

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WAVREWARD: SPOKEN DIALOGUE MODELS WITH GENERALIST REWARD EVALUATORS

Anonymous authors

Paper under double-blind review

ABSTRACT

End-to-end spoken dialogue models such as GPT-4o-audio have recently garnered significant attention in the speech domain. However, the evaluation of spoken dialogue models' conversational performance has largely been overlooked. This is primarily due to the intelligent chatbots convey a wealth of non-textual information which cannot be easily measured using text-based language models like ChatGPT. To address this gap, we propose **WavReward**, a reward feedback model based on audio language models that can **evaluate both the IQ and EQ of spoken dialogue systems with speech input**. Specifically, 1) based on audio language models, WavReward incorporates **the deep reasoning process and the nonlinear reward mechanism** for post-training. By **utilizing multi-sample feedback via the reinforcement learning** algorithm, we construct a specialized evaluator tailored to spoken dialogue models. 2) We introduce ChatReward-30K, a preference dataset used to train WavReward. ChatReward-30K includes both comprehension and generation aspects of spoken dialogue models. These scenarios span various tasks, such as text-based chats, nine acoustic attributes of instruction chats, and implicit chats. WavReward outperforms previous state-of-the-art evaluation models across multiple spoken dialogue scenarios, achieving a substantial improvement about Qwen2.5-Omni in objective accuracy from 53.4% to 91.5%. In subjective A/B testing, WavReward also leads by a margin of 83%. Comprehensive ablation studies confirm the necessity of each component of WavReward. **All data and code will be publicly after the paper is accepted.**

1 INTRODUCTION

Spoken dialogue models (Ji et al., 2024a) represent one of the most direct methods of human-computer interaction, evolving from traditional voice assistants such as Alexa, Siri, and Google Assistant to the latest intelligent dialogue systems, such as GPT-4o-audio¹. Early spoken dialogue models (SpeechTeam, 2024) were typically comprised of automatic speech recognition (ASR) (Cao et al., 2012; Hsu et al., 2021), large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Bai et al., 2023), and text-to-speech (TTS) (Ren et al., 2020; Kong et al., 2023; Shen et al., 2023) components, which facilitated dialogue through a text-based cascading process that bridged speech input and output. To reduce latency and mitigate the cumulative errors of cascading systems, understand and generate non-textual paralinguistic information (e.g., emotion and sound) for real-time interaction, end-to-end spoken dialogue models (Xie & Wu, 2024a; Fang et al., 2024; Xie & Wu, 2024b; Wang et al., 2024b; Chen et al., 2024a; 2025b) such as GPT-4o-audio and Moshi (Défossez et al., 2024) have attracted considerable attention in both academic research and industry. By leveraging vast amounts of speech data (He et al., 2025; Kahn et al., 2020) for multi-stage training, these end-to-end spoken dialogue models (Chen et al., 2025b; Défossez et al., 2024; Xu et al., 2025) not only retain the intelligence quotient of text-based language models but also exhibit **emotional quotient**, they are capable of handling diverse speech-related dialogue scenarios, such as role-playing, emotional dialogue, paralinguistic understanding, and paralinguistic controllable generation.

End-to-end spoken dialogue models (Chen et al., 2025b; Défossez et al., 2024) have demonstrated remarkable conversational abilities, validating the potential of the speech modality in advancing toward Artificial General Intelligence. Thus, assessing the intelligence quotient and emotional

¹<https://openai.com/index/chatgpt-can-now-see-hear-and-speak/>

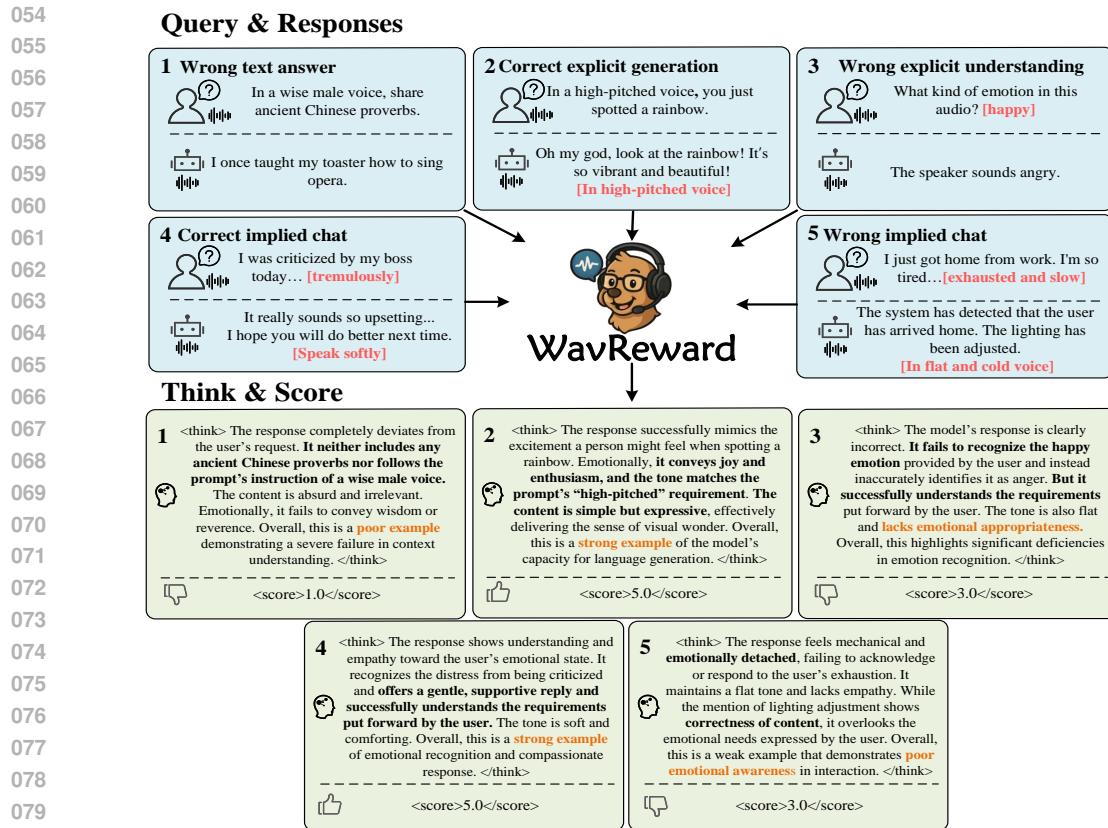


Figure 1: WavReward can be applied to evaluate various dialogue scenarios, including both explicit instruction and implicit dialogues. It directly accepts speech-to-speech dialogue as input, evaluating the conversational coherence at both the textual and acoustic levels, and providing the final score.

quotient of end-to-end spoken dialogue models is a key challenge. This evaluation task involves three main challenges: 1) **the understanding and generation of substantial non-textual acoustic information (e.g., emotion, accent, pitch and sound) often present in dialogue scenarios**, which is currently not well-supported by any dedicated evaluation datasets of dialogue benchmarks (Chen et al., 2024b; Ao et al., 2024; Cheng et al., 2025; Yang et al., 2024). 2) **Dialogue is inherently multi-dimensional and multi-label**. For example, responses from spoken dialogue models may vary in speech rate either faster or slower, without a singular correct answer during casual conversations. 3) **Non-textual information in dialogue is often implicit**. For instance, when user return home late exhausted after work, an intelligent spoken dialogue model should be able to recognize the fatigue from user's voice and respond with a gentle, empathetic tone. Current benchmarks for evaluating spoken dialogue models, such as VoiceBench (Chen et al., 2024b), AirBench (Yang et al., 2024), VoxDialogue (Cheng et al., 2025) and SD-Eval (Ao et al., 2024) primarily focus on the accuracy of textual information in dialogue, similar to using models like ChatGPT to assess the coherence of conversational text. Evaluation of non-textual information is limited to fixed tasks, such as emotion classification, gender recognition, and audio event detection, which assess the model's **understanding of the acoustic information** in the dialogue.

To address the gap in evaluating end-to-end spoken dialogue models, we propose the WavReward model and the ChatReward-30K dataset. WavReward is a novel framework where audio language models (Chu et al., 2024; Xu et al., 2025) (speech-to-text) can serve as evaluators for end-to-end spoken dialogue models (Xie & Wu, 2024a; Défossé et al., 2024). As shown in Figure 1, WavReward can directly assess the capabilities of spoken dialogue models in both textual and non-textual acoustic dimensions. We demonstrate that fine-tuning audio language models with multiple examples via reinforcement learning (Rafailov et al., 2023; Schulman et al., 2017; Shao et al., 2024; Li et al., 2025) enables WavReward to provide reasonable scores across various scenarios. Furthermore,

incorporating chain-of-thought reasoning (Wei et al., 2022; Xie et al., 2025; Ma et al., 2025) into the evaluation process of audio language models significantly aids WavReward in generating more accurate scores. To augment the discriminative capability of WavReward across diverse dialogue contexts, WavReward includes the nonlinear reward mechanism and the positive-negative multi-sample sampling mechanism in the post-training reinforcement learning phase. Additionally, we construct the ChatReward-30K dataset to train WavReward and evaluate the performance of various evaluators (Tang et al., 2023; Chu et al., 2024). ChatReward-30K not only contains standard text-centric dialogue examples but also incorporates diverse acoustic information² from end-to-end dialogues. Each speech-to-speech dialogue sample in ChatReward-30K includes multiple responses to the same query. To our knowledge, this is the first dataset capable of comprehensively evaluating both the acoustic capabilities and the implicit conversational abilities of end-to-end spoken dialogue systems. Compared to the original audio language models and the supervised finetuned evaluators, WavReward significantly outperforms these baselines in both in-domain and out-domain scenarios. Furthermore, in human subjective A/B tests, WavReward outperforms direct inference with Qwen2.5-Omni (Xu et al., 2025) by the margin of 83%. In summary, our contributions are as follows:

- WavReward is the first reward model specifically designed for end-to-end spoken dialogue models. It accepts **speech-to-speech dialogues** as input and provides corresponding scores for a wide range of dialogue scenarios. WavReward demonstrates that **audio language models can serve as effective evaluators for spoken dialogue models**.
- WavReward further enhances the evaluative capability through the reasoning-based assessment process, nonlinear reward feedback, and the positive-negative diverse sample sampling mechanism during the reinforcement learning post training.
- We introduce ChatReward-30K, the first dataset designed for training and evaluating audio reward models. Compared to previous datasets, ChatReward-30K enables **comprehensive evaluation of both the acoustic information and implicit dialogue capabilities**.

2 RELATED WORK

2.1 SPOKEN DIALOGUE MODELS

Spoken dialogue models refer to large language models (Bai et al., 2023; Touvron et al., 2023) capable of engaging in conversations through both speech input and speech output. Traditional spoken dialogue models, such as AudioGPT (Huang et al., 2024) and FunAudioLLM (SpeechTeam, 2024), typically employ a three-stage cascading approach to facilitate dialogue. In this process, speech input is first transcribed into text using an automatic speech recognition model (Cao et al., 2012). The transcribed text is then processed by a text-based LLM such as ChatGPT, to generate a textual response, which is subsequently converted back into speech using a text to speech model (Du et al., 2024a;b). However, these cascaded models often suffer from issues such as high latency, cumulative errors, and an inability to process non-textual acoustic information, which limits their effectiveness. Consequently, end-to-end spoken dialogue models (Défossez et al., 2024; Zhang et al., 2023; Fang et al., 2025) have garnered significant attention in recent months. These models eliminate the need for transcription into text and directly process speech using either semantic (Cao et al., 2012; Hsu et al., 2021; Du et al., 2024a) or acoustic representations (Défossez et al., 2022; Ji et al., 2024b) for understanding and generation. For instance, LLaMA-Omni (Fang et al., 2024) utilizes a Whisper encoder combined with an adapter to process speech, and generates corresponding Hubert tokens based on the LLM, which are then upsampled to produce speech. IntrinsicVoice (Zhang et al., 2024b) introduces GroupFormer to optimize the structure of Hubert token generation, while Mini-Omni1/2 (Xie & Wu, 2024a;b) employs a delay-pattern approach (Copet et al., 2023) to directly generate the corresponding SNAC (Siuzdak et al., 2024) acoustic tokens. Other similar end-to-end spoken dialogue models include SLAM-Omni (Chen et al., 2024a), Freeze-Omni (Wang et al., 2024b), VITA1.5 (Fu et al., 2025), OpenOmni (Luo et al., 2025). Concurrently, numerous end-to-end spoken dialogue models such as GLM-4-Voice (Zeng et al., 2024), Moshi (Défossez et al., 2024), Qwen2.5-Omni (Xu et al., 2025), MinMo (Chen et al., 2025b), Kimi-Audio (Ding et al., 2025), Step-Audio2 (Wu et al., 2025) have demonstrated significant intelligence quotient and emotional quotient emerging from large-scale speech training datasets. Although these spoken dialogue models

²gender, age, language, accent, pitch, speed, volume, emotion and audio

162 exhibit strong conversational performance, **there remains a substantial gap in the assessment of**
 163 **both intelligence quotient and emotional quotient. In this paper, we present the first reward**
 164 **model WavReward specifically designed for the evaluation of spoken dialogue models.**

166 2.2 BENCHMARK FOR SPOKEN DIALOGUE MODELS

168 Early benchmarks related to spoken language, such as AudioBench (Wang et al., 2024a), SU-
 169 PERB (Yang et al., 2021), and MMAU (Sakshi et al., 2024), primarily focus on evaluating fixed tasks
 170 such as emotion recognition, and are not well-suited for assessing a model’s conversational abilities.
 171 With the rapid development of end-to-end spoken dialogue models (Défossez et al., 2024; Chen
 172 et al., 2025b), numerous new benchmarks have emerged to evaluate these spoken dialogue models.
 173 AirBench (Yang et al., 2024) leverages ChatGPT to evaluate the differences between generated text
 174 of speech-to-text dialogue models (Chu et al., 2024) and ground truth text at the text level. Spoken-
 175 WOZ (Si et al., 2023) transcribes the audio of the conversation into text via ASR models, and then
 176 uses metrics like BLEU to assess the performance of text-based language models. VoiceBench (Chen
 177 et al., 2024b) transcribes the dialogue audio from speech-to-speech dialogue models (Défossez et al.,
 178 2024; Xie & Wu, 2024a) into text and utilizes ChatGPT to evaluate the models’ general knowledge
 179 and instruction-following ability. VoxDialogue (Cheng et al., 2025) and SD-Eval (Ao et al., 2024)
 180 further focus on the ability of speech-to-text dialogue models (Chu et al., 2023; 2024) to understand
 181 paralinguistic information, using BLEU and other text-based metrics in conjunction with ChatGPT
 182 to assess whether speech-to-text dialogue models (Tang et al., 2023) can generate different textual
 183 responses based on varying acoustic information from different users.

184 **However, the aforementioned benchmarks still rely on transcribing audio into text for evaluation**
 185 **and cannot directly assess the acoustic coherence in speech-to-speech dialogues.** For example,
 186 when a user returns home tired after a long day, and the spoken dialogue model responds with a
 187 cheerful tone mocking the user, ”mocking with a cheerful tone” cannot be directly evaluated by
 188 text-based models such as ChatGPT. **WavReward is the first evaluation model that accepts speech**
 189 **input and can directly assess the acoustic dialogue between the user and the spoken dialogue**
 190 **model. It can handle a diverse range of acoustic information, multi-label scenarios, and implicit**
 191 **dialogues scenarios, directly evaluating the realism of the acoustic interactions.** In addition,
 192 ChatReward-30K is the first comprehensive dataset **supporting the evaluation of paralinguistic**
 193 **understanding and generation, as well as implicit dialogue scenarios.**

194 2.3 AUDIO LANGUAGE MODELS AS EVALUATORS

195 It is worth noting that some recent work has attempted to use audio language models as evaluators.
 196 For instance, QualiSpeech (Wang et al., 2025) proposed a dataset for speech quality scoring (including
 197 the scoring process) and fine-tuned SALMONN using this data. However, WavReward’s focus is
 198 on the dialogue scenario (semantic and acoustic) for spoken dialogue models, rather than mere
 199 speech quality assessment. Furthermore, WavReward is not a simple Supervised Fine-Tuning (SFT)
 200 approach; its overall framework is based on a more efficient Reinforcement Learning (RL) method,
 201 and it introduces the deep reasoning process (constrained by a separate think component), the
 202 nonlinear reward mechanism, and the multi-sample feedback mechanism. Additionally, recent
 203 work (Chen et al., 2025a) has also attempted to use audio language models as MOS evaluators,
 204 proposing the ALLD method (which aligns the generated sequence of the audio LLM to a text LLM
 205 response and uses DPO fine-tuning). WavReward’s training process differs significantly from the
 206 proposed ALLD method. Moreover, WavReward emphasizes performance in dialogue scenarios
 207 (both semantic and acoustic tasks), focuses on out-of-domain generalization, and is committed to
 208 open-sourcing the relevant code and data to advance the community.

209 3 METHOD

212 3.1 WAVREWARD

214 As shown in Figure 2, WavReward is an audio language model (Xu et al., 2025) that undergoes
 215 post-training through reinforcement learning (Rafailov et al., 2023; Schulman et al., 2017; Shao et al.,
 2024; Zhang et al., 2024a). In contrast to text-based large language models (LLMs) such as ChatGPT,

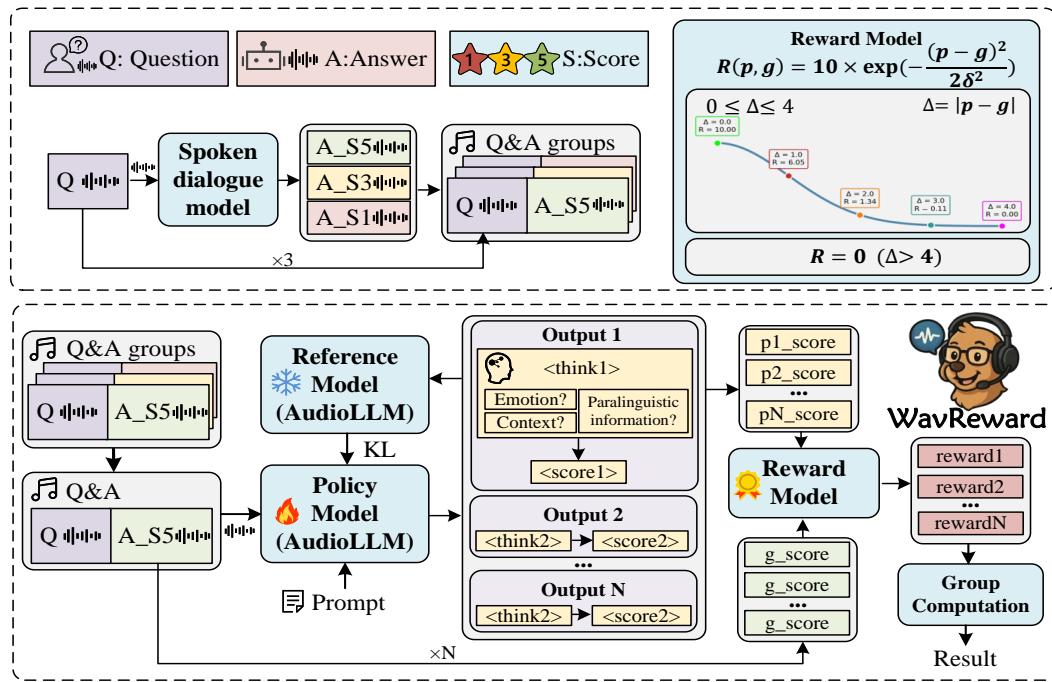


Figure 2: The overall structure of WavReward. WavReward directly accepts speech-to-speech dialogue audio for evaluation. The architecture is based on the audio language model and is trained using reinforcement learning on group samples. Additionally, WavReward incorporates the Chain-of-Thought reasoning process (the center of the diagram), along with positive and negative multi-sample sampling in the top-left corner, and the nonlinear reward mechanism in the top-right corner.

audio language models (Chu et al., 2024; Xu et al., 2025) can directly accept speech-to-speech dialogue as input, enabling a comprehensive evaluation of the coherence of both textual content and acoustic information in explicit and implicit dialogue scenarios. Similar to the conclusions drawn from reinforcement learning in text-based LLMs (Shao et al., 2024), we find that fine-tuning with a small number of precise dialogue scoring samples via reinforcement learning significantly outperforms direct supervised fine-tuning. The relevant ablation results are presented in Table 1.

In the reward models of text-based LLMs, the primary task is to assess whether the content of question-answer pairs is reasonable, typically by sampling and providing feedback based on a single QA sample. However, in the speech dialogue, both the input and output contain abundant content and complex acoustic information. Single-sample QA feedback is insufficient for the reward model to effectively compare differences at various levels (content and acoustic). Therefore, **we design a positive-negative multi-sample feedback mechanism in WavReward**, as shown in the top-left corner of Figure 2. For each dialogue scenario, we construct multiple answer-score pairs $\{a_j, s_j\}$ at different levels for the given question q . The first level s_1 represents the content of answer that is deemed unreasonable and receives the lowest score. The second level s_2 evaluates the acoustic mismatch (e.g., when the user requests the spoken dialogue model to introduce U.S. history in a happy tone, but the model responds in an angry tone). Only when both the content and the acoustic information are correct will the dialogue receive the highest score s_3 . Therefore, the input x and target y for WavReward during the training process are as follows:

$$x = \text{concat}(q, a_j), \quad y = s_j, \quad 1 \leq s_j \leq 5, \quad j \in \{1, 2, 3\} \quad (1)$$

Upon receiving the speech input x , WavReward initializes two policy models W_θ and W'_θ with identical structures. Both W_θ and W'_θ are speech-to-text audio language models (Xu et al., 2025), where W'_θ serves as the old policy model with frozen weights and the weights of the current training policy model W_θ remain updatable. Following the approach of DeepSeekMath (GRPO) (Shao et al., 2024), we employ the Kullback-Leibler divergence loss to directly constrain the relationship between

270 the reference policy model W_θ^{ref} and the current training policy model W_θ during the early stages
 271 of training. Notably, the KL divergence loss $\mathcal{L}_{KL}(W_\theta, W_\theta^{ref})$ is not incorporated into the reward
 272 process of WavReward. The formulation is expressed as follows:
 273

$$274 \mathcal{L}_{KL}(W_\theta, W_\theta') = \frac{W_\theta^{ref}(o_{i,t}|x, t_{prompt}, o_{i,<t})}{W_\theta(o_{i,t}|x, t_{prompt}, o_{i,<t})} - \log \frac{W_\theta^{ref}(o_{i,t}|x, t_{prompt}, o_{i,<t})}{W_\theta(o_{i,t}|x, t_{prompt}, o_{i,<t})} - 1 \quad (2)$$

277 where t_{prompt} represents the text prompt for the policy model with specific examples provided in Ap-
 278 pendix E, t denotes the number of tokens, o_i refers to the set of N candidate outputs $\{o_1, o_2, \dots, o_N\}$
 279 sampled by WavReward from the old policy model W_θ' for each input x . It is important to note that
 280 each o_i in WavReward is not solely a score for evaluation. **We further incorporate a deep reasoning**
 281 **process by calculating the think format reward R_f (returning 5 or 0 based on compliance),** which implicitly
 282 **enables WavReward to analyze whether the responses a_i of spoken dialogue**
 283 **models address the input question q effectively from both content and acoustic perspectives,** and
 284 subsequently assign a final score p . WavReward computes the candidate rewards $\{r_1, r_2, \dots, r_N\}$ for
 285 N candidate outputs by comparing the N candidate scores $\{p_1, p_2, \dots, p_N\}$ with the ground truth
 286 score g using the accuracy reward R_a . Considering the discrepancy between the acoustic and content
 287 information in speech dialogues (the challenge of accurately perceiving acoustic information and
 288 providing responses with appropriate acoustic features as compared to content accuracy), **we design**
 289 **a nonlinear accuracy reward R_a , as illustrated in the upper-right corner of Figure 2. When the**
 290 **difference between candidate score p and ground score g increases, the reward R_a decreases**
 291 **exponentially, encouraging WavReward to provide higher accuracy rewards to spoken dialogue**
 292 **models that exhibit both cognitive intelligence quotient and emotional quotient.** The explicit
 293 formulation of R_a is as follows:
 294

$$293 R_a(p, q) = \begin{cases} 10 \cdot \exp\left(-\frac{(p-g)^2}{2\sigma^2}\right) & 0 \leq |p-g| \leq 4 \\ 0 & |p-g| > 4 \end{cases} \quad (3)$$

296 After obtaining N candidate accuracy rewards $\{r_1, r_2, \dots, r_N\}$ through R_a , WavReward normalizes
 297 these accuracy rewards r_i using the mean and standard deviation to derive the corresponding A_i :
 298

$$299 A_i = \frac{r_i - \frac{1}{N} \sum_{i=1}^N r_i}{\sqrt{\frac{1}{N} \sum_{i=1}^N (r_i - \frac{1}{N} \sum_{i=1}^N r_i)^2}} \quad (4)$$

300 where A_i represents the advantage of the candidate output score p_i relative to other sampled output.
 301 Following Guo et al. (2025); Liu et al. (2024a;b); Shao et al. (2024), WavReward encourages the
 302 model to generate responses with higher advantages within the group N by updating the policy model
 303 W_θ using the following objective $\mathcal{J}_{WavReward}(\theta)$, where ϵ and β are hyper-parameters:
 304

$$305 \mathcal{J}_{WavReward}(\theta) = \mathbb{E}[x \sim P(X), \{o_i\}_{i=1}^N \sim W_\theta'(O|x)] \\ 306 \quad \frac{1}{N} \sum_{i=1}^N \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left\{ \min \left[\frac{W_\theta(o_{i,t}|x, o_{i,<t})}{W_\theta'(o_{i,t}|x, o_{i,<t})} A_{i,t}, \text{clip} \left(\frac{W_\theta(o_{i,t}|x, o_{i,<t})}{W_\theta'(o_{i,t}|x, o_{i,<t})}, 1 - \epsilon, 1 + \epsilon \right) A_{i,t} \right] \right. \\ 307 \quad \left. - \beta \mathcal{D}_{KL}[W_\theta || W_\theta^{ref}] \right\} \quad (5)$$

3.2 CHATREWARD-30K

3.2.1 THE OVERALL OF CHATREWARD-30K

320 Given the absence of end-to-end dialogue datasets incorporating scores, we have developed and made
 321 available a dataset called ChatReward-30K, which contains spoken dialogue data across various
 322 scenarios along with corresponding scores. As shown in Table 3 in Appendix B, ChatReward-30K
 323 demonstrates comprehensive coverage compared to existing evaluation datasets (Cheng et al., 2025;
 Ao et al., 2024) for spoken dialogue models in the following key areas. **1) Evaluation from both**

content and acoustic dimensions. Unlike previous datasets (Chen et al., 2024b), ChatReward-30K evaluates dialogue performance from both content and acoustic perspectives, encompassing a wide range of paralinguistic features, including gender, age, language, accent, pitch, speed, volume, energy, emotion and audio. **2) Inclusion of both understanding and generation.** Previous datasets like VoxDialogue and SD-Eval primarily focus on the understanding component (speech-to-text) of spoken dialogue systems. In contrast, ChatReward-30K also evaluates the generation component, providing scenarios that assess how dialogue models generate speech in specific tones, such as speaking in the sad manner. **3) End-to-end implicit dialogue inclusion.** To further assess the emotional intelligence of spoken dialogue models, ChatReward-30K includes implicit dialogues across a variety of scenarios. For instance, it includes a scenario where a voice assistant offers gentle, empathetic comfort at a slow speech rate when the user is crying due to criticism from their boss. **4) Inclusion of both positive and negative examples.** To better train the WavReward model, as outlined in Equation 1, ChatReward-30K provides both positive and negative dialogue responses for the same user scenario. **5) Human expert scoring.** Each dialogue scenario in ChatReward-30K is accompanied by human expert ratings, ensuring that the scores reflect reasonable assessments of dialogue.

3.2.2 DATASET STATISTICS

ChatReward-30K consists of the total of 30K samples, each dialogue sample represents the simulated user-chatbot interaction in the form of the speech-to-speech pair. Each dialogue is rated by human experts on a scale from 1 to 5, with the duration of each dialogue audio ranging from 5 to 35 seconds. ChatReward-30K is primarily divided into four components. 15% of the ChatReward-30K focuses on the textual aspects of the conversation. Another 25% of ChatReward-30K addresses the explicit understanding of paralinguistic features such as recognizing when a child is interacting with the spoken dialogue model. The remaining 35% of ChatReward-30K pertains to the model’s generation ability of paralinguistic features such as adjusting the volume of the model’s voice upon user request. The final 25% represents implicit conversational scenarios such as the spoken dialogue model’s ability to automatically detect the user’s emotional state and respond appropriately. Detailed examples can be found in Appendix A.

3.2.3 DATASET CONSTRUCTION PROCESS

Stage1: Dialogue Text Generation. We begin by utilizing the GPT-4 (Achiam et al., 2023) to generate the text portion of the ChatReward-30K dataset through prompt engineering (Reynolds & McDonell, 2021). To ensure the diversity of the dialogue content, we dynamically embed various topics, such as *daily life, health management, education, entertainment, family relations, dietary culture, healthcare, shopping, internet usage, fitness, career development, and social interaction* during the text generation process. To generate explicit instruction-based dialogue data, we instruct the language model to generate dialogues that **contain various metalinguistic information**. For implicit dialogue data, we require the language model to annotate the generated conversation texts **with associated metalinguistic labels**. Prompt programming templates can be found in Appendix D.

Stage2: Dialogue Speech Generation. In the generation process, we carefully tailor the most suitable SOTA TTS models for each attribute. We designed customized voice dialogue synthesis pipelines for each attribute to ensure the synthesized dialogue data accurately matches the corresponding attributes: **1) Accent, Pitch, and Emotion:** we utilize GPT-4o-mini-TTS to generate conditionally based speech by adjusting stylistic instructions. This tool focuses on speech techniques such as tongue-twisting, pauses, breathing, and whispering to accurately produce accents and emotions. Based on ten built-in speaker timbres, the model is instructed to synthesize speech using the following command format: Repeat this sentence with the <emotion>/<accent>/<pitch> of <example>. **2) Age:** we randomly selected 1000 speaker (Hechmi et al., 2021) samples from four age groups as reference voices. To minimize textual content discrepancies across different cloned voices, we selected cloned samples with different tones but identical dialogue content for four distinct age groups and used Step-Audio-TTS-3B (Huang et al., 2025) for voice cloning. **3) Speed, Volume, Gender, and Language:** we use CosyVoice2 (Du et al., 2024b) to synthesize speech with specified voice characteristics. The volume and speech rate are adjusted using correlation coefficients to achieve the desired attributes. **4) Audio:** we combine instruct speech clips with audio clips together. Specifically, we selected 39 categories from the AudioCaps (Kim et al., 2019) that include various audio events. After synthesizing all speech segments, we concatenate the simulated user speech segments with the simulated model response speech segments, ensuring a 1-second silence gap between them.

378 **Step3: Data Filtering and Scoring.** We used the Whisper-Large-V3 (Radford et al., 2023) model to
 379 filter out all sentences with the WER greater than 5%. Given the large volume of emotional speech
 380 and the ambiguity in category boundaries, we utilized the Emotion2Vec (Ma et al., 2023) model to
 381 filter out audio with inaccurate emotional labels and removed synthetic speech with scores below
 382 0.5. To further improve the quality of the ChatReward-30K dataset, we invited five human experts to
 383 manually verify and adjust the text, speech, and scoring results of the dataset.

384 4 EXPERIMENTS

385 4.1 EXPERIMENT SETUP

386 **Datasets.** Since there is currently no dataset available for training and evaluating audio reward model,
 387 we use ChatReward-30K-train as the training set for WavReward and evaluate the models using
 388 the ChatReward-30K-test (4000 samples) across three aspects: **content, explicit paralinguistic
 389 understanding and generation (with 9 distinct paralinguistic features), and implicit dialogue.**
 390 Additionally, we record 120 real human-machine dialogues between users and LLaMA-Omni (Fang
 391 et al., 2024) (overall biased negative samples) and Kimi-Audio (Ding et al., 2025) (overall biased
 392 positive samples), named the RealDialogue **to compare the performance of different evaluators
 393 in more realistic out-of-domain settings.** In the RealDialogue dataset, we observed that certain
 394 dialogues have extended durations, and there are instances of poor audio quality, such as distorted
 395 electronic sounds. **These factors present a more rigorous challenge for evaluating the model's
 396 performance in unseen, real-world scenarios.**

397 **Baselines.** Similar to using ChatGPT for assessing the coherence of text-based dialogues, we employ
 398 various audio language models (Chu et al., 2024) (speech-to-text) as baseline evaluators to score
 399 speech-to-speech dialogues. The specific audio language models include Qwen-Audio (Chu et al.,
 400 2023), SALMONN (Tang et al., 2023), Audio Flamingo2 (Ghosh et al., 2025), Qwen2-Audio (Chu
 401 et al., 2024), Qwen2.5-Omni (Xu et al., 2025) and GPT4o-audio. Furthermore, we enhance two
 402 new versions by fine-tuning Qwen2.5-Omni using both full-parameter and LoRA (Hu et al., 2022)
 403 fine-tuning methods on the WavReward-30K-train with ms-swift (Zhao et al., 2025). Training details
 404 and Metrics are in Appendix F

405 4.2 MAIN RESULTS

406 Table 1: The **accuracy** of scoring by WavReward and various baselines on the ChatReward-test
 407 and RealDialogue datasets is evaluated. Specifically, the ChatReward-test dataset is assessed across
 408 three main dimensions: content scoring, acoustic instruction dialogue scoring (which includes both
 409 understanding and generation), and implicit dialogue scoring. The acoustic information which are
 410 categorized as follows: age, accent (acc.), gender (gen.), language (lan.), emotion (emo.), volume
 411 (vol.), speech rate (spe.), pitch (pit.), and audio (aud.).

412 Model	Content	413 Acoustic Instruction							Implicit	RealDialogue		
		age.	acc.	lan.	gen.	emo.	pit.	spe.	vol.	aud.		
I. Baseline audio language models direct inference with prompt												
Qwen2-Audio	24.7	32.4	24.5	36.8	27.6	33.7	32.3	40.5	41.4	50.8	28.9	42.5
Qwen-Audio	43.4	35.5	23.0	33.6	14.9	34.2	27.7	35.4	39.0	32.2	35.2	40.8
SALMONN	13.5	33.9	34.8	28.4	33.9	36.4	25.4	30.3	28.0	51.3	20.3	19.2
Audio Flamingo2	22.7	20.8	25.4	16.8	18.8	18.6	17.8	21.5	21.9	20.6	22.6	21.6
GPT4o-audio	69.4	92.0	57.7	100	82.1	58.5	88.7	94.5	88.1	83.3	53.6	57.6
Qwen2.5-Omni	54.6	56.3	50.0	48.4	54.1	57.8	66.1	34.1	53.6	64.9	48.5	51.7
II. Baseline audio language models after supervised fine-tuning												
Qwen2.5-Omni w/ Full-param tuning	67.1	81.9	69.6	98.9	83.8	66.5	76.1	84.8	86.6	86.7	55.8	58.3
Qwen2.5-Omni w/ LoRA	63.8	81.2	43.6	100	82.1	49.1	74.1	83.6	85.1	85.7	54.2	56.7
III. Different ablation versions of WavReward												
WavReward w/o cot think	84.2	80.3	77.9	98.9	86.9	85.4	80.7	86.0	90.2	88.6	61.4	59.1
WavReward w/o multi samples	85.3	85.7	69.6	98.9	88.6	90.0	82.1	88.6	85.4	90.2	61.9	72.5
WavReward w/o nonlinear reward	88.6	92.2	80.9	100	89.8	90.5	83.8	87.3	92.7	85.7	66.6	70.8
WavReward (ours)	90.8	96.9	87.7	100	95.5	97.5	89.1	91.1	97.6	97.0	74.3	80.8

428 We evaluated the generation and ground-truth score accuracy of WavReward and Baseline models
 429 on the ChatReward-30K-test as well as the real out-of-domain RealDialogue dataset. The Baseline
 430 is divided into two categories: one consists of direct inference from audio language models using
 431 text prompt templates consistent with WavReward, and the other is the evaluator fine-tuned using
 the ChatReward-30K-train. The specific experimental results are presented in Table 1. We can draw

the following conclusions: **1) WavReward significantly outperforms the best audio language models GPT-4o-audio on all metrics.** It achieved improvements of 21.4, 20.7, and 39.0 points in the content scoring, implicit dialogue scoring, and emotion-instructed dialogue scoring, respectively. Furthermore, it outperformed the direct inference model Qwen2.5-Omni by an average factor of two. This indicates that audio language models when optimized using reinforcement learning, can effectively serve as evaluators for spoken dialogue models. Moreover, RL significantly improves performance compared to direct inference. **2) We found that the RL-based WavReward surpassed the LoRA fine-tuned Qwen2.5-Omni.** This may be due to the direct scoring approach of supervised fine-tuning, which is overly simplistic and struggles to capture the complex scoring logic needed for various evaluation scenarios. **3) We observed a substantial performance gap between different audio language models during direct inference,** highlighting the need for future work to develop and open-source more robust foundational audio language models. **4) On the RealDialogue dataset, WavReward achieved a score accuracy of 80%,** indicating that it exhibits strong robustness and can provide reliable evaluations in real-world, complex scenarios.

4.3 A/B TEST ON REALDIALOGUE

Given that evaluating the responses of end-to-end spoken dialogue models in implicit dialogue settings constitutes multi-label scenario and the responses of dialogue models should ideally align with human preferences, we have incorporated a subjective A/B testing approach. Specifically, five human experts were tasked with evaluating data from RealDialogue and determining which of two distinct discriminators provided the most reasonable assessment. We conducted pairwise comparisons between three baseline: Qwen2.5-Omni w/ direct inference, GPT-4o-audio w/ direct inference, and Qwen2.5-Omni w/ LoRA. The objective was to compare the different scoring outcomes of WavReward and the baseline model on the same sample, with the results presented in Table 2. Our findings indicate that WavReward outperformed Qwen2.5-Omni w/ direct inference in the subjective A/B test by a margin of 83%, and also achieved a 77% success rate when compared to GPT-4o-audio. These results suggest that WavReward is more closely aligned with human preferences, demonstrating superior performance across a wide range of real-world dialogue scenarios.

Table 2: Subjective A/B testing of WavReward and different evaluators on the RealDialogue dataset.

Models	WavReward Win ↑	WavReward Lose ↓
Qwen2.5-Omni w/ direct inference	83	17
Qwen2.5-Omni w/ LoRA	79	21
GPT-4o-audio w/ direct inference	77	23

4.4 ABLATION EXPERIMENTS

w/o cot think. We removed the chain-of-thought (CoT) reasoning from WavReward and referred to this version as WavReward w/o CoT think. Specifically, WavReward in this configuration directly generates scores without the additional CoT-based format reward (loss) and the corresponding t_{prompt} was also modified as shown in Appendix E. All other training and model parameters remain unchanged. As shown in Table 1, we found that CoT reasoning improved accuracy by approximately 10% across all evaluation categories. In out-of-domain scenarios, the improvement was as high as 21.7%. This suggests that reasoning capabilities are beneficial for the evaluator model.

w/o nonlinear reward. We replaced the reward function in Equation 3 with a classic linear 0/1 reward function (Liu et al., 2024a;b). Specifically, the WavReward w/o nonlinear reward version receives the reward of 5 when the generated score matches the ground truth score, and no reward is given when there is a mismatch during training. All other training and model parameters are consistent with the previous configuration. By comparing the versions of WavReward and WavReward w/o nonlinear in Table 1, we observe that the non-linear reward function aids WavReward in learning the differences in various levels of information in speech. For instance, when there is a large discrepancy between the ground truth score and the predicted score (e.g., a high emotional intelligence response receives a low score of 1 from WavReward), a substantial penalty is applied which helps the model correct such errors.

w/o multi samples. In classical reinforcement learning algorithms (Schulman et al., 2017), single-sample sampling can be used to calculate rewards based on the difference between the ground truth

486 score and the generated score. In the WavReward w/o multi-samples version, for each question
 487 only one randomly selected answer is used for evaluation. We found that performance dropped
 488 when multi-sample evaluation was removed. This decline can be attributed to the loss of the ability
 489 to simulate a range of reasonable and unreasonable responses to the same question, which assists
 490 WavReward in distinguishing between different scoring criteria and their variations.
 491

492 5 CONCLUSION

493
 494 In this work, we present WavReward, the first evaluation framework capable of supporting speech-
 495 to-speech input and providing comprehensive assessments of spoken dialogue models at both the
 496 text and acoustic levels. WavReward leverages reinforcement learning to turn audio language models
 497 into evaluators and incorporate the chain-of-thought reasoning process, nonlinear rewards, and
 498 both positive and negative sample feedback to enhance the validity of the evaluation. In a variety of
 499 in-domain and out-of-domain explicit and implicit evaluation scenarios, WavReward outperforms
 500 previous state-of-the-art evaluators. In the future, we aim to scale up audio language models (e.g.,
 501 7B-70B) to further enhance WavReward’s capabilities.

502 503 ETHICAL CONSIDERATIONS

504
 505 WavReward was developed with rigorous attention to ethical and responsible research practices.
 506 All speech data utilized in this work, including the underlying data for the ChatReward-30K and
 507 RealDialogue benchmarks, are either synthetic or no personally identifiable information (PII) is
 508 included. To further protect speaker privacy, the data were processed to ensure anonymity and are
 509 used exclusively for academic research purposes.

510 We acknowledge that spoken dialogue corpora, even synthetic ones, may inadvertently reflect existing
 511 social, cultural, or gender biases, which could be inherited by models trained or evaluated using them.
 512 While WavReward is intended to advance research in robust spoken dialogue evaluation, it should not
 513 be regarded as bias-free. We strongly encourage future researchers to critically examine and mitigate
 514 any potential harms or biases that may arise from evaluation on this benchmark or the use of the
 515 model.

516 Finally, as large language and speech models become increasingly powerful, they also present risks
 517 of misuse, such as generating misleading content or enabling invasive surveillance. Therefore,
 518 WavReward is released solely for academic and responsible industrial research, with the overarching
 519 goal of fostering dialogue systems that are beneficial, transparent, and aligned with human values.

520 521 REFERENCES

522 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 523 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 524 *arXiv preprint arXiv:2303.08774*, 2023.

525 Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou
 526 Li, and Zhizheng Wu. Sd-eval: A benchmark dataset for spoken dialogue understanding beyond
 527 words. *arXiv preprint arXiv:2406.13340*, 2024.

528 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 529 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

530 Nan Cao, Yu-Ru Lin, Xiaohua Sun, David Lazer, Shixia Liu, and Huamin Qu. Whisper: Tracing the
 531 spatiotemporal process of information diffusion in real time. *IEEE transactions on visualization
 532 and computer graphics*, 18(12):2649–2658, 2012.

533 Chen Chen, Yuchen Hu, Siyin Wang, Helin Wang, Zhehuai Chen, Chao Zhang, Chao-Han Huck Yang,
 534 and Eng Siong Chng. Audio large language models can be descriptive speech quality evaluators.
 535 *arXiv preprint arXiv:2501.17202*, 2025a.

536 Qian Chen, Yafeng Chen, Yanni Chen, Mengzhe Chen, Yingda Chen, Chong Deng, Zhihao Du, Ruize
 537 Gao, Changfeng Gao, Zhifu Gao, et al. Minmo: A multimodal large language model for seamless
 538 voice interaction. *arXiv preprint arXiv:2501.06282*, 2025b.

540 Wenxi Chen, Ziyang Ma, Ruiqi Yan, Yuzhe Liang, Xiquan Li, Ruiyang Xu, Zhihang Niu, Yanqiao
 541 Zhu, Yifan Yang, Zhanxun Liu, et al. Slam-omni: Timbre-controllable voice interaction system
 542 with single-stage training. *arXiv preprint arXiv:2412.15649*, 2024a.

543

544 Yiming Chen, Xianghu Yue, Chen Zhang, Xiaoxue Gao, Robby T Tan, and Haizhou Li. Voicebench:
 545 Benchmarking llm-based voice assistants. *arXiv preprint arXiv:2410.17196*, 2024b.

546

547 Xize Cheng, Ruofan Hu, Xiaoda Yang, Jingyu Lu, Dongjie Fu, Zehan Wang, Shengpeng Ji, Rongjie
 548 Huang, Boyang Zhang, Tao Jin, et al. Voxdialogue: Can spoken dialogue systems understand infor-
 549 mation beyond words? In *The Thirteenth International Conference on Learning Representations*,
 550 2025.

551

552 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
 553 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
 554 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

555

556 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 557 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
 558 2024.

559

560 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 561 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 562 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 563 *arXiv preprint arXiv:2507.06261*, 2025.

564

565 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
 566 Alexandre Défossez. Simple and controllable music generation. *Advances in Neural Information
 567 Processing Systems*, 36:47704–47720, 2023.

568

569 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
 570 compression. *arXiv preprint arXiv:2210.13438*, 2022.

571

572 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
 573 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue.
 574 *arXiv preprint arXiv:2410.00037*, 2024.

575

576 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
 577 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

578

579 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng,
 580 Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
 581 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024a.

582

583 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 584 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
 585 language models. *arXiv preprint arXiv:2412.10117*, 2024b.

586

587 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
 588 Seamless speech interaction with large language models. *arXiv preprint arXiv:2409.06666*, 2024.

589

590 Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, and Yang Feng. Llama-omni2: Llm-
 591 based real-time spoken chatbot with autoregressive streaming speech synthesis. *arXiv preprint
 592 arXiv:2505.02625*, 2025.

593

594 Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
 595 Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
 596 interaction. *arXiv preprint arXiv:2501.01957*, 2025.

597

598 Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jaehyeon Kim, Wei Ping, Rafael Valle, Dinesh
 599 Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language model with long-audio
 600 understanding and expert reasoning abilities. *arXiv preprint arXiv:2503.03983*, 2025.

594 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 595 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 596 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

597

598 Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
 599 Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: A large-scale, extensive, multilingual, and diverse
 600 dataset for speech generation. *arXiv preprint arXiv:2501.15907*, 2025.

601 Khaled Hechmi, Trung Ngo Trong, Ville Hautamäki, and Tomi Kinnunen. Voxceleb enrichment
 602 for age and gender recognition. In *2021 IEEE Automatic Speech Recognition and Understanding
 603 Workshop (ASRU)*, pp. 687–693. IEEE, 2021.

604

605 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,
 606 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 607 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,
 608 29:3451–3460, 2021.

609 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 610 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

611

612 Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen,
 613 Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent
 614 speech interaction. *arXiv preprint arXiv:2502.11946*, 2025.

615 Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
 616 Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al. Audiogpt: Understanding and generating speech,
 617 music, sound, and talking head. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 618 volume 38, pp. 23802–23804, 2024.

619

620 Shengpeng Ji, Yifu Chen, Minghui Fang, Jialong Zuo, Jingyu Lu, Hanting Wang, Ziyue Jiang, Long
 621 Zhou, Shujie Liu, Xize Cheng, et al. Wavchat: A survey of spoken dialogue models. *arXiv preprint
 622 arXiv:2411.13577*, 2024a.

623 Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize
 624 Cheng, Zehan Wang, Ruiqi Li, et al. Wavtokenizer: an efficient acoustic discrete codec tokenizer
 625 for audio language modeling. *arXiv preprint arXiv:2408.16532*, 2024b.

626

627 Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
 628 Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light:
 629 A benchmark for asr with limited or no supervision. In *ICASSP 2020-2020 IEEE International
 630 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7669–7673. IEEE, 2020.

631 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
 632 captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American
 633 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
 634 1 (Long and Short Papers)*, pp. 119–132, 2019.

635 Jungil Kong, Jihoon Park, Beomjeong Kim, Jeongmin Kim, Dohee Kong, and Sangjin Kim. Vits2:
 636 Improving quality and efficiency of single-stage text-to-speech with adversarial learning and
 637 architecture design. *arXiv preprint arXiv:2307.16430*, 2023.

638

639 Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement
 640 learning outperforms supervised fine-tuning: A case study on audio question answering. *arXiv
 641 preprint arXiv:2503.11197*, 2025.

642 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 643 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
 644 experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

645

646 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 647 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 648 arXiv:2412.19437*, 2024b.

648 Run Luo, Ting-En Lin, Haonan Zhang, Yuchuan Wu, Xiong Liu, Min Yang, Yongbin Li, Longze
 649 Chen, Jiaming Li, Lei Zhang, et al. Openomni: Large language models pivot zero-shot omnimodal
 650 alignment across language with real-time self-aware emotional speech synthesis. *arXiv preprint*
 651 *arXiv:2501.04561*, 2025.

652

653 Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, Shiliang Zhang, and Xie Chen.
 654 emotion2vec: Self-supervised pre-training for speech emotion representation. *arXiv preprint*
 655 *arXiv:2312.15185*, 2023.

656

657 Ziyang Ma, Zhuo Chen, Yuping Wang, Eng Siong Chng, and Xie Chen. Audio-cot: Exploring
 658 chain-of-thought reasoning in large audio language model. *arXiv preprint arXiv:2501.07246*,
 659 2025.

660

661 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 662 Robust speech recognition via large-scale weak supervision. In *International conference on*
 663 *machine learning*, pp. 28492–28518. PMLR, 2023.

664

665 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 666 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 667 in *Neural Information Processing Systems*, 36:53728–53741, 2023.

668

669 Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast
 670 and high-quality end-to-end text to speech. *arXiv preprint arXiv:2006.04558*, 2020.

671

672 Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
 673 the few-shot paradigm. In *Extended abstracts of the 2021 CHI conference on human factors in*
 674 *computing systems*, pp. 1–7, 2021.

675

676 S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaneswaran Selvakumar, Oriol Nieto,
 677 Ramani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
 678 understanding and reasoning benchmark. *arXiv preprint arXiv:2410.19168*, 2024.

679

680 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 681 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

682

683 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 684 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 685 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

686

687 Kai Shen, Zeqian Ju, Xu Tan, Yanqing Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang
 688 Bian. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing
 689 synthesizers. *arXiv preprint arXiv:2304.09116*, 2023.

690

691 Shuzheng Si, Wentao Ma, Haoyu Gao, Yuchuan Wu, Ting-En Lin, Yinpei Dai, Hangyu Li, Rui Yan,
 692 Fei Huang, and Yongbin Li. Spokenwoz: A large-scale speech-text benchmark for spoken task-
 693 oriented dialogue agents. *Advances in Neural Information Processing Systems*, 36:39088–39118,
 694 2023.

695

696 Hubert Siuzdak, Florian Grötschla, and Luca A Lanzendorfer. Snac: Multi-scale neural audio codec.
 697 *arXiv preprint arXiv:2410.14411*, 2024.

698

699 Tongyi SpeechTeam. Funaudiollm: Voice understanding and generation foundation models for
 700 natural interaction between humans and llms. *arXiv preprint arXiv:2407.04051*, 2024.

701

702 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
 703 Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv preprint*
 704 *arXiv:2310.13289*, 2023.

705

706 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 707 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 708 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

702 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 703 Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models.
 704 *arXiv preprint arXiv:2406.16020*, 2024a.

705 Siyin Wang, Wenyi Yu, Xianzhao Chen, Xiaohai Tian, Jun Zhang, Lu Lu, Yu Tsao, Junichi Yamagishi,
 706 Yuxuan Wang, and Chao Zhang. Qualispeech: A speech quality assessment dataset with natural
 707 language reasoning and descriptions. *arXiv preprint arXiv:2503.20290*, 2025.

708 Xiong Wang, Yangze Li, Chaoyou Fu, Lei Xie, Ke Li, Xing Sun, and Long Ma. Freeze-omni: A
 709 smart and low latency speech-to-speech dialogue model with frozen llm, 2024b. URL <https://arxiv.org/abs/2411.00774>.

710 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 711 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 712 neural information processing systems*, 35:24824–24837, 2022.

713 Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang
 714 Zhang, Jingbei Li, et al. Step-audio 2 technical report. *arXiv preprint arXiv:2507.16632*, 2025.

715 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 716 streaming. *arXiv preprint arXiv:2408.16725*, 2024a.

717 Zhifei Xie and Changqiao Wu. Mini-omni2: Towards open-source gpt-4o with vision, speech and
 718 duplex capabilities, 2024b. URL <https://arxiv.org/abs/2410.11190>.

719 Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
 720 reasoner: Improving reasoning capability in large audio language models. *arXiv preprint
 721 arXiv:2503.02318*, 2025.

722 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 723 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
 724 report. *arXiv preprint arXiv:2503.20215*, 2025.

725 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
 726 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
 727 generative comprehension. *arXiv preprint arXiv:2402.07729*, 2024.

728 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y Lin,
 729 Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
 730 universal performance benchmark. *arXiv preprint arXiv:2105.01051*, 2021.

731 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
 732 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv
 733 preprint arXiv:2412.02612*, 2024.

734 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
 735 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities.
 736 *arXiv preprint arXiv:2305.11000*, 2023.

737 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 738 Generative verifiers: Reward modeling as next-token prediction. *arXiv preprint arXiv:2408.15240*,
 739 2024a.

740 Xin Zhang, Xiang Lyu, Zhihao Du, Qian Chen, Dong Zhang, Hangrui Hu, Chaohong Tan, Tianyu
 741 Zhao, Yuxuan Wang, Bin Zhang, et al. Intrinsincvoice: Empowering llms with intrinsic real-time
 742 voice interaction abilities. *arXiv preprint arXiv:2410.08035*, 2024b.

743 Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
 744 Zhikai Wu, Baole Ai, Ang Wang, et al. Swift: a scalable lightweight infrastructure for fine-tuning.
 745 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 29733–29735,
 746 2025.

747

756 A EXAMPLES AND DETAILS IN CHATREWARD-30K
757758 Various examples from the ChatReward-30K dataset are illustrated in Figure 3.
759

Instruct Explicit Paralinguistic Understanding (emotion) <p>Speaker: Paralinguistic: Angry I've just found out that my package has been changed to a more expensive one without my consent and all my vouchers have been zeroed out, what emotion do you think I'm expressing?</p> <p>Model_A: Paralinguistic: Angry You appear to be in a Angry frame of mind. score: 5</p> <p>Model_B: Paralinguistic: Fearful I'm registering your emotion as Sad. score: 3</p> <p>Model_C: Paralinguistic: Neutral Let's go to the planetarium and experience the vastness of the universe. score: 1</p>	Instruct Paralinguistic Generation (emotion) <p>Speaker: Paralinguistic: Surprised Write a dialogue about dietary recommendations in dietary culture using a surprised tone, capturing the amazement when unconventional ingredients are revealed to have health benefits.</p> <p>Model_A: Paralinguistic: Surprised You mean seaweed? That slimy stuff in sushi? It's actually packed with iodine and antioxidants? Who would have thought! score: 5</p> <p>Model_B: Paralinguistic: Fearful Seaweed might be healthy, but the thought of eating it makes me uneasy. Why can't we stick to normal vegetables? score: 3</p> <p>Model_C: Paralinguistic: Neutral I wonder if there are any good movies on Netflix tonight. score: 1</p>
Instruct Explicit Paralinguistic Understanding (age) <p>Speaker: Paralinguistic: Children I spent all morning building a giant sandcastle at the beach with my best friend, and we even added a moat with seashells for decoration. Can you guess my age?</p> <p>Model_A: Paralinguistic: Children Your voice seems to be that of a Children. score: 5</p> <p>Model_B: Paralinguistic: Elderly The tone of your voice currently sounds like a Elderly's. score: 3</p> <p>Model_C: Paralinguistic: Elderly I wonder if there are any good movies on Netflix tonight. score: 1</p>	Instruct Paralinguistic Generation (accent) <p>Speaker: Paralinguistic: Singaporean As a hotel receptionist with a Singaporean accent, handle a room booking situation by asking if there are any current weekend stay promotions.</p> <p>Model_A: Paralinguistic: Singaporean Good evening, sir! Let me check for you if we have any promotions for this weekend's stay. One moment, please. score: 5</p> <p>Model_B: Paralinguistic: British Hello! To confirm, are there any special offers available for a weekend booking? score: 3</p> <p>Model_C: Paralinguistic: American I need to buy some snacks before heading home later. score: 1</p>
Instruct Paralinguistic Generation (language) <p>Speaker: Paralinguistic: English In British culture, what should you pay attention to when giving gifts? Please answer in English.</p> <p>Model_A: Paralinguistic: English In British culture, it's polite to wrap gifts nicely and avoid giving items like knives or sharp objects which might symbolize cutting ties. Also, remember to consider the recipient's preferences and allergies when giving food items. score: 5</p> <p>Model_B: Paralinguistic: Chinese 在英国文化中,送礼时应注意将礼物精美包装,避免赠送如刀具等尖锐物品,因为这可能象征切断关系。此外,如果是食物,记得考虑接收者的喜好和过敏情况。 score: 3</p> <p>Model_C: Paralinguistic: English My pet turtle learned to salsa dance yesterday and he is very cute. If you would like to accept the invitation to come and see my pet turtle, I would be very happy. score: 1</p>	Implicit Dialogue (speed) <p>Speaker: Paralinguistic: Fast I was driving on a country road when suddenly the car stalled. There's no one around and it's dark. Animals were screaming in the distance and I was very scared, what do I need to do to protect myself now?</p> <p>Model_A: Paralinguistic: Fast This is an emergency! First of all, tell me your exact location and I'll put you in touch with the nearest rescue organization to solve the problem as soon as possible. Secondly, please stay in your car, keep the doors and windows unlocked, never try to walk across, and remember to wait for help. score: 5</p> <p>Model_B: Paralinguistic: Slow It's okay, it's not a bad thing, you can take a break, help will come, it'll even be an exciting adventure game where you can try to survive in the wilderness. score: 3</p> <p>Model_C: Paralinguistic: Slow Don't panic! We need to act immediately. Where did you last see it? I'll help you think of a solution. score: 1</p>
Implicit Dialogue (volume) <p>Speaker: Paralinguistic: Low I was studying in the library and came across a question about the plot of Harry Potter. However, I haven't read the book. Could you give me a brief summary of the main plot?</p> <p>Model_A: Paralinguistic: Low No problem, this book is an excellent novel. It mainly tells the story of the protagonist Harry Potter's struggle against the Dark Lord during his growth. It showcases the sense of responsibility of a young hero. score: 5</p> <p>Model_B: Paralinguistic: High Since you're in the library now, I think you should get up, find the book, and read it right now. Discuss any questions you don't understand with your classmates, that will help you remember them better! score: 3</p> <p>Model_C: Paralinguistic: Low Sounds like you were treated unfairly. It can be really tough when someone takes their frustration out on you without hearing your side of things. That must feel incredibly exasperating. score: 1</p>	Implicit Dialogue (emotion) <p>Speaker: Paralinguistic: Happy The quarterly performance reviews were announced today! I came in first place! I also received a large bonus, and I can finally enjoy my hard-earned vacation, which I have been looking forward to for so long!</p> <p>Model_A: Paralinguistic: Happy Congratulations! Your hard work has paid off! I'm so proud of you! What are your plans for the upcoming holiday? Traveling is a great option; it can help you relax after being overly stressed lately! score: 5</p> <p>Model_B: Paralinguistic: Angry You actually want to relax a bit! Do you know everyone else is working hard? Even if you're number one this quarter, there are still many assessments to come. You can't let yourself go like this. You need to keep working hard! score: 3</p> <p>Model_C: Paralinguistic: Happy It sounds like you've been doing well lately. Skiing is indeed a very interesting sport, and if you're interested, I can help you learn some advanced techniques. score: 2</p>

794 Figure 3: The ChatReward-30K dataset encompasses a wide range of both explicit and implicit
795 dialogue scenarios, with responses evaluated by human experts based on model performance.
796804 Following Equation 1, each dialogue sample contains both positive and negative responses for the
805 same user input. In terms of content, the dialogues in ChatReward are more aligned with natural and
806 daily conversations rather than explicit QA pairs. As shown in Figure 7, the word cloud visualization
807 of ChatReward-30K demonstrates a prevalence of natural spoken words, such as "can't" which
808

810 is representative of daily spoken interactions. Concerning the acoustic attributes of the dialogues,
 811 most attribute categories in ChatReward-30K exhibit a relatively balanced distribution, as shown in
 812 Figure 6. Given the subtle emotional cues that humans can perceive in dialogue models, ChatReward-
 813 30K assigns particular emphasis to emotional attributes. Detailed information on each category
 814 is provided in Appendix C. The ChatReward is ultimately split into ChatReward-30K-train and
 815 ChatReward-30K-test sets with ratios of 85% and 15% respectively.

817 B COMPARISON OF DIFFERENT EVALUATION DATASET/BENCHMARK FOR 818 SPOKEN DIALOGUE MODELS

820 The comparison is shown in Table 3.

823 Table 3: Comparison of different evaluation dataset/benchmark for spoken dialogue models. **Dia.**
 824 refers to spoken **dialogue** and pure question-answering evaluation is not categorized as the dialogue
 825 (chat) task. **S2S.** denotes evaluation of **speech-to-speech** models. **Imp.** indicates **implicit** dialogues.
 826 **Neg. and Sco.** represent whether all positive and **negative** samples in the evaluation data are **scored**.
 827 Acoustic Information covers aspects like age, accent (acc.), gender (gen.), language (lan.), emotion
 828 (emo.), volume (vol.), speech rate (spe.), pitch (pit.) and audio (aud.).

Dataset/Benchmark	Dia.	S2S.	Neg.	Imp.	Sco.	Acoustic Paralinguistic Information							
						age.	acc.	lan.	gen.	emo.	pit.	spe.	vol.
SUPERB	✗	✗	✗	✗	✗	✗	✗	✗	✗	✓	✗	✗	✗
MMAU	✗	✗	✗	✗	✗	✗	✗	✗	✗	✓	✗	✗	✓
AudioBench	✗	✗	✗	✗	✗	✗	✓	✗	✗	✓	✗	✗	✓
AirBench	✓	✗	✗	✗	✗	✗	✗	✗	✗	✓	✗	✗	✓
SD-Eval	✓	✗	✗	✗	✗	✓	✓	✗	✗	✓	✗	✗	✓
VoiceBench	✓	✓	✗	✗	✗	✗	✗	✗	✗	✗	✗	✗	✗
VoxDialogue	✓	✗	✗	✓	✗	✓	✓	✓	✓	✓	✓	✓	✓
ChatReward-30K	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

838 C ACOUSTIC INFORMATION IN CHATREWARD-30K

841 The specific categories, sample quantities, and durations of all acoustic information in ChatReward-
 842 30K are detailed in Table 4.

844 Table 4: Detailed statistics of the corresponding subsets of each attribute in ChatReward-30K.

Attributes	Categories	Samples	Duration
Gender	male, female	2177	9.56Hours
Age	children, elderly, middle-aged, adolescent	2070	8.36Hours
Language	chinese, english	3583	16.23Hours
Accent	indian, canadian, british, singaporean, american, australian	1618	5.70Hours
Emotion	neutral, happy, sad, angry, surprised, disgusted, fearful	9470	52.04Hours
Pitch	low, high, normal	853	3.65Hours
Speed	slow, normal, fast	2303	10.95Hours
Volume	low, normal, high	2054	7.53Hours
Audio	laughing, crying, bee, bird, car, cat, chirping, clapping, coughing, dog, screaming duck, horse, ice, knocking, ocean, pig, police, sneezing, thunder, waterfall burbling	4081	15.38Hours
Overall		28209	129.40Hours

856 D PROMPT PROGRAMMING TEMPLATE FOR CHATREWARD-30K

860 Regarding the generation of high-quality implicit dialogue data. To ensure textual diversity, we
 861 designed various distinct dialogue scenarios (as detailed in Line 357 and Line 874 of the revised
 862 manuscript). To ensure textual accuracy, we incorporated relevant constraints and example parameters
 863 into the prompts (as detailed in Line 876 and Line 880). Furthermore, we observed that implicit
 864 dialogue scenarios are often more distinctly correlated with emotion, speaking rate, and volume.

864 Thus, we have augmented the data in these dimensions for the implicit dialogue contexts. When
 865 constructing the dialogue dataset with distinctly different scores (3 points vs. 5 points), we specified
 866 significantly disparate emotions (e.g., Happy vs. Angry), rather than subtle differences (e.g., Happy
 867 vs. Gentle), to ensure a clear distinction between the reward signals. The sample prompt template for
 868 ChatReward-30K is illustrated in the Figure 4 below:
 869

870 **Prompt Template for Implicit Dialogue Scenarios in Emotional Types**
 871
 872 Requirements:
 873 You are a professional designer of single-round conversation instructions tasked with creating single-round emotion training
 874 instructions.
 875 1. The user's input reflects the scenario '{scenario}' and implies the emotion '{emotion}', but must not directly mention
 876 emotion words (e.g., "happy", "sad", "angry", etc.).
 877 2. The model's response should naturally adapt to the implied emotion of the scenario, with a tone close to everyday
 878 communication, avoiding imperative or unnatural expressions.
 879 3. Provide an appropriate emotion label ("{emotion}") and an incorrect emotion label (clearly not matching the scenario).
 880 4. Both the right emotional label and the wrong emotional label must belong to {EMOTION_CATEGORIES}
 881 5. User input must be vivid, relevant, and based on the provided scenario.
 882
 883 Example for '{emotion}' emotion:
 884 - User: "User input example for {emotion}"
 885 - Model: "Model response example for {emotion}"
 886 - Appropriate label: "{emotion}"
 887 - Incorrect label: "{random.choice([e for e in EMOTION_CATEGORIES if e != emotion])}"
 888
 889 Please generate a new single-turn dialogue based on the scenario '{scenario}', implying the "{emotion}" emotion, strictly
 890 following the format below:
 891 - User: "User input"
 892 - Model: "Model response"
 893 - Appropriate label: "{emotion}"
 894 - Incorrect label: "Incorrect label"
 895

Figure 4: The emotion prompt template for ChatReward-30K.

E PROMPT PROGRAMMING TEMPLATE (WITHOUT COT) FOR WAVREWARD

The ablation text prompt template for WavReward w/o COT is shown in Figure 5.

896
 897 **Without Chain of Thought Prompt Template for WavReward**
 898
 899 `Prompt_template = (`
 900 `## Dialogue Response Evaluation\n\n`
 901 `***IMPORTANT:** Evaluation must include`<score>` rating.\n\n"`
 902 `"Listen to the dialogue recording (two sentences, 1-second pause in between). Evaluate the quality of the **second`
 903 `sentence** as a response to the first, focusing on **text relevance** and the **appropriateness** of **Linguistic information`
 904 `(a range of paralinguistic information such as emotion/age/pitch/speed/volume)**.\n"`
 905 `***Note:** Focus on evaluating the appropriateness of the second sentence relative to the first, even if the first sentence`
 906 `itself contains contradictory information.\n"\n"`
 907
 908 `## Scoring Criteria\n\n`
 909 `***1 points**: Text content is irrelevant or incorrect or illogical.(low intelligence)\n"`
 910 `***3 points**: Text is relevant, but paralinguistic information is **inappropriate** for the context.(low emotional`
 911 `quotient)\n"`
 912 `***5 points**: Text is relevant, and paralinguistic information is **appropriate** for the context, resulting in effective`
 913 `communication.(High intelligence and emotional intelligence.)\n\n"`
 914
 915 `## Evaluation Requirements\n\n"`
 916 `"Response **MUST** follow this format:\n\n"`
 917 `"<score>X</score> (**X is 1, 3, or 5**)\n\n"`
 918
 919 `obj["prompt"] = [{"role": "user", "content": [`
 920 `{ "type": "audio", "audio": obj["merge_wav"]},`
 921 `{ "type": "text", "text": Prompt_template }]`
 922 `}]`
 923

Figure 5: The ablation prompt template for WavReward.

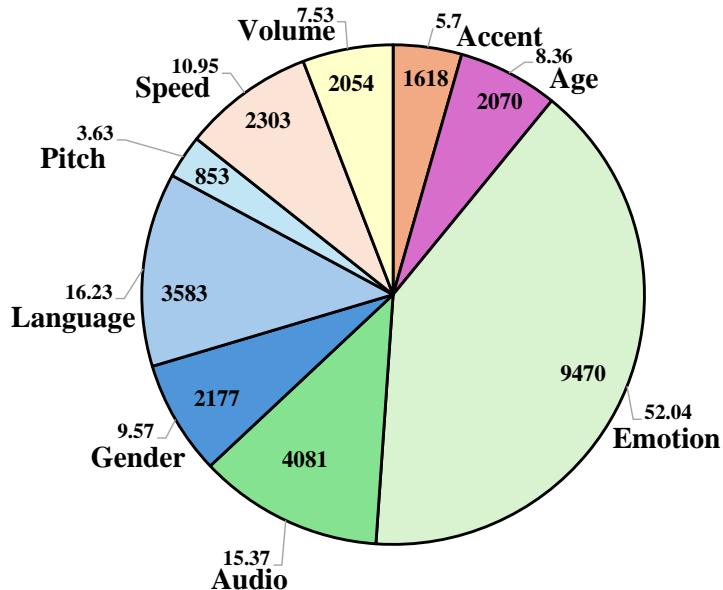


Figure 6: Statistics of different acoustic attribute in ChatReward-30K.

Figure 7: Word Cloud of ChatReward-30K.

972 F TRAINING DETAILS AND METRIC
973

974 **Training details.** WavReward is trained using 8 H20 96GB GPUs, each running a batch size of 1,
975 with gradient accumulation performed every 2 steps. The model is trained for 3500 steps with a
976 learning rate of 1×10^{-6} and a temperature of 1.0. The maximum number of cot tokens is set to 5120,
977 and the weight coefficient for the KL loss is set to 0.01. The model architecture of WavReward is
978 based on the sota open-source audio language model Qwen2.5-Omni-7B (Thinker) (Xu et al., 2025)
979 with the identical parameters. All parameters of WavReward are updated during the training process.
980 **Metric.** For evaluation on the ChatReward-30K-test and RealDialogue, we use accuracy to measure
981 the difference between the predicted scores and the ground truth scores. On the RealDialogue-testset,
982 we conduct subjective A/B testing via crowdsourcing, where 5 human experts are required to select
983 the optimal score between the different scores given by WavReward and various baseline evaluators
984 in the same real dialogue.

985 G THE USE OF LARGE LANGUAGE MODELS
986

988 In this study, we employed Gemini-2.5-Pro (Comanici et al., 2025) to facilitate the comprehensive
989 detection of linguistic inaccuracies within the manuscript, encompassing spelling errors, punctuation
990 misuses, and grammatical irregularities.

991 H COMPUTATIONAL COST
992

994 Regarding the latency associated with the Chain-of-Thought mechanism, we conducted further
995 evaluation using the RealDialogue test set on a single H20 96G GPU. We measured the Real-Time
996 Factor (RTF) for both the baseline (WavReward w/o cot think) and the full model (WavReward). RTF
997 is defined as the time taken to generate the score divided by the duration of the input dialogue data.
998 The results shown from Table 5 confirm that while CoT provides a substantial performance gain (as
999 demonstrated in Table 1), it does introduce a certain degree of increased inference latency.

1000
1001 Table 5: RTF of inference.
1002

Models	RTF ↓
WavReward w/o cot think	0.172
WavReward	0.318

1007 I CHAIN-OF-THOUGHT DETAILS
1008

1010 we leveraged the advanced Gemini-2.5-Pro model (Comanici et al., 2025) to evaluate the alignment
1011 between the input speech dialogue data and the corresponding CoT text, providing a binary classifi-
1012 cation of Good or Poor quality. The strict requirements imposed by the prompt included the CoT’s
1013 semantic completeness, its correct analysis from both semantic and acoustic dimensions, and whether
1014 it faithfully reflects the genuine reasoning process of the dialogue. We tested the inference CoT text
1015 generated by WavReward on the ChatReward-30K-test dataset, with the results shown the accuracy is
1016 96.6%.