a sequence of actions a∗

0:T that maximizes
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(or minimizes) an objective J factorized over per-timestep rewards (or costs) r(stp ,atp):

a∗
0:T = argmin

a0:T

J (s0,a0:T ) = argmin
a0:T

T∑
tp=0

r(stp ,atp) (1)

where T is the planning horizon and tp is the planning time step. We use the abbreviation τ =
(s0,a0, s1,a1, . . . , sT ,aT ) to refer to a trajectory of interleaved states and actions and J (τ ) to
denote the objective value of that trajectory.

2.2 BFNS

In our experimental configuration, BFNs undergo an initial learning phase during which they assim-
ilate knowledge pertaining to a comprehensive set of trajectory data, encompassing various state-
action pairs. Subsequently, these BFNs harness the acquired knowledge to generate suitable state-
action pairs, thereby constituting trajectory data under specific conditions. These conditions may
encompass the fulfillment of predefined start and end points within a maze or the stacking of blocks
in a predetermined sequence. This subsection will elucidate the fundamental operational principles
underlying BFNs.

Assuming each state-action pair in trajectory data adheres to a normal distribution denoted as
θ

def
= {µ, ρ}, the input mean µ (initialized as standard normal θ0

def
= {0, 1}) is input into BFNs’

neural network to obtain the output x̂(θ, t), where t represents the time step. Subsequently, both x
comprising all state-action pairs of all possible trajectory data in datasets and x̂(θ, t) undergo the
addition of Gaussian noise following an accuracy schedule determined by α(t) = − 2 lnσ1

σ2t
1

. This re-
sults in a sender y and a receiver, where σ1 denotes the standard deviation of the input distribution at
t = 1. The sender y is then employed to update the input parameters θ through Bayesian inference,
given by the equations:

µ← ρµ+ αy

ρ+ α
, ρ← ρ+ α. (2)

This iterative process is referred to as Bayesian update. The updated input parameters are subse-
quently fed into the same neural network, and this process is repeated n times. The Kullback-Leibler
(KL) divergence between the sender and receiver is computed for all n iterations, and the sum yields
the discrete-time loss. As n approaches infinity, the continuous-time loss is given by:

L∞(x) = − lnσ1 E
t∼U(0,1),pF (θ|x;t)

∥x− x̂(θ, t)∥2

σ2t
1

. (3)

Following training, the neural network of BFNs possesses a learned representation of the original
data, encompassing all possible trajectories containing state-action pairs. During the planning pro-
cess (equivalent to the sample generation process), BFNs generate appropriate trajectories without
the need for the original data x. The sender y is utilized by introducing Gaussian noise, according
to an accuracy schedule, to the output x̂(θ, t) for Bayesian updates to the input parameters. This
process repeats for S times, with sample steps s ∈ {1, 2, ..., S} corresponding to time step t ∈ [0, 1].

Detailed information regarding the input distribution pI(x | θ), output distribution pO(x | θ, t),
sender distribution pS(· | x;αI), receiver distribution pR(y | θ; t, α), Bayesian flow distribution
pF (θ | x; t), and an overview figure of the training and sampling process of BFNs are provided in
the appendix.

In this context, three pivotal time-related variables come into play. The first variable is the sample
steps, denoted as s ∈ {1, 2, ..., S}, which determines the number of steps taken during the sampling
round in BFNs. The second variable is the sample time, denoted as t ∈ [0, 1], and it is closely
associated with the sample steps. The number of sample steps dictates the intervals into which
the range [0, 1] is divided during the sampling process in BFNs. The third variable pertains to the
planning time steps within the state-action pair, denoted as tp, and spans from 1 to the planning
horizon T as defined in eq. (1).

3
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3 GUIDED-BFNS

In this section, we establish Guided-BFNs as a novel approach to tackle the planning problem in the
upcoming RL experiments. The primary framework, encompassing state-action pairs, temporal lo-
cality, trajectory representation, and model architecture, adheres to the structure of Diffuser (Janner
et al., 2022). This framework exhibits capabilities such as learning long-horizon planning, temporal
compositionality, generation of variable-length plans, and task compositionality.

3.1 CONDITIONAL GUIDANCE

Given the parameters of the input distribution θ and time t ∈ [0, 1], the output distribution in BFNs
is expressed as follows:

pO(x | θ; t) = δ(x− x̂(θ, t)), (4)

Here, δ represents the Dirac delta function, and x̂(θ, t) corresponds to the output sample obtained
after iterating through the neural network for several steps, symbolizing the planning trajectory in
this context. For each time step t ∈ [0, 1] (corresponding to each sample step s ∈ {1, 2, ...,S}),
BFNs generate a trajectory composed of state-action pairs:

τt = x̂(θ, t) (5)
= (st,0,at,0, . . . , st,tp ,at,tp , . . . , st,T ,at,T ) (6)

To incorporate information regarding prior evidence (such as observation history), desired outcomes
(like a goal to reach), or general functions to optimize (such as rewards or costs), we introduce the
function h(τt) and integrate it into the output sample in eq. (4):

pO(x | θ; t) ∝ pO(x | θ; t)h(τt). (7)

In certain planning problems, it is more natural to pose them as constraint satisfaction rather than
reward maximization. In such settings, the goal is to generate any feasible trajectory that satisfies
a set of constraints, such as terminating at a goal location. Representing trajectories in an array,
as described by eq. (5), allows translating this setting into an inpainting problem. Here, state and
action constraints act similarly to observed pixels in an image (Sohl-Dickstein et al., 2015b). All
unobserved locations in the array must be filled in by BFNs in a manner consistent with the observed
constraints.

