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ABSTRACT

Extensive research efforts have been put into characterizing and constructing maxi-
mally separating multiset and graph neural networks. However, recent empirical
evidence suggests the notion of separation itself doesn’t capture several interesting
phenomena. On the one hand, the quality of this separation may be very weak, to
the extent that the embeddings of "separable" objects might even be considered
identical when using fixed finite precision. On the other hand, architectures which
aren’t capable of separation in theory, somehow achieve separation when taking
the network to be wide enough.
In this work, we address both of these issues, by proposing a novel pair-wise sepa-
ration quality analysis framework which is based on an adaptation of Lipschitz and
Hölder stability to parametric functions. The proposed framework, which we name
Hölder in expectation, allows for separation quality analysis, without restricting
the analysis to embeddings that can separate all the input space simultaneously.
We prove that common sum-based models are lower-Hölder in expectation, with
an exponent that decays rapidly with the network’s depth. Our analysis leads to
adversarial examples of graphs which can be separated by three 1-WL iterations,
but cannot be separated in practice by standard maximally powerful Message Pass-
ing Neural Networks (MPNNs). To remedy this, we propose two novel MPNNs
with improved separation quality, one of which is lower Lipschitz in expectation.
We show these MPNNs can easily classify our adversarial examples, and compare
favorably with standard MPNNs on standard graph learning tasks.

1 INTRODUCTION

Motivated by a multitude of applications, including molecular systems (Gilmer et al., 2017), social
networks (Borisyuk et al., 2024), recommendation systems (Gao et al., 2023) and more, permutation
invariant deep learning for both multisets and graphs have gained increasing interest in recent years.
This in turn has inspired several theoretical works analyzing common permutation invariant models,
and their expressive power and limitations.

For multiset data, it is known that simple summation-based multiset functions are injective, and as
a result, can approximate all continuous functions on multisets (Zaheer et al., 2017). These results
have been discussed and strengthened in many different recent publications (Wagstaff et al., 2019;
Amir et al., 2023; Tabaghi & Wang, 2024; Wang et al., 2024).

For graph neural networks (GNNs) the situation is more delicate, as all known graph neural networks
with polynomial complexity have limited expressive power. Our focus in this paper will be on the
Message Passing Neural Network (MPNN) (Gilmer et al., 2017) paradigm, which includes a variety
of popular GNNs (Xu et al., 2019; Gilmer et al., 2017; Kipf & Welling, 2017). In their seminal works,
Xu et al. (2019); Morris et al. (2019) analyze the separation capabilities of MPNNs, showing that an
MPNN f can separate two graphs G and H (i.e., f(G) ̸= f(H)) only if the Weisfeiler-Lehman (WL)
isomorphism test (Weisfeiler & Lehman, 1968) can also do so. Accordingly, maximally expressive
MPNNs are those which are able to separate all graph pairs which are WL-separable. They further
show that MPNNs which employ injective multiset functions are maximally expressive.

The theoretical ability of a permutation invariant network to separate a pair of objects (multi-
sets/graphs) is a necessary condition for all learning tasks which require such separation, e.g., binary
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classification tasks where the two objects have opposite labels. However, while current theory ensures
separation, it tells us little about the separation quality, so that embeddings of "separable" objects may
be extremely similar, to the extent that in some cases, graphs which can be theoretically separated are
completely identical on a computer with fixed finite precision. This pheonomena was observed for
graphs with analytic activations and very small width, see (Bravo et al., 2024), figure 2 top.

In a non-parametric setting, separation quality of a function f can be studied via bi-Hölder stability
guarantees: for metric spaces (X, dX) and (Y, dY ), a function f : X → Y is β upper-Hölder and α
lower-Hölder if there exist some positive constants c, C such that

cdX(x, x′)α ≤ dY (f(x), f(x
′)) ≤ CdX(x, x′)β ,∀x, x′ ∈ X.

The upper and lower Hölder conditions guarantee that embedding distances in Y will not be much
larger, or much smaller, than distances in the original space X (in our case a space of multisets or
graphs). A function f will have higher separation quality the closer the Hölder exponents are to one.
When β = 1 we say f is (upper) Lipschitz, and when α = 1 we say that f is lower Lipschitz.

Bi-Lipschitz stability analysis is a central topic in the study of frames Balan (1997); Alexeev et al.
(2012), phase retrieval Bandeira et al. (2014); Cheng et al. (2021), and several group-invariant learning
scenarios Cahill et al. (2020; 2024b). For multisets, Bi-Lipschitz stability results are known for
multiset-functions based on max-filters Cahill et al. (2024c) or sorting Balan et al. (2022). However,
this is not the case for more common sum-based multiset functions: Amir et al. (2023) showed that
Relu-sum multiset functions, which are based on summation of point-wise applied ReLU networks
(see (1) below) are never even injective. Multiset functions which use smooth activations instead, are
injective but not lower-Lipschitz. Accordingly, a remaining challenge, which we will address in this
paper, is characterizing the lower-Hölder stability of sum-based multiset functions.

For MPNN architectures for graphs, there are even less stability results. The upper Lipschitz-ness of
the MPNN GIN (Xu et al., 2019) and similar architectures was established in (Chuang & Jegelka,
2022), however lower Lipschitz or Hölder guarantees have not been addressed to date. Indeed, a
recent survey (Morris et al., 2024) lists bi-Lipschitz guarantees for MPNNs as one of the future
challenges for theoretical GNN research. We will address this challenge in this paper as well.

As a first step for our stability analysis, we need to establish how to extend notions of Hölder stability
to parametric functions. One simple approach is requiring the parametric function to be uniformly
Hölder, with the same exponent and constant regardless of the parameter choice. Indeed, we will
show that all parameteric functions we consider in this paper are uniformly upper-Lipschitz.

In contrast, we believe the notion of uniform lower-Hölder to be too stringent. For example, as
mentioned above, multiset networks based on ReLU activations are never injective, and so can’t be
uniformly lower-Hölder. Nonetheless, numerical estimates of the stability of such networks show
that wide ReLU networks have comparable or even better stability than injective smooth-activation-
based multiset functions (see Amir et al. (2023) Figure 2). Accordingly, we resort to a probabilistic
framework of Hölder stability in expectation, as presented in section 2.

Figure 1: Separation quality on a single
adversarial multiset-pair constructed as
described in appendix G.3.

Main results: multisets With respect to our new relaxed
notion of expected lower-Hölder, we show that ReLU-sum
multiset networks have an expected lower-Hölder expo-
nent of α = 3/2. Surprisingly, while smooth activations
lead to injectivity, we find that their expected Hölder ex-
ponent is much worse: at best it is equal to the maximal
number of elements in the multiset data, α ≥ n. This
scenario is summarized in Figure 1: For a given pair of
multisets, smooth activations will separate even with a
very small network width, but the separation quality can
be very poor. In contrast, shallow Relu-sum networks
may not attain separation. However, as width increases
separation will be obtained (with high probability), and
the expected quality of separation will surpass the quality
attained with smooth activations.

The relatively moderate exponent α = 3/2 of ReLU net-
works is guaranteed only when the range of the bias of the network contains the range of the multiset
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features, an assumption which may be problematic to fulfill in practice. To address this, we suggest
an Adaptive ReLU summation network, where the bias is adapted to the values in the multiset. This
network is guaranteed the same 3/2 exponent while overcoming the range issue.

Finally, we consider multiset functions based on linear functions and column-wise sorting. These
were shown to be bi-Lipschitz, when wide enough, in (Balan et al., 2022). We show that they are
lower Lipschitz in expectation even with a width of 1.

Table 1: Summary of lower-Hölder
exponent bounds for multiset (top)
and graph (bottom) models.

Model bounds
relu sum α = 3/2

adaptive relu α = 3/2
smooth sum n ≤ α
sort based α = 1

ReluMPNN 1 + K+1
2 ≤ α

SmoothMPNN 2K+1 ≤ α
SortMPNN α = 1

Main Results: MPNNs MPNNs are constructed upon mul-
tiple application of multiset functions to node neighborhoods.
We consider four MPNNs based on the four multiset functions
we analyzed: SortMPNN, ReluMPNN, SmoothMPNN and
AdaptMPNN. We show that SortMPNN is lower-Lipschitz in
expectation, even with a width of 1. SortMPNN is thus the
first MPNN with both upper and lower Lipschitz guarantees.
In contrast, we show that ReluMPNN and SmoothMPNN are
only lower-Hölder, with an exponent that deteriorates as the
MPNN depth grows. The exponent bounds of both the graph
and multiset models appear in table 1.

Our analysis provides an adversarial example illustrating the
deterioration of the expected lower-Hölder exponent of sum-
based MPNNs as the depth increases. We show in Table 2 that sum-based MPNNs fail to learn a
simple binary classification task on such data, while SortMPNN and AdaptMPNN handle this task
easily. We also provide experiments on several graph datasets which show that SortMPNN often
outperforms standard MPNNs on non-adversarial data, and is more robust to reduction in model size.

1.0.1 Notation Sd−1 denotes the unit sphere {x ∈ Rd| ∥x∥2 = 1}. The notation ’a ∼ Sd−1

and b ∼ [−B,B]’ implies that the distribution on a (respectively b) is taken to be uniform on Sd−1

(respectively [−B,B]), and that a and b are drawn independently. The inner product of two vectors
a, b is denoted by a · b.

2 GENERAL FRAMEWORK

In this section, we present the framework for analyzing separation quality of parametric functions.
We begin by extending the notion of Hölder stability to a family of parametric functions.

2.1 HÖLDER STABILITY FOR PARAMETRIC FUNCTIONS

Let (X, dX) and (Y, dY ) be psuedo-metric1spaces. Let W be some set of parameters, and let
f(x;w) : X × W → Y be a parametric function. We say that f(x;w) is uniformly Lipschitz
with constant L > 0, if for all w ∈ W , the function x 7→ f(x;w) is L-Lipschitz. This definition
can naturally be extended to other upper-Hölder exponents, but this will not be necessary as the
parametric functions we discuss in this paper will all end up being uniformly Lipschitz. Similarly,
we could define a notion of uniform lower-Hölder, but as discussed in this introduction, this notion
is too stringent for the problems we are discussing, and so we introduce the alternative notion of
lower-Hölder in expectation:

Definition 2.1. Let α > 0, p ≥ 1. Let (X, dX) and (Y, dY ) be psuedo-metric spaces, and let
(W,B, µ) be a probability space. Let f(x;w) : X ×W → Y be a parametric function, so that for
every fixed x ∈ X the function f(x; ·) is measurable.

We say that f is α lower-Hölder in expectation if there exists a strictly positive c such that

cp ≤ Ew∼µ

{
dY (f(x;w), f(x

′;w))

dX(x, x′)α

}p
, ∀(x, x′) ∈ X ×X, with d(x, x′) > 0

1A psuedo metric dX differs from a standard metric only in that the dX(x1, x2) = 0 is possible even if
x1 ̸= x2.
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A few remarks on this definition are in order. Firstly, we note that if the set of w for which f(x;w) is
α lower-Hölder has positive probability, then f(x;w) will be α lower-Hölder in expectation. The
opposite is not true: Relu-sum networks for multisets are never injective, and hence never lower-
Hölder, but we will show that they are lower-Hölder in expectation. This is possible since it is defined
in a pairwise sense, similar to the separation analysis in Morris et al. (2019).

Next, we note that our definition takes an expectation over the parameters, but requires uniform
boundedness over x, x′ pairs. This choice was made since data distribution is unknown, while the
parameter distribution at initialization can be chosen by the algorithm. Furthermore, we conjecture
that bad separation at initialization will be difficult to overcome during training. Supporting evidence
for this claim will be shown later on (see table 2), where models with a large lower-Hölder in
expectation exponent, fail to learn an adversarial binary classification task.

Thirdly, we note that as with the standard Hölder definitions, Hölder in expectation exponents that
are closer to one will be regarded as having higher separation quality.

Fourthly, p in the definition refers to the ℓp norm chosen for the feature spaces. Results stated in the
introduction are for the default p = 2.

Finally, while the expected value across random parameters is informative as is, the variance can
potentially have a strong effect on the separation in practice. Luckily, our analysis will typically apply
for models f(x;w) of width 1, and models with width W can be viewed as stacking of W multiple
model instances. Wider models will have the same expected distortion as the width one model, but
the variance will converge to zero, in a rate proportional to 1/W For more details on this effect see
Appendix B.1.

We now proceed to analyze Hölder stability for parametric models on multisets.

3 MULTISET HÖLDER STABILITY

Standing assumptions: Throughout the rest of this section, we will say that (n, d, p,Ω, z) satisfy
our standing assumptions, if n, d are natural numbers, p ≥ 1, the set Ω is a compact subset of Rd,
and z will be a point in Rd \ Ω.

A multiset {{x1, . . . , xk}} is a collection of n unordered elements where (unlike sets) repetitions are
allowed. We denote by S≤n(Ω) and S=n(Ω) the space of all multisets with at most n elements
(respectively, exactly n elements), which reside in Ω.

A popular choice of a metric on S=n(Ω) is the Wasserstein metric

W1({{x1, . . . , xn}}, {{y1, . . . , yn}}) = min
τ∈Sn

n∑
j=1

∥xj − yτ(j)∥1

Following (Chuang & Jegelka, 2022), we extend the Wasserstein metric to the space S≤n(Ω) by
applying the augmentation map which adds the vector z to a given multiset until it is of maximal size
n:

ρ(z) ({{x1, . . . , xk}}) = {{x1, . . . , xk, xk+1 = z, . . . .xn = z}}
This induces the augmented Wasserstein metric W z

1 on S≤n(Ω),
W z

1 (S1, S2) =W1(ρ(z)(S1), ρ(z)(S2)), S1, S2 ∈ S≤n(Ω)

Now that we have introduced the augmented Wasserstein as the metric we will use for multisets, we
turn to analyze the multiset neural networks we are interested in.

