
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A TRUNCATED NEWTON METHOD FOR OPTIMAL
TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing a contemporary optimal transport (OT) solver requires navigating trade-
offs among several critical requirements: GPU parallelization, scalability to high-
dimensional problems, theoretical convergence guarantees, empirical performance
in terms of precision versus runtime, and numerical stability in practice. With these
challenges in mind, we introduce a specialized truncated Newton algorithm for
entropic regularized OT. In addition to proving that locally quadratic convergence is
possible without assuming a Lipschitz Hessian, we provide strategies to maximally
exploit the high rate of local convergence in practice. Our GPU-parallel algorithm
exhibits exceptionally favorable runtime performance, achieving high precision
orders of magnitude faster than many existing alternatives. This is evidenced
by wall-clock time experiments on 4096-dimensional MNIST and color transfer
problems. The scalability of the algorithm is showcased on an extremely large OT
problem with n ≈ 106, solved approximately under weak entopric regularization.

1 INTRODUCTION

The optimal transportation problem has long been a cornerstone of various disciplines, ranging
from physics (Bokanowski & Grébert, 1996; Léonard, 2012; Levy et al., 2021) to machine learning
and computer vision (Ferns et al., 2004; Pitie et al., 2005; Gulrajani et al., 2017; Genevay et al.,
2018). Traditional approaches (Pele & Werman, 2009; Lee & Sidford, 2014), while exact and
theoretically robust, encounter significant computational hurdles in high-dimensional settings. The
(re-)introduction of entropic regularized OT (EOT), as pioneered by Cuturi (2013), has mitigated
challenges in scalability by regularizing the classical problem, thereby enabling solutions via the
GPU-friendly Sinkhorn-Knopp matrix scaling algorithm. This advancement has yielded substantial
speed improvements, making it several orders of magnitude faster in high dimensions than traditional
solvers. However, EOT methods necessitate a delicate balance between regularization strength and
convergence speed, a trade-off that can compromise the precision of the solution.

Despite significant recent progress towards improving this trade-off, many state-of-the-art solvers
still struggle to outperform aggressively tuned Sinkhorn iterations in practice (Jambulapati et al.,
2019; Lin et al., 2019). While they offer superior theoretical guarantees, their practical performance
is often less compelling, particularly in terms of speed and scalability. Existing algorithms either
suffer from high computational complexity or fail to leverage modern hardware capabilities, such
as GPU parallelization, effectively. To bridge this gap, we develop a new algorithm that remains
numerically stable and converges rapidly even at extremely weak regularization levels, thereby
enhancing precision in practice. By simultaneously exploiting the inherent parallelism of GPUs and
superlinear local convergence of truncated Newton algorithms, our method scales effortlessly to
high-dimensional problems, offering a pragmatic yet theoretically sound solution to the OT problem.

Our contributions are as follows: (i) we develop a specialized (linear) conjugate gradient algorithm
for obtaining an approximation of the Newton direction for the EOT dual problem and analyze its
convergence properties, (ii) we use the approximate (truncated) Newton direction in conjunction
with a helper routine to develop a solver for the EOT dual problem and prove its superlinear local
convergence, as well as per iteration computational cost, (iii) we develop an adaptive temperature
annealing approach, based on the MDOT framework of Kemertas et al. (2023), to maximally
exploit this fast local rate, and finally (iv) present compelling empirical results via wall-clock time
benchmarking in a GPU setting against a large suite of alternative algorithms in n = 4096 dimensions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND AND RELATED WORK

Notation and Definitions. In this work, we are concerned with discrete OT. ∆n ⊂ Rn
≥0 denotes

the (n−1)-simplex. The row sum of an n× n matrix P is given by r(P) := P1 and the column
sum by c(P) := P⊤1. Given target marginals r, c ∈ ∆n, the transportation polytope is written
as U(r, c) = {P ∈ Rn×n

≥0 | r(P) = r, c(P) = c}. Division, exp and log over vectors or matrices
indicate element-wise operations. Vectors in Rn are taken to be column vectors and concatenation of
two column vectors x,y is (x,y). Elementwise minimum and maximum of a vector x is written as
xmin and xmax. Matrix and vector inner products alike are given by ⟨·, ·⟩. An n× n diagonal matrix
with x ∈ Rn along the diagonal is written as D(x). We write χ2(y|x) for the χ2-divergence given
by ⟨x, (y/x)2⟩ − 1 ≥ ∥y − x∥21. For the square root of χ2(y|x), we write χ(y|x) with a slight
abuse of notation. The Shannon entropy of r ∈ ∆n is denoted H(r) = −

∑
i ri log ri. We write

DKL(x|y) =
∑

i xi log(xi/yi) +
∑

i yi −
∑

i xi for the KL divergence between x,y ∈ Rn
>0. We

denote LogSumExp reductions along the rows and columns of X by LSEr(X) := log
(
exp{X}1

)
and LSEc(X) := log

(
exp{X⊤}1

)
.

2.1 OPTIMAL TRANSPORT AND ENTROPIC REGULARIZATION

We study the discrete optimal transport problem, formulated as the following linear program:

minimize
P ∈ U(r, c)

⟨P,C⟩, (1)

where we assume the n× n cost matrix has entries Cij ∈ [0, 1]. Cuturi (2013) re-popularized EOT,
showing that entropic regularization can help quickly approximate the solution of (1) on GPUs:

minimize
P ∈ U(r, c)

⟨P,C⟩ − 1

γ
H(P), (2)

where the regularization weight γ−1 ∈ R>0 is called the temperature. It can be shown with ease that
since the objective in (2) is strictly convex in P , problem (2) has a unique solution of the form

P (u,v; γ) = exp{u1⊤ + 1v⊤ − γC}. (3)

Using the form of the solution of (2), the following unconstrained dual problem can be solved instead:

minimize
u,v ∈ Rn

g(u,v; γ) =
∑
ij

P (u,v; γ)ij − 1− ⟨u, r⟩ − ⟨v, c⟩, (4)

where we keep the constant −1 as a convention. Solving (4) given some initial u,v amounts to a
Bregman projection onto U(r, c) in the sense that P (u∗,v∗) = argminP∈U(r,c) DKL(P |P (u,v));
see derivations in Appx. A.1.2. Noting that∇ug = r(P)− r and ∇vg = c(P)− c, we write:

∇2g =

(
D(r(P)) P

P⊤ D(c(P))

)
2n×2n

, (5)

where the Hessian is positive semi-definite (PSD) with one zero eigenvalue.1

Related Work. The SK algorithm has long been known to enjoy an exponential convergence rate
for minimizing (4) (Franklin & Lorenz, 1989; Knight, 2008). However, at low temperatures, this
fast rate does not predict non-asymptotic behavior well due to a large constant. Altschuler et al.
(2017) provided a simple analysis, in which they proved a rate Õ(n2ε−3) for the SK algorithm, where
⟨P −P ∗, C⟩ ≤ ε. A simple routine for rounding near-feasible plans onto U(r, c) was introduced and
is now widely adopted. They also proposed a new algorithm, Greenkhorn, and showed a matching
complexity bound. Unlike SK, Greenkhorn scales one greedily selected row/column at a time,
which limits GPU utilization unless n is extremely large. The complexity bounds for Sinkhorn and
Greenkhorn were later improved to Õ(n2ε−2) (Dvurechensky et al., 2018; Lin et al., 2019). However,
our experiments suggest Sinkhorn typically behaves like Õ(ε−1). Moreover, Kemertas et al. (2023)
showed it can enjoy better performance at lower temperatures if tuned.

1Since r(P) = P1 = D(r(P))1 and c(P) = P⊤1 = D(c(P))1, we have ∇2g(1,−1) = 0.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Dvurechensky et al. (2018) proposed an Adaptive Primal-Dual Accelerated Gradient Descent
(APDAGD) algorithm for solving the dual EOT problem (4). Lin et al. (2019) provided a refined rate
of Õ(n5/2ε−1) for APDAGD and proposed a generalization APDAMD, which applied mirror descent
to (4). The complexity for APDAMD was shown to be Õ(n2

√
c/ε), where c ∈ (0, n] is a constant.

Following Altschuler et al. (2017), Lin et al. (2019) measured speed in terms of the number of row/col
updates in their experiments (rather than wall-clock time) and only considered a strong regularization
(low precision) setting. Targeting higher precision, Jambulapati et al. (2019) proposed an algorithm
for the OT problem that is not based on entropic regularization, with complexity Õ(n2ε−1). While
this rate is theoretically state-of-the-art, Jambulapati et al. (2019) noted that Sinkhorn iteration, when
aggressively tuned, outperforms all other methods empirically (including their own). Guminov et al.
(2021) proposed an Accelerated Alternating Minimization (AAM) algorithm, combining Nesterov’s
momentum and Sinkhorn-type block coordinate descent, with complexity O(n5/2ε−1).

While APDAMD applied mirror descent to (4), MDOT of Kemertas et al. (2023) applied it to (1) and
recovered connections to temperature annealing methods (see details in Sec. 2.2), such as those of
Schmitzer (2019) and Feydy (2020). For instance, Alg. 3.5. of Feydy (2020) takes a single Sinkhorn
update every time the temperature is decayed; while this can compute rough approximations quickly
at high temperatures, a single Sinkhorn update is insufficient for keeping the dual objective value in
check, so that their approach hits a precision wall as we empirically show; see also Xie et al. (2020).
Ballu & Berthet (2023) derive a similar algorithm, but they guarantee convergence by maintaining
a running average of plans P computed this way. While effective at low precision and easy to
implement on a GPU, this algorithm exhibits Õ(n2ε−2) dependence on error. Most closely related
to ours is the work of Kemertas et al. (2023), as we build on MDOT. In addition to the temperature
annealing framework, Kemertas et al. (2023) proposed an algorithm (PNCG) to minimize (4) at
each new value of the temperature, based on a non-linear conjugate gradient method (Fletcher &
Reeves, 1964). The approach introduced here has several benefits over PNCG, including added ease
of theoretical analysis, faster runtime in practice and minimal line search overhead. While second
order methods have been considered for OT (Mérigot, 2011; Blondel et al., 2018), they have not
been implemented on GPUs with strong empirical performance in high dimensions to our knowledge.
Indeed, Tang et al. (2024) also developed a 2nd order method recently, but their Hessian sparsification
strategy is more amenable to a CPU setting, and as such was only tested on CPUs for n = 784.

2.2 TEMPERATURE ANNEALING AS MIRROR DESCENT

A well-known strategy to deal with the difficulty of solving (4) under weak regularization is annealing
the temperature γ−1 in (3) gradually towards zero. When viewed as mirror descent on (2), temperature
annealing strategies (e.g., see Schmitzer (2019)) amount to a particular initialization of the dual
variables (u,v) in successive instances of (4) given approximate solutions at prior γ (Kemertas et al.,
2023). Each dual problem (4) at a given γ(t+1) for t ≥ 1 is warm-started in some neighborhood of the
solution given some near-optimal z(t)=(u(t),v(t)) ∈ R2n. The MDOT framework of Kemertas et al.
(2023) specifically initializes z(t+1) via a Taylor approximation with respect to γ under backward
finite differencing. Further, they proposed to use a more stringent tolerance O(γ−p) for ∥∇g∥1 (given
some p ≥ 1), whereas prior work used O(γ−1) (Altschuler et al., 2017; Lin et al., 2019). Their tuned
choice p = 1.5 was shown to improve performance under weak regularization.

The pseudo-code for MDOT is shown in Alg. 1, where some routines are defined with “· · · ” as a
placeholder for extra parameters that may be required by specific implementations. Given γ(t) in each
iteration t ≥ 1, the algorithm picks a tolerance εd for the dual gradient norm (L4). Then, marginals
r, c are smoothed in L5 for numerical stability or improved convergence by mixing in the uniform
distribution (with a combined weight of at most εd/2) to stay away from the boundary of U(r, c).
L6 initializes the transport plan P to be the independence coupling r̃c̃⊤, i.e., the solution of (2) for
γ → 0 over U(r̃, c̃). In L7, minimizing (4) to εd/2 tolerance for the smoothed marginals guarantees
∥∇g(z; γ)∥1 ≤ εd by triangle inequality. Next, we add an AdjustSchedule routine in L8, whereas
Kemertas et al. (2023) used a fixed decay rate, setting q(t+1) ← q(t). After the temperature decay
(L9), the dual variables are warm-started in L10 via an approximate 1st order expansion for the next
iteration. Finally, the plan as given by (3) is rounded onto U(r, c) in L14 via Alg. 2 of Altschuler
et al. (2017). Then, given that ∥∇g(z; γf)∥1 ≤ γ−1

f min(H(r), H(c)) the user is guaranteed error
⟨P − P ∗, C⟩ ≤ 2γ−1

f min(H(r), H(c)) in the worst case (assuming r(P) = r or c(P) = c at loop

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

termination). In Section 3, we develop and tune specific algorithms in tandem to carry out L5, 7 and
8 of Alg. 1 to maximize efficiency, and maintain GPU parallelization and numerical stability.

2.3 TRUNCATED NEWTON METHODS

Algorithm 1 MDOT(C, r, c, γi, γf , p ≥ 1, q > 1)

1: t← 1, done← false, γ(1) ← γi ∧ γf , q
(1) ← q, γ(0) ← 0

2: while not done do
3: done← γ(t) = γf

4: εd ← min
(
H(r), H(c)

)/
(γ(t))p

5: r̃, c̃← SmoothMarginals(r, c, εd/2; · · ·)
6: if t = 1 then z(0) ← (log r̃, log c̃), z(1) ← z(0)

7: z(t) ← BregmanProject(z(t), γ(t), C, r̃, c̃, εd/2)
8: q(t+1) ← AdjustSchedule(q(t); · · ·)
9: γ(t+1) ← q(t+1)γ(t) ∧ γf

10: z(t+1) ← z(t) + γ(t+1)−γ(t)

γ(t)−γ(t−1)

(
z(t) − z(t−1)

)
11: t← t+ 1
12: end while
13: (u,v)← z(t−1), P ← exp{u1⊤

n + 1nv
⊤ − γfC}

14: Output P ← Round(P, r, c)

For minimizing (4) in L7 of Alg. 1,
we will rely on truncated Newton
methods, which are briefly reviewed
here (see Ch. 7 of Nocedal &
Wright (2006) and Nash (2000) for
a survey). While Newton’s method
for non-linear optimization seeks an
exact solution dk of the linear sys-
tem∇2gk dk = −∇gk at each opti-
mization step k (typically combined
with line search or trust-region
methods), truncated Newton meth-
ods find an approximate/inexact so-
lution by “truncating” an iterative
solver of the linear system (LS), e.g.,
a linear conjugate gradient (linear
CG) algorithm. The particular ter-
mination criteria for the LS solver
dictates the order of convergence;
more stringent criteria yields higher order of convergence (up to quadratic), but requires more
iterations for the LS solver (inner-most loop).

In particular, define the residual ek := ∇2gk dk +∇gk of the system in step k for the approximate
Newton direction dk. Given ηk ∈ (0, 1), the LS solver is terminated when

∥ek∥ ≤ ηk ∥∇gk∥ (6)

for some norm. If the Hessian is continuous in some neighborhood of the solution and we start
sufficiently close to the solution, we have ∥∇gk+1∥ ≤ (ηk + o(1)) ∥∇gk∥. Then, choosing the
forcing sequence {ηk} such that ηk = O(∥∇gk∥r−1

) for r ∈ (1, 2), one obtains Q-superlinear local
convergence of order r assuming limk→∞ ηk = 0 (Nocedal & Wright, 2006).

3 MIXING TRUNCATED NEWTON & SINKHORN FOR BREGMAN PROJECTIONS

This section is organized as follows. In Section 3.1, we first develop a technique for obtaining the
truncated Newton direction with convergence guarantees (Alg. 2) and introduce a helper routine (Alg.
3) to improve the convergence rate of this algorithm. In Sec. 3.2, we integrate this approach with
backtracking line search to arrive at a Bregman projection algorithm (L7 of Alg. 1). Its per-step cost
and local convergence properties are shown theoretically. Then, in Sec. 3.3 an adaptive temperature
decay schedule (L8 of Alg. 1) is proposed to maximally exploit the high rate of local convergence
and its use is empirically demonstrated. Lastly, in Sec. 3.4, we discuss precautionary measures for
numerical stability of this technique in practice via marginal smoothing as in L5 of Alg. 1.

3.1 THE DISCOUNTED HESSIAN AND THE BELLMAN EQUATIONS

Suppose we are interested in finding an approximate solution to the Newton system for the dual
(Bregman projection) problem (4) with a linear CG solver. In this section, we propose a particular
positive-definite (PD) approximation of the PSD Hessian in (5) for two reasons. First, although linear
CG should converge in theory despite the presence of a zero eigenvalue (Axelsson, 2003), infinitesimal
numerical errors along this zero-eigendirection, as well as other unknown near-zero eigendirections,
may compound and lead to numerical instabilities due to machine precision limits. Second, since our
PD substitute for the Hessian allows for the use of matrix inversion, this is convenient for obtaining
theoretical guarantees. This approach also yields connections to reinforcement learning that may be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of separate interest. Henceforth, we define the ρ-discounted Hessian for ρ ∈ [0, 1):

∇2g(ρ) :=

(
D(r(P))

√
ρP√

ρP⊤ D(c(P))

)
. (7)

By the Gerschgorin Circle Theorem, all eigenvalues λi(∇2g(ρ)) ≥ (1−√ρ)min(r(P)min, c(P)min)

are positive, so that∇2g(ρ) is invertible. The block matrix inversion formula yields:

∇2g(ρ)−1 =

(
Fr(ρ)

−1 −Fr(ρ)
−1P⊤

c

−Fc(ρ)
−1P⊤

r Fc(ρ)
−1

)
, (8)

where we used the following definitions:

Pr := D(r(P))−1P , Pc := D(c(P))−1P⊤

Prc := PrPc, Pcr := PcPr

Fr(ρ) := D(r(P))(I − ρPrc), Fc(ρ) := D(c(P))(I − ρPcr).

(9)

Here, Pr, Pc, Prc and Pcr are irreducible row-stochastic matrices since all their entries are positive
and we have Pr1 = D(r(P))−1P1 = D(r(P))−1r(P) = 1 (likewise for Pc).2 Now, multiplying
on the left by (8) both sides of the discounted Newton system ∇2g(ρ) d = −∇g and re-arranging,
we arrive at the well-known Bellman equations central in reinforcement learning:

du = suv + ρPrcdu, dv = svu + ρPcrdv, (10)
where Prc and Pcr serve as “transition matrices”, and “reward vectors” are given by

suv = D(r(P))−1(P⊤
c ∇vg −∇ug), svu = D(c(P))−1(P⊤

r ∇ug −∇vg). (11)
That is, the discounted Newton direction d = (du,dv) corresponds to the fixed point of the Bellman
equations (or, “state-value function” of the finite Markov reward processes) in (10) and can be written
as two n-variable PD linear systems rather than a single 2n-variable PSD linear system. Further,
without loss of generality, assuming that∇vg = 0 (or equivalently c(P) = c, for example, following
a single Sinkhorn update) yields a more intuitive understanding and a practical advantage. Using the
form of the inverse discounted Hessian in (8), it can be shown that in this case (10) reduces to:

du = (r/r(P)− 1) + ρPrcdu, dv = −Pcdu, (12)
where the second system is solved via a single matrix-vector product (effectively for free), thus reduc-
ing the problem further to a single n-variable PD linear system. Moreover, an intuitive interpretation
of the reward vector emerges, as the system now assigns a reward ri/r(P)i − 1 to row index (state) i.
Next, we provide a theorem on the sufficiency of solving the discounted Newton system as a proxy
for the undiscounted system (see Appx. A.1.3 for a more technical version of the following).
Theorem 3.1 (Forcing sequence under discounting). Assuming c = c(P) and dv = −Pcdu, define
residuals eu(ρ):=Fr(ρ)du +∇ug (cf. (12)), and e := ∇2g d+∇g (i.e., the Newton residual). For
every η̃ < η/2, ∃ρ0 ∈ [0, 1) such that ∀ρ ∈ [ρ0, 1],

∥eu(ρ)∥1 ≤ η̃ ∥∇g∥1 =⇒ ∥e∥1 ≤ η ∥∇g∥1 . (13)

In other words, discounting can be adopted while still enjoying the local convergence guarantees of
truncated Newton methods (discussed in Sec. 2.3) for the original problem.

To find a suitable discount factor, we propose Algorithm 2, which anneals 1 − ρ, approximately
solving a sequence of linear systems to satisfy the forcing inequality (6). Note that CG in L3 is
terminated when the L1 norm of the residual is below η̃ = η/4. While the specific selection η̃ = η/4
in L3 is only for simplicity, the decay factor 4 in L4 minimizes a theoretical upper bound on the
number of operations until convergence (see proof of Thm. 3.2 in Appx. A.1.4). The following
provides a rate on the overall cost of obtaining the truncated Newton direction with this approach.
Theorem 3.2 (Convergence of Algorithm 2). Suppose r(P)min ≥ εd/(4n) given εd > 0 and each
step of Alg. 2 runs diagonally-preconditioned CG initialized with d

(0)
u =0. Alg. 2 terminates in

Õ

(
n2

√
(1− µ)χ(r|r(P))

(1− λ2)η ∥r(P)− r∥1
log ε

−1/2
d

)
(14)

operations, where λ2 < 1 is the 2nd largest eigenvalue of Prc and µ < 1 its smallest diagonal entry.

2We refer the reader to Appx. A.1.3 for an intuitive description of the process represented by the stochastic
matrices Prc and Pcr , and their technical properties.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 NewtonSolve(∇ug, Prc, r(P), η)

1: ρ← 0,du ← −D(r(P))−1∇ug
2: while ∥Fr(1)du +∇ug∥1 > η ∥∇g∥1 do
3: du ← LinearCGSolve(Fr(ρ),−∇ug, η/4)
4: ρ← 1− (1− ρ)/4
5: end while
6: Output du

Algorithm 3 ChiSinkhorn(u,v, γ, C, r, c, r(P), εχ)

1: while χ2(r|r(P)) > εχ do
2: u← u+ log r − log r(P)
3: v ← log c− LSEc(u1

⊤
n − γC)

4: log r(P)← u+ LSEr(1nv
⊤ − γC)

5: end while
6: Output u,v, r(P)

The theorem uses the O(
√
κ) convergence

of linear CG, where κ = O((1 − ρ)−1)
in our setting; however, convergence can
be much faster when preconditioned eigen-
values are tightly clustered on R (Nocedal
& Wright, 2006). The rate in (14) cap-
tures this added efficiency only for the case
when Prc ≈ I so that its smallest diago-
nal entry µ ≈ 1. For example, if plan
P is approximately a one-to-one mapping
between r-particles and c-particles, then
Pr = D(r(P))−1P approximates a permu-
tation matrix and Pc = D(c(P))−1P⊤ its
transpose, so that Prc ≈ I . This is indeed the
case in many applications; e.g., if r and c are
empirical measures over n particles, optimal
vertices of U(r, c) coincide with optima of
the Monge discrete matching problem, which
are indeed (scaled) permutation matrices (Brezis, 2018). Thus, as γ increases and P approaches the
optimal face of U(r, c), diagonal preconditioning becomes increasingly effective for such problems.

Next, to keep the runtime of Alg. 2 in check, we propose to run Sinkhorn iteration in advance to
bound the χ2(r|r(P)) term in (14). Given dual variables (u,v) and current row sum r(P) where
c = c(P) by assumption, Alg. 3 performs this auxiliary task while maintaining c = c(P).
Lemma 3.3 (Convergence of Algorithm 3). Assuming that ∥r(P)/r∥∞ <∞ and ∥r/r(P)∥∞ <∞,
Algorithm 3 converges in O(n2/εχ) operations.

3.2 PROJECTING ONTO THE FEASIBLE POLYTOPE

Combining Algorithms 2 and 3 with backtracking line search, we arrive at the TruncatedNewton-
Project algorithm shown in Alg. 4 for solving (4). The choice of η in L5 and the requirement that
χ2(r|r(P)) ≤ ε

2/5
d by choosing εχ = ε

2/5
d in L4, to control the ratio in (14), together yield the

following corollary of Thm. 3.2 and Lemma 3.3 (see proof in Appx. A.1.5).
Corollary 3.4 (Per-step Cost of Algorithm 4). If the backtracking line search in Alg. 4 converges
in S iterations, then an iteration of Alg. 4 costs Õ(n2(S + ε

−2/5
d (1− λ2)

−1/2)) operations, where
λ2 < 1 is the 2nd largest eigenvalue of Prc defined as in (9) and evaluated at u,v (cf. (3)).

In the next section, we outline an adaptive temperature annealing strategy to minimize the added cost
of line search by initializing close to the solution. First, we pause for the next theorem, showing that
TruncatedNewtonProject enjoys local quadratic convergence if η = O(∥∇g∥1) as in L5 of Alg. 4.
Theorem 3.5 (Per-step Improvement of Algorithm 4). Given a descent direction d = (du,−Pcdu)
such that ∥e∥1 =

∥∥∇2gkd+∇gk
∥∥
1
≤ η ∥∇gk∥1, let α ∈ (0, 1] be the step size found via backtrack-

ing line search in the kth step of Alg. 4. Then,∇gk+1 := ∇g(u+ αdu,v − αPcdu) satisfies

∥∇gk+1∥1 ≤ (1− α+ αη) ∥∇gk∥1 + α
√
α O(∥∇gk∥21). (15)

The result differs from typical quadratic convergence results in two important ways: (i) we did not
assume a Lipschitz Hessian, but instead leveraged the Armijo condition and the specific form of our
descent direction, and (ii) we bounded the L1 norm of the gradient (rather than L2), which is more
commonly used in optimal transport algorithms as stopping criteria. Given (15), we select η in L5
of Alg. 4 with the local quadratic rate in mind, but avoid over-solving the system when ∥∇g∥1 is
already close to the target εd by taking η to be the maximum of ∥∇g∥1 and 0.8εd/ ∥∇g∥1.

3.3 INITIALIZING NEAR THE SOLUTION VIA ADAPTIVE MIRROR DESCENT

In this section, we outline a practical strategy for initializing the dual problem (4) sufficiently near
the solution so that (i) the cost of line search is minimized (α = 1 is almost always admissible),
and (ii) the last term in (15) is negligible. In Table 1, we observe that with a sufficiently slow fixed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 4 TruncatedNewtonProject(u,v, γ, C, r, c, εd)

1: v ← log c− LSEc(u1
⊤
n − γC) ▷ Ensure c(P) = c.

2: log r(P)← u+ LSEr(1nv
⊤ − γC)

3: while ∥∇g∥1 = ∥r − r(P)∥1 > εd do
4: u,v, r(P)← ChiSinkhorn(u,v, γ, C, r, c, r(P), ε

2/5
d) ▷ Choosing εχ = ε

2/5
d .

5: η ← ∥∇g∥1 ∨ 0.8εd/ ∥∇g∥1 ▷ Expect ∥∇gk+1∥1 ≤ η ∥∇gk∥1.
6: du ← NewtonSolve(∇ug, Prc, r(P), η) ▷ See Algorithm 2.
7: dv ← −Pcdu ▷ As in (12).
8: α← 1 ▷ Initial guess for step size.
9: log c(P)← v + αdv + LSEc((u+ αdu)1

⊤
n − γC)

10: while ∥c(P)∥1 − 1 > 0.99α⟨−∇ug,du⟩ do ▷ Armijo condition. See Appx. A.1.6.
11: α← 0.5α ▷ Backtracking line search.
12: log c(P)← v + αdv + LSEc((u+ αdu)1

⊤
n − γC)

13: end while
14: u← u+ αdu,v ← v + αdv

15: v ← v + log c− log c(P) ▷ Ensure c(P) = c.
16: log r(P)← u+ LSEr(1nv

⊤ − γC)
17: end while
18: u← u+ log r − log r(P) ▷ Since log r(P) is readily available, take a Sinkhorn step.
19: Output u,v

temperature decay schedule (i.e., setting q(t+1) ← q(t) in L8 of Alg. 1), the extra cost of line search
(as well as ChiSinkhorn) disappears almost entirely (given small enough γ(1)). However, with too
slow temperature decay schedules (q too close to 1), the overhead due to relatively costly LSE
reductions (in lines 1, 2, 9 and 16 of Alg. 4) may slow down the overall algorithm (see q = 21/8 in
Table 1). To eliminate the need for tuning q, we develop an update rule to adjust the schedule as in L8
of Alg. 1; we seek to minimize the number of mirror descent steps while staying in the superlinear
convergence zone for consecutive instances of problem (4). To this end, we first define the following
parameter of interest, which is the ratio of the actual reduction in gradient norm to the predicted
reduction given by (15) for α = 1 (in the ideal case, dropping the last term) at step k of Alg. 4:

δk :=
∥∇gk∥1 − ∥∇gk+1∥1
(1− ηk) ∥∇gk∥1

. (16)

This formula for δk is inspired by trust-region methods, which update the trust-region size based on
the ratio of actual to predicted decrease under a model of the objective (rather than the gradient norm
as we use here) (Nocedal & Wright, 2006). Let δ(t)min be the smallest δk among the iterates of Alg. 4
at step t of Alg. 1. In L5 of Alg. 1, we heuristically set

q(t+1) ← (q(t))2 if δ
(t)
min > 5/4

q(t+1) ←
√

q(t) if δ
(t)
min < 4/5

q(t+1) ← q(t) otherwise.

Subroutine
q

21/8 21/4 21/2 21 22 Adaptive

NewtonSolve 1703 1592 1696 2108 3213 1501
Line Search 8 8 12 50 236 8
ChiSinkhorn 8 8 8 8 96 8

Mirror Descent 104 52 26 13 7 30
Total (operations) 4150 2993 2518 2898 4212 2409

Total (seconds) 2.66 1.82 1.46 1.67 2.39 1.36

Table 1: Breakdown of number of O(n2) operations per subroutine and total wall-clock time for the
upsampled MNIST dataset (n = 4096) with L1 distance cost. Alg. 1 is called with γi = 25, γf = 218

and p = 1.5. For the adaptive approach, q = 2 initially. Results show median over 60 problems.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

26 28 210 212 214 216 218
0.0

0.5

1.0

1.5

2.0

2.5

k

Ratio of Actual-to-Predicted Gradient Norm Reduction (Fixed)
q = 21/8

q = 21/4

q = 21/2

q = 21

q = 22

26 28 210 212 214 216 218
0.0

0.5

1.0

1.5

2.0

2.5

k

Ratio of Actual-to-Predicted Gradient Norm Reduction (Adaptive)
q = 21/8

q = 21/4

q = 21/2

q = 21

q = 22

Figure 1: Ratio δk of actual to theoretically predicted reduction in ∥∇gk∥1 per step for fixed (left) and
adaptive (right) temperature decay (initialized with q(1) = q). Each δk is the median at a given iter. t
of Alg. 1. Shaded areas show 80% confidence intervals around median over 60 random problems from
the upsampled MNIST dataset (n = 4096) with normalized L1 distance cost (maxi,j |Ci,j | = 1).

In Fig. 1 (left), we show that with a sufficiently slow fixed schedule, δk typically remains at or
above 1 throughout the execution of Alg. 1. Fig. 1 (right) further confirms that the adaptive update
rule arrives at such a schedule regardless of the initial value of q(1), thereby showing its utility in
eliminating the need for tuning. Table 1 verifies that the schedules found by the adaptive updating
perform similarly to the best fixed schedule across OT problems. Section 4 details the experimental
setup here, and further adds benchmarking against a suite of alternative algorithms in the literature.

3.4 ASYMMETRIC MARGINAL SMOOTHING FOR NUMERICAL STABILITY

Total cost
wr 0.25 0.35 0.45

Median (ops.) 3540 2341 2414
90th %ile (ops.) 7810 3172 3156
Median (sec.) 2.14 1.39 1.41

90th %ile (sec.) 4.94 1.92 1.92

Table 2: Comparison of median and 90th percentile
performance for varying smoothing weight wr.

Recall from (9) the form of the coefficient
matrix Fr(ρ) = D(r(P))(I − ρPrc) of the
n-variable PD linear system that we are in-
terested in solving. Since the smallest diago-
nal entry of Fr(ρ) can be almost as small as
(1 − ρ)r(P)min in the worst case, diagonal
preconditioning used in Alg. 2 may cause nu-
merical instabilities when solving the linear
system (due to infinitesimal entries in r(P)
for ρ ≈ 1). To this end we require that, after
smoothing, r̃min is bounded away from zero, and find that running Alg. 3 in advance to bound
χ2(r̃|r(P)) (i.e., the variance of r̃/r(P) − 1) is sufficient for stable behavior in practice. Since
log-domain Sinkhorn updates to ensure c(P) = c̃ are numerically stable (Feydy, 2020), we allocate
our “smoothing budget” εd/2 mostly for the row-marginal r. Specifically, in L5 of Alg. 1, we set:

r̃ ← (1− wrεd)r + (wrεd/n)1, c̃← (1− wcεd)c+ (wcεd/n)1,

where wr + wc = 1/2 and wr > wc. This is in contrast to the more standard symmetric smoothing
wr = wc (Dvurechensky et al., 2018; Lin et al., 2019). We repeat the experiments in Table 1, but this
time ablating wr (using the adaptive schedule introduced in Sec. 3.3); Table 2 confirms empirically
that asymmetric smoothing improves both stability and median performance of the overall algorithm.

4 EXPERIMENTS

In this section, we first provide the details of the MNIST experiments in Fig. 1 and Tables 1-2. Then
we describe an additional color transfer problem set that we use for wall-clock time benchmarking of
the combined MDOT-TruncatedNewton algorithm. Our setup follows that of Kemertas et al. (2023).
All experiments were run on an NVIDIA GeForce RTX 2080 Ti GPU with 64-bit precision. Appx.
E provides benchmarking on 10 additional datasets from Schrieber et al. (2017), showing similar
results with confidence intervals and including operation counts alongside wall-clock time.

4.1 EXPERIMENTAL SETUP

Upsampled MNIST. Each image is a probability distribution over pixels, with probabilities given by
L1-normalized intensity values. The cost matrix C is fixed across OT problems and constructed from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. wall-clock time (upsampled MNIST, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101 102

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. wall-clock time (upsampled MNIST, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101 102

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. wall-clock time (color transfer, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101 102

Wall-clock time (s)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. wall-clock time (color transfer, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 2: Error vs. wall-clock time for various algorithms. Each marker shows the excess cost and
time taken (median across 18 problems) until termination at a given hyperparameter setting, followed
by rounding of the output onto U(r, c) via Alg. 2 of Altschuler et al. (2017). Upsampled MNIST
(top) and color transfer (bottom) problem sets (n = 4096) using L1 (left) and L2

2 (right) distance
costs. MDOT–TruncatedNewton outperforms others by orders of magnitude at high precision and
exhibits much better practical dependence on error than best known theoretical rates Õ(ε−1).

pairwise L1 and L2
2 distances between pixel locations in 2D space. Scalar division by the max. entry

ensures maxij |Cij | = 1. MNIST images are upsampled to 64 × 64 resolution for benchmarking
on higher dimensional problems (n = 4096). In contrast, Tang et al. (2024) benchmarked their
CPU-based algorithm on original MNIST images (n = 784). Luo et al. (2023) ran their PDASMD
algorithm on downsampled MNIST images for n = 100 at most; their code also runs on a CPU and
includes an inner for loop of n iterations which limits parallelization.

Color Transfer. We define the color transfer problem with all marginals set to the uniform distri-
bution over ∆n. The cost matrix C varies across problems and is constructed from pairwise L1

and L2
2 distances between RGB values in 3D space. Scalar division by the max. entry ensures

maxij |Cij | = 1. We use the 20 images provided by Kemertas et al. (2023), which were generated
by prompting DALL-E 2 to produce vibrant, colorful images with intricate details. These are down-
sampled to 64× 64 resolution for benchmarking on n = 4096 problems, except in the case of Fig 3,
where the scalability of our algorithm is visually demonstrated on the original 1024× 1024 images
(n ≈ 106) on an individual sample problem.

4.2 WALL-CLOCK TIME BENCHMARKING

While theoretical analysis and computational complexity provide valuable insights, it is the practical
performance, measured in wall-clock time, that often determines the viability and adoption of an
algorithm. In this section, we present wall-clock time benchmarking of the proposed algorithm
against a broad range of available alternatives. Here, we compare to Alg. 3.5 of Feydy (2020), the
Mirror Sinkhorn (MSK) algorithm of Ballu & Berthet (2023), Sinkhorn iteration with typical and
stringent tolerance settings (p = 1 and p = 1.5 resp. for MDOT–Sinkhorn called with γi = γf), the
APDAGD algorithm of Dvurechensky et al. (2018), the Mirror Prox Sherman Optimized algorithm of
Jambulapati et al. (2019) and the AAM algorithm of Guminov et al. (2021). We omit comparison to
APDAMD (Lin et al., 2019), APDRCD (Guo et al., 2020) and PDASMD (Luo et al., 2023), as they
exhibit significantly longer convergence times in our high-dimensional, GPU-parallel setting. See
Appx. D for sources and configuration details. In Appx. C, we also perform experiments with varying
problem size n and show that the dependence is no worse than O(n2) for the problems considered.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: The MDOT–TruncatedNewton algorithm applied to a large-scale color transfer problem on
1024× 1024 images (n = 220). For this visualization, the cost matrix is given by the L2

2 distance in
RGB color space, normalized so that maxij |Cij | = 1. Final temperature is 1/γf = 2−10. Source
images (top row) were generated with DALL-E 2. This figure is best viewed digitally.

In Fig. 2, we observe that on a 2018-era GPU, MDOT–TruncatedNewton typically solves n = 4096
dimensional problems in 1-5 seconds to 6-decimal precision, demonstrating numerical stability up to
9-decimal precision across a range of realistic OT problems. In the highest precision range, it is more
than 10× faster than the best alternative, MDOT–PNCG of Kemertas et al. (2023). In our implemen-
tation, we also include a scalable O(n) memory footprint version of MDOT-TruncatedNewton, which
computes via the PyKeOps package of Charlier et al. (2021) the cost matrix C and the matrix P
on-the-fly every-time they are used in Alg. 4. As evidenced by Fig. 3, this implementation can solve
very high dimensional OT problems (n ≈ 106) to high precision. It leaves a memory footprint of
just ≈ 600 MBs, but takes ≈ 10 hours. Regardless, we believe that this is an important step towards
high-precision discrete OT in very high dimensions.

5 CONCLUSION

In this work, we set out to design a modular, practical algorithm to exploit the superlinear convergence
of truncated Newton methods in weakly-regularized EOT. To improve the conditioning of the dual
Hessian, rather than amplifying its diagonal entries as in Tikhonov regularization, we dampened
off-diagonal entries (discounting) with inspiration from reinforcement learning. Then, Alg. 2
was presented for approximately solving the modified Newton system. This method of Hessian
modification enabled a superlinear local convergence rate in terms of the L1 norm of the gradient
for the custom truncated Newton routine (Alg. 4) that used Alg. 2. We additionally introduced
precautionary measures to improve the numerical stability of Alg. 4, which is crucial for reaching
high precision. Lastly, Alg. 4 was integrated into a temperature annealing framework, MDOT
(Kemertas et al., 2023), where adaptive temperature updates ensured superlinear convergence is
maintained, a hyperparameter (q in Alg. 1) is eliminated and line search overhead is minimized in
practice. We implemented the resulting algorithm on a GPU and showed that it outperforms many
recent algorithms by orders of magnitude in n = 4096 dimensions, exhibiting fast empirical rates
ranging from O(ε−1/6) to O(ε−1/2). Furthermore, as visualized in Fig. 3, the algorithm holds
potential to effortlessly scale to much larger problems (n ≈ 106).

One avenue for future research is the development of a variant of Alg. 4 with a global convergence
rate, which may yield an explicit rate in terms of the error ε for the overall algorithm. Another
direction could be a stochastic generalization of Alg. 4 that leaves an O(nm) memory footprint,
where m ∈ [1, n] is a user-defined parameter given hardware constraints. This added flexibility may
enable a better trade-off between runtime and memory footprint in very high dimensions (n≫ 1000).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration. Advances in neural information processing
systems, 30, 2017.

Owe Axelsson. Iteration number for the conjugate gradient method. Mathematics and Com-
puters in Simulation, 61(3):421–435, 2003. ISSN 0378-4754. doi: https://doi.org/10.
1016/S0378-4754(02)00097-6. URL https://www.sciencedirect.com/science/
article/pii/S0378475402000976. MODELLING 2001 - Second IMACS Conference
on Mathematical Modelling and Computational Methods in Mechanics, Physics, Biomechanics
and Geodynamics.

Marin Ballu and Quentin Berthet. Mirror Sinkhorn: Fast online optimization on transport polytopes.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 1595–1613. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/ballu23a.html.

Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal transport. In Amos
Storkey and Fernando Perez-Cruz (eds.), Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research,
pp. 880–889. PMLR, 09–11 Apr 2018. URL https://proceedings.mlr.press/v84/
blondel18a.html.

O Bokanowski and B Grébert. Deformations of density functions in molecular quantum chemistry.
Journal of Mathematical Physics, 37(4):1553–1573, 1996.

Haïm Brezis. Remarks on the Monge–Kantorovich problem in the discrete setting. Comptes Rendus.
Mathématique, 356(2):207–213, 2018.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David Collin, and Ghislain Durif.
Kernel operations on the GPU, with Autodiff, without memory overflows. The Journal of Machine
Learning Research, 22(1):3457–3462, 2021.

I. Csiszár and P.C. Shields. Information theory and statistics: A tutorial. Foundations and Trends® in
Communications and Information Theory, 1(4):417–528, 2004. ISSN 1567-2190. doi: 10.1561/
0100000004. URL http://dx.doi.org/10.1561/0100000004.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In International
conference on machine learning, pp. 1367–1376. PMLR, 2018.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes.
In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp.
162–169, Arlington, Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

Jean Feydy. Geometric data analysis, beyond convolutions. PhD thesis, Université Paris-Saclay,
2020.

James Allen Fill. Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains,
with an application to the exclusion process. The annals of applied probability, pp. 62–87, 1991.

Reeves Fletcher and Colin M Reeves. Function minimization by conjugate gradients. The computer
journal, 7(2):149–154, 1964.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, pp. 1608–1617.
PMLR, 2018.

11

https://www.sciencedirect.com/science/article/pii/S0378475402000976
https://www.sciencedirect.com/science/article/pii/S0378475402000976
https://proceedings.mlr.press/v202/ballu23a.html
https://proceedings.mlr.press/v84/blondel18a.html
https://proceedings.mlr.press/v84/blondel18a.html
http://dx.doi.org/10.1561/0100000004

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of Wasserstein GANs. Advances in neural information processing systems, 30,
2017.

Sergey Guminov, Pavel Dvurechensky, Nazarii Tupitsa, and Alexander Gasnikov. On a combina-
tion of alternating minimization and Nesterov’s momentum. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 3886–3898. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/guminov21a.html.

Wenshuo Guo, Nhat Ho, and Michael Jordan. Fast algorithms for computational optimal transport
and Wasserstein barycenter. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 2088–2097. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/guo20a.html.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct Õ(1/ϵ) iteration parallel algorithm for
optimal transport. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/024d2d699e6c1a82c9ba986386f4d824-Paper.pdf.

Mete Kemertas, Allan D Jepson, and Amir-massoud Farahmand. Efficient and accurate optimal
transport with mirror descent and conjugate gradients. arXiv preprint arXiv:2307.08507, 2023.

Philip A Knight. The Sinkhorn–Knopp algorithm: convergence and applications. SIAM Journal on
Matrix Analysis and Applications, 30(1):261–275, 2008.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th

Annual Symposium on Foundations of Computer Science, pp. 424–433, 2014.

Christian Léonard. From the Schrödinger problem to the Monge–Kantorovich problem. Journal of
Functional Analysis, 262(4):1879–1920, 2012.

Bruno Levy, Roya Mohayaee, and Sebastian von Hausegger. A fast semidiscrete optimal transport
algorithm for a unique reconstruction of the early Universe. Monthly Notices of the Royal
Astronomical Society, 506(1):1165–1185, 06 2021. ISSN 0035-8711. doi: 10.1093/mnras/stab1676.
URL https://doi.org/10.1093/mnras/stab1676.

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 3982–3991. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/lin19a.html.

Tianyi Lin, Nhat Ho, and Michael I. Jordan. On the efficiency of entropic regularized algorithms
for optimal transport. Journal of Machine Learning Research, 23(137):1–42, 2022. URL http:
//jmlr.org/papers/v23/20-277.html.

Yiling Luo, Yiling Xie, and Xiaoming Huo. Improved rate of first order algorithms for entropic
optimal transport. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings
of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pp. 2723–2750. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/luo23a.html.

Quentin Mérigot. A multiscale approach to optimal transport. Computer Graphics Forum, 30(5):
1583–1592, 2011. doi: https://doi.org/10.1111/j.1467-8659.2011.02032.x. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02032.x.

12

https://proceedings.mlr.press/v139/guminov21a.html
https://proceedings.mlr.press/v108/guo20a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/024d2d699e6c1a82c9ba986386f4d824-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/024d2d699e6c1a82c9ba986386f4d824-Paper.pdf
https://doi.org/10.1093/mnras/stab1676
https://proceedings.mlr.press/v97/lin19a.html
http://jmlr.org/papers/v23/20-277.html
http://jmlr.org/papers/v23/20-277.html
https://proceedings.mlr.press/v206/luo23a.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02032.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02032.x

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stephen G. Nash. A survey of truncated-Newton methods. Journal of Computational and
Applied Mathematics, 124(1):45–59, 2000. ISSN 0377-0427. doi: https://doi.org/10.
1016/S0377-0427(00)00426-X. URL https://www.sciencedirect.com/science/
article/pii/S037704270000426X. Numerical Analysis 2000. Vol. IV: Optimization and
Nonlinear Equations.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006.

Marcel Nutz. Introduction to entropic optimal transport. Lecture notes, Columbia University, 2021.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
International Conference on Computer Vision, pp. 460–467, 2009. doi: 10.1109/ICCV.2009.
5459199.

F. Pitie, A.C. Kokaram, and R. Dahyot. N-dimensional probability density function transfer and
its application to color transfer. In Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, pp. 1434–1439 Vol. 2, 2005. doi: 10.1109/ICCV.2005.166.

Igal Sason and Sergio Verdú. f -divergence inequalities. IEEE Transactions on Information Theory,
62(11):5973–6006, 2016. doi: 10.1109/TIT.2016.2603151.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019. doi: 10.1137/16M1106018.
URL https://doi.org/10.1137/16M1106018.

Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich. Dotmark – a benchmark for discrete
optimal transport. IEEE Access, 5:271–282, 2017. doi: 10.1109/ACCESS.2016.2639065.

Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical report, Carnegie Mellon University, USA, 1994.

Xun Tang, Michael Shavlovsky, Holakou Rahmanian, Elisa Tardini, Kiran Koshy Thekumparampil,
Tesi Xiao, and Lexing Ying. Accelerating Sinkhorn algorithm with sparse Newton iterations.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Kuj5gVp5GQ.

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. A fast proximal point method for
computing exact Wasserstein distance. In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of
The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine
Learning Research, pp. 433–453. PMLR, 22–25 Jul 2020. URL https://proceedings.
mlr.press/v115/xie20b.html.

13

https://www.sciencedirect.com/science/article/pii/S037704270000426X
https://www.sciencedirect.com/science/article/pii/S037704270000426X
https://doi.org/10.1137/16M1106018
https://openreview.net/forum?id=Kuj5gVp5GQ
https://openreview.net/forum?id=Kuj5gVp5GQ
https://proceedings.mlr.press/v115/xie20b.html
https://proceedings.mlr.press/v115/xie20b.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

A.1.1 ADDITIONAL NOTATION

Here, we describe additional notation used in the proofs that follow. Given a column vector
x ∈ Rn and an n× n square matrix A, ∥x∥2A = x⊤Ax. The operator norm of a matrix is denoted
∥A∥p,q = supx∈Rn ∥Ax∥q / ∥x∥p. To mean ∥A∥p,p, we use the notation ∥A∥p. For an element-wise
norm, we write ∥vec(A)∥p, where vec(A) is the vectorization of the matrix A. A vector formed by
diagonal entries of a matrix P is denoted diag(P).

A.1.2 DERIVATION OF THE EOT DUAL (4)

In this section, we provide the derivations for (3-4). Recall the EOT primal problem given by (2):

minimize
P ∈ U(r, c)

⟨P,C⟩ − 1

γ
H(P).

Observe that we can replace negative Shannon entropy ⟨P, logP ⟩ in (2) with the KL divergence
(written without assuming P ∈ ∆n×n) to the uniform distribution U = 1

n21n×n:

DKL(P |U) = ⟨P, logP ⟩ − ⟨P, log 1

n2
1⟩+ 1−

∑
ij

Pij

= ⟨P, logP ⟩ −
∑
ij

Pij + 2 log n+ 1.

That is, replacing the negative Shannon entropy term with the above in the primal objective only
increases the objective by a constant 2 log n on the feasible set, since

∑
ij Pij = 1 for all P ∈ U(r, c).

For convenience, we drop the 2 log n term and take the primal problem given by

minimize
P ∈ U(r, c)

⟨P,C⟩+ 1

γ

⟨P, logP ⟩ −∑
ij

Pij + 1

 .

To derive the dual problem, we write the (scaled) Lagrangian with dual variables u,v ∈ Rn corre-
sponding to equality constraints r(P) = r and c(P) = c:

L(P,u,v) = γ⟨P,C⟩+ ⟨P, logP ⟩ −
∑
ij

Pij + 1 + ⟨u, r − r(P)⟩+ ⟨v, c− c(P)⟩. (17)

Taking the first derivative with respect to the ijth entry Pij of P :

∂L
∂Pij

= γCij + 1 + logPij − 1− ui − vj

= γCij + logPij − ui − vj .

Setting the partial to 0:

∂L
∂Pij

= 0 ⇐⇒ logPij = ui + vj − γCij

⇐⇒ Pij = exp{ui + vj − γCij},
where the last equation is the same as (3). Now, plugging the above P into the Lagrangian (17):

−g(u,v) := γ⟨P,C⟩+ ⟨P,u1⊤ + 1v⊤ − γC⟩ −
∑
ij

Pij + 1 + ⟨u, r − r(P)⟩+ ⟨v, c− c(P)⟩

= ⟨u, P1⟩+ ⟨v, P⊤1⟩ −
∑
ij

Pij + 1 + ⟨u, r − r(P)⟩+ ⟨v, c− c(P)⟩

= 1−
∑
ij

P (u,v)ij + ⟨u, r⟩+ ⟨v, c⟩.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Maximizing −g(u,v) with respect to the dual variables, we obtain the dual problem (4):

minimize
u,v ∈ Rn

g(u,v) =
∑
ij

P (u,v)ij − 1− ⟨u, r⟩ − ⟨v, c⟩,

where we kept the constant −1 as a convention.

As an aside, note that if one assumes instead an L1 normalized form for P via the softmax function
(given that the feasible set U(r, c) is a subset of the simplex):

P (u,v)ij =
exp{ui + vj − γCij}∑
k,l exp{uk + vl − γCij}

,

one obtains an alternative form for the dual objective by plugging the above into the Lagrangian (17):

g̃(u,v) = log
∑
ij

exp{ui + vj − γCij} − ⟨u, r⟩ − ⟨v, c⟩.

Both the sum-of-exponents and log-sum-of-exponents forms of the dual appear in the literature; see
for instance Altschuler et al. (2017); Dvurechensky et al. (2018); Lin et al. (2019) for the former and
Lin et al. (2022) for the latter. Both objectives g and g̃ have the same value whenever P (u,v) as
defined in (3) is on the simplex, since x− 1 = log x = 0 for x = 1, which is why the constant −1 in
(4) was kept as a convention.

Lastly, we show that up to a constant shift, the objective (4) is equivalent to the Bregman projection
objective in the problem

minimize
P ∈ U(r, c)

DKL(P |P (u,v)),

where u,v ∈ Rn. Indeed, given any P ∈ U(r, c) and some initial u,v ∈ Rn, where P (u,v) need
not be on the simplex:

DKL(P |P (u,v)) = −H(P)− ⟨P, logP (u,v)⟩+
∑
ij

P (u,v)ij − 1

= −H(P)− ⟨P,u1⊤ + 1v⊤ − γC⟩+
∑
ij

P (u,v)ij − 1

= γ⟨P,C⟩ −H(P)− ⟨u, P1⟩ − ⟨v, P⊤1⟩+
∑
ij

P (u,v)ij − 1

= γ⟨P,C⟩ −H(P)− ⟨u, r⟩ − ⟨v, c⟩+
∑
ij

P (u,v)ij − 1,

where the first two terms are constant in u,v. Dropping these, we recover (4) for the Bregman
projection problem.

A.1.3 PROOF OF THM. 3.1

We start this section with an intuitive example describing the role of the row-stochastic matrix Prc

that was defined in (9). The discussion carries over to Pcr by symmetry. Next, we will list some
mathematical properties that will be useful in the proofs that follow.

Suppose r and c are disjointly supported on two sets of particles x1, · · · ,xn1
and yn1+1, · · · ,yn

respectively, and let n2 := n − n1. That is, an n1 × n2 transport plan P ∈ U(r, c) maps dis-
tributions over x and y particles. Recall the definition of Prc = PrPc in (9) as a product
of Pr = D(r)−1P ∈ Rn1×n2

>0 and Pc = D(c)−1P⊤ ∈ Rn2×n1
>0 . Given some initial distribution

q ∈ ∆n1 over x-particles, P⊤
r q ∈ ∆n2 is a distribution over y-particles after transportation accord-

ing to P . Indeed, we can show easily that P⊤
r q is on the simplex:

1⊤P⊤
r q = 1⊤P⊤D(r)−1q = r⊤D(r)−1q = 1⊤q = 1.

Similarly, P⊤
c P⊤

r q = P⊤
rcq ∈ ∆n1

is again a distribution over x-particles after transporting back
according to P . This is the stochastic process represented by Prc. Given any initial distribution q,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the process converges to the row-marginal r of P if Prc is applied repeatedly (as the next lemma
shows). The second largest eigenvalue λ2 of Prc determines how quickly this convergence occurs
(see Lemma A.3 below).

Now, we list useful technical properties of Prc in our setting. Analogous claims hold for the stochastic
matrix Pcr and the column sum c(P) by symmetry, but are omitted for brevity.
Lemma A.1 (Properties of Prc). Given a matrix P ∈ Rn×n with strictly positive finite entries define
Prc = PrPc = D(r(P))−1PD(c(P))−1P⊤. The following are true:

1. Prc is an irreducible row-stochastic matrix. Its second largest eigenvalue λ2 is strictly less
than one.

2. The stationary distribution of Prc is r(P).

3. Prc is reversible in the sense that D(r(P))Prc = P⊤
rcD(r(P)), which implies all eigen-

values of Prc are real.

4. PrcD(r(P))−1 = D(r(P))−1P⊤
rc.

5. Given some ρ ∈ [0, 1), we have (I − ρPrc)
−1D(r(P))−1 = D(r(P))−1(I − ρP⊤

rc)
−1.

Proof. We prove each claim in order.

1. The vector of ones is a right-eigenvector of Prc with eigenvalue 1:
Prc1 = D(r(P))−1PD(c(P))−1P⊤1

= D(r(P))−1PD(c(P))−1c(P)

= D(r(P))−1P1

= D(r(P))−1r(P)

= 1.

Since all entries of P are strictly positive, the same is true of Prc. The claim follows.

2. The vector r(P) is a left-eigenvector of Prc with eigenvalue 1:

r(P)⊤Prc = r(P)⊤D(r(P))−1PD(c(P))−1P⊤

= 1⊤PD(c(P))−1P⊤

= c(P)⊤D(c(P))−1P⊤

= 1⊤P⊤

= r(P)⊤.

3. The claim holds since
D(r(P))Prc = D(r(P))D(r(P))−1PD(c(P))−1P⊤

= PD(c(P))−1P⊤

= PD(c(P))−1P⊤D(r(P))−1D(r(P))

= P⊤
rcD(r(P)).

4. The claim follows similarly as the previous claim.

5. First, notice that Claims 3 and 4 apply analogously to all powers of P l
rc for l ≥ 0. Indeed,

for Claim 4 we have:
P l
rcD(r(P))−1 = P l−1

rc PrcD(r(P))−1

= P l−1
rc D(r(P))−1P⊤

rc (by Claim 4)

= P l−2
rc PrcD(r(P))−1P⊤

rc

= P l−2
rc D(r(P))−1(P⊤

rc)
2 (again, by Claim 4)

= D(r(P))−1(P⊤
rc)

l. (by repeated application of Claim 4)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then, from the Neumann series (I − ρPrc)
−1D(r(P))−1 = (

∑∞
l=0 ρ

lP l
rc)D(r(P))−1,

we obtain the claim by applying the above equality to each element of the sum. ■

Lemma A.2 (Properties of the coefficient matrix Fr(ρ)). Let ρ ∈ [0, 1), Prc be a row-stochastic
matrix with strictly positive entries and mini r(P)i ≥ 0 for all i ∈ [n]. Given an n× n matrix
Fr(ρ) = D(r(P))(I − ρPrc), the following hold true:

• Fr(ρ) is a symmetric, positive-definite matrix.

• λmax(Fr(ρ)) ≤ (1 + ρ)r(P)max

• λmin(Fr(ρ)) ≥ (1− ρ)r(P)min.

Proof. Observe that

Fr(ρ) = D(r(P))(I − ρPrc) = D(r(P))− ρPPc

= D(r(P))− ρPD(c(P))−1P⊤,

is a sum of two symmetric matrices, which is also symmetric. The eigenvalue bounds follow from the
Gerschgorin Circle Theorem. Since the smallest eigenvalue is positive, Fr(ρ) is positive-definite. ■

Before we move on to the proof of Thm. 3.1, we state the following Lemma, which follows
immediately from Thm. 2.7 of Fill (1991) given that Prc is reversible by Claim 3 of Lemma A.1.

Lemma A.3 (Convergence to the stationary distribution under Prc). Given some r ∈ ∆n,∥∥(P⊤
rc)

lr − r(P)
∥∥2
1
≤ λ2l

2 χ
2(r|r(P)), (18)

where λ2 < 1 is the second largest eigenvalue λ2 of Prc.

Now, we provide a more formal version of Thm. 3.1 presented in the main text followed by a proof.

Theorem 3.1 (continuing from p. 5). Assuming c = c(P) and dv = −Pcdu, define residuals
eu(ρ):=Fr(ρ)du +∇ug, and e := ∇2g d+∇g. Further, let λ2 ∈ (0, 1) be the 2nd largest eigen-
value of Prc and ζ := ∥∇ug∥1 /χ(r|r(P)) ≤ 1. For any β ∈ (0, 1), suppose:

max

(
0, 1− (1− λ2)K

λ2(1−K)

)
≤ ρ < 1, (19)

∥eu(ρ)∥1 ≤
1− β

2
η ∥∇g∥1 , (20)

where K = ζβη < 1. Then,

∥e∥1 = ∥eu(1)∥1 ≤ η ∥∇g∥1 . (21)

Proof. To establish necessary conditions for bounding ∥e∥1, first, we write it out explicitly:

e = ∇2gd+∇g

=

(
D(r(P)) P

P⊤ D(c(P))

)(
du

dv

)
+

(
∇ug
∇vg

)
,

=

(
D(r(P)) P

P⊤ D(c(P))

)(
du

−Pcdu

)
+

(
∇ug
0

)
, (by construction)

=

(
D(r(P))du − PPcdu

0

)
+

(
∇ug
0

)
(since D(c(P))Pc = P⊤ by definition.)

=

(
D(r(P))(I − Prc)du

0

)
+

(
∇ug
0

)
, (22)

=

(
eu(1)
0

)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

which proves the equality on the LHS of (21), where the last equality holds given the definitions
eu(ρ):=Fr(ρ)du +∇ug and Fr(ρ) = D(r(P))(I − ρPrc). Hence, bounding ∥eu(1)∥1 suffices.
Now, given the definition of eu(ρ) and the invertibility of Fr(ρ) for ρ < 1 by Lemma A.2, we have:

du = Fr(ρ)
−1(eu(ρ)−∇ug).

Plugging into the top half of (22), we observe that:
eu(1) = Fr(1)Fr(ρ)

−1(eu(ρ)−∇ug) +∇ug

= Î(ρ)eu(ρ) + (I − Î(ρ))∇ug,

where we defined Î(ρ) := Fr(1)Fr(ρ)
−1. Then, we have

∥eu(1)∥1 ≤
∥∥∥Î(ρ)∥∥∥

1
∥eu(ρ)∥1 +

∥∥∥(I − Î(ρ))∇ug
∥∥∥
1
. (23)

First, we prove that the operator norm
∥∥∥Î(ρ)∥∥∥

1
≤ 2.

Î(ρ) = D(r(P))(I − Prc)(I − ρPrc)
−1D(r(P))−1

= I − (1− ρ)D(r(P))Prc(I − ρPrc)
−1D(r(P))−1

= I − (1− ρ)P⊤
rc(I − ρP⊤

rc)
−1, (24)

where the last equality follows from claims 3 and 5 of Lemma A.1. Recalling that ∥A∥1 is the
maximum absolute column sum of matrix A:∥∥∥Î(ρ)∥∥∥

1
≤ 1 + (1− ρ)

∥∥P⊤
rc

∥∥
1

∥∥(I − ρP⊤
rc)

−1
∥∥
1

= 1 + (1− ρ)
∥∥(I − ρP⊤

rc)
−1
∥∥
1

= 1 + (1− ρ)

∥∥∥∥∥
∞∑
l=0

ρl(P⊤
rc)

l

∥∥∥∥∥
1

≤ 1 + (1− ρ)

∞∑
l=0

ρl
∥∥(P⊤

rc)
l
∥∥
1

= 2. (since P l
rc is a stochastic matrix for all l ≥ 0)

Hence, (23) simplifies to

∥eu(1)∥1 ≤ 2 ∥eu(ρ)∥1 +
∥∥∥(I − Î(ρ))∇ug

∥∥∥
1
. (25)

Next, we turn to the second term on the RHS:

(I − Î(ρ))∇ug = (1− ρ)P⊤
rc(I − ρP⊤

rc)
−1∇ug (From (24))

= (1− ρ)

∞∑
l=0

ρl(P⊤
rc)

l+1(r(P)− r)

= (1− ρ)

∞∑
l=0

ρl
(
r(P)− (P⊤

rc)
l+1r

)
,

where the last equality is due to the fact that r(P) is the stationary distribution of Prc by Claim 2 of
Lemma A.1. Then,∥∥∥(I − Î(ρ))∇ug

∥∥∥
1
≤ (1− ρ)

∥∥∥∥∥
∞∑
l=0

ρl
(
r(P)− (P⊤

rc)
l+1r

)∥∥∥∥∥
1

≤ (1− ρ)

∞∑
l=0

ρl
∥∥∥∥(r(P)− (P⊤

rc)
l+1r

)∥∥∥∥
1

≤ (1− ρ)

∞∑
l=0

ρlλl+1
2 χ(r|r(P)) (By Lemma A.3)

=
(1− ρ)λ2

1− ρλ2
χ(r|r(P))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Plugging this bound back into (25) and continuing with the main conditions given in the theorem:

∥eu(1)∥1 ≤ 2 ∥eu(ρ)∥1 +
(1− ρ)λ2

1− ρλ2
χ(r|r(P))

≤ (1− β)η ∥∇g∥1 +
(1− ρ)λ2

1− ρλ2
χ(r|r(P)) (Since (20) holds by construction)

≤ (1− β)η ∥∇g∥1 + βη ∥∇g∥1 (Since (19) holds by construction)
= η ∥∇g∥1 ,

which concludes the proof. Above, the parameter β ∈ (0, 1) controls a trade-off between how
precisely the discounted system is solved and how aggressively the original system is discounted. In
Algorithm 2 of the main text, β was fixed at 1/2 for simplicity. Also, for intuition on the effect of λ2,
observe that the second term vanishes as λ2 → 0 (if Prc mixes quickly) so that the Hessian can be
discounted more aggressively with a smaller ρ. As we see next, this improves our guarantees on the
condition number of the linear system. ■

A.1.4 PROOF OF THM. 3.2

Lemma A.4 (Spectrum after preconditioning). Let F̂r(ρ) := M−1/2Fr(ρ)M
−1/2 be the diagonally

preconditioned coefficient matrix, where M = D(diag(Fr(ρ))). Further, let µ = diag(Prc) be the
diagonal entries of the stochastic matrix Prc ∈ Rn×n

>0 . Then, eigenvalues λi(ρ) of F̂r(ρ) satisfy

1− ρ(1− µmin)

1− ρµmin
≤ λi(ρ) ≤ 1 +

ρ(1− µmin)

1− ρµmin
, ∀i ∈ [n] (26)

κ(ρ) =
λmax(ρ)

λmin(ρ)
≤ 2

(
µmin +

1− µmin

1− ρ

)
≤ 2

1− ρ
(27)

Proof. The proof of (26) follows straightforwardly from the Gerschgorin Circle Theorem. Due to
diagonal similarity, the spectrum of F̂r(ρ) coincides with that of F̃r(ρ) = M−1Fr(ρ). Clearly,
diagonal entries of F̃r(ρ) all equal to 1, so that all Gerschgorin disks are centered around unity. Then,
all eigenvalues must be inside the biggest disk, which contains all of the smaller disks. First, consider
row i of Fr(ρ) = D(r(P))(I − ρPrc):∑

j ̸=i

|F̃r(ρ)ij | = r(P)iρ(1− µi).

Since Mii = Fr(ρ)ii = r(P)i(1− ρµi), we then have:∑
j ̸=i

|F̃r(ρ)ij | =
ρ(1− µi)

(1− ρµi)
,

where the biggest Gerschgorin disk corresponds to µmin, so that (26) holds for all i ∈ [n]. Then,

κ(ρ) ≤ 2

λmin(ρ)
≤ 2

1− ρ(1−µmin)
(1−ρµmin)

= 2

(
µmin +

1− µmin

1− ρ

)
= O

(
1− µmin

1− ρ

)
as ρ→ 1. ■

Lemma A.5 (Equivalence of norms). Suppose d∗
u satisfies Fr(ρ)d

∗
u = −∇ug. Let F̂r(ρ) =

M−1/2Fr(ρ)M
−1/2 and M = D(diag(Fr(ρ))) as in Lemma A.4. Define the reparametrization

d̂u = M1/2du given some du ∈ Rn, and the residual eu = Fr(ρ)du +∇ug. We have,√
(1− ρ)r(P)min ≤

∥eu∥1∥∥∥d̂u − d̂∗
u

∥∥∥
F̂r(ρ)

≤
√
(1 + ρ)n. (28)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. For this proof, we drop ρ from Fr(ρ) and F̂r(ρ) for convenience. First, observe that
du − d∗

u = F−1
r eu. Then,∥∥∥d̂u − d̂∗

u

∥∥∥2
F̂r

=
∥∥∥M1/2F−1

r eu

∥∥∥2
F̂r

= e⊤uF
−1
r M1/2F̂rM

1/2F−1
r eu

= e⊤uF
−1
r FrF

−1
r eu

= e⊤uF
−1
r eu

≥ λmin(F
−1
r) ∥eu∥22

=
∥eu∥22

λmax(Fr)

≥
∥eu∥22

(1 + ρ)r(P)max
(by Lemma A.2)

≥
∥eu∥22
(1 + ρ)

≥
∥eu∥21

n(1 + ρ)
, (since ∥x∥1 ≤

√
n ∥x∥2 ,∀x ∈ Rn.)

which is equivalent to the upper bound of the desired result. The lower bound follows similarly in the
reverse direction, using λmin(Fr) and ∥x∥2 ≤ ∥x∥1. ■

Lemma A.6 (Convergence of CG). Suppose diagonally-preconditioned conjugate gradient method
is initialized with d

(0)
u = 0 for the linear system Fr(ρ)d

∗
u = −∇ug, where ρ ∈ [0, 1). Let µ be

the largest diagonal entry of Prc. Assuming that r(P)min ≥ εd/(4n) for all i ∈ [n] given some
constant εd > 0, the residual satisfies ∥Fr(ρ)du +∇ug∥1 = ∥eu(ρ)∥1 ≤ η̂ ∥∇ug∥1 after at most
ceil(k) steps, where

k ≤
(
1− µρ

1− ρ

)1/2

log
(
6n(1− ρ)−1/2η̂−1ε

−1/2
d

)
= Õ

(√
1− µ

1− ρ

)
as ρ→ 1. (29)

Proof. Once again, we drop ρ from Fr(ρ) and F̂r(ρ) for convenience. Using the same definitions as
Lemma A.5, recall the equivalence of the diagonally-preconditioned linear system:

Frdu = −∇ug

⇐⇒ M−1/2Frdu = −M−1/2∇ug

⇐⇒ M−1/2FrM
−1/2M1/2du = −M−1/2∇ug

⇐⇒ F̂rd̂u = −M−1/2∇ug.

To guarantee ∥eu∥1 ≤ η̂ ∥∇ug∥1, it is sufficient to have (given the upper bound in Lemma A.5)∥∥∥d̂u − d̂∗
u

∥∥∥
F̂r(ρ)

≤
η̂ ∥∇ug∥1√
n(1 + ρ)

:= 2ε. (30)

It is well-known the that linear conjugate gradient method ensures
∥∥∥d̂u − d̂∗

u

∥∥∥
F̂r(ρ)

≤ 2ε after at

most ceil(k) steps (Shewchuk, 1994), where

k =
1

2

√
κ(F̂r) log

∥∥∥d̂(0)
u − d̂∗

u

∥∥∥
F̂r

ε−1. (31)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Then, we have

k ≤ 1

2

√
κ(F̂r) log

∥∥∥d̂(0)
u − d̂∗

u

∥∥∥
F̂r

ε−1

≤ 1

2

√
κ(F̂r) log

∥∥∥e(0)u

∥∥∥
1
ε−1√

(1− ρ)r(P)min

(by the lower bound in Lemma A.5)

=
1

2

√
κ(F̂r) log

∥∇ug∥1 ε−1√
(1− ρ)r(P)min

(since d
(0)
u = 0 =⇒

∥∥∥e(0)u

∥∥∥
1
= ∥∇ug∥1.)

=
1

2

√
κ(F̂r) log 2η̂

−1

√
(1 + ρ)n

(1− ρ)r(P)min
(using ε from (30))

≤ 1

2

√
κ(F̂r) log 3n

1/2(1− ρ)−1/2η̂−1r(P)
−1/2
min (simplifying constants)

≤ 1

2

√
κ(F̂r) log 6n(1− ρ)−1/2η̂−1ε

−1/2
d , (since r(P)min ≥ εd/(4n) by assumption)

≤

√
1− µρ

2(1− ρ)
log 6n(1− ρ)−1/2η̂−1ε

−1/2
d (by Lemma A.4)

which concludes the proof. ■

Theorem 3.2 (Convergence of Algorithm 2). Suppose r(P)min ≥ εd/(4n) given εd > 0 and each
step of Alg. 2 runs diagonally-preconditioned CG initialized with d

(0)
u =0. Alg. 2 terminates in

Õ

(
n2

√
(1− µ)χ(r|r(P))

(1− λ2)η ∥r(P)− r∥1
log ε

−1/2
d

)
(14)

operations, where λ2 < 1 is the 2nd largest eigenvalue of Prc and µ < 1 its smallest diagonal entry.

Proof. An easy way to see why Thm. 3.2 holds is by noticing that the lower bound condition on ρ
given in (19) will hold after a finite number of iterations depending logarithmically on remaining
problem parameters. Then, since by Lemma A.6 each iteration requires Õ((1− ρ)−1/2) steps of CG
(with each step costing O(n2)), and 1− ρ will be at most O(1− λ2), the result follows. Now, we
provide a more detailed analysis.

First, define ρ̃(l) = 1− ρ(l) for the lth iteration of Alg. 2. Since ρ(0) = 0 =⇒ ρ̃(0) = 1, we have
ρ̃(l) = 4−l given the update rule in L5. Then, by (19) of Thm. 3.1, Alg. 1 performs the final iteration
(in the worst case) when

ρ̃(l) = 4−l ≤ (1− λ2)K

λ2(1−K)
= (1− λ2)K̃.

That is, in the worst case we terminate after l steps, where

l = ceil

(
− log(1− λ2)K̃

log(4)

)
. (32)

In the worst case, we are guaranteed by the final step final that,

ρ̃(l) = 4−l ∈

(
(1− λ2)K̃

4
, (1− λ2)K̃

]
. (33)

Thus, for each integer l′ ∈ [l], we have

ρ̃(l
′) = 4−l′ > (1− λ2)K̃4l−l′−1. (34)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then, the condition number at a given step l′ ≥ 0 satisfies:

κ(l′) ≤ µ+
1− µ

1− ρ(l′)
(From Lemma A.4)

≤ µ+ 41+l′−l 1− µ

(1− λ2)K̃
(From (34))

= 41+l′−lκ0,

where

κ0 = O

(
1− µ

(1− λ2)K̃

)
as λ2 → 1 (35)

By Lemma A.6, a given step l′ ≤ l of Alg. 2 takes at most

k(l′) = 21+l′−l√κ0 log
(
3n
√
κ02

1+l′−lη̂−1ε
−1/2
d

)
≤ 21+l′−l√κ0 log

(
6n
√
κ0η̂

−1ε
−1/2
d

)
(since l′ ≤ l)

= 21+l′−lÕ(
√
κ0),

steps of the conjugate gradient algorithm. Taking a sum over l′:

l∑
l′=0

k(l′) = Õ(
√
κ0)2

1−l
l∑

l′=0

2l
′

= Õ(
√
κ0)2

1−l

(
2l+1 − 1

2− 1

)
(36)

= Õ(
√
κ0)(4− 21−l)

≤ Õ(
√
κ0)(4−

√
(1− λ2)K̃) (due to (32))

= Õ(
√
κ0). (37)

Note that the choice of decay factor 4 is not arbitrary; if one chooses instead a factor L > 1 and
repeats the above steps, one arrives at (cf. (32)):

l = ceil

(
− log(1− λ2)K̃

log(L)

)
,

and the following (cf. (36))

l∑
l′=0

k(l′) = Õ(
√
κ0)
√
L
1−l

(√
L
l+1 − 1√
L− 1

)

≤ Õ(
√
κ0)

L−
√
(1− λ2)K̃
√
L− 1

≤ Õ(
√
κ0)

L√
L− 1

,

and L = 4 is the global minimizer of h(x) = x/(
√
x − 1). The last inequality is strong when

convergence is bottlenecked by λ2 ≈ 1, so that the choice L = 4 becomes near-optimal when
optimality is most needed.

Continuing from (37), the overall complexity is:

Õ(
√
κ0) = Õ

(√
1− µ

(1− λ2)K̃

)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The result follows by explicitly writing and simplifying K̃−1:

K̃−1 =
λ2(1−K)

K

=
2λ2(1− ζη/2)

ζη
. (Since we choose β = 0.5, where K = ζβη)

≤ 2

ζη

= 2
χ(r|r(P))

∥∇ug∥1 η
,

where the last equality holds by definition of ζ. ■

A.1.5 PROOFS OF LEMMA 3.3 AND COROLLARY 3.4

Lemma 3.3 (Convergence of Algorithm 3). Assuming that ∥r(P)/r∥∞ <∞ and ∥r/r(P)∥∞ <∞,
Algorithm 3 converges in O(n2/εχ) operations.

Proof. First, recall that by Eq. (169) of Sason & Verdú (2016), the ratio DKL(r|r(P))
χ2(r|r(P)) is bounded both

above and below by constants depending on ∥r(P)/r∥∞ <∞ and ∥r/r(P)∥∞ <∞. Notably, the
ratio converges to 1/2 as r(P)→ r as shown in Thm. 4.1 of (Csiszár & Shields, 2004).

Since we know that after k steps of Sinkhorn iteration,

DKL(r|r(P)) ≤ A/k

for some constant A > 0 (see Corollary 6.12 of Nutz (2021)) and χ2(r|r(P)) = O(DKL(r|r(P))),
we conclude that after k steps, χ2(r|r(P)) = O(k−1). The result follows as each Sinkhorn iteration
costs O(n2) and Alg. 2 terminates when χ2(r|r(P)) ≤ εχ. ■

Corollary 3.4 (Per-step Cost of Algorithm 4). If the backtracking line search in Alg. 4 converges
in S iterations, then an iteration of Alg. 4 costs Õ(n2(S + ε

−2/5
d (1− λ2)

−1/2)) operations, where
λ2 < 1 is the 2nd largest eigenvalue of Prc defined as in (9) and evaluated at u,v (cf. (3)).

Proof. First, from Lemma 3.3, the ChiSinkhorn routine in L6 of Alg. 4 has complexity O(n2ε
−2/5
d)

as we chose εχ = ε
2/5
d . Lines L9 and L18 each cost O(n2), which leaves the cost of line search

between lines L12-14 and the NewtonSolve routine in L8. Since the former is assumed to take S
steps, each costing O(n2), it remains to show the cost of NewtonSolve (or Alg. 2).

First, consider the case when η = 0.4εd/ ∥∇ug∥1 as per L7. From Thm. 3.2, after dropping the
logarithmic terms and the linear n2 term, we have the following linear term:√

(1− µ)χ(r|r(P))

(1− λ2)η ∥r(P)− r∥1
≤

√
(1− µ)χ(r|r(P))

(1− λ2)εd
≤

√
(1− µ)ε

−4/5
d

(1− λ2)
= O(ε

−2/5
d (1− λ2)

−1/2)

since χ2(r|r(P)) ≤ ε
2/5
d . Next, consider the case when ∥∇ug∥1 > 0.4εd/ ∥∇ug∥1, i.e.,

∥∇ug∥21 > 0.4εd, so that L7 assigns η = ∥∇ug∥1 instead. Inserting η into the denominator on
the LHS above and applying ∥∇ug∥21 > 0.4εd yields the same complexity. ■

A.1.6 PROOF OF THM. 3.5

First, we present a simple lemma on the line search condition used in L12 of Algorithm 4.
Lemma A.7 (Sufficient Decrease Condition). Assuming c = c(P), given a descent direction
d = (du,−Pcdu), the Armijo condition for line search over objective g is satisfied for a step
size α ∈ (0, 1] and constant parameter c1 ∈ (0, 1) if and only if:

∥vec(P (u+ αdu,v − αPcdu))∥1 − 1 ≤ (1− c1)α⟨−∇ug,du⟩. (38)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof. Recall that the Armijo condition requires (see Ch. 3.1 of Nocedal & Wright (2006)):

g(u+ αdu,v − αPcdu) ≤ g(u,v) + c1α⟨∇g,d⟩. (39)

For brevity, let P (α) := P (u+ αdu,v − αPcdu). We show the equivalence of the above statement
to (38) step by step:

g(u+ αdu,v − αPcdu) ≤ g(u,v) + c1α⟨∇g,d⟩.
⇐⇒ ∥vec(P (α))∥1 − 1− ⟨u+ αdu, r⟩ − ⟨v − αPcdu, c⟩ ≤ −⟨u, r⟩ − ⟨v, c⟩+ c1α⟨∇g,d⟩
⇐⇒ ∥vec(P (α))∥1 − 1 ≤ α

(
⟨du, r⟩ − ⟨Pcdu, c⟩

)
+ c1α⟨∇g,d⟩

⇐⇒ ∥vec(P (α))∥1 − 1 ≤ α
(
⟨du, r⟩ − ⟨du, P

⊤
c c⟩

)
+ c1α⟨∇g,d⟩

⇐⇒ ∥vec(P (α))∥1 − 1 ≤ α
(
⟨du, r⟩ − ⟨du, r(P)⟩

)
+ c1α⟨∇g,d⟩ (Since P⊤

c c = r(P))

⇐⇒ ∥vec(P (α))∥1 − 1 ≤ α⟨du,−∇ug⟩+ c1α⟨∇ug,du⟩, (Since c(P) = c by assumption)

which is equivalent to (38). ■

Theorem 3.5 (Per-step Improvement of Algorithm 4). Given a descent direction d = (du,−Pcdu)
such that ∥e∥1 =

∥∥∇2gkd+∇gk
∥∥
1
≤ η ∥∇gk∥1, let α ∈ (0, 1] be the step size found via backtrack-

ing line search in the kth step of Alg. 4. Then,∇gk+1 := ∇g(u+ αdu,v − αPcdu) satisfies

∥∇gk+1∥1 ≤ (1− α+ αη) ∥∇gk∥1 + α
√
α O(∥∇gk∥21). (15)

Proof. For convenience, let z := (u,v) given some (u,v) ∈ R2n and ∇2g(t) := ∇2g(z + tαd).
Recall that from Taylor’s Theorem, we have:

∇g(z + αd) = ∇g(z) + α

∫ 1

0

[∇2g(t)]d dt

= ∇g(z) + α∇2g(0)d+ α

∫ 1

0

[
∇2g(t)−∇2g(0)

]
d dt

= (1− α)∇g(z) + αe+ α

∫ 1

0

[
∇2g(t)−∇2g(0)

]
d dt.

Now, we define the following:

h(t) :=

∫ 1

0

[
∇2g(t)−∇2g(0)

]
d.

Then,

∥∇g(z + αd)∥1 ≤ (1− α) ∥∇g(z)∥1 + α ∥e∥1 + α

∥∥∥∥∫ 1

0

h(t)dt

∥∥∥∥
1

≤ (1− α+ αη) ∥∇g(z)∥1 + α

∥∥∥∥∫ 1

0

h(t)dt

∥∥∥∥
1

(By construction)

≤ (1− α+ αη) ∥∇g(z)∥1 + α

∫ 1

0

∥h(t)∥1 dt (40)

We will bound ∥h(t)∥1 in terms of t ∈ [0, 1] and evaluate the integral. Again, define
P (t) := P (z + tαd) for convenience, and let ∆P (t) := P (t)− P , where P = P (0). Then,

h(t) =

(
D(r(∆P (t))) ∆P (t)

∆P (t)⊤ D(c(∆P (t)))

)(
du

−Pcdu

)
=

(
D(r(∆P (t)))du

−D(c(∆P (t)))Pcdu

)
+

(
−∆P (t)Pcdu

∆P (t)⊤du

)
:=

(
h1(t)
h2(t)

)
+

(
h3(t)
h4(t)

)
,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where we have ∥h(t)∥1 ≤
∑4

l=1 ∥hl(t)∥1. Consider h1(t),

∥h1(t)∥1 =
∑
i

|r(∆P (t))i(du)i|

≤ ∥du∥∞
∑
i

|r(∆P (t))i|

= ∥du∥∞ ∥r(∆P (t))∥1
≤ ∥du∥∞ ∥vec(∆P (t))∥1 .

Since we have ∥Pcdu∥∞ ≤ ∥du∥∞, the same bound holds for ∥h2(t)∥1 by symmetry. Next,

∥h4(t)∥1 =
∥∥∆P (t)⊤du

∥∥
1

=
∑
j

|⟨∆P (t):j ,du⟩| (A:j denotes the jth column of A.)

≤ ∥du∥∞
∑
j

∥∆P (t):j∥1

= ∥du∥∞ ∥vec(∆P (t))∥1 .
Similarly, the same bound holds for ∥h3(t)∥1 by symmetry. Then,

∥h(t)∥1 ≤ 4 ∥du∥∞ ∥vec(∆P (t))∥1 . (41)

From Pinsker’s inequality, we have:
1

2
∥vec(∆P (t))∥21 ≤ Dh(P |P (t)) (Bregman divergence under negative entropy)

= ∥vec(P (t))∥1 − 1 + ⟨P, log(P/P (t))⟩ (Given c = c(P),vec(P) ∈ ∆n2 .)
= ∥vec(P (t))∥1 − 1− tα (⟨r(P),du⟩+ ⟨c,−Pcdu⟩)
= ∥vec(P (t))∥1 − 1− tα

(
⟨r(P),du⟩ − ⟨P⊤

c c,du⟩
)

= ∥vec(P (t))∥1 − 1 (Since P⊤
c c = PD(c)−1c = P1 = r(P).)

≤ 0.99tα⟨−∇ug,du⟩,
where the last inequality is due to (38) as we assumed α satisfies the Armijo condition, and if step
size α is feasible, so is any step size tα ∈ [0, α] given that the objective is convex. Plugging the
above into (41):

∥h(t)∥1 ≤ 4 ∥du∥∞
√
2 ∗ 0.99tα⟨−∇ug,du⟩))

≤ 4
√
2α ∥du∥3/2∞ ∥∇ug∥1/21

√
t.

Hence,∫ 1

0

∥h(t)∥1 dt ≤ 4
√
2α ∥du∥3/2∞ ∥∇ug∥1/21

∫ 1

0

√
t dt

=
8
√
2α

3
∥du∥3/2∞ ∥∇ug∥1/21

≤
√
α4 ∥du∥3/2∞ ∥∇ug∥1/21

=
√
α4
∥∥Fr(ρ)

−1(eu(ρ)−∇ug)
∥∥3/2
∞ ∥∇ug∥1/21

≤
√
α12

∥∥Fr(ρ)
−1
∥∥3/2
1,∞ ∥∇ug∥21 (Since Alg. 2 ensures ∥eu(ρ)∥1 ≤

η∥∇ug∥1

4)

=
√
αO(∥∇ug∥21).

Plugging the above into (40) yields the desired result (15). ■

B ADAPTIVE INITIALIZATION OF THE DISCOUNT FACTOR

Recall that in Alg. 2, we initialize the discount factor ρ at 0 and anneal (1− ρ) by taking:

ρ← 1− (1− ρ)/4

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

in L4 of the algorithm until the forcing inequality (6) is satisfied. Here, we describe a simple, practical
strategy to reduce the overhead associated with this annealing procedure and the solving of a sequence
of linear systems (see also the proof of Thm. 3.2 in Appx. A.1.4).

In particular, we initialize NewtonSolve (Alg. 2) with an initial guess ρ0 (rather than 0) in practice.
Each call to NewtonSolve returns the final discount factor ρ found by the algorithm in addition to the
descent direction du. Then, the next time NewtonSolve is called, we call it with

ρnew0 = max
(
0, 1− (1− ρold) ∗ 4

)
, (42)

where ρold is the discount factor returned by the previous NewtonSolve call. That is, the annealing
starts from the second last annealing step of the previous call. As the linear system has changed since
the previous call, this allows for a smaller discount factor to potentially replace the previously feasible
one, if appropriate. We find that this simple change in the implementation improves performance
empirically, as shown in Table 3. This version of the algorithm is used in the main experiments
presented in Sec. 4.

C PROBLEM SIZE EXPERIMENTS

Here, we conduct experiments with varying problem size n to empirically study the dependence of
MDOT–TruncatedNewton on n. Fig. 4 shows the behavior over MNIST and color transfer problems
with L1 and L2

2 cost functions, and problem size adjusted by down- or up-sampling the images. In
all experiments here, we fix regularization weight at γf = 212. In addition to empirical behavior of
MDOT-TruncatedNewton, we include a polynomial f(n) = an2 passing through the empirical curve
at the largest n; the curve explains the behavior of the algorithm well for large n. It performs no
worse than O(n2) empirically for the problems considered in Fig. 2.

D DETAILS OF BASELINE ALGORITHM IMPLEMENTATIONS

Here, we provide details and sources on the implementation of various algorithms shown in Fig. 2.

Mirror Prox Sherman Optimized (Jambulapati et al., 2019). For this algorithm, the source code is
originated in the NumPy code at this repository. The owner of the repository notes that this NumPy
implementation is based on a Julia implementation by the original authors, which was provided in
a private exchange. The code used in this paper is a PyTorch adaptation of the NumPy code and
has been verified to produce identical output as the NumPy version over multiple problems. The
algorithm was called with entropy factor parameter set to the default 2.75 in all experiments. The
number of iterations for the algorithm was varied from 2 to 215 to achieve different levels of precision.

APDAGD (Dvurechensky et al., 2018). For APDAGD, a similar strategy was used, except with this
code repository. A PyTorch version of the original NumPy code was written and verified to produce
identical output. For different levels of precision, the ε parameter of the algorithm was varied from
2−1 to 2−6. For smaller ε, non-convergence was observed.

AAM (Guminov et al., 2021). The implementation is based on NumPy code by the original authors
at this repository. A PyTorch version was verified to produce identical output for GPU execution.
The ε parameter was varied from 2−1 to 2−10. For smaller ε, numerical errors were encountered.

Cost Wall-clock time (s) Adaptive ρ0 = 0

L1 dist.
Median 2.09 6.26

90th %ile 3.12 12.07
10th %ile 1.48 4.70

L2
2 dist.

Median 5.49 25.74
90th %ile 10.18 48.27
10th %ile 1.40 4.56

Table 3: Comparison of median, 90th and 10th percentile performance for adaptively and
naively initialized ρ over 30 problems from the upsampled MNIST dataset with L1 and L2

2 costs
(γi = 24, γf = 218, p = 1.5, and q(1) = 2 initially).

26

https://github.com/kkahatapitiya/Numpy-OT
https://github.com/joshnguyen99/partialot/tree/main
https://github.com/joshnguyen99/partialot/tree/main
https://github.com/nazya/AAM

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

102 103 104

Problem size n

10 1

100

101

Ti
m

e
in

 se
co

nd
s

Wall-clock time vs. problem size (upsampled MNIST, L1 cost)
Wall-clock time
f(n) = an2 with a = 7.55E 08

102 103 104

Problem size n

10 1

100

101

Ti
m

e
in

 se
co

nd
s

Wall-clock time vs. problem size (upsampled MNIST, L2
2 cost)

Wall-clock time
f(n) = an2 with a = 2.88E 08

102 103 104

Problem size n

10 1

100

101

Ti
m

e
in

 se
co

nd
s

Wall-clock time vs. problem size (color transfer, L1 cost)
Wall-clock time
f(n) = an2 with a = 4.14E 08

102 103 104

Problem size n

10 1

100

101

Ti
m

e
in

 se
co

nd
s

Wall-clock time vs. problem size (color transfer, L2
2 cost)

Wall-clock time
f(n) = an2 with a = 3.00E 08

Figure 4: Log-log plot of wall-clock time for MDOT-TruncatedNewton vs. problem size n. Each
marker shows the median over 60 random problems from the MNIST (top) and color transfer (bottom)
problem sets with normalized L1 (left) and L2

2 (right) distance costs. Error bars show 10th and 90th

percentiles. For all problems, γf = 212. Dashed lines show a polynomial f(n) = an2, where a is
selected so that an2 equals the median time taken at the largest n considered. Above, the algorithm
behaves no worse than O(n2).

Feydy, Alg. 3.5 (Feydy, 2020). The implementation is based on the algorithm as presented in the
original work. For different levels of precision, the number of total iterations was varied from 2 to
212. Beyond the upper bound, numerical errors were observed. As it produced better estimates than
the alternative, the algorithm was called with debiasing turned on; hence, the error ⟨P − P ∗, C⟩ was
instead measured in absolute value as |⟨P − P ∗, C⟩| for this algorithm only. Scaling ratio was set to
an intermediate 0.7, which is between the listed 0.5 (fast) and 0.9 (safe) settings.

MDOT (Kemertas et al., 2023). The implementation is based on code written by the original authors.
For both MDOT–Sinkhorn and MDOT–PNCG, input parameters p = 1.5, γi = 16 and q = 21/3

were used. For different precision levels, γf was varied from 25 to 218.

Sinkhorn (Cuturi, 2013). A log-domain stabilized implementation was used. For different precision
levels, γ was varied from 25 to 214 for L1 distance cost and to 215 for L2

2 distance cost. Stopping
criteria were given by Kemertas et al. (2023) formulas as in Alg. 1.

Mirror Sinkhorn (MSK) (Ballu & Berthet, 2023). The implementation is based on the algorithm
presented in the original paper. For different levels of precision, the number of total iterations was
varied from 25 to 216.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E ADDITIONAL BENCHMARKING ON DOTMARK

In this section, we extend the study in Fig. 2 with 10 more datasets from the DOTmark benchmark
introduced by Schrieber et al. (2017) for benchmarking of discrete OT solvers. Schrieber et al. (2017)
proposed 10 different image sets, “to represent a wide range of theoretically different structures, while
incorporating typical images that are used in praxis and/or have been used for previous performance
tests in the literature”. Example image sets include various kinds of randomly generated images,
classical test images and real data from microscopy; each dataset consists of 10 grayscale images,
yielding a total of 45 discrete OT problems, where the marginals r, c are formed based on pixel values
(Schrieber et al., 2017). The cost matrix is constructed similarly to the MNIST dataset from distances
in 2D pixel locations. While Schrieber et al. (2017) proposed only to use the L2

2 cost function, we
evaluate on both L1 and L2

2 costs functions for consistency with Fig. 2 and for the sake of broader
evaluation. Once again, for consistency with Fig. 2, we take 64× 64 images, which yield n = 4096.

For each of 20 problem sets (corresponding to a class of images and a cost function), we sample 20
random problems out of the 45 possible problems. Figs. 5-14 show the median time to converge
for each algorithm at a given hyperparameter setting, and the error ⟨P − P ∗, C⟩ after rounding the
output of the algorithm onto U(r, c) – with the exception of Alg. 3.5 of Feydy (2020); see Appx.
D. The wall-clock time plots for the respective cost functions (L1 and L2

2) follow the same trends
seen in the two datasets considered in Fig. 2. Differently from Fig. 2, we include 75% confidence
intervals along both axes here, and also show that MDOT-TruncatedNewton is generally robust even
at high precision, where maintaining numerical stability can be more challenging. Our conclusions
based on Fig. 2 regarding the wall-clock time convergence behavior of MDOT-TruncatedNewton and
how it compares to baselines remain unchanged.

Operation Counts. In addition to wall-clock time, we count here the number of primitive operations
costing O(n2) for each algorithm. Examples of such primitive operations involving n× n matrices
include row/column sums of matrices, matrix-vector products, element-wise multiplication of matri-
ces, element-wise exponentiation/logarithm of matrices, addition/subtraction/multiplication/division
between a matrix and a scalar, max over all entries of a matrix, summation over all entries of a matrix,
etc. We count the number of primitive operations rather than a higher level function call such as
the number of gradient evaluations due to inherent differences in the design of the various baseline
algorithms; e.g., some methods require costly line search or inner loops between gradient evaluations.
For all 20 problem sets displayed in Figs. 5-14, we find that the total number of O(n2) operations
predict wall-clock time very well (high correlation), especially when the algorithms are run for long
enough, as seen visually upon comparing top and bottom rows of the same column. All algorithms
follow the same trend seen in Fig. 2, so that our conclusions once again remain the same.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101 102

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (CauchyDensity, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (CauchyDensity, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (CauchyDensity, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (CauchyDensity, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 5: CauchyDensity problem with L1 (left) and L2
2 (right) costs, showing excess cost (error)

vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over
20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (ClassicImages, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (ClassicImages, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (ClassicImages, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (ClassicImages, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 6: ClassicImage problem with L1 (left) and L2
2 (right) costs, showing excess cost (error)

vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over
20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101 102

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFsmooth, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFsmooth, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFsmooth, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFsmooth, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 7: GRFSmooth problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFmoderate, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFmoderate, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFmoderate, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFmoderate, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 8: GRFModerate problem with L1 (left) and L2
2 (right) costs, showing excess cost (error)

vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over
20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFrough, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (GRFrough, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFrough, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (GRFrough, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 9: GRFRough problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (LogGRF, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (LogGRF, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (LogGRF, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (LogGRF, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 10: LogGRF problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (LogitGRF, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (LogitGRF, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (LogitGRF, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (LogitGRF, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 11: LogitGRF problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (MicroscopyImages, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (MicroscopyImages, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (MicroscopyImages, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (MicroscopyImages, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 12: MicroscopyImage problem with L1 (left) and L2
2 (right) costs, showing excess cost

(error) vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median
over 20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

10 2 10 1 100 101

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (Shape, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (Shapes, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (Shape, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (Shapes, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 13: Shape problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

10 2 10 1 100 101 102

Wall-clock time (s)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (WhiteNoise, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

10 2 10 1 100 101

Wall-clock time (s)

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Wall-clock time (s) (WhiteNoise, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104 105

Number of O(n2) ops

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (WhiteNoise, L1 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104

Number of O(n2) ops

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

P
P

* ,
C

Error vs. Number of O(n2) ops (WhiteNoise, L2
2 cost)

MDOT-Sinkhorn
MDOT-PNCG
MDOT-TruncatedNewton
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

Figure 14: WhiteNoise problem with L1 (left) and L2
2 (right) costs, showing excess cost (error) vs.

clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

33

	Introduction
	Background and Related Work
	Optimal Transport and Entropic Regularization
	Temperature Annealing as Mirror Descent
	Truncated Newton Methods

	Mixing Truncated Newton & Sinkhorn for Bregman Projections
	The Discounted Hessian and the Bellman Equations
	Projecting onto the Feasible Polytope
	Initializing Near the Solution via Adaptive Mirror Descent
	Asymmetric Marginal Smoothing for Numerical Stability

	Experiments
	Experimental Setup
	Wall-clock Time Benchmarking

	Conclusion
	Appendix
	Proofs of Theoretical Results
	Additional Notation
	Derivation of the EOT dual (4)
	Proof of Thm. 3.1
	Proof of Thm. 3.2
	Proofs of Lemma 3.3 and Corollary 3.4
	Proof of Thm. 3.5

	Adaptive Initialization Of The Discount Factor
	Problem Size Experiments
	Details of Baseline Algorithm Implementations
	Additional Benchmarking on DOTmark