The perturbation function required for this task is a Dirac delta for observed values and constant
elsewhere. Specifically, if ct is the state constraint at time step t, then:

h(τt) = δct(s0,a0, . . . , sT ,aT ) =

{
+∞ if ct = st

0 otherwise

The definition for action constraints is identical. In practice, this may be implemented by sampling
from the BFNs’ sampling process and replacing the sampled values with conditioning values ct
after all BFNs sample steps s ∈ {1, 2, ...,S} (or time steps t ∈ [0, 1]). For each planning round, an
observed state s is given, and then:

τt = x̂(θ, t) = (st,0,at,0, . . . , st,tp ,at,tp , st,T ,at,T ) (8)

is replaced by

τt = x̂(θ, t) = (s,at,0, . . . , st,tp ,at,tp , st,T ,at,T ) (9)

Even in reward maximization problems, conditioning-by-inpainting is necessary because all sam-
pled trajectories should commence from the current state.

3.2 GRADIENT GUIDANCE

Given the original data x and accuracy α, the sender distribution is defined as follows:

pS(y | x;α) = N
(
y | x, α−1I

)
. (10)
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Figure 1: This figure illustrates the functioning of several key components in BFNs through visual-
ization on Maze-2D. Left: Visualization of the input distribution pI , the output distribution pO, and
the sender distribution pS as sample steps s increases. Definitions of these distributions in BFNs are
described in section 2.2, with additional mathematical details available in the appendix. All three
distributions gradually update towards the correct trajectory, utilizing different functions. Right:
Visualization of how these key components in BFNs work in a single sample step. The neural net-
work addresses interrelated variables in the data by observing that output trajectories tend to differ
significantly from the input ones, indicating large transitions to the correct trajectory. The Bayesian
update process deals with independent variables under statistical theory assumptions, revising the
trajectory in a more moderate way towards the correct outcome.

To address RL problems using BFNs, the introduction of a reward concept is imperative. We
employ the control-as-inference graphical model (Levine, 2018) for this purpose. Let Otp be
a binary random variable denoting the optimality of planning timestep tp of a trajectory, with
p(Otp = 1) = exp(r(stp ,atp)). We can sample from the set of optimal trajectories by setting
h(τt) = p(O1:T | τt) in eq. (7):

pO(x | θ; t) = p(τt | O1:T = 1) (11)
∝ pO(x | θ; t)p(O1:T = 1 | τt). (12)

The initial step involves training a BFNs’ model on the states and actions encompassed in all avail-
able trajectory data. Subsequently, a separate model denoted as Jϕ is trained to predict the cumu-
lative rewards of the trajectory τt = x̂(θ, t) sampled from pO(x | θ; t). The gradients of Jϕ play
a pivotal role in guiding the trajectory sampling procedure by modifying the input means µ, output
sample x̂(θ, t), and the sender distribution pS(y | x;α) of the sampling process. This modification
is carried out based on the min variance σ1, sampling time t ∈ [0, 1], and accuracy α according to
the following equations:

µnew = µlast + σt
1 · g (13)

x̂(θ, t)new = x̂(θ, t)last + σt
1 · g (14)

pS(y | x̂(θ, t);α) = N
(
y | x̂(θ, t) + σt

1 · g, α−1I
)

(15)

where

g = ∇τt
log p(O1:T | τt)|τt=x̂(θ,t) (16)

=

T∑
tp=0

∇stp ,atp
r(stp ,atp)|(stp ,atp )=x̂(θ,t) (17)

= ∇Jϕ(x̂(θ, t)). (18)

The rationale for incorporating the gradient into µ, x̂(θ, t), and the sender distribution pS(y |
x̂(θ, t);α) is twofold. Firstly, x̂(θ, t) inherently contains information about the planning trajectory
and thus requires guidance from the reward function. Secondly, in the Bayesian update function
in BFNs (Graves et al., 2023), represented by eq. (2), both µ and y in the numerator influence the
update of the input mean transmitted to the neural network. This, in turn, affects future parameter
updates and the data processed by the model. Therefore, they must also be guided by the reward
function Jϕ.
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Figure 2: This figure provides an overview of the influence of key parameters in BFNs. a. By
selecting different checkpoints during training, the figure visualizes how the correct trajectory is
learned and updated by BFNs. Planning performance increases as planning time step tp and sam-
ple steps s increase. The last line illustrates the planning score according to sample steps. b. As
min variance σ1 increases, the planning score decreases, but the generated trajectories’ diversity
(measured by the variance of 100 different trajectories) increases. This finding enlightens similar
results in the original testbed of image and text data in BFNs. c. The variance of the sender dis-
tribution increases for a fixed sample steps S = 100 as σ1 increases for all discrete sample steps
s = n ∈ {1, 2, ...,S}. This explains the sampling diversity result in (b) and the decreasing speed of
trajectory shape variation in fig. 1 Left.

It is noteworthy that, in addition to the gradient, we introduce a posterior variance σt
1. Theoretically,

incorporating a posterior variance σt
1 imparts varying degrees of information based on different

variances and times, resulting in more effective guidance similar to classifier-guidance (Dhariwal
& Nichol, 2021) in DMs. Empirically, our experiments demonstrate a substantial improvement in
planning performance with the inclusion of posterior variance σt

1.

Finally, the first action of a sampled trajectory τt ∼ p(τt | O1:T = 1) may be executed in the envi-
ronment, after which the planning procedure recommences in a standard receding-horizon control
loop.

3.3 TRAINING AND SAMPLING

The training step of Guided-BFNs directly optimizes the continuous time loss in eq. (3). Conditional
guidance is combined in the training process. The model architecture, the reward model Jϕ and
other training details are listed in appendix. The rationale behind training the reward function lies
in utilizing the gradient of the output sample to guide trajectory generation, representing a novel
approach in classifier-guided BFNs.

The sampling step of Guided-BFNs combines both the conditional guidance and the gradient guid-
ance from the reward function Jϕ. Pseudocode for the training method and guided planning method
is given in algorithms 1 to 3 in appendix.

4 EXPERIMENTS

In this section, we perform a series of experiments aimed at visualizing and comprehending the be-
havior of BFNs with Guided-BFNs in the RL policy planning setting. Our investigations encompass
several key aspects. Initially, key components of BFNs’ architecture, including the input distribu-
tion, the output distribution and the sender distribution are visualized under the Maze-2D setting to
investigate how the neural network and Bayesian update function work. Subsequently, we delve into

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the influence of the min variance σ1, the planning time steps tp and sample steps s on training loss,
planning score and samples diversity. Following this, we conduct a comparative analysis of trajecto-
ries generated by both DMs and BFNs to unveil their similarities and differences. We then proceed
with ablation studies, demonstrating the successful operation of the novel Guided-BFNs method
under both conditional and gradient guidance. Finally, we explore interpolation studies, aiming to
develop a training-free and faster sampling method for BFNs.

To quantitatively assess planning effectiveness, we introduce a metric called score. A higher score
indicates superior model performance, representing the normalized cumulative reward eq. (1) of
the agent up to the current time step in the episode. In the reinforcement learning environment of
Mujoco, the score can be directly calculated for the trajectory. Taking the Maze-2D environment as
an example, the score calculation includes whether the target is reached, the path length, the number
of time steps to reach the target, and the number of collisions. A larger score indicates a better
trajectory.

Datasets We utilize the Maze-2D (Fu et al., 2020), Kuka block stacking (Garrett et al., 2022), and
D4RL locomotion datasets (Brockman et al., 2016; Fu et al., 2020) in the RL setting with Guided-
BFNs to visualize and comprehend the behavior of BFNs. The introduction of these datasets and
details of h(τ ) and reward settings of each dataset are listed in appendix.

4.1 KEY COMPONENTS IN BFNS

In this section, we provide visualizations of the input distribution pI , the output distribution pO, and
the sender distribution pS (as discussed in section 2.2), presented in fig. 1. Additional mathematical
details are available in the appendix. These visualizations aim to elucidate the workings of key
components within BFNs.

The parameters of an input distribution (Gaussian, with both mean and variance, but only the mean
µ is considered) are inputted and processed by a pretrained neural network optimized using the
continuous time loss in eq. (3). This process yields the parameters of an output distribution (Delta
distribution). Noise is subsequently added to the output, resulting in a sender y, according to the
accuracy schedule outlined in section 2.2 and the appendix. Following this, the input and sender are
utilized to update the initial input distribution through Bayesian inference. The updated input pa-
rameters are then fed into the same neural network, producing the final output, which is the planning
trajectory in our setting.

Neural Network: The neural network addresses interrelated variables in data by leveraging its
capacity to amalgamate such variables and learn implicit representations. This is a fundamental
aspect observed in deep learning, where the output trajectories exhibit significant deviations from
the input ones, representing large transitions toward the correct trajectory.

Bayesian Update: The Bayesian update process deals with independent variables in accordance
with statistical theory. Trajectories undergo more moderate revisions towards the correct outcome
through this process. The combination of these components in BFNs harnesses the advantages of
both deep learning and Bayesian inference.

4.2 KEY PARAMETERS IN BFNS

In this section, we explore the impact of several key parameters in BFNs, as shown in fig. 2. These
parameters include the min variance σ1, planning time step tp, and sample steps s through visual-
ization.

Min Variance σ1 The hyperparameter σ1 is of paramount importance in BFNs, influencing the
accuracy schedule, which determines the manner and rate of introducing noise to the original data
during both training and inference. Specifically, σ1 represents the standard deviation of the input
distribution at t = 1 in eq. (3). Although the original BFNs paper (Graves et al., 2023) provides
an approach for deriving the accuracy schedule, the selection process for σ1 is not discussed or
experimented within the context of BFNs.

In our observations, we note that the converged training loss tends to decrease as σ1 increases, as
shown in table 8 in the appendix. Simultaneously, the fluctuation of loss during training shows an
inverse relationship with σ1; it increases as σ1 decreases.

7
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After training on different values of σ1, we evaluate planning performance with these pretrained
Guided-BFNs with fixed sample steps S = 64 on 100 trajectories generated by each σ1. We also
investigate the samples’ diversity, measured by the variance of 100 trajectories’ state-action pairs
data (fig. 2 (b)). We find that as σ1 increases, the planning performance decreases, while the sam-
ples’ diversity increases. There is a trade-off between sampling quality (correctness of trajectory)
and sampling diversity (different shapes of trajectory) determined by σ1 in BFNs. This finding is
valuable for designing testbeds for BFNs with image and text data, where the influence of σ1 on
sample quality and diversity is opposite and requires careful consideration.

The variance of the sender distribution in eq. (10), determined by the accuracy schedule during
BFNs’ sampling, is defined in algorithm 3 in the appendix:

α = σ
−2i/n
1

(
1− σ

2/n
1

)
(19)

where n = S is the total sample steps, and i = s ∈ {1, 2, ..., n}. We visualize this variance with
different σ1 and i in fig. 2 (c). As σ1 increases, the variance of the sender distribution rises, which
is used for Bayesian update (fig. 1 Right). Consequently, the diversity of samples increases, as
confirmed in fig. 2 (b). Additionally, as sample steps increase, the variance decreases with a fixed
σ1, leading to less uncertainty in Bayesian update. This results in less change in input, output, and
sender distribution as sample steps increase, as intuitively confirmed in fig. 1 Left.

Planning Time Steps tp & Sample Steps s In the sampling process of Guided-BFNs, two crucial
parameters, planning time steps tp in the RL setting and sample steps s in BFNs during the planning
round, play a vital role. The trajectory’s gradual approach towards the goal is illustrated in fig. 2 (a).
Additionally, we observe an improvement in planning performance as both tp and s increase. These
findings provide valuable insights for parameter selection, contributing to a deeper understanding of
BFNs.

4.3 BFNS VS DMS

Table 1: Planning performance under the same setting be-
tween Diffuser Janner et al. (2022) based on DMs and
Guided-BFNs based on BFNs Graves et al. (2023).

Dataset / Method / Score Diffuser Guided-BFNs
Maze2D-Umaze 113.9 121.4

Maze2D-Medium 121.5 132.5
Maze2D-Large 123.0 136.5

Kuka-Unconditional 58.7 57.7
Kuka-Conditional 45.6 50.2

Kuka-Rearrangement 58.9 63.4
halfcheetah-medium-expert-v2 88.9 98.5
halfcheetah-medium-replay-v2 37.7 50.7

halfcheetah-medium-v2 42.8 64.1
hopper-medium-expert-v2 103.3 110.7
hopper-medium-replay-v2 93.6 100.0

hopper-medium-v2 74.3 85.4
walker2d-medium-expert-v2 106.9 118.6
walker2d-medium-replay-v2 70.6 74.1

walker2d-medium-v2 79.6 82.6

Upon scrutinizing the effects of com-
ponents and parameters in BFNs,
we extend our investigation by con-
ducting comparative studies between
DMs and BFNs applied to the same
task. This analysis aims to elucidate
their respective trajectories, seeking
to identify similarities and differ-
ences, thereby enhancing our under-
standing of BFNs.

Unlimited Sampling Steps Our in-
vestigation reveals a distinct advan-
tage of BFNs over DMs. BFNs ex-
hibit flexibility by enabling an unre-
stricted number of sample steps dur-
ing planning, facilitated by the utiliza-
tion of a continuous time loss func-
tion (3). This feature eliminates the
need for a fixed step during training,
allowing for the enhancement of plan-
ning performance with an increase in
sample steps S. In contrast, DMs im-
pose limitations, permitting only a fi-
nite number of sampling steps equal
to those fixed during the training pro-

cess.

Different Trajectories Additionally, we conduct a comparative analysis of the trajectories learned
by both DMs and BFNs from the provided data. To gain insights into how these models process

8
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disorganized data, we visualize the results in fig. 3 Left, shedding light on the distinct approaches
employed by DMs and BFNs in handling complex and unstructured datasets.

Figure 3: Left: The initial data is more noisy for BFNs than DMs. However BFNs can generate
proper trajectory more faster than DMs, which indicates a more rapid learning speed for BFNs. The
trajectory generated by BFNs is more smooth that DMs. BFNs learn by Bayesian update while DMs
learn by denoising data. Right: As the conditional ratio α incrementally approaches 1, indicative
of an increased reliance on conditioning to guide the trajectories towards the start and end points, a
noticeable trend emerges.

Competitive Results In a conclusive evaluation, we assess the planning performance under identi-
cal training and sampling configurations using both Diffuser (Janner et al., 2022) and Guided-BFNs
in table 1. The outcomes indicate that Guided-BFNs not only achieve competitive performance but,
in most instances, surpass the performance achieved by DMs. This attests to the efficacy of Guided-
BFNs in delivering robust planning outcomes, establishing them as a compelling alternative to DMs
in the context of the evaluated tasks.

4.4 ABLATION STUDIES

To assess the effectiveness of the novel method Guided-BFNs, incorporating both conditional and
gradient guidance (analogous to classifier-guidance (Dhariwal & Nichol, 2021) in DMs), ablation
studies are conducted. For conditional guidance, we introduce a scaling factor α ∈ [0, 1] in front of
the conditional guidance term in eq. (7), transforming it into:

pO(x | θ; t) = αpO(x | θ; t)h(τ ).
In practice, we directly multiply the state-action pair trajectory array eq. (9) by α. We examine how
the trajectory evolves as α varies, specifically on the Maze2d-umaze dataset, as depicted in fig. 3.

Simultaneously, for the gradient guidance in Guided-BFNs, we introduce a scalar α′ in eq. (13),
resulting in:

pS(y | x̂(θ, t);α) ≈ N
(
y | x̂(θ, t) + σt

1 ∗ g ∗ α′, α−1I
)
.

We investigate the impact of the gradient scalar α′ on planning score and conduct experiments
on Kuka-conditioning and Kuka-rearrangement datasets, as illustrated in fig. 4. This finding under-
scores the pivotal role of gradient guidance in achieving superior planning outcomes in the evaluated
scenarios.

4.5 INTERPOLATION SAMPLING ACCELERATION

Developing training-free, faster sampling algorithms for generative AI models is of paramount im-
portance. In our pursuit of this objective, we experimented with an interpolation method applied
to BFNs on the Kuka-unconditioning dataset. The aim was to accelerate the sampling process and
potentially provide insights for future research in the domain of efficient BFNs sampling methods.

In essence, we kept the last sample step S unchanged and evenly distributed sampling points at
equal intervals among the remaining S−1 points. The details of the interpolation sampling acceler-
ation algorithm can be found in the appendix. The remarkable outcome signifies an acceleration in
sampling efficiency by half (fig. 4), showcasing the potential of interpolation as a promising strategy
for expediting the sampling process without compromising planning performance.

9
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Figure 4: Left: The depicted figure illustrates the variation in planning scores corresponding to
different gradient scalar values α′ within the Kuka settings. Our observations reveal that a non-zero
scalar α′ significantly enhances planning performance compared to the case where α′ is set to 0,
thereby validating the effectiveness of gradient guidance. Notably, the optimal gradient scalar under
this specific setting is determined to be 0.3. Right: The depicted figure illustrates the impact of
the interpolation method on the planning score, as observed in experiments conducted on the Kuka-
unconditional dataset. The experiments were conducted using a pretrained Guided-BFNs with a
fixed sample step of S = 1000 on the average of 1000 trajectories each interpolation points num-
bers. The x-axis represents the number of sample steps preserved after interpolation. By employing
interpolation, we can preserve approximately half of the original sample steps while maintaining
nearly the same planning score as observed without interpolation.

5 RELATED WORK

Deep generative modeling has significantly advanced model-based reinforcement learning. Recent
studies explore dynamic models with neural ODEs (Du et al., 2020), vector quantized autoencoders
(Hafner et al., 2020), and Transformers (Chen et al., 2022). This reflects a shift in the research focus
and methods. Various works (Tamar et al., 2017; Farahmand et al., 2017; Rybkin et al., 2021) have
investigated bridging the gap between model learning and planning. Notably, (Janner et al., 2022)
introduced Diffuser, a diffusion (Ho et al., 2020; Sohl-Dickstein et al., 2015a; Nichol & Dhari-
wal, 2021)-based model that concurrently generates trajectory timesteps, conditioned with auxiliary
functions. This paper pioneers in visualizing and comprehending Bayesian Flow Networks (BFNs)
(Graves et al., 2023). Their adaptability to continuous, discretized, and discrete data, with minimal
training adjustments, stands in contrast to discretized diffusion models (Austin et al., 2021), which
necessitate defined transition matrices.

6 CONCLUSION

In summary, this paper introduces Guided-BFNs, an innovative extension of BFNs, showcasing
their enhanced applicability in various RL scenarios through the integration of additional condi-
tions and gradient guidance. Through systematic parameter tuning and rigorous experiments, we
uncover crucial components and elucidate the functional roles of parameters, providing valuable in-
sights for practitioners. A comparative analysis highlights difference between BFNs and DMs. Our
contribution includes a faster, training-free sampling algorithm, improving efficiency for real-time
applications. By presenting our findings, we aim to inspire further research in the realms of BFNs’
explanation and optimization, fostering advancements in these areas in the future.
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A COMPUTATIONAL COMPLEXITY

We have supplemented relevant experiments on the computational complexity of BFNs. Taking the
maze2d-umaze dataset as an example, on a single NVIDIA 4090 GPU:

Time GPU Memory FLOPs Parameters
(1000 steps) (1000 steps)

Training
Diffuser 15.7893s 1152M 4.189G 3.675M
Guided-BFNs 16.9726s 1152M 4.189G 3.675M

Sampling
Diffuser 0.5228s 546M 8.378G 3.675M
Guided-BFNs 0.6141s 548M 59.026G 2.652M

Table 2: Comparison of Train and Sample Time, GPU Memory, FLOPs, and Parameters for Diffuser
and Guided-BFNs

From the above data, we can see that in the trajectory planning scenario, in terms of computational
complexity, BFNs have almost the same indicators as diffusion models during training. However,
in the sampling phase, the FLOPs of BFNs are significantly higher than diffusion models. This is
because in addition to the step of updating the input and output parameters by the neural network,
BFNs have the Bayesian update process (Equation 2) that diffusion models lack, requiring three
additional vector multiplications and vector additions per sample step.

B DETAILS OF GUIDED-BFNS

B.1 MATHEMATICAL DETAILS OF BFNS

In our experiments, x is normalised to lie in [−1, 1]D to ensure that the network inputs remain in a
reasonable range. The input distribution for continuous data is a diagonal normal:

θ
def
= {µ, ρ} (20)

pI(x | θ)
def
= N

(
x | µ, ρ−1I

)
, (21)

where I is the D ×D identity matrix. We define the prior parameters as

θ0
def
= {0, 1} (22)

where 0 is the length D vectors of zeros. Hence the input prior is a standard multivariate normal:

pI (x | θ0) = N (x | 0, I). (23)

Bayesian update function h (θi−1,y, α) obtains the parameters θi−1 = {µi−1, ρi−1} and sender
sample y drawn from pS(· | x;αI) = N

(
x, α−1I

)
:

h ({µi−1, ρi−1} ,y, α) = {µi, ρi} , (24)

with

ρi = ρi−1 + α, (25)

µi =
µi−1ρi−1 + yα

ρi
. (26)

Bayesian update distribution has form

pU (θi | θi−1,x;α) = N
(
µi |

αx+ µi−1ρi−1

ρi
,
α

ρ2i
I

)
(27)
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Accuracy schedule can be described as
σ2
1 = (1 + β(1))−1.(1 + β(t))−1 = σ2t

1 (28)

=⇒ β(t) = σ−2t
1 − 1 (29)

=⇒ α(t) =
d
(
σ−2t
1 − 1

)
dt

(30)

= −2 lnσ1

σ2t
1

(31)

Bayesian flow distribution can be described as
pF (θ | x; t) = pU (θ | θ0,x, β(t)) (32)

Therefore, setting θi−1 = θ0 = {0, 1} and α = β(t), and that ρ = 1 + β(t) ,

pF (θ | x; t) = N
(
µ | β(t)

1 + β(t)
x,

β(t)

(1 + β(t))2
I

)
(33)

= N (µ | γ(t)x, γ(t)(1− γ(t))I), (34)
where

γ(t)
def
=

β(t)

1 + β(t)
(35)

=
σ−2t
1 − 1

σ−2t
1

(36)

= 1− σ2t
1 . (37)

Output distribution can be discribed as Following standard practice for diffusion models, the output
distribution is defined by reparameterising a prediction of the Gaussian noise vector ϵ ∼ N (0, I)
used to generate the mean µ passed as input to the network.

µ ∼ N (γ(t)x, γ(t)(1− γ(t))I) (38)
and hence

µ = γ(t)x+
√
γ(t)(1− γ(t))ϵ (39)

=⇒ x =
µ

γ(t)
−

√
1− γ(t)

γ(t)
ϵ. (40)

The network outputs an estimate ϵ̂(θ, t) of ϵand this is transformed into an estimate x̂(θ, t) of x by

x̂(θ, t) =
µ

γ(t)
−

√
1− γ(t)

γ(t)
ϵ̂(θ, t). (41)

Given x̂(θ, t) the output distribution is
pO(x | θ; t) = δ(x− x̂(θ, t)), (42)

Sender distribution can be discribed as The sender space Y = X = R for continuous data, and the
sender distribution is normal with precision α :

pS(y | x;α) = N
(
y | x, α−1I

)
. (43)

Receiver distribution can be described as
pR(y | θ; t, α) = E

δ(x′−x̂(θ,t))
N

(
y | x′, α−1I

)
(44)

= N
(
y | x̂(θ, t), α−1I

)
. (45)

Continuous time loss can be described as

L∞(x) = − lnσ1 E
t∼U(0,1),pF (θ|x;t)

∥x− x̂(θ, t)∥2

σ2t
1

(46)
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Figure 5: Training (LHS): Initially, the parameters of the input data distribution are input into
the network, which subsequently yields the parameters of the output data distribution. An output
sample is then drawn from this output distribution. To create the sender and receiver distributions,
identical noise - as determined by the accuracy schedule - is applied to both the original data and the
output sample. The Kullback-Leibler (KL) divergence between these two distributions is computed
to formulate the loss. Following this, a sample from the sender distribution is utilized to revise
the original input distribution via Bayesian update before re-entering the network. This updated
distribution then serves as the new input for the subsequent network iteration. This cycle is repeated
N times, with the continuous time loss function emerging from extending the time parameter to
infinity. Sampling (RHS): The sampling process mirrors training, with a notable distinction: noise
is added solely to the output sample. This noise-modified sample is then used to update the initial
input distribution through Bayesian updating.

Algorithm 1 Continuous Output Predictioon

Note that θ = {µ, ρ}, but ρ is fully determined by t
For our experiments tmin = 1e−10, [xmin, xmax] = [−1, 1]
Input: µ ∈ RD,t ∈ [0, 1],γ >∈ R+,tmin ∈ R+,xmin, xmax ∈ R
if t < tmin then
x̂(θ, t)← 0

else
Input (µ, t) to network, receive ϵ̂(θ, t) as output

x̂(θ, t)← µ
γ −

√
1−γ
γ ϵ̂(θ, t)

clip x̂(θ, t) to [xmin, xmax]
end if
Return x̂(θ, t)

Algorithm 2 Continuous-Time-Loss for Guided-BFNs

Input: σ1 ∈ R+, continuous data x ∈ RD, conditions h(τ), scalar α = 1
t ∼ U(0, 1)
γ ← 1− σ2t

1
µ ∼ N (γx, γ(1− γ)I)
µ← αµh(τ) # conditional guidance
x̂(θ, t)← CTS_OUTPUT_PREDICTION(µ, t, γ) # conditional guidance
x̂(θ, t)← αx̂(θ, t)h(τ)
x← αxh(τ)

L∞(x)← − lnσ1σ
−2t
1 ∥x− x̂(θ, t)∥2
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Algorithm 3 Trajectory Generation in Guided-BFNs

Input: σ1 ∈ R+, number of steps n ∈ N, conditions h(τ), scalar α, s, reward model Jϕ
µ, x̂(θ, t)pre ← 0
ρ← 1
# Take m(m < n) points at equal intervals for interpolation acceleration sampling
for i = 1 to n do
t← i−1

n

x̂(θ, t)← CTS_OUTPUT_PREDICTION(µ, t, 1− σ2t
1 )

if i > 1 then
x̂(θ, t)← x̂(θ, t) + sσt

1∇Jϕ(x̂(θ, t)pre) # gradient guidance
end if
x̂(θ, t)← αx̂(θ, t)h(τ) # conditional guidance
α← σ

−2i/n
1

(
1− σ

2/n
1

)
y ∼ N (x̂(θ, t), α−1I)
if i > 0 then
µ← µ+ sσt

1∇Jϕ(x̂(θ, t)pre) # gradient guidance
y ← y + sσt

1∇Jϕ(x̂(θ, t)pre) # gradient guidance
end if
µ← αµh(τ) # conditional guidance
y ← αyh(τ) # conditional guidance
µ← ρµ+αy

ρ+α
ρ← ρ+ α
x̂(θ, t)pre ← x̂(θ, t)

end for
x̂(θ, 1)← CTS_OUTPUT_PREDICTION(µ, 1, 1− σ2

1)
x̂(θ, 1)← x̂(θ, 1) + sσ1∇Jϕ(x̂(θ, t)pre) # gradient guidance
x̂(θ, 1)← αx̂(θ, 1)h(τ) # conditional guidance
Return x̂(θ, 1)
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B.2 PSEUDOCODE FOR GUIDED-BFNS

In Guided-BFNs, conditional guidance is added in both training (algorithms 1 and 2) and sampling
(algorithms 1 and 3), while gradient guidance is added only in sampling process. Interpolation
acceleration sampling is also shown in algorithm 3.

C SETTINGS

C.1 DATASETS

The Maze-2D dataset consists of three sub-datasets based on scale: Umaze, Medium, and Large,
which require traversing to a goal location where a reward of 1 is given. No reward shaping is
provided at any other location.

The Kuka dataset focuses on block stacking tasks, where trajectories of a robotic arm are generated
to manipulate blocks. This dataset includes three sub-datasets: Unconditional Stacking, for which
the task is to build a block tower as tall as possible; Conditional Stacking, for which the task is to
construct a block tower with a specified order of blocks; Rearrangement, for which the task is to
match a set of reference blocks’ locations in a novel arrangement. We train Guided-BFNs on 10000
trajectories from demonstrations generated by PDDLStream Garrett et al. (2022)); rewards are equal
to one upon successful stack placements and zero otherwise. We use one trained Guided-BFNs for
all block-stacking tasks, only modifying the perturbation function h(τ ) between settings. In the
Unconditional Stacking task, we directly sample from the unperturbed output distribution pO(x |
θ; t) to emulate the PDDLStream controller. In the Conditional Stackingand Rearrangement tasks,
we compose two perturbation functions h(τ ) to bias the sampled trajectories: the first maximizes
the likelihood of the trajectory’s final state matching the goal configuration, and the second enforces
a contact constraint between the end effector and a cube during stacking motions.

Final State Matching To enforce a final state consisting of block A on top of block B, we trained a
perturbation function hmatch(τ ) as a per-timestep classifier determining whether a a state s exhibits a
stack of block A on top of block B. We train the classifier on the demonstration data as the diffusion
model.

Contact Constraint To guide the Kuka arm to stack block A on top of block B, we construct a
perturbation function hcontact(τ ) =

∑64
i=0−1 ∗ ∥τci − 1∥2, where τci corresponds to the underlying

dimension in state τsi that specifies the presence or absence of contact between the Kuka arm and
block A. We apply the contact constraint between the Kuka arm and block A for the first 64 timesteps
in a trajectory, corresponding to initial contact with block A in a plan.

The Locomotion dataset, an offline RL dataset, comprises nine sub-datasets containing trajectories
related to various movement scenarios. We guide the trajectories generated by Guided-BFNs toward
high-reward regions using the sampling procedure and condition the trajectories on the current state
using the inpainting procedure. The reward function Jϕ is trained on the same trajectories as Guided-
BFNs.

C.2 MODEL ARCHITECTURE

The neural network model architecture for Guided-BFNs is illustrated in fig. 6. The Guided-BFNs
architecture comprises a U-Net structure with 6 repeated residual blocks. Each block consists of two
temporal convolutions, each followed by group norm Wu & He (2018), and a final Mish nonlinearity
Misra (2019). Timestep embeddings are generated by a single fully-connected layer and added to
the activations of the first temporal convolution within each block.

C.3 TRAINING SETTING

The model is trained with batch size of 32. The optimizer used is AdamW Loshchilov & Hutter
(2017) with a learning rate of 0.0001, weight decay of 0.01, and (β1, β2) = (0.9, 0.98).

The training process involves 500k steps. The reward function Jϕ mirrors the structure of the first
half of the U-Net used for Guided-BFNs, concluding with a final linear layer that produces a scalar
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Figure 6: TemporalUNet: a model consisting of repeated (temporal) convolutional residual blocks.
The overall architecture resembles the types of U-Nets with two-dimensional spatial convolutions
replaced by one-dimensional temporal convolutions.

output. A planning horizon T of 32 is employed in all locomotion tasks, 128 for block-stacking, 128
in Maze2d-umaze, 256 in Maze2d-medium, and 384 in Maze2d-large.

D OTHER EXPERIMENTS

Table 3: Here is a demonstration showcasing the functionality of Guided-BFNs on the Kuka dataset.
In the series of images from the top left to the bottom right, the robotic arm progressively attaches
each block and positions it above the others, guided by the trajectories generated by Guided-BFNs.
In the unconditional scenario, the objective is to stack the blocks to achieve the maximum height.
On the other hand, the Kuka-conditional task involves additional conditions, such as the color order
of the blocks, necessitating the use of gradient guidance to accomplish the desired stacking arrange-
ment.
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Table 4: The following table illustrates the increase in planning score with the escalation of planning
time steps (tp) in offline RL environments, specifically in the D4RL setting.

Locomotion Datasets Planning Score (Time Steps)

0 999 1999 2999 3999 4999 5999 6999 7999 8999 9999

halfcheetah-medium-expert-v2 0.0225 0.39680.78491.17641.57131.86851.89852.28212.53182.93183.3389
halfcheetah-medium-replay-v2 0.0226 0.25360.5071 0.759 1.0 1.24511.48881.72881.98232.19922.4315

halfcheetah-medium-v2 0.0225 0.3312 0.641 0.969 1.3019 1.626 1.94142.27122.46342.45732.4496
hopper-medium-expert-v2 0.0065 0.49270.79961.10651.41351.72042.02742.33432.64112.94813.2551
hopper-medium-replay-v2 0.0065 0.38860.69420.99981.30551.61141.91662.22272.52762.83313.1382

hopper-medium-v2 0.0065 0.54680.85371.16061.46761.77452.08152.38842.69533.00233.3092
walker2d-medium-expert-v2 -0.0001 0.314 0.53190.74980.96751.18551.40371.62241.84022.05812.2766
walker2d-medium-replay-v2 -0.00010.30730.52410.74140.9586 1.176 1.39311.61021.82732.04472.2617

walker2d-medium-v2 -0.00010.29250.50920.72630.94321.1601 1.377 1.59441.81132.02872.2461

Table 5: This demonstration showcases the trajectory generated by Guided-BFNs to control the
movements of the agent in the HalfCheetah environment of the D4RL offline RL dataset. The se-
quential movements depicted in the trajectory illustrate the effectiveness of Guided-BFNs in shaping
the agent’s behavior in navigating and interacting within the challenging dynamics of the HalfChee-
tah environment.

Table 6: This demonstration showcases the trajectory generated by Guided-BFNs to control the
movements of the agent in the Hopper environment of the D4RL offline RL dataset. The sequen-
tial movements depicted in the trajectory illustrate the effectiveness of Guided-BFNs in shaping the
agent’s behavior in navigating and interacting within the challenging dynamics of the Hopper envi-
ronment.

Table 7: This demonstration showcases the trajectory generated by Guided-BFNs to control the
movements of the agent in the Walker2d environment of the D4RL offline RL dataset. The sequential
movements depicted in the trajectory illustrate the effectiveness of Guided-BFNs in shaping the
agent’s behavior in navigating and interacting within the challenging dynamics of the Walker2d
environment.
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(a) Kuka-unconditional-stacking
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(b) Maze2d-umaze
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(c) Maze2d-medium
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(d) Maze2d-large
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Table 8: Loss across different σ1 values in various datasets throughout training. In our observations,
we note that the converged training loss tends to decrease as σ1 increases. Simultaneously, the fluc-
tuation of loss during training shows an inverse relationship with σ1; it increases as σ1 decreases.

σ1 = 0.9 σ1 = 0.1 σ1 = 0.01 σ1 = 0.001 σ1 = 0.0001 σ1 = 0.00001σ1 = 0.000001

Table 9: Visualizations on Maze2D-Umaze are employed to intuitively demonstrate how σ1 influ-
ences planning performance by generating trajectories.
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