A popular building block in architectures for multisets (Zaheer et al., 2017), as well as MPNNs (Xu
et al., 2019; Schütt et al., 2017; Gilmer et al., 2017), is based on summation of element-wise neural
network application. For a given activation σ : R → R, we define a parametric function mσ on
multisets in S≤n(Ω), with parameters (a, b) ∈ Rd ⊕ R, by

mσ({{x1, . . . , xr}}; a, b) =
r∑
i=1

σ(a · xi − b). (1)

We note that we focus on mσ with scalar outputs, since the variant with vector output has the same
Hölder properties, as discussed in the end of Section 2.
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3.0.1 ReLU summation We set out to understand the expected Hölder stability of mσ, starting
from the case σ = ReLU:
Theorem 3.1. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
b ∼ [−B,B]. Then mReLU (·; a, b) is uniformly Lipschitz. Moreover,

1. mReLU (·; a, b) is not α lower-Hölder in expectation for any α < p+1
p .

2. If ∥x∥ < B for all x ∈ Ω, then mReLU (·; a, b) is p+1
p lower-Hölder in expectation.

Proof idea: the ±ϵ example. The following example, which we nickname the ±ϵ example, gives
a good intuition for the Hölder behavior of mReLU. Denote Xϵ = {{−ϵ, ϵ}} and X2ϵ = {{−2ϵ, 2ϵ}}.
The Wasserstein distance between these two multisets is proportional to ϵ. Now, let us consider
the images of these multisets under mReLU, where we assume for simplicity that d = 1 and
a = 1. Note that when b > 2ϵ we will get ReLU(x − b) = 0 for all x in either sets, and so
mReLU(X2ϵ; 1, b) = mReLU(Xϵ; 1, b). We will get a similar results when b ≤ −2ϵ. In this case, for
every x ≥ −2ϵ we have ReLU(x− b) = x− b. Therefore, we will obtain that

mReLU(X2ϵ; 1, b) = (−2ϵ− b) + (2ϵ− b) = (−ϵ− b) + (ϵ− b) = mReLU(Xϵ; 1, b), ∀b < −2ϵ.

We conclude that |mReLU(X2ϵ; 1, b) − mReLU(Xϵ; 1, b)|p is zero for all b outside the inter-
val (−2ϵ, 2ϵ). Inside this interval of length 4ϵ, we will typically have |mReLU(X2ϵ; 1, b) −
mReLU(Xϵ; 1, b)|p ∼ ϵp, so that the expectation over all b will be proportional to 4ϵ · ϵp ∼ ϵp+1.
To ensure that the ratio between ϵp+1 and Wp(X2ϵ, Xϵ)

αp ∼ ϵαp will have a strictly positive lower
bound as ϵ → 0 , we need to choose α ≥ p+1

p . The proof that α = p+1
p is actually enough, and

several other details necessary to turning this argument into a full proof, are given in the appendix.

3.0.2 Adaptive ReLU To attain the (p + 1)/p exponent in theorem 3.1, we need to assume
that the bias is drawn from an interval [−B,B] which is large enough so that ∥x∥ < B for all
x ∈ Ω. This assumption may be difficult to satisfy, especially in MPNNs where the features in
intermediate layers are effected by previous parameter choices. Additionally, the ±ϵ example shows
that when b is outside the range of the multiset features, mReLU is not effective. Motivated by these
observations, we propose a novel parametric function for multisets, based on ReLU, where the bias
is automatically adapted to feature values. For a multiset X = {{x1, . . . , xr}} and a ∈ Rd, t ∈ [0, 1],
the adaptive ReLU function madapt

ReLU(X; a, t) is defined using m = min{a · x1, . . . , a · xr},M =
max{a · x1, . . . , a · xr}, b = (1− t)m+ tM and

madapt
ReLU(X; a, t) = [r,m,M,

1

r

r∑
i=1

ReLU(a · xi − b)]

The output of madapt
ReLU is a four dimensional vector . The last coordinate of the vector is essentially

mReLU, where the bias b now only varies between the minimal and maximal value of multiset features.
The first three coordinates are simple invariant features of the multisets: its cardinality and minimal
and maximal value. In the appendix we prove
Theorem 3.2. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
t ∼ [0, 1]. Then the function madapt

ReLU : S≤n(Ω) × Sd−1 × [0, 1] → R4 is uniformly Lipschitz and
p+1
p lower-Hölder in expectation. Moreover, when n ≥ 4, the function madapt

ReLU is not α lower-Hölder
in expectation for any α < p+1

p .

We note that while adaptive ReLU solves the ±ϵ example, a similar issue can be created for adaptive
ReLU with multisets such as {{1, 0, 0,−1}} and {{1, ϵ,−ϵ,−1}}, which force the adaptive bias to
cover the interval [1, 1]. Nonetheless, the delicate bias range assumption is no longer an issue.

3.0.3 Summation with smooth activation We now consider the Hölder properties of mσ when the
activation σ is smooth (e.g., sigmoid, SiLU, tanh). To understand this scenario, it can be instructive
to first return to the ±ϵ example. In this example, since the elements in Xϵ and X2ϵ both sum to
the same number, one can deduce that (for any choice of bias) the first order Taylor expansion of
mσ(X2ϵ) −mσ(Xϵ) will vanish, so that this difference will be of the order of ϵ2. Based on this
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example we can already see that for smooth activations α ≥ 2. However, it turns out that there are
adversarial examples with much worse behavior. Specifically, note that Xϵ and X2ϵ are ’problematic’
because their first moments are identical. In the same spirit, by choosing a pair X,X ′ of distinct
multisets with n elements in R, whose first n− 1 moments are identical, we can deduce that α ≥ n:
Theorem 3.3. Assume (n, d, p,Ω, z) satisfy our standing assumptions, σ : R 7→ R has n continuous
derivatives, and a ∼ Sd−1, b ∼ [−B,B]. If the function mσ(·; a, b) is α lower-Hölder in expectation,
then α ≥ n.

Figure 2: l2 vs. W2 distance on multiple ad-
versarial multiset-pairs. Results are in accor-
dance with our theoretical results (see Table1)

3.0.4 Sort based We now present the fourth and fi-
nal multiset parametric function which we would like
to address. Based on ideas from (Balan et al., 2022;
Dym & Gortler, 2023), we consider the parametric
function

Sz(X; a, b) = b · sort(a · ρ(z)(X)) (2)

where X ∈ Rd×n and a, b are in Sd−1 and Sn−1

respectively. Note Sz explicitly includes the augmen-
tation by z, while in our previous discussions this
was not necessary for expected Hölder stability with
respect to W z

p . On the bright side, the sort-based
parametric functions are lower-Lipschitz in expecta-
tion.
Theorem 3.4. For (n, d, p,Ω, z) satisfying our stand-
ing assumptions. Assume that a ∼ Sd−1 and b ∼
Sn−1. Then Sz(·; a, b) is uniformly upper Lipschitz
and lower Lipschitz in expectation.

The proof of this claim is that such mappings were
shown to be bi-Lipschitz for all parameters, when duplicated enough times (with independent
parameters) (Balan et al., 2022). This implies bi-Lipschitzness in expectation for the duplicated
function, which in turn implies bi-Lipschitzness in expectation for a single function since the relevant
expectations are identical.

Summary In Figure 2, we choose a pair of distinct multisets X,X ′ with 16 scalar features each,
which have 15 identical moments (for details on how this was constructed see Subsection C.2 in
the appendix). The figure plots the distance between embedding distances versus the Wasserstein
distance, for pairs ϵX, ϵX ′, for varying values of ϵ. The figure illustrates that the α = 3/2 Hölder
exponent of ReLU (we take p = 2) and the α ≥ n exponent of sigmoid summation are indeed
encountered in this example. The sort and adaptive ReLU methods display a linear plot in this case.
Recall that while sort is indeed lower-Lipschitz in expectation, adaptive ReLU is not. In Remark C.6
in the Appendix, we will explain why adaptive ReLU displays a linear plot in this case, and how a
3/2 slope can be obtained by slightly changing this experiment.

4 MPNN HÖLDER STABILITY

We will now analyze the expected Hölder stability of MPNNs for graphs, using the various multiset
embeddings discussed previously. We begin by defining MPNNs, WL tests, and the graph WL-metric
of our choice.

4.1 MPNNS AND WL

We denote a graph by G = (V,E,X) where V are the nodes, E are the edges, and X = (xv)v∈V
are the initial node features. Throughout this section we will assume, as in the previous section, that
Ω is a compact subset of Rd, and z is some fixed point in Rd \ Ω. We denote the neighborhood of a
node v by Nv = {{u ∈ V |(u, v) ∈ E}}. MPNNs iteratively use the graph structure to redefine node
features in the following manner: initialize x(0)v = xv .

6
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For k = 1 . . . ,K

AGGREGATE: c(k)v = ϕ(k)({{x(k−1)
u |u ∈ Nv}})

COMBINE: x(k)v = ψ(k)(x(k−1)
v , c(k)v )

In order to achieve a final graph embedding, a final READOUT step is performed

READOUT : cglobal = η({{x(K)
v |v ∈ V }})

We note that different instantiations of the COMBINE, AGGREGATE, and READOUT parametric
functions will lead to different architectures. We will discuss several choices, and their expected
Hölder stability properties, slightly later on. Once such an instantiation is chosen, an MPNN will
be a parametric model of the form f(G;w) = cglobal, where w denotes the concatenation of all
parameters of the COMBINE, AGGREGATE, and READOUT functions.

The Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Lehman, 1968; Huang & Villar,
2021) checks whether two graphsG,H are isomorphic (identical up to node permutation) by applying
an MPNN-like procedure while choosing the COMBINE, AGGREGATE and READOUT functions
to be hash functions, and running the procedure for at most K = max{|VG|, |VH |} (Morris et al.,
2019) iterations. The WL test can separate many, but not all, pairs of non-isomorphic graphs.

Notably, MPNNs can only separate pairs of graphs which are WL separable, and therefore if we hope
for MPNN Hölder stability in expectation, we need to choose a WL metric: a pseudo-metric on graphs
which is zero if and only if the pair of graphs cannot be separated by WL. Of the several possible
choices in the recent literature for such a metric (Grohe, 2020; Böker, 2021; Chen et al., 2022), we
choose the family of Tree Mover’s Distance (TMD(K)) suggested in (Chuang & Jegelka, 2022),
which is described in detail in Appendix E. TMD(K) is a distance which is non-zero if and only if
two graphs can be separated by K iterations of the WL test. It is based on recursive application of the
augmented Wasserstein to multisets of WL computation trees. We note that when K is large enough,
TMD(K) is a WL metric as discussed above.

4.2 MPNN STABILITY ANALYSIS

We now consider the Hölder stability of MPNNs. In this setting, the graph domain we consider are
graphs in G≤n(Ω), the collection of graphs with up to n nodes, and node features in a compact set
Ω ⊆ Rd.

It is natural to expect that the stability properties of an MPNN will be closely related to the AGGRE-
GATE, READOUT and COMBINE functions composing the MPNN. As a COMBINE function, we
will choose some parametric functions which is uniformly upper-Lipschtiz, and lower Lipschitz in
expectation. As the COMBINE function is a vector-to-vector function, this is easy to achieve even
via a linear function x(k)v = Ax

(k−1)
v +Ba

(k)
v . In Appendix D we prove the Lipschitz properties of

this and three other COMBINE choices.

The AGGREGATE and READOUT functions are multiset to vector functions, and we have discussed
the Hölder properties of four different such choices in Section 3. In practice, at each iteration k
we take Wk parallel copies of these functions with independent parameters (W corresponds to the
width of the MPNN). As discussed in the end of Subsection 2.1, this maintains the same results in
expectation while reducing the variance. For example, the SortMPNN architecture will be defined
using the sort-based parametric functions Sz from (2) via

AGGREGATE: c(k)v,i = Szk

(
{{x(k−1)

u |u ∈ Nv}}; a(k)i , b
(k)
i

)
, i = 1, . . .Wk

COMBINE: x(k)v = A(k)x(k−1)
v +B(k)c(k)v

READOUT : cglobali = SzK+1

(
{{x(K)

v |v ∈ V }}; a(K+1)
i , b

(K+1)
i

)
, i = 1, . . . ,WK+1

Similarly, we will use the terms AdaptMPNN, ReluMPNN and SmoothMPNN to denote the MPNN
obtained by replacing Sz with the appropriate functions madapt

ReLU, mReLU or mσ with a smooth σ.

Our first result regards the upper Lipschitz bound.
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Theorem 4.1. (Uniformly Lipschitz MPNN embeddings, informal version) Let f : G≤n(Ω) → Rm
be an MPNN with K layers. If the functions used for the aggregation ϕ(k), combine ψ(k), and
readout η are all uniformly upper Lipschitz, then f is uniformly upper Lipschitz with respect to
TMD(K). In particular, ReluMPNN, SmoothMPNN, AdaptMPNN and SortMPNN are all uniformly
upper Lipschitz.

It would seem natural to expect that similar results will hold for lower-Hölder in expectation
guarantees: namely, that if the AGGREGATE, COMBINE and READOUT functions used in the
MPNN are lower-Hölder in expectation, then the overall MPNN will be lower-Hölder in expectation
as well. Unfortunately, this isn’t always the case. In Appendix F.2 we give an example of a pair of
graphs which cannot be separated by any choice of parameter of a Relu-MPNN with width 1 and
depth 2, even though they are separated by 2 iterations of WL.

The argument above does not rule out the possibility that a wider Relu-MPNN will be lower-Hölder
in expectation. Indeed, we suspect that this will be the case for an appropriate width W =W (d, n),
but we leave a formal proof of this result for future work. We do prove that, for arbitrarily wide
ReluMPNN and SmoothMPNN, we cannot obtain a very good Hölder exponent, with a bound that
deteriorates as the depth increases:
Theorem 4.2. Assume that ReluMPNN with depth K is α lower-Hölder in expectation with respect
to TMD(K), then α ≥ 1 + K+1

p . If SmoothMPNN with depth K is α lower-Hölder in expectation
then α ≥ 2K+1.

The proof of this theorem is based on an adversarial set of examples we call ϵ-Trees. These are
defined recursively, where the first set of trees are of height two, and the leaves contain the ±ϵ
multisets. Deeper trees are then constructed by building upon substructures from the trees in the
previous step as depicted in figure 6 alongside a rigorous formulation and proof in Appendix F.3.

In contrast to the previously discussed methods, SortMPNN is lower Lipschitz in expectation, even
with a width of 1.
Theorem 4.3. (informal) For any given W ≥ 1,K ≥ 0, SortMPNN with width W and depth K is
lower Lipschitz in expectation with respect to TMD(K).

While we don’t formally analyze the lower-Hölder properties of AdaptMPNN, we conjecture its
worst-case behavior will be similar to ReluMPNN. However, in some settings it will have better
stability. For example, for our adversarial ϵ-Trees example AdaptMPNN has a Lipschitz-like behavior,
as shown in Figure 3.

5 EXPERIMENTS

In the following experiments, we evaluate the four architectures SortMPNN, AdaptMPNN, Re-
luMPNN and SmoothMPNN. As the last two architectures closely resemble standard MPNN like
GIN (Xu et al., 2019) with ReLU/smooth activation, our focus is mainly on the SortMPNN and
AdaptMPNN architectures. In our experiments we consider several variations of these architectures
which were omitted in the main text for brevity, and are described in appendix G alongside further
experiment details.

Table 2: ϵ-Tree binary classifica-
tion results

Model Accuracy
GIN(Xu et al., 2019) 0.5
GCN(Kipf & Welling, 2017) 0.5
GAT(Velickovic et al., 2018) 0.5
ReluMPNN 0.5
SmoothMPNN 0.5
SortMPNN 1.0
AdaptMPNN 1.0

ϵ-Tree dataset In order to show that the expected (lower)
Hölder exponent is indeed a good indicator of separation quality,
and to further validate the importance of separation quality anal-
ysis, we first focus on the adversarial ϵ-tree construction used to
prove Theorem 4.2.

To begin with, we show how randomly initialized MPNNs with
the different multiset embeddings we analyzed distort the TMD
metric on the ϵ-trees. In figure 3 we plot the distance between
the embeddings provided by the MPNNs, as a function of the
parameter ϵ determining the ϵ trees (this parameter is proportional
to the TMD distance between the trees). We see how the lower-Hölder exponent increases with depth
for ReluMPNN and SmoothMPNN, in a manner which is consistent with the α = 1 + K+1

p and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Classification accuracy on TUdatasets (Morris et al., 2020). Best in bold, second underlined.

Dataset Mutag Proteins PTC NCI1 NCI109
GIN(Xu et al., 2019) 89.4±5.6 76.2±2.8 64.6±7 82.7±1.7 82.2±1.6
GCN(Kipf & Welling, 2017) 85.6±5.8 76±3.2 64.2±4.3 80.2±2.0 NA
GraphSage(Hamilton et al., 2017) 85.1±7.6 75.9±3.2 63.9±7.7 77.7±1.5 NA
SortMPNN 90.99±6.2 76.46±3.68 66.31±6.73 83.55±1.82 82.75±1.60
AdaptMPNN 90.41±6.1 75.12±3.64 66.87±5.37 82.77±1.72 83.26±0.86

2K+1 bounds suggested by Theorem 4.2 (for p = 2). SortMPNN, in contrast, displays virtually no
distortion in this example, and its behavior is consisten with the bi-Lipschitness predicted by our
theory. Similar results (without theoretical justification) can be observed for AdaptMPNN.

We then proceed to train a binary classifier using these MPNNs in an attempt to separate the tree pairs.

Figure 3: l2 vs. TMD on ϵ-Trees. The targeted ReluMPNN and
SmoothMPNN exponents deteriorate with depth, in accordance
with our theory (see Table 1)

The results in Table 2
show how SortMPNN and
AdaptMPNN achieve perfect
performance, while ReluMPNN
and SmoothMPNN, in addition
to several baseline MPNNs
completely fail. This serves
as proof to the importance of
separation quality analysis, espe-
cially in light of the fact smooth
activation MLP moments (Amir
et al., 2023) and GIN (Xu et al.,
2019) are in theory capable of
separation.

TUDataset While the ϵ-Tree
dataset emphasizes the impor-
tance of high separation quality,
validating our analysis, it is not
obvious what effect this has in
real world datasets, where we
don’t necessarily know how the exponent behaves. Therefore, we test SortMPNN and AdaptMPNN
on a subset of the TUDatasets (Morris et al., 2020), including Mutag, Proteins, PTC, NCI1 and
NCI109. Table 3 shows that SortMPNN and AdaptMPNN outperform several baseline MPNNs
(results are reported using the evaluation method from (Xu et al., 2019)). Note that in all experiments
we only compare to Vanilla MPNNs (1-WL), and not more expressive architectures which often do
reach better results, at a higher computational cost.

LRGB We further evaluate our architectures on two tasks from LRGB (Dwivedi et al., 2022b):
peptides-func, which is a multi-label graph classification task, and the peptides-struct regression task.
Results in table 4 show that SortMPNN and AdaptMPNN outperform other methods on peptides-func.
For peptides-struct, GCN is the best performing method with SortMPNN a close second.

Both experiments above adhere to the 500K parameter constraint as in (Dwivedi et al., 2022b). In
addition, we reran the peptides-struct experiment with a 100K, 50K, 25K, 7K and 1K parameter

Table 4: LRGB results. Best in bold, Second underlined.

Dataset peptides-func (AP↑) peptides-struct (MAE↓)
GINE(Hu* et al., 2020) 0.6621±0.0067 0.2473±0.0017
GCN(Kipf & Welling, 2017) 0.6860±0.0050 0.2460±0.0007
GatedGCN(Bresson & Laurent, 2018) 0.6765±0.0047 0.2477±0.0009
SortMPNN 0.6940±0.0049 0.2464±0.0024
AdaptMPNN 0.6934±0.0099 0.2484±0.0034
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budget. The results in figure 8 in the appendix show SortMPNN and AdaptMPNN outperforming
GCN for smaller models, with SortMPNN achieving the best results. We believe this is related to the
fact that even a SortMPNN with width=1 is lower-Lipschitz in expectation, and accordingly when
only a small number of features is available, its advantage on other methods is more substantial.

Subgraph aggregation networks - Zinc12K Finally, we experiment the use of our meth-
ods as the backbone MPNN in a more advanced equivariant subgraph aggregation network
(ESAN) (Bevilacqua et al., 2022), which has greater separation power than MPNNs. To
this extent, we run the experiment from (Bevilacqua et al., 2022) on the ZINC12K dataset,
where we swap the base encoder from GIN (Xu et al., 2019) to SortMPNN and AdaptMPNN.

Table 5: MAE per base encoder for ESAN on ZINC12K.
Best in bold, second underlined.

Method GIN (Xu et al., 2019) SortMPNN AdaptMPNN
DS-GNN (ED) 0.172±0.008 0.157±0.007 0.176±0.008
DS-GNN (ND) 0.171±0.010 0.152±0.009 0.168±0.008
DS-GNN (EGO) 0.126±0.006 0.104±0.004 0.127±0.007
DS-GNN (EGO+) 0.116±0.009 0.115±0.008 0.126±0.007
DSS-GNN (ED) 0.172±0.005 0.169±0.004 0.173±0.007
DSS-GNN (ND) 0.166±0.004 0.167±0.006 0.167±0.008
DSS-GNN (EGO) 0.107±0.005 0.115±0.010 0.126±0.007
DSS-GNN (EGO+) 0.102±0.003 0.121±0.005 0.131±0.006

The results shown in table 5 show that
SortMPNN outperforms GIN in five
of the eight different scenarios. For
fair comparison, the models don’t sur-
pass the 100K parameter budget.

Code and timing Timing for the
LRGB experiment are provided in ta-
ble 7 in the appendix. SortMPNN
is marginally slower than GCN, and
AdaptMPNN is X1.87 times slower.
Code is available anonymously at 2 .

6 RELATED WORK

Sorting Sorting based operations were used for permutation invariant networks on multisets in
(Zhang et al., 2019), and as readout functions for MPNNs in (Balan et al., 2022; Zhang et al., 2018;
Duvenaud et al., 2015). To the best of our knowledge, our SortMPNN is the first network using
sorting for aggregations, and the first MPNN with provable bi-Lipschitz (in expectation) guarantees.

Bi-Lipschitz stability An alternative bi-Lipschitz embedding for multisets was suggested in (Cahill
et al., 2024a). This embedding has higher computational complexity then sort based embedding.
Some additional examples of recent works on bi-Lipschitz embeddings include (Balan & Tsoukanis,
2023; Cahill et al., 2024a; 2020). (Upper) Lipschitz stability of graph neural networks from a spectral
perspective is discussed in Gama et al. (2020); Pfrommer et al. (2021).

We note that (Böker et al., 2023) does provide lower and upper stability estimates for MPNNs with
respect to a WL metric. These stability estimates are in an ϵ−δ sense, which do not rule out arbitrarily
bad Hölder exponents. Moreover, they only consider graphs without node features. On the other
hand, their analysis is more general in that they consider graphs of arbitrary size, and their graphon
limit. In an additional recent work, Xu et al. (2023) introduced a GNN designed to be bi-Lipschitz
with respect to a weighted inner product space. Their approach, however, is limited to scenarios with
a fixed graph topology, where only scalar node features vary. This fixed topology justifies the use of
the weighted inner product space, which does not incorporate information about the graph structure.

7 SUMMARY AND LIMITATIONS

We presented expected Hölder stability analysis for functions based on ReLU summation, smooth
activation summation, adaptive ReLU, and sorting. Our theoretical and empirical results suggest
SortMPNN as a promising alternative to traditional sum-based MPNNs.

A computational limitation of SortMPNN is that it requires prior knowledge of maximal multiset
sizes for augmentation. We believe that future work will reveal ways of achieving lower-Lipschitz
architectures without augmentation. Other avenues of future work include analyzing Hölder properties
with respect to other graph metrics other than TMD, and resolving some questions we left open such
as upper bounds for the Hölder exponents of smooth activations.

2https://drive.filen.io/d/9e745743-42b7-4cb7-ae3b-2b4653b612f9#bwcvyWoNTmbQU7493xzx8EhEXAy9vj5v
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A DEFINITIONS AND NOTATION

The following definitions and notation are used throughout the appendices.

• We use the function F (x, x′, w) = Fp,α,f (x, x
′, w) to denote

F (x, x′, w) =

{
dY (f(x,w), f(x

′, w))

dX(x, x′)α

}p
• We call a pair of multisets balanced, if the number of elements they contain are equal, and

otherwise we call them unbalanced.

B HÖLDER STABILITY IN EXPECTATION PROPERTIES

In this section we fill in the details of some properties of lower-Hölder in expectation functions,
which were discussed in Subsection 2.1.

B.1 REDUCING VARIANCE BY AVERAGING

GivenN ∈ N, we can extend f(x;w) : X×W → Y to a new parametric function fN : X×WN →
Y N defined as

fN (x;w1, . . . , wN ) = [f(x,w1), . . . , f(x,wN )] (3)
where the f measure on WN is the product measure, and the distance we take on Y N is

dYN
([y1, . . . , yN ], [y′1, . . . , y

′
N ]) =

{
1

N

N∑
n=1

d(yn, y
′
n)
p

}1/p

The function FN corresponding to this choice of fN is

FN (x, x′, w) =

{
dYN

(fN (x,w), fN (x′,w))

dX(x, x′)α

}p
=

(
1

dX(x, x′)

)αp
1

N

N∑
n=1

d(f(x,wn), f(x
′, wn))

p

=
1

N

N∑
n=1

F (x, x′, wn)

Thus FN is the average of N independent copies of F , which implies that for all x ̸= x′ the random
variable FN (x, x′,w) has the same expectation as F , and its standard deviation is uniformly bounded
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by σ/
√
N , where σ is a bound on the standard deviation of F (x, x′, w) which is uniform in x, x′

(assuming that such a bound exists). In particular, this means that for any x, x′, not only will the
expectation of FN (x, x′,w) be bounded by from below by mp, but also as N goes to infinity the
probability of FN (x, x′,w) being larger than mp − ϵ will go to one.

B.2 BOUNDEDNESS ASSUMPTIONS

In the scenarios we consider in this paper the metric spaces are bounded. Assume 0 < α < β, and the
distances between any two elements x, x′ in a metric space X are bounded by some constant B, then

d(x, x′)β = Bβ
(
d(x, x′)

B

)β
≤ Bβ

(
d(x, x′)

B

)α
= Bβ−αd(x, x′)α.

In other words, in bounded metric spaces, up to a constant, increasing the exponent decreases the
value. It follows that a parametric functions which is α lower Hölder in expectation is also β lower
Hölder in expectation.

B.3 COMPOSITION

In this section we discuss what happens when we compose two functions f(x;w) : X ×W 7→ Y
and g(y; v) : Y × V 7→ Z to get a new parametric function

g ◦ f(x;w, v) = g(f(x;w); v).

Lemma B.1. Given two parametric functions f(x;w) : X ×W 7→ Y and g(y; v) : Y × V 7→ Z
which are α and β lower Hölder in expectation with α, β ≥ 1, then g ◦ f is α · β lower Hölder in
expectation. Similarly, if f, g are uniformly upper Lipschitz, then f ◦ g is uniformly upper Lipschitz.

Proof. We omit the proof for uniform upper Lipschitz, and prove only the more chal-
lenging case of lower-Hölder in expectation. We have that for strictly positive mf ,mg,
Ew∼µ[{dY (f(x;w),f(x′;w))

dX(x,x′)α }p] ≥ mf and Ev∼γ [{dZ(g(y,v),g(y′,v))
dY (y,y′)β

}p] ≥ mg, from which we con-
clude

Ew,v∼(µ,γ)[{
dZ(g(f(x;w), v), g(f(x

′;w), v))

dX(x, x′)α·β
}p]

w,v are independent
=

∫
w

∫
v

{dZ(g(f(x;w), v), g(f(x
′;w), v))

dX(x, x′)α·β
}pdγdµ

=

∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p
∫
v

{dZ(g(f(x;w), v), g(f(x
′;w), v))

dY (f(x;w), f(x′;w))β
}pdγdµ

=

∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p · Ev∼γ [{

dZ(g(f(x;w), v), g(f(x
′;w), v))

dY (f(x;w), f(x′;w))β
}p]dµ

≥
∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p ·mgdµ

= mg · Ew∼µ[({
dY (f(x;w), f(x

′;w))

dX(x, x′)α
}p)β ]

(∗)
≥ mg · (Ew∼µ[{

dY (f(x;w), f(x
′;w))

dX(x, x′)α
}p])β

≥ mg ·mβ
f

Where (∗) is true by Jensen’s inequality, since (dY (f(x;w),f(x′;w))
dX(x,x′)α )p is non negative, and ϕ : R+ ∪

{0} 7→ R, ϕ(t) = tβ is convex for β ≥ 1
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C MULTISET EMBEDDINGS ANALYSIS PROOFS

The following are the proofs of the claims regarding the exponent of Hölder stability in expectation
from section 3.

Before stating and proving the relevant claims, we will present some lemmas that will be used
throughout this section and those that follow.

We first state the well known property of norm equivalence on finite dimensional normed spaces
Lemma C.1. Let 1 ≤ p, q ≤ ∞ and d ∈ N. There exists cp,q,d > 0 s.t. for any v ∈ Rd

∥v∥p ≥ cp,q,d · ∥v∥q

In particular, this means that
Lemma C.2. Let 1 ≤ p, q ≤ ∞ and Ω ⊆ Rd There exists Cp,q,d > 0 s.t. for any X,Y ∈ S≤n(Ω)

W (z)
p (X,Y ) ≥ Cp,q,d ·W (z)

q (X,Y )

Proof.

W (z)
p (X,Y ) =

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥pp


1/p

C.1
≥ cp,1,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥p


C.1
≥ cp,1,d · cp,q,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥q


C.1
≥ cp,1,d · cp,q,d · cq,1,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥qq


1
q

= cp,1,d · cp,q,d · cq,1,d ·W (z)
q (X,Y )

The upper bound can be proven in the same manner.

Now that we are equipped with the above lemmas, we begin by proving for smooth functions.

C.1 SUMMING OVER A SMOOTH ACTIVATION

Theorem 3.3. Assume (n, d, p,Ω, z) satisfy our standing assumptions, σ : R 7→ R has n continuous
derivatives, and a ∼ Sd−1, b ∼ [−B,B]. If the function mσ(·; a, b) is α lower-Hölder in expectation,
then α ≥ n.

Proof. It is sufficient to prove the claim in the case where d = 1.

Since σ is n times continuously differentiable, there exists some constant C such that

| ∂
n

∂tn
σ(at+ b)| ≤ C,∀(t, a, b) ∈ [−1, 1]× Sd−1 × [−B,B].

Now, let f be any function with n continuous derivatives and |f (n)(t)| < C for all t ∈ [−1, 1]. For
x ∈ (−1, 1)n denote F (x) =

∑n
i=1 f(xi). (when f(t) = σ(at+ b) we have F (x) = mσ(x; a, b)).

By Taylor’s approximation of f around 0, there exists points c1, . . . , cn ∈ (−1, 1) such that

F (x) =

n∑
i=1

(
f(0) + f ′(0)xi +

f ′′(0)

2
x2i + . . .+

f (n−1)(0)

(n− 1)!
xn−1
i +

f (n)(ci)

n!
xni

)

= nf(0) + f ′(0)

n∑
i=1

xi +
f ′′(0)

2

n∑
i=1

x2i + . . .+
f (n−1)(0)

(n− 1)!

n∑
i=1

xn−1
i +

n∑
i=1

xni
f (n)(ci)

n!
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It follows that if x, y are two vectors which are not the same, even up to permutation, but their first
n− 1 moments are identical, then for every ϵ ∈ (0, 1), the vectors ϵx and ϵy will also have the same
n− 1 moments, and so there exist c1, . . . , cn, d1, . . . , dn in (−1, 1) such that

|F (ϵx)− F (ϵy)| = ϵn|
n∑
i=1

f (n)(ci)

n!
xni +

n∑
i=1

f (n)(di)

n!
yni | ≤

2n

n!
Cϵn

In contrast, the Wasserstein distance between ϵx and ϵy scales like ϵ:
W z
p (ϵx, ϵy) =Wp(ϵx, ϵy) = ϵWp(x, y)

It follows that for all α < n, all parameters w = (a, b) ∈ Sd−1 × [−B,B], and all ϵ ∈ (0, 1),∣∣∣∣mσ(ϵx;w)−mσ(ϵy;w)

Wα
p (ϵx, ϵy)

∣∣∣∣p ≤ CWp(x, y)
−α 2n

n!
ϵ(n−α)p

Taking the expectation over the parameters w on the left hand side, we get the same inequality. Taking
the limit ϵ→ 0, we obtain

Ew
∣∣∣∣mσ(ϵx;w)−mσ(ϵy;w)

Wα
p (ϵx, ϵy)

∣∣∣∣p ≤ CWp(x, y)
−α 2n

n!
ϵ(n−α)p → 0

from which we deduce that mσ is not α lower-Hölder in expectation.

To conclude this argument , we note that there always exist x, y ∈ Rn which are not identical up to
permutation, but have the same first n− 1 moments. This is because it is known that no mapping
from (−1, 1)n to Rn, and in particular the mapping which takes a vector of length n to its first n− 1
moments, cannot be injective, up to permutations (Wagstaff et al., 2019). To ensure that x, y are in
(−1, 1)n, we can scale both vectors by a sufficiently small positive number. In the next subsection we
discuss a constructive method for producing pairs of sets with n− 1 equal moments.

C.2 CREATING SETS WITH n− 1 EQUAL MOMENTS

In the proof of theorem 3.3 we explained that for every natural n, there exists pairs of vectors
x, y ∈ Rn which are not identical, up to permutation, but have the same first n − 1 moments. We
now give a constructive algorithm to construct such pairs for n which is a power of 2, that is, n = 2k

for some natural k. This algorithm was used to produce figure 2 in the main text.

Our algorithm operates by recursion on k. For k = 1, our goal is to find a pair of vectors x(1), y(1) of
length 2k = 2, whose first 2k − 1 = 1 moments are equal. We can choose for example

x(1) = [−1, 1], y(1) = [−2, 2].

Now, assume that for a given k we have a pair of vectors x = x(k) and y = y(k) of length n = 2k

which are not identical, up to permutation, but whose first 2k − 1 moments are identical. We then
perform the following three steps:

step 1: We translate all coordinates of x and y by the same number t, which we take to be the
minimum of all coordinates in x and y. We thus get a new pair of vectors

x′ = [x1 − t, . . . , xn − t], y′ = [x1 − t, . . . , xn − t]

whose coordinates are all non-negative. These vectors are still distinct, even up to permutation, and
have the same first n− 1 = 2k − 1 moments.

step 2: We take the root of the non-negative entries in both vectors, to get new vectors

x′′ = [
√
x′1, . . . ,

√
x′n], y′′ = [

√
y′1, . . . ,

√
y′n].

These two vectors are distinct, even up to permutations, and they agree on the even moments
2, 4, . . . , 2(n− 1).

step 3: Finally, we define a new pair of vectors of cardinality 2n = 2k+1

x(k+1) = [−x′′, x′′], y(k+1) = [−y′′, y′′]
These two new vectors are still distinct up to permutations. There even moments up to order 2(n− 1)
are still identical. Moreover, all odd moments of both vectors are zero, and hence identical. In
particular, the two vectors have the same moments of order 1, 2, . . . , 2(n− 1), 2n− 1, which is what
we wanted.
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C.3 SORTING

Our goal in this subsection is proving

Theorem 3.4. For (n, d, p,Ω, z) satisfying our standing assumptions. Assume that a ∼ Sd−1 and
b ∼ Sn−1. Then Sz(·; a, b) is uniformly upper Lipschitz and lower Lipschitz in expectation.

Recall that Sz is defined via

Sz(X; a, b) = b · sort(a · ρ(z)(X))

Once ρ(z) is applied, we can think of Sz as operating on multisets with exactly n elements, coming
from the domain Ω∪{z}. The function Sz is then a composition of parametric functions L◦ s, where

L(y; b) = b · y (4)

and

s(X; a) = sort(aTX) (5)

By the rules of composition (Lemma B.1), it is sufficient to show that both functions are uniformly
Lipschitz, and lower-Lipschitz in expectation.

We first show for L

Lemma C.3. For every p ≥ 1, the function L : Rn × Sn−1 → R is uniformly upper-Lipschitz, and
lower Lipschitz in expectation.

Proof. Uniformly upper Lipschitz For every b ∈ Sn−1 and x, x′ ∈ Rn we have, using Cauchy-
Schwarz,

|L(x; b)− L(x′; b)| = |b · (x− x′), | ≤ ∥x− x′∥

so for all b we have a Lipschitz constant of 1.

Lower Lipschitz in expectation For every x ̸= x′ in Rn we have, due to lemma C.1, for the
appropriate c > 0

Eb∼Sn−1

[{
|L(x; b)− L(x′; b)|

∥x− x′∥p

}p]
≥ cp · Eb∼Sn−1

[{
|L(x; b)− L(x′; b)|

∥x− x′∥2

}p]
= cp · Eb∼Sn−1

[
|b · x− x′

∥x− x′∥2
|p
]

= cp · Eb∼Sn−1 [|b · e1|p] > 0

where the last equality is because the distribution is rotational invariant.

We now prove for s

Lemma C.4. Let d, n, p be natural numbers. Let s be as defined in (5), then s is uniformly upper
Lipschitz, and lower Lipschitz in expectation. (here, the domain of s is the space S=n(Ω) of multisets
with n elements in a compact set Ω ⊆ Rd, endowed with the W1 metric. a is drawn uniformly from
Sd−1, and the metric on the output of s is the ℓp distance).

Proof. Due to norm equivalence as stated in lemma C.1, it is sufficient to prove the claim when
p = 2.

Fix some balanced multisets X ̸∼ Y . Let σ be a permutation which minimizes
∑n
j=1 ∥xj − yτ(j)∥2

over all τ ∈ Sn. Then for every a ∈ Sd−1 we have, using Cauchy-Schwartz and norm equivalence

18
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C.1

∥s(X; a)− s(Y ; a)∥22 = ∥sort(aTX)− sort(aTY )∥22

= min
τ∈Sn

n∑
j=1

|aTxj − aT yτ(j)|2

≤
n∑
j=1

|aTxj − aT yσ(j)|2

≤
n∑
j=1

∥xj − yσ(j)∥22

≤ C

 n∑
j=1

∥xj − yσ(j)∥2

2

=W1(X,Y )2

Concluding s is uniformly upper Lipschitz.

In addition, we also have that for large enough N , the function sN (·; a) (concatenation of s N times,
divided by 1/N ) will be lower Lipschitz for Lebesgue almost every a ∈ Sd−1, as proved in (Balan
et al., 2022). In particular, it follows that sN is lower Lipschitz in expectation. As discussed in
Subsection B.1, this implies that s is lower Lipschitz in expectation as well.

C.4 ANALYZING RELU

Theorem 3.1. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
b ∼ [−B,B]. Then mReLU (·; a, b) is uniformly Lipschitz. Moreover,

1. mReLU (·; a, b) is not α lower-Hölder in expectation for any α < p+1
p .

2. If ∥x∥ < B for all x ∈ Ω, then mReLU (·; a, b) is p+1
p lower-Hölder in expectation.

Proof. We divide the proof into three parts, in accordance with the three parts of the theorem.

Part 1: Uniform Lipschitz We first prove a uniform Lipschitz bound for all balanced multisets Y, Y ′

of cardinality k ≤ n. Denote X = ρ(z)(Y ), X ′ = ρ(z)(Y
′). Then for every permutation τ ∈ Sn,

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| = |mReLU (X; a, b)−mReLU (X

′; a, b)|

= |
n∑
i=1

ReLU(axi − b)−ReLU(ax′τ(i) − b)|

(∗)
≤

n∑
i=1

|(axi − b)− (ax′τ(i) − b)|

=

n∑
i=1

|a · (xi − x′τ(i))|

(∗∗)
≤

n∑
i=1

∥a∥2∥xi − xτ(i)∥2

=

n∑
i=1

∥xi − xτ(i)∥2,

where (*) is because ReLU is Lipschitz with constant 1, and (**) is from Cauchy-Schwartz.
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Since the inequality we obtain holds for all permutations τ , we can take the minimum over all
permutations to obtain that

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤W1(X,X

′) =W z
1 (Y, Y

′)

To address multisets Y, Y ′ of different sizes, we first note that since the elements of the multisets are
in Ω, and the parameters a, b come from a compact set, there exists some constant M > 0 such that

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤M.

On the other hand, for all Y, Y ′ of different sizes, we will always have that

W z
1 (Y, Y

′) ≥ dist(z,Ω) > 0

therefore

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤M

W z
1 (Y, Y

′)

W z
1 (Y, Y

′)
≤ M

dist(z,Ω)
W z

1 (Y, Y
′)

Combining this with our bound for multisets of equal cardinality, we see that mReLU is uniformly
Lipschitz with constant max{1, M

dist(z,Ω)}.

Part 2: Lower bound on expected Hölder exponent

We show that mReLU is not β lower-Hölder in expectation for all β < (p+ 1)/p.

Let X be some matrix in Ωn whose first two columns are the same x1 = x2. Let q be a vector with
unit norm. For every ϵ > 0 define

Xϵ = [x1 − ϵq, x1 + ϵq, x3, . . . , xn]

It is not difficult to see that for all small enough ϵ we have that W1(Xϵ, X) = 2ϵ. On the other hand,
for every fixed a ∈ Sd−1 and b ∈ [−B,B] we have that, denoting y = a · x1 and δ = |ϵa · q|, we
have

mReLU (X; a, b)−mReLU (Xϵ; a, b) = 2ReLU(a · x1 − b)− ReLU(a · (x1 − ϵq)− b)

− ReLU(a(·x1 + ϵq)− b)

= 2ReLU(y − b)− [ReLU(y + δ − b) + ReLU(y − δ − b)]

Note that if b > y + δ then the expression above will be zero because all arguments of the ReLUs
will be negative, and if b < y − δ then the expression above will also be zero because the arguments
of all ReLUs will be positive so that we obtain

2ReLU(y− b)− [ReLU(y+ δ− b) +ReLU(y− δ− b)] = 2(y− b)− [y+ δ− b+ y− δ− b] = 0

Thus this expression will not vanish only if b ∈ [y− δ, y+ δ] which is an interval of diameter 2δ ≤ 2ϵ.
For each b in this interval we have, since ReLU is 1-Lipschitz, that

|2ReLU(y − b)− [ReLU(y + δ − b) + ReLU(y − δ − b)]| ≤
|ReLU(y − b)− ReLU(y + δ − b)|+ |ReLU(y − b)− ReLU(y − δ − b)| ≤ 2δ

So that in total the expectation for fixed a, over all b, is bounded by

Eb∼[−B,B]|mReLU (X; a, b)−mReLU (Xϵ; a, b)|p ≤ (2ϵ)pµ[y − δ.y + δ] ≤ 1

2B
(2ϵ)p+1

Which implies the same bound when taking the expectation over a and b. Thus overall we obtain for
all β < (p− 1)/p that

Ea,b
{
|mReLU (X; a, b)−mReLU (Xϵ; a, b)|

W1(X,Xϵ)β

}p
≤ 1

2B

(2ϵ)p+1

2β/pϵβ·p
=

2p+1

2B2β
ϵp+1−β·p ϵ→0→ 0

While if mReLU were β lower-Hölder in expectation this expression should have been uniformly
bounded away from zero.

Part 3: lower-Hölder in expectation Next we show that mReLU is (p + 1)/p lower-Hölder in
expectation. We first consider the restriction of mReLU to the subspace of S≤n(Ω) which contains
only multisets of cardinality exactly n. We denote this subspace by S=n(Ω). In this case, we realize
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mReLU as the composition of two functions: the functions s(X; a) = sort(aTX) from Lemma C.4,
and the function q(x; b) =

∑
iReLU(xi − b) Note that indeed f(X; a, b) = (q ◦ s)(a, b). Since

we already know that s is lower Lipschitz in expectation, it is sufficient to show that q is (p+ 1)/p
lower-Hölder in expectation, due to the theorem on composition B.3.

Let us denote B̂ = max{∥x∥| x ∈ Ω}. By assumption B̂ < B.

Note that the domain of q is contained in

Ω[−B,B] = {x ∈ Rn| −B ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ B}.
Since the 2-norm and ∞-norm are equivalent on Rn C.1, to address the case of balanced multisets it
is sufficient to prove

Lemma C.5. Let p > 0, B > 0 and n be a natural number. Let qb(x) = q(x; b) be the function
described previously, defined on the domain

Ω[A,B] = x ∈ Rn| A ≤ x1 ≤ . . . ≤ xn ≤ B

There is a constant
Cn,p =

1

8n(B4−A)p

such that for all x, y ∈ Ω[A,B],

Eb∼[A,B]|qb(x)− qb(y)|p ≥ Cn,p∥x− y∥p+1
∞ .

Proof. Let x ̸= y be a pair in Ω[A,B]. Let s be an index for which |ys − xs| = ∥y − x∥∞. without
loss of generality assume that ys > xs. For every b ∈ R we denote ∆(b) = qb(y)− qb(x). Let t be
the smallest integer such that xt ≥ ys. Note that t > s. We now have

∆(ys) =

n∑
j=1

[ReLU(yj − ys)− ReLU(xj − ys)] =
∑
j>s

(yj − ys)−
∑
j≥t

(xj − ys)

=
∑
s<k<t

(yk − ys) +
∑
j≥t

(yj − xj)

Now

∆(xs) =
∑
i<s

ReLU(yi − xs) + (ys − xs) +
∑
j>s

[(yj − xs)− (xj − xs)]

≥ (ys − xs) +
∑
j>s

(yj − xj)

= (ys − xs) +
∑
s<k<t

(yk − ys) +
∑
s<k<t

(ys − xk) +
∑
j≥t

(yj − xj)

≥ (ys − xs) +
∑
s<k<t

(yk − ys) +
∑
j≥t

(yj − xj)

= (ys − xs) + ∆(ys)

We deduce that ∆(xs) − ∆(ys) ≥ ys − xs, and therefore at least one of |∆(xs)| and |∆(ys)| is
larger than ys−xs

2 , so we found some b0 for which |∆(b0)| ≥ ys−xs

2 . Next, we note that since ∆ is a
sum of 2n ReLU functions which are all 1-Lipschitz, ∆ is (2n) Lipschitz. Therefore if b is such that
|b− b0| ≤ δ := 1

8n (ys − xs) then

||∆(b)| − |∆(b0)|| ≤ |∆(b)−∆(b0)| ≤ 2nδ =
ys − xs

4

implying that |∆(b)| ≥ ys−xs

4 . Thus

Eb|qb(y)− qb(x)|p = Eb|∆(b)|p ≥ µ{b||b− b0| < δ} ·
[
ys − xs

4

]p
≥ δ

(B −A)4p
|ys − xs|p

=
1

8n(B −A)4p
|ys − xs|p+1 =

1

8n(B −A)4p
∥y − x∥p+1

∞
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Now let us consider the case of unbalanced multisets Y, Y ′ in S≤n(Ω). Our goal will be to show that
the distance between all unbalanced multisets is uniformly bounded from below away from zero.

For fixed a ∈ Sd−1 denote y = a · Y and y′ = a · Y ′. Denote x = ρ(−B)(y), that is, x is the
multiset obtained from adding elements with value −B to y until it has Y elements. Similarly, denote
x′ = ρ(−B)(y

′). Note that since y and y′ don’t have the same number of elements, and all entries of
y are in [−B′, B′], we have that

∥x− x′∥∞ ≥ B −B′.

For all b ∈ [−B,B] we have that ReLU(−B − b) = 0, and therefore, according to Lemma C.5, we
have

Eb|mReLU (Y ; a, b)−mReLU (Y
′; a, b)|p = Eb|qb(y)− qb(y

′)|p

= Eb|qb(x)− qb(x
′)|p ≥ Cn,p∥x− x′∥p+1

∞ ≥ Cn,p(B −B′)p+1

We deduce that

Ea,b|mReLU (Y ; a, b)−mReLU (Y
′; a, b)|p ≥ Cpn,p(B −B′)p

= Cpn,p(B −B′)p
(
W z

1 (Y, Y
′)

W z
1 (Y, Y

′)

)p+1

≥ C (W z
1 (Y, Y

′))
p+1

For an appropriate constant C, where we use the fact that W z
1 is bounded from above. We have

obtained a (p+ 1)/p lower Hölder bound for both balanced and unbalanced multisets, and so we are
done.

Adaptive ReLU
Theorem 3.2. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
t ∼ [0, 1]. Then the function madapt

ReLU : S≤n(Ω) × Sd−1 × [0, 1] → R4 is uniformly Lipschitz and
p+1
p lower-Hölder in expectation. Moreover, when n ≥ 4, the function madapt

ReLU is not α lower-Hölder
in expectation for any α < p+1

p .

Proof. To prove this theorem, we first recall the definition of madapt
ReLU

m = min{a · x1, . . . , a · xr}, M = max{a · x1, . . . , a · xr}, b = (1− t)m+ tM

madapt
ReLU(X; a, t) = [r,m,M,

1

r

r∑
i=1

ReLU(a · xi − b)]

To begin with, we note that the case of unbalanced multisets is easy to deal with. There exists
constants 0 < c = 1 < C such that, for every pair of unbalanced multisets Y, Y ′, and every choice of
parameters a, t,

1 ≤ ∥madapt
ReLU(X; a, t)−madapt

ReLU(X; a, t)∥p ≤ C

The lower bound follows from the fact that the first coordinate of madapt
ReLU is the cardinality of the sets.

The upper bound follows from compactness. Similarly, the augmented Wasserstein distance between
all unbalanced multisets in S≤n(Ω) is uniformly bounded from above and below. This can be used
to obtain both uniform upper Lispchitz bounds, and lower Hölder bounds, as discussed in previous
proofs.

Thus, it is sufficient to prove uniform upper Lispchitz bounds, and lower Hölder bounds in expectation,
for balanced multisets. Without loss of generality we can assume the balanced multisets both have
maximal cardinality n. So we need to prove the claim on the space S=n(Ω).

We can write madapt
ReLU, restricted to S=n(Ω), as a composition

madapt
ReLU(X; a, t) = Q ◦ s(X; a.t)

where s(X; a) = sort(aTX), which is the uniformly upper Lipschitz, and lower Lipschitz in
expectation function defined in Lemma C.4, and Q(x; t) is defined via

m = min{x1, . . . , xn}, M = max{x1, . . . , xn}, b = (1− t)m+ tM
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and

Q(x; t) = [n,m,M,
1

n

n∑
i=1

ReLU(xi − b)]

As s is is uniformly upper Lipschitz, and lower Lipschitz in expectation, it is sufficient to show that
Q is upper Lipchitz, and lower Hölder in expectation.

We note that since Ω is bounded, there exists some B > 0 such that ∥x∥ ≤ B, ∀x ∈ Ω, and for this
B we have that the image of s is contained in

Ω[−B,B] = {x ∈ Rn| −B ≤ x1 ≤ . . . ≤ xn ≤ B}

We can therefore think of Ω[−B,B] as the domain of Q.

We begin with the upper Lipschitz bound. Let x, y be vectors in Ω[−B,B], which we identify with
multisets with n elements in R. Denote the maximum and minimum of x by Mx and mx. Define the
maximum and minimum of y by My and my . Denote

ϕ(s, t,m,M) = ReLU(s− [(1− t)m+ tM ])

Then for all t ∈ [0, 1].

||Q(X; t)−Q(Y ; t)||p ≤ C · ||Q(X; t)−Q(Y ; t)||1

= C · (|mx −my|+ |Mx −My|+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|)

≤ C · (|mx −my|+ |Mx −My|+
1

n

n∑
i=1

|xi − yi + t(Mx −Mx) + (1− t)(mx −my)|)

≤ C · (|mx −my|+ |Mx −My|+
1

n

n∑
i=1

(|xi − yi|+ |(Mx −My)|+ |(mx −my))|)

≤ C · (||x− y||∞ + ||x− y||∞ +
1

n

n∑
i=1

3 · ||x− y||∞)

= 5C · ||x− y||∞ ≤ 5CC ′ · ||x− y||p

Where C,C ′ are the constants obtained from norm equivalence over Rn.

To obtain a Hölder lower bound, the idea of the proof is that for given balanced multisets x, y ∈ Rn,
we know from the analysis of mReLU that we can get a lower-Hölder bound when considering biases
going between

mx,y = min{mx,my} and Mx,y = max{Mx,My}

and then showing that the difference between this case and the function Q where the bias range
depends on the maximum and minimum of the individual multisets x, y, is proportional to the
different between the minimum and maximum of x and y, which also appear in Q. Indeed, since
ReLU is Lipschitz we have for every s,m,M, m̂, M̂ in R and t ∈ [0, 1] that

|ϕ(s, t,m,M)− ϕ(s, t, m̂, M̂)| ≤ | − t(M − M̂)− (1− t)(m− m̂)| (6)

≤ t|M − M̂ |+ (1− t)|m− m̂| ≤ |M − M̂ |+ |m− m̂|

Next, to bound ∥Q(x; t)−Q(y; t)∥p, due to equivalence of norms, it is sufficient to bound ∥Q(x; t)−
Q(y; t)∥1. We obtain
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∥Q(x; t)−Q(y; t)∥1 =|mx −my|+ |Mx −My|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

= |mx −mxy|+ |Mx −Mxy|+ |mxy −my|+ |Mxy −My|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

(6)
≥ 1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(xi, t,mx,Mx)|

+
1

n
|
n∑
i=1

ϕ(yi, t,my,My)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

triangle ineq.
≥ 1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(xi, t,mx,Mx)

+

n∑
i=1

ϕ(yi, t,my,My)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)

+

n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

=
1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)|

= |q(x; (1− t)mxy + tMxy)− q(y; (1− t)mxy + tMxy)|
By Lemma C.5, we deduce that

Et∼[0,1]∥Q(x; t)−Q(y; t)∥p1 ≥ Eb∼[mxy,Mxy]|q(x; b)− q(y; b)|p

≥ 1

8n4p(Mxy −mxy)
∥y − x∥p+1

∞ ≥ 1

16nB4p
∥y − x∥p+1

∞

by invoking the equivalence of the infinity norm and p norm we are done.

Finally, we will show that, when n ≥ 4, adaptive ReLU cannot be α-Hölder for any α > (p+ 1)/p.
This argument is essentially a reduction to our argument in the standard ReLU summation case. For
simplicity of notation we prove this for the case where d = 1. Extending the argument to the d ≥ 1
case is straightforward.

For any ϵ > 0, consider the sets

X = {{0, 0, 1,−1}}, Xϵ = {{ϵ,−ϵ, 1,−1}}.
and note that

W1(X,Xϵ) = 2ϵ.

Next, we note that for all a in the zero dimensional unit circle {−1, 1} we have that a · X =
X, a ·Xϵ = Xϵ, and moreover, that X and Xϵ have the same number of elements. Therefore

Ea,t∥madapt
ReLU(Xϵ; a, t)−madapt

ReLU(X; a, t)∥p =
1

4
Eb∼[−1,1]|ReLU(−ϵ−b)+ReLU(ϵ−b)−2ReLU(−b)|.

Next, we note, as in previous arguments, that

|ReLU(−ϵ− b) + ReLU(ϵ− b)− 2ReLU(−b)|p = 0, ∀b ̸∈ [−ϵ, ϵ]
|ReLU(−ϵ− b) + ReLU(ϵ− b)− 2ReLU(−b)|p < (2ϵ)p, ∀b ∈ R
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Thus, if b is in [−ϵ, ϵ], which occurs with probability ϵ, the expression above will be at most (2ϵ)p,
and otherwise it will be zero. The expectation of this expression over b is thus bounded by 2pϵp+1.
Piecing all this together, we obtain for all β < (p+ 1)/p

Ea,t

[
∥madapt

ReLU(Xϵ; a, t)−madapt
ReLU(X; a, t)∥p

W β
1 (X,Xϵ)

]p
≤ 1

4p
2pϵp+1

2p·βϵp·β
= 2p(1−2−β)ϵp(

p+1
p −β) ϵ→0→ 0.

This shows that madapt
ReLU is not β lower-Hölder in expectation.

Remark C.6. The last part of the proof above can be used to derive adversarial examples on which
adaptive-ReLU will have bad distortion: namely,

X = {{0, 0, 1,−1}}, Xϵ = {{ϵ,−ϵ, 1,−1}}.
On these examples, adaptive-ReLU and ReLU summation will both encounter high distortion. In
contrast, the examples discussed in the main text, like

Y = {{0, 0}}, Yϵ = {{ϵ,−ϵ}}

one can verify directly that the expectation of |madapt
ReLU(Y

′, a, t)−madapt
ReLU(Y, a, t)|p scales linearly in

ϵp. This is because the bias for these examples naturally is in the range [−ϵ, ϵ] where ’it can make a
difference’, while in the X,Xϵ example, the bias is chosen from all of [−1, 1] and its probability to
land in the domain [−ϵ, ϵ] where ’it can make a difference’ scales like ϵ.

We believe this gives a good intuition for the reason why adaptive-ReLU is successful on many of
the adversarial examples illustrated in the text, and also suggests how they can be changed so that
adaptive ReLU will fail: we simply need to take these examples and add to all multisets considered
a large positive and a large negative element. An example of this idea is shown in Figure 7, where
adaptive-ReLU is initially successful in a classification task based on adversarial examples (subplot
(a)), but fails completely once a large positive and negative element are added (subplot (b)).

D LIPSCHITZ COMBINE OPERATIONS

In this section we describe how to construct COMBINE functions which are both uniformly Lipschitz,
and lower-Lipschitz in expectation. The input to these functions are a pair of vectors x1, y1 with the
metric ∥x1∥p + ∥y1∥p. The output will be a vector (or scalar), and the metric on the output space
will again be the p norm.

Our analysis covers four 2-tuple embeddings, all of which are uniformly upper Lipschitz, and lower
Lipschitz in expectation.
Theorem D.1. Let p > 0, the following 2-tuple embeddings are all bi-Lipschitz in expectation with
respect to lp and the 2-tuple metric previously defined.

1. Linear combination: Given a 2-tuple (x, y) ∈ Rd × Rd and α ∼ U [−D,D] we define

f(x, y;α) = α · x+ y

2. Linear transform and sum: Given a 2-tuple (x, y) ∈ Rk × Rl, and A ∈ Rl×k, whose rows
are independently and uniformly sampled from Sk−1, we define

f(x, y;A) = Ax+ y

3. Concatenation: This embedding concatenates the tuple entries, and has no parameters

f(x, y) =

[
x
y

]
4. Concat and project: Given (x, y) ∈ Rk × Rl and θ ∼ Sk+l−1

f(x, y; θ) = θ ·
[
x
y

]
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Figure 4: Distortion of the 2-tuple embeddings as a function of input and embedding dimension.
LC=linear combination, LTSum=linear transform and sum, CP=concat project, C=concatenation.

We note that the last method, concat and project, is the method used in the definition of SortMPNN in
the main text. We also note that the first method, linear combination, is the method used in (Xu et al.,
2019). Unlike the other methods, it requires the vectors x, y to be of the same dimension.

In order to compare the proposed COMBINE functions which all share the bi-Lipschitz in expectation
property, one could further explore separation quality by comparing the distortion defined by M

m
where M (m) is the upper (lower) Lipschitz in expectation bound. A lower distortion would indicate
that the function doesn’t change the input metric as much (possibly up to multiplication by some
constant), resulting in high quality separation.

In figure 4, we plot the empirical distortion of the different COMBINE functions with varying input
and embedding dimensions. The embedding dimension is controlled by stacking multiple instances
of the functions with independent parameters. Note that concatenation isn’t parametric and therefore
we only have a single output dimension for it.

The experiment is run on 1, 000 different random tuple pairs {(x, y), (z, w)} for each of the four
input dimensions experimented with, where x, y, z, w ∈ Rin_dim. All random data vectors are sampled
with entries drawn from the normal distribution. The empirical distortion is then computed by taking
the largest empirical ratio M between the input and output distances and dividing it by the smallest
ratio m between the input and output distances.

As we see in the figure, all proposed functions stabilize around a constant value as the embedding
dimension increases. This value is the expected distortion on the experiment data. We can see that
concat and project maintains low expected distortion across all settings, while linear combination
has a higher expected distortion but not by much. Linear transform and sum seems to have higher
expected distortion for lower input dimensions, but it improves with large input dimensions, matching
concat and project distortion.

Another interesting result is that we can see that concat and project seems to have the highest variance
of the three for most input dimensions, since the empirical distortion for low embedding dimensions
is higher than other functions in most cases.

Proof of Theorem D.1.

Linear combination: Let x, z ∈ Rk, y, w ∈ Rl We begin by proving that f is lower Lipschitz in
expectation.

Eα∼U [−D,D][||f(x, y;α)− f(z, w;α)||pp] = Eα∼U [−D,D][||(α · x+ y)− (α · w + z)||pp]

= Eα∼U [−D,D][||α · (x− z) + (y − w)||pp]
From norm equivalence C.1, ∃c1 s.t.

≥ c1 · Eα∼U [−D,D][||α · (x− z) + (y − w)||p1]
Jensen’s ineq.

≥ c1 · Eα∼U [−D,D][||α · (x− z) + (y − w)||1]p

= c1 · Eα∼U [−D,D][||α · (x− z)||1 + ||(y − w)||1]p

From norm equivalence C.1, ∃c2 s.t.

≥ c1 · c2 · (Eα∼U [−D,D][|α|] · ||(x− z)||p + ||(y − w)||p)p
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= c1 · c2 · (
D

2
· ||(x− z)||p + ||(y − w)||p)p

≥ c1 · c2 ·min(1,
D

2

p

) · (||(x− z)||p + ||(y − w)||p)p

For uniform upper Lipschitz bounds we have

||f(x, y;α)− f(z, w;α)||p = ||(α · x+ y)− (α · w + z)||p
≤ ∥α · x− α · w∥p + ∥y − z∥p
≤ max(1, D)p · (||(x− z)||p + ||(y − w)||p)

Linear transform and sum: We prove lower-Lipschitzness in expectation. Let ai denote the i’th
row of A. Recall that for any 1 ≤ i ≤ l, ai is drawn uniformly from Sk−1. Let x, z ∈ Rk, y, w ∈ Rl

EA[||f(x, y;A)− f(z, w;A)||pp] = EA[||A(x− z) + (y − w)||pp]

= EA[
l∑
i=1

|ai · (x− z)|p +
l∑

j=1

|yj − wj |p] =
l∑
i=1

Eai∼Sk−1 [|ai · (x− z)|p] +
l∑

j=1

|yj − wj |p

From lemma C.3 ∃b > 0 s.t.

EA[||f(x, y;A)− f(z, w;A)||pp] ≥ n · b · ||x− z||pp + ||y − w||pp

Let us denote t =
[
||x− z||p
||y − w||p

]
∈ R2. Then

n · b · ||x− z||pp + ||y − w||pp ≥ min(1, n · b) · (||x− z||pp + ||y − w||pp) = min(1, n · b) · ||t||pp
From norm equivalence C.1, ∃c > 0

≥ min(1, n · b) · c · ||t||p1 = min(1, n · b) · c · (||x− z||p + ||y − w||p)p

Uniform upper Lipschitzness is straightforward to prove.

Concatenation: We show that this non-parametric function is bi-Lipschitz. Let x, z ∈ Rk, y, w ∈ Rl.

Denote as before t =
[
||x− z||p
||y − w||p

]
∈ R2. Then the distance difference in the output space is given

by ||f(x, y)− f(z, w)||pp = ∥t∥p, while the difference in the input space is given by

∥x− z∥p + ∥y − w∥p = ∥t∥1.

The claim follows from equivalence of p norm and 1 norm on R2 C.1.

Concat and project: The claim follows from the fact that the concatenation operation is bi-Lipschitz,
and Lemma C.3.

E TREE MOVER’S DISTANCE

In this appendix section we review the definition of the Tree Mover’s Distance (TMD) from (Chuang
& Jegelka, 2022), which is the way we measures distances between graphs in this paper.

We first review Wasserstein distances. Recall that if (X,D) is a metric space, Ω ⊆ X is a subset, and
z is some point in X with dist(z,Ω) > 0, then we can define the Wasserstein distance on the space
of multisets consisting of n elements in Ω via

W1({{x1, . . . , xn}}, {{y1, . . . , yn}}) = min
τ∈Sn

n∑
j=1

D(xj , yτ(j))

The augmentation map on multisets of size r ≤ n is defined as

ρ(z) ({{x1, . . . , xr}}) = {{x1, . . . , xr, xr+1 = z, . . . .xn = z}}
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and the augmented distance on multisets of size up to n is defined via

W
(z)
D,1(X, X̂) =WD,1(ρ(z)X, ρ(z)X̂)

We now return to define the TMD. We consider the space of graphs G≤n(Ω), consisting of graphs
with ≤ n nodes, with node features coming from a compact domain Ω ⊆ Rd. We also fix some
z ∈ Rd \ Ω. The TMD is defined using the notion of computation trees:
Definition E.1. (Computation Trees). Given a graph G = (V,E) with node features {{xv}}v∈V , let
T

(0)
v be the rooted tree with a single node v, which is also the root of the tree, and node features xv.

For K ∈ N+ let T (K)
v be the depth-K computation tree of node v constructed by connecting the

neighbors of the leaf nodes of T (K−1)
v to the tree. Each node is assigned the same node feature it

had in the original graph G. The multiset of depth-K computation trees defined by G is denoted
by T (K)

G := {{T (K)
v }}v∈V . Additionally, for a tree Tr with root r, we denote by Tr the multiset of

subtrees that root at the descendants of r.
Definition E.2. (Blank Tree). A blank tree T̄z is a tree (graph) that contains a single node and no
edge, where the node feature is the blank vector z.

Recall that by assumption, all node features will come from the compact set Ω, and z ̸∈ Ω.

We can now define the tree distance:
Definition E.3. (Tree Distance).3 The distance between two trees Ta, Tb with features from Ω and
z ̸∈ Ω, is defined recursively as

TD(Ta, Tb) :=

{
∥xa − xb∥p +W

(T̄z)
TD,1(Ta, Tb) if K > 0

∥xa − xb∥p otherwise

where K denotes the maximal depth of the trees Ta and Tb.
Definition E.4. (Tree Mover’s Distance). Given two graphs, G,H and w,K ≥ 0, the tree mover’s
distance is defined as

TMD(K)(G,H) =W
(T̄z)
TD,1(T

(K)
G , T (K)

H )

where T (K)
G and T (K)

H denote the multiset of all depth K computational trees arising from the graphs
G and H , respectively. We refer the reader to (Chuang & Jegelka, 2022) where they prove this is a
pseudo-metric that fails to distinguish only graphs which cannot be separated by K iterations of the
WL test.

F MPNN HÖLDER PROOFS

In the main text we informally stated the following theorem
Theorem 4.1. (Uniformly Lipschitz MPNN embeddings, informal version) Let f : G≤n(Ω) → Rm
be an MPNN with K layers. If the functions used for the aggregation ϕ(k), combine ψ(k), and
readout η are all uniformly upper Lipschitz, then f is uniformly upper Lipschitz with respect to
TMD(K). In particular, ReluMPNN, SmoothMPNN, AdaptMPNN and SortMPNN are all uniformly
upper Lipschitz.

Before stating the formal theorem and proof, we will present an important lemma alongside some
assumptions and notation that will be used throughout this section.
Lemma F.1. Let Ω ⊆ Rd be a compact set and let f : G≤n(Ω) → Rm be a depth K MPNN such
that all the aggregation ϕ(k), combine ψ(k) and readout η are continuous. Let zk ̸∈ Ωk, where Ωk is
the set of all possible feature vectors after running k ≤ K message passing layers. Then, for any
G ∈ G≤n(Ω), v ∈ VG and for any p ≥ 1, there exist C ≥ c > 0 such that

C · TD(T (k)
v , T̄z) ≥ ||zk − x(k)v ||p ≥ c · TD(T (k)

v , T̄z)

3Note the difference from the original definition in (Chuang & Jegelka, 2022) is due to our choice to set the
depth weight to 1 and using the 1-Wasserstein which is equivalent to optimal transport
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Proof. We begin by showing that Ωk is compact.

Since the number of nodes in graphs fromG≤n(Ω) is bounded, the set of all possible graph topologies,
i.e. pairs (V,E) with at most n nodes, is finite. Let (V,E) be such a fixed topology. For every k, the
function f (k)V,E ((xv)v∈Ω, θ) mapping features Ω and parameters θ to new parameter x(k)v is continuous
since the aggregation and combine functions are continuous. Accordingly the image f(k)V,E(Ω) is
compact, and therefore

Ωk =
⋃

(V,E),|V |≤n

f
(k)
V,E(Ω)

is compact as well.

Therefore:
a := inf

x∈Ωk

||x− zk||p > 0

d := sup
x∈Ωk

||x− zk||p <∞

Additionally, since Ω is compact and z ̸∈ Ω, we can show recursively, starting from k = 1, that for
all k ∈ {0 . . . ,K} and all trees T (k)

v ∈ T (k)
G≤n(Ω),

b := inf
T

(k)
v ∈T (k)

G≤n(Ω)

TD(T̄z, T
(k)
v ) > 0

e := sup
T

(k)
v ∈T (k)

G≤n(Ω)

TD(T̄z, T
(k)
v ) <∞

Where T (k)
G≤n(Ω) denotes the set of all possible height-k computation trees from G≤n(Ω). Therefore,

∀G ∈ G≤n(Ω), v ∈ VG:

d

b
· TD(T̄z, T

k
v ) ≥ d · b

b
= d ≥ ||zk − x(k)v ||p ≥ a = a · e

e
≥ a

e
· TD(T̄z, T

k
v )

To conclude we define C := d
b , c :=

a
e .

Assumptions and notations As stated in the main text, we consider graphs with up to n nodes. We
will also make the disjointness assumption: We assume as previously that the initial features of the
graphs all reside in a compact set Ω = Ω0 ⊆ Rd. We denote by Ωk the space of all possible features
which can be obtained by the MPNN at question after k iteration, with any choice of parameters.
This set is also compact (see proof of F.1). The disjointness assumptions is that the ’augmentation
vector’ zk is not in Ωk, for all k = 0, 1, . . . ,K.

We define for k = 0, . . . ,K − 1

x(k)v,s =

{
x
(k)
s if (v, s) ∈ E
zk if otherwise

, and T (k)
v,s =

{
T

(k)
s if (v, s) ∈ E
T̄z if otherwise

For K we denote

x(K)
s =

{
x
(K)
s if s ∈ V
zK if otherwise

, and T (K)
s =

{
T

(K)
s if s ∈ V
T̄z if otherwise

We will also denote

x
(k)
v,• = [x

(k)
v,1, . . . , x

(k)
v,n] and x(K)

• = [x
(K)
1 , . . . , x(K)

n ]

We can now state the full formal statement of the theorem:

Theorem F.2. (Uniformly Lipschitz MPNN embeddings, full version) Let p ≥ 1 and K ∈ N, Let
f : G≤n(Ω) → Rm be a continuous MPNN with K message passing layers. Under the above
assumptions F and given the following holds for all 1 ≤ k ≤ K:
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1. The aggregation, ϕ(k), is uniformly upper Lipschitz w.r.t. the augmented Wasserstein distance
W

(zk)
1 on S≤n(Ωk).

2. The combine function ψ(k), is uniformly upper Lipschitz.

3. the readout function η, is uniformly upper Lipschitz w.r.t. the augmented Wasserstein
distance W

z(K+1)

1 on S≤n(ΩK+1)..

Then, there exist constants C1, C2 > 0 such that

1. The node embeddings after k message passing layers are uniformly upper Lipschitz w.r.t.
TD on their depth k computation trees

∥x(k)v − x(k)u ∥pp ≤ C1 · TDp(T (k)
v , T (k)

u )

2. The graph embeddings are uniformly upper Lipschitz w.r.t. TMD(K)

∥cglobal − ĉglobal∥pp ≤ C2 · TMD(K)(G, Ĝ)p

Proof. Since we are proving for uniformly Lipschitz, we will allow ourselves to omit the parameters
for ease of notation, as the proof holds for any set of parameters.

Proof of First Claim Let u, v ∈ G. The proof will be by induction on k. for k = 0, by definition

∥x(0)v − x(0)u ∥pp = TDp(T (0)
v , T (0)

u )

We now assume correctness for k − 1 and prove for k.

1. First, using the properties of ϕ(k) and the induction hypothesis we get:

∥ϕ(k)(N (k−1)
v )− ϕ(k)(N (k−1)

u )∥pp ≤ cϕW
p
1 (x

(k−1)
v,• , x

(k−1)
u,• )

C.2
≤ cϕ · c1W p

p (x
(k−1)
v,• , x

(k−1)
u,• ) = cϕ · c1(min

τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥p)

p

C.1
≤ cϕ · c1 · c2(min

τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
p)

ind. hypothesis+F.1
≤ cϕ · c1 · c2 · c(k−1)

n∑
s=1

TDp(T (k−1)
v,s , T

(k−1)
u,τ∗(s))

C.1
≤ cϕ · c1 · c2 · c(k−1) · c3(

n∑
s=1

TD(T (k−1)
v,s , T

(k−1)
u,τ∗(s)))

p

= cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,• )

Where τ∗ := argminτ∈Sn

∑n
s=1 TD(T

(k−1)
v,s , T

(k−1)
u,τ(s) ), c1, c2, c3 are the relevant constants

from the lemmas we used and c is the multiplication of all previous constants.

2. Next, we note that

TD(T (k−1)
v , T (k−1)

u ) ≤ TD(T (k)
v , T (k)

u )

Since the depth k − 1 computation trees are subtrees of the depth k computation trees.
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3. Next, using the properties of ψ(k), the induction hypothesis and the above we get:

∥x(k)v − x(k)u ∥pp = ∥ψ(k)(x(k−1)
v , ϕ(k)(N (k−1)

v ))− ψ(k)(x(k−1)
u , ϕ(k)(N (k−1)

u ))∥pp
≤ cψ · (∥x(k−1)

v − x(k−1)
u ∥pp + ∥ϕ(k)(N (k−1)

v )− ϕ(k)(N (k−1)
u )∥pp)

ind. hypothesis
≤ cψ · (c(k−1)TD

p(T (k−1)
v , T (k−1)

u ) + ∥ϕ(k)(N (k−1)
v )− ϕ(k)(N (k−1)

u )∥pp)
1
≤ cψ · (c(k−1)TD

p(T (k−1)
v , T (k−1)

u ) + cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,• ))

2
≤ cψ · (c(k−1)TD

p(T (k)
v , T (k)

u ) + cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,• ))

C.1
≤ cψ ·max(c(k−1), c) · c4(TD(T (k)

v , T (k)
u ) +WTD,1(T

(k−1)
v,• , T

(k−1)
u,• ))p

≤ cψ ·max(c(k−1), c1) · c4 · 2p · TDp(T (k)
v , T (k)

u )

Where c4 is the relevant constant from norm equivalence, concluding the proof of the first claim.

Proof of Second Claim Let us denote the final message passing features corresponding to the
nodes of G by x(K)

v , and the depth-K computation trees corresponding to each node of G by T (K)
v .

Similarly, we denote the features corresponding to the nodes of Ĝ by x̂(K)
v and the trees by T̂ (K)

v .
Then, using the properties of η and first part of the theorem we get

∥cglobal − ĉglobal∥pp = ∥η(x(K)
• )− η(x̂

(K)
• )∥pp

≤ cηW
p
1 (x

(K)
• , x̂

(K)
• )

C.2
≤ cη · c1W p

p (x
(K)
• , x̂

(K)
• ) = cη · c1(min

τ∈Sn

n∑
s=1

∥x(K)
s − x̂

(K)
τ(s)∥

p
p)

(∗)
≤ cη · c1 · C ·

n∑
s=1

TDp(T (K)
s , T̂

(K)
τ∗(s))

C.1
≤ cη · c1 · C · c2 · (

n∑
s=1

TD(T (K)
s , T̂

(K)
τ∗(s)))

p

= cη · c1 · C · c2 · TMD(K)(G, Ĝ)p

Where (*) is the first claim and lemma F.1, c1, c2 are the relevant constants from norm equivalence
and τ∗ = argminτ∈Sn

∑n
s=1 TD(T

(K)
s , T̂

(K)
τ(s)), concluding the proof.

F.1 SORTMPNN

In the main text we stated the informal theorem

Theorem 4.3. (informal) For any given W ≥ 1,K ≥ 0, SortMPNN with width W and depth K is
lower Lipschitz in expectation with respect to TMD(K).

We next state the theorem formally and present the proof.

Our results in this section hold for any number of MPNN iterations K, and any choice of ’widths’
W1, . . . ,WK+1. For simplicity we prove this for the apriori hardest case, W1 = 1 = . . . =WK+1.
We will call this version of SortMPNN thin-SortMPNN.

Explicitly, thin-SortMPNN is defined by:

SortMPNN: For k = 1 . . . ,K

AGGREGATE: c(k)v = sort
(
a(k) · x(k−1)

v,•

)
COMBINE: x(k)v = d(k) · concat(x(k−1)

v , c(k)v )

Note that we omit the second inner product in the definition of Sz as it is superfluous: this inner-
product would be subsumed by the following inner product with d(k) in the COMBINE function.
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The READOUT function is given by

READOUT : cglobal = b(K+1) · sort
(
a(K+1) · x(K)

•

)
,

We will denote by θ(k) the concatenation of all network parameters up to the creation of the node
features x(k)v , where θ(0) is just an ’empty vector’. We denote all network parameters, including
those used by the readout function by θ(K+1). The distribution on each of the parameter vectors
a(k), b(k), d(k) is taken to be uniform on the unit sphere of the relevant dimension, as discussed in the
main text.

We will now state our theorem on lower Lipschitzness of thin-SortMPNN.
Theorem F.3. (lower Lipschitz SortMPNN, formal) Under the above assumptions F, and given
a(k), b(k) are distributed uniformly on the appropriate unit sphere, then for thin-SortMPNN with
depth K the following holds:

1. The node embeddings after k message passing layers are lower Lipschitz in expectation
w.r.t. TD on their depth k computation trees

Eϕ(k) [∥x(k)v − x(k)u ∥pp] ≥ c1 · TDp(T (k)
v , T (k)

u )

2. The graph embeddings are lower Lipschitz in expectation w.r.t. TMD(K)

Eϕ(K+1) [∥cglobal − ĉglobal∥pp] ≥ c2 · TMD(K)(G, Ĝ)p

For the proof of the theorem we will need the following simple but useful lemma
Lemma F.4. Let D,N be natural numbers and p > 1. Then there exists a positive δ = δ(D,N, p)
such that, for all N fixed vectors x1, . . . , xN in RD

P
{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥p,∀i = 1, . . . , N

}
≥ 1/2

Proof of Lemma F.4. Due to equivalence of norms C.1, it is sufficient to prove the claim when p = 2.

For every y ∈ SD−1 and δ > 0, denote

B(y, δ) = {a ∈ SD−1| |a · y| < δ}
We note that for any fixed positive δ and y, y′ ∈ SD−1, the probability of B(y, δ) and B(y′, δ) will
be the same, due to the rotation invariance of the uniform measure on SD−1, and the fact that if R is
a rotation taking y to y′, then

a ∈ B(y, δ) iff |a · y| < δ iff |Ra ·Ry| < δ iff Ra ∈ B(y′, δ)

We can therefore denote the probability of B(y, δ) by pδ , and this definition does not depend on the
choice of y. Next, note that pδ is a non-negative seuence converging monotonely to 0 as δ → 0.
Accordingly,we can choose some δ0 such that pδ < 1

2N .

Now, assume we are given N fixed points in RD. Without loss of generality we can assume the first
M points are non-zero, and the last N −M points are zero. We then have

P
{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥2,∀i = 1, . . . , N

}
= P

{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥2,∀i = 1, . . . ,M

}
= P

{
a ∈ SD−1| |a · xi

∥xi∥2
| ≥ δ, ∀i = 1, . . . ,M

}
= 1− P

(
∪Mi=1B(

xi
∥xi∥2

, δ0)

)
≥ 1−

M∑
i=1

P
(
B(

xi
∥xi∥2

, δ0)

)
≥ 1− M

2N

≥ 1− N

2N
=

1

2
.
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Using the lemma, we can now prove the theorem:

Proof of Theorem F.3. In general, to show that a function f : X ×W → Y is lower-Lipschitz in
expectation, it suffices to show that there exist δ, ϵ > 0 such that for all x1, x2 ∈ X , the probability of
the set {w ∈W : |f(x1,w)−f(x2,w)|

dX(x1,x2)
> ϵ} is larger than δ. We will use this alternative requirement

in the proof of both parts of the theorem.

Proof of First Claim For ease of notation, we will use W throughout this proof to denote W T̄z

TD,1,

and W p(·, ·) =W T̄z

TD,1(·, ·)p.

We prove the claim be induction on k. For k = 0 we have equality

∥x(0)v − x(0)u ∥p = TDp(T 0
v , T

0
u)

We now assume correctness for k − 1 and prove for k. Now note that

1. With probability of at least pk−1 on θ(k−1), we know that for all nodes u, v

∥x(k−1)
v − x(k−1)

u ∥p ≥ ckTD
p(T (k−1)

v , T (k−1)
u )

2. Once θ(k−1) is fixed, and all features x(k−1)
v are determined, we can use Lemma F.4 to show

that with an appropriate δ > 0 and probability of at least 1/2 on a(k),

|a(k) · (x− y)| ≥ δ∥x− y∥

for all x, y in the set {x(k)v }v∈V ∪ {zk}. It follows that, with probability 1/2pk−1 on
(a(k), θ(k−1))

∥c(k)v − c(k)u ∥pp = ∥sort
(
a(k) · x(k−1)

v,•

)
− sort

(
a(k) · x(k−1)

u,•

)
∥pp

= min
τ∈Sn

n∑
s=1

|a(k) · (x(k−1)
v,s − x

(k−1)
u,τ(s))|

p

≥ min
τ∈Sn

n∑
s=1

δp∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
2

≥ δpCp1 min
τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
p

(∗)
≥ δpCp1 c̃k min

τ∈Sn

TDp(T (k−1)
v,s , T

(k−1)
u,τ(s) )

≥ δpCp1 c̃kC2

[
min
τ∈Sn

TD(T (k−1)
v,s , T

(k−1)
u,τ(s) )

]p
= ck,1W

p(T (k−1)
v , T (k−1)

u )

where in the last equation we used ck,1 to denote the product of all constants appearing
previously. (*) is the induction hypothesis and lemma F.1.

3. Once (a(k), θ(k−1)) are determined, we know that c(k)v and x(k−1)
v are determined. Thus,

for an appropriate positive δ′, we know that with probability of at least 1/2 on d(k), and thus
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with probability of at least pk := pk−1/4 on θ(k) = (d(k), a(k), θ(k−1)), we have

|x(k)v − x(k)u |p = |d(k) · concat(x(k−1)
v − x(k−1)

u , c(k)v − c(k)u )|p

≥ (δ′)p∥concat(x(k−1)
v − x(k−1)

u , c(k)v − c(k)u )∥pp
≥ (δ′)p

(
∥x(k−1)

v − x(k−1)
u ∥pp + ∥c(k)v − c(k)u ∥pp

)
≥ (δ′)pck−1TD

p(T (k−1)
v , T (k−1)

u ) + (δ′)pck,1W
p(T (k−1)

v , T (k−1)
u )

≥ (δ′)pmin{ck−1, ck,1}∥x(0)v − x(0)u ∥pp +W p(T (k−1)
v , T (k−1)

u )

(∗)
≥ C(δ′)pmin{ck−1, ck,1}

(
∥x(0)v − x(0)u ∥p +W (T (k−1)

v , T (k−1)
u )

)p
= ckTD

p(T (k)
v , T (k)

u )

where in the last equation we used ck to denote all constants incurred up to this step. In
the inequality (*) we used equivalence of norms in euclidean space, with an appropriate
constant C.

This concludes the proof of the first part of the theorem.

Proof of Second Claim Let us denote the final message passing features corresponding to the
nodes of G by x(K)

v , and the depth-K computation trees corresponding to each node of G by T (K)
v .

Similarly, we denote the features corresponding to the nodes of Ĝ by x̂(K)
v and the trees by T̂ (K)

v . By
applying the first part of the theorem (to the disjoint union of the graphs G and Ĝ), we know that
with probablity of at least pK on the parameters θK , we have that

|x(K)
v − x̂(K)

u |p ≥ ckTD
p(T (K)

v , T̂ (K)
u )

Once θK is fixed, all node features x(K)
v and x̂(K)

u are determined. By Lemma F.4, we have for an
appropriate δ > 0 that, with probablity of at least 1/2 on a(K+1),

|a(K+1) · (x(K)
v − x̂(K)

u )| ≥ δ∥x(K)
v − x̂(K)

u ∥2, ∀u, v ∈ [n].

It follows that for an appropriate δ′, with probability of at least pk/4 on θK+1 =
(b(K+1), a(K+1), θK)

|cglobal − ĉglobal|p = |b(K−1) · [sort
(
a(K+1) · x(K)

•

)
− sort

(
a(K+1) · x̂(K)

•

)
]|p

≥ δ′p∥sort
(
a(K+1) · x(K)

•

)
− sort

(
a(K+1) · x̂(K)

•

)
∥pp

= δ′p min
τ∈Sn

n∑
v=1

|a(K+1) · x(K)
v − a(K+1) · x̂(K)

τ(v)|
p

≥ (δ · δ′)p min
τ∈Sn

n∑
v=1

∥x(K)
v − x

(K)
τ(u)∥

p
p

(∗)
≥ (C · δ · δ′)p

(
min
τ∈Sn

n∑
v=1

∥x(K)
v − x

(K)
τ(u)∥p

)p
≥ (C · δ · δ′)pTMD(K)(G, Ĝ)

where for (∗) we used equivalence of norms in Euclidean spaces, and the last inequality uses the first
claim and lemma F.1.

F.2 MPNN WITH LOWER-HÖLDER COMPONENTS ISN’T NECESSARILY LOWER-HÖLDER

Consider the following setting: we consider graphs in G≤n(Ω) where Ω = [−2, 2] ⊆ R. Assume
we have an MPNN f with two layers, where the aggregation functions are the one dimensional

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

functions q : (x1, . . . , xn) 7→
∑n
i=1 ReLU(xi − b) where b ∼ [−3, 3]. We showed this type of

multiset aggregation is Lower-Hölder in expectation C.4. We claim that with these one-dimensional
aggregations and for any COMBINE function, there are graphs G1, G2 ∈ G≤n(Ω) which can be
separated by two iterations of 1-WL, but cannot be separated by two of our MPNN iterations, for any
choice of network parameters. An illustration of these graphs is given in Figure 5. The parameter ϵ
can be taken to be any fixed number in (0, 1/2). As can be seen, the depth-2 computation trees of the
nodes at level 2 (children of the root, filled in red) differ between the graphs. Therefore, the 1-WL
test will succeed in determining the graphs are non-isomorphic after two iterations.

We now explain why the aforementioned MPNN won’t succeed in separating the graphs in two
iterations. In our analysis, we use the names of the nodes defined in the figure: a1, . . . , e1 for the
nodes of G1 and a2, . . . , e2 for the nodes of G2. We denote that feature vector at (e.g.,) a1 after the
k-th iteration by a(k)1 .

The core reason for the failure of two iterations of the MPNN to separateG1, G2 is that, depending on
the value of b, the first aggregation will not be able to simultaneously separate the multisets {{−ϵ, ϵ}}
and {{0, 0}} and the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}. In general, we can consider three options,
depending on the value of b:

1. b ∈ [−3,−ϵ]∪ [ϵ, 1−ϵ]∪ [1+ϵ, 3]: In this case, the aggregation won’t separate the multisets
{{−ϵ, ϵ}} and {{0, 0}}, and it also won’t separate the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}.
In this case, after the first message passing layer, we will get equality between the corre-
sponding features of nodes a(1)1 = a

(1)
2 = c

(1)
1 = c

(1)
2 , b

(1)
1 = b

(1)
2 = d

(1)
1 = d

(1)
2 . This

means the multisets {{a(1)1 , b
(1)
1 }} and {{a(1)2 , b

(1)
2 }} will be equal, and so will the multisets

{{c(1)1 , d
(1)
1 }} and {{c(1)2 , d

(1)
2 }}. Therefore, the second message passing iteration will result in

the equality between the corresponding features of nodes e(2)1 = e
(2)
2 , f

(2)
1 = f

(2)
2 , and the

graphs won’t be separated.

2. b ∈ (−ϵ, ϵ): In this case the aggregation can separate the multisets {{−ϵ, ϵ}} and {{0, 0}}, but
not the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}.
In this case, after a single message passing layer, we will get equality between features of
the nodes a(1)1 = a

(1)
2 , c

(1)
1 = c

(1)
2 , d

(1)
1 = b

(1)
2 = b

(1)
1 = d

(1)
2 .

This means the multisets {{a(1)1 , b
(1)
1 }} and {{a(1)2 , b

(1)
2 }} will be equal, and so will the mul-

tisets {{c(1)1 , d
(1)
1 }} and {{c(1)2 , d

(1)
2 }}. Therefore, the second message passing iteration will

result in the equality between the corresponding features of nodes e(2)1 = f
(2)
2 , f

(2)
1 = e

(2)
2 ,

and the graphs won’t be separated.

3. b ∈ (1 − ϵ, 1 + ϵ): In this case the aggregation can separate the multisets {{1 − ϵ, 1 + ϵ}}
and {{1, 1}}, but not the multisets {{−ϵ, ϵ}} and {{0, 0}}.
This will lead to a similar result as the previous case, just with a slight change to the
equivalence classes of the nodes.

Overall, we have shown that the proposed MPNN, which is composed of lower-Hölder in expectation
components, fails to separate the above graphs for any choice of parameters. Therefore, it cannot be
lower-Hölder in expectation w.r.t. TMD(2).

We note that the graphs can be separated by a similar ReLUMPNN which is wider, or has additional
message passing layers. Our point here is just that there exists an MPNN with K message passing
layers, composed of lower-Hölder in expectation components, which isn’t lower Hölder in expectation
w.r.t. TMDK .

F.3 RELUMPNN AND SMOOTHMPNN

In the main text of the paper we stated the following informal theorem

Theorem 4.2. Assume that ReluMPNN with depth K is α lower-Hölder in expectation with respect
to TMD(K), then α ≥ 1 + K+1

p . If SmoothMPNN with depth K is α lower-Hölder in expectation
then α ≥ 2K+1.
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Figure 5: A pair of labeled graphs G1 (top) and G2 (bottom) used to prove that MPNNs with Hölder
building blocks aren’t necessarily Hölder

We note that the distribution on the parameters taken in this theorem is the same as described
throughout the text. The aggregation used for both MPNNs at hand is of the form

{{x1, . . . , xs}} 7→
s∑
i=1

ρ(a · xi − b)

where a and b are drawn uniformly from the unit sphere and some interval [−B,B] respectively. Of
course, in ReluMPNN ρ = ReLU while with smoothMPNN ρ is a smooth function. The parameters
of the linear COMBINE function are also selected uniformly in the unit sphere.

ϵ-Tree dataset The proof of the theorem is based on a family of adversarial example which we
denote by ϵ-trees. The recursive construction depends on two parameters: a real number ϵ, and an
integer T = 0, 1, . . .. This will give us a pair of trees (G, Ĝ) where G = G(T, ϵ), Ĝ = Ĝ(T, ϵ).

The recursive construction of ϵ trees is depicted in Figure 6. In the first step T = 0, we define ’trees’
a0, b0, c0, d0 which consist of a single node, with feature value of ϵ,−ϵ, 2ϵ and −2ϵ, respectively. We
connect a0, b0 via a new root with feature value 0 to create the tree G0 = G(T = 0, ϵ), as depicted in
the left hand side of Figure 6. We do the same thing with c0, d0 to obtain the tree Ĝ0 = Ĝ(T = 0, ϵ).

We now proceed recursively, again as shown in Figure 6. Assuming that for a given T we have
defined the trees aT , bT , cT , dT , GT , ĜT , we define the corresponding trees for T + 1 as shown in
the figure:

For example, aT+1 is constructed by joining together two copies of aT and two copies of bT
at a common root with feature value 0 as shown in the figure on the right hand side. From the
figure one can also infer the construction of bT+1, cT+1, dT+1 from aT , bT , cT , cT . Finally, the tree
GT+1 is constructed by joining together cT+1, dT+1 while ĜT+1 is constructed by joining together
aT+1, bT+1
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Proof of Theorem 4.2. Denoting an MPNN of depth T by fT (G,w), where w denotes the network’s
parameters, our goal is to provide bounds of the form

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p ≤ Cϵpβ (7)

where β depends on T and the activation used, and on the other had show that
TMDT (G(T, ϵ), Ĝ(T, ϵ)) scales linearly in ϵ. This will prove that the MPNN cannot be α-lower
Hölder with any α < β.

We can see that TMDT (G(T, ϵ), Ĝ(T, ϵ)) scales linearly in ϵ because the TMD is homogenous.
Namely, given any G = (V,E,X) and ϵ > 0, let ϵG = (V,E, ϵX). Then for any T we have

TMDT (ϵG, ϵĜ) = ϵ · TMDT (G, Ĝ).

We now turn to estimate the exponent β in (7), for smooth or ReLU activations, and different values
of T . To avoid cluttered notation we will explain what occurs for low values T = 0 and T = 1 in
detail, and outline the argument for larger T .

When T = 0, we apply an MPNN of depth T = 0 to the graphs G0, Ĝ0, which means that we
just apply a readout function to the initial features. This is exactly the ±ϵ example discussed in the
main text, and so (7) will hold with β = (p+ 1)/p with ReLU activations, and β = 2 with smooth
activations.

We now consider the case T = 1. Here we apply we an MPNN of depth T = 1 to the graphs G1, Ĝ1.
Let us denote the nodes of G1 by V1, using the natural correspondence defined by the figure (middle)
we can think of V1 as the nodes of Ĝ1 as well. We denote the node feature values at node v after a
single MPNN iteration by xv,w and x̂v,w, where w denotes the network parameters as before.

Note that for the root r we have that xr,w = x̂r,w for any choice of parameters w.

At initialization, all leaves of the treesG0, G1 are assigned one of the values ϵ,−ϵ, 2ϵ,−2ϵ (according
to the labeling a0, b0, c0 or d0). If two leaves are assigned the same value (both are denoted by, say,
a0), then they will have the same node feature after a single message passing iteration, since they are
only connected to their father, and all fathers have the same initial node feature.

We now consider the two remaining nodes. We denote the node connected to the root from the left by
v1 and the node connected to the root from the right by v2.

Let us first focus on the smooth activation case. We note that the children of v1 and v2, in both
graphs, have initial features of order ϵ, and the all sum to the same value zero. By considering the
Taylor approximation of the activation, as discussed in the proof of Theorem 3.3, we see that for an
appropriate constant C we have that for all small enough ϵ,

|cv,w − ĉu,w| ≤ Cϵ2, for all parameters w (8)

where v and u could either be v1 or v2, and we recall that cv,w is the output of the aggregation
function, applied to the initial features of the neighbors of v in G (and ĉu,w is defined analogously
for the neighbors of u in Ĝ).

Additionally, we note that for every parameter w we have that

cv1,w + cv2,w = 2 [ψw(ϵ) + ψw(−ϵ) + ψw(2ϵ) + ψw(−2ϵ)] = ĉv1,w + ĉv2,w (9)

where ψw denotes the neural network used for aggregation. The next step in the MPNN procedure is
the COMBINE step, after which we will have a bound of the form (9), namely

|xv,w − x̂u,w| ≤ Cϵ2, for all parameters w (10)

since the COMBINE functions we use are uniformly Lipschitz, and we will also have or every
parameter w we have that

xv1,w + xv2,w = x̂v1,w + x̂v2,w (11)
since our COMBINE function is linear.

Now, when applying the readout function, we have eleven node features in the multiset of nodes
of G1 and Ĝ1. For any parameter vector w, if we remove the nodes v1, v2, we get two identical
multisets. Therefore, we only need to bound the difference

∥ [ηw(xv1,w) + ηw(xv2,w)]− [ηw(x̂v1,w) + ηw(x̂v2,w] ∥
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Figure 6: ϵ-tree dataset construction: The trees are built using basic elements at, bt, ct, dt. At step T ,
the basic elements are defined using subtrees from the previous step.

Since by (11) the features sum to the same value, and all are the same up to ϵ2, this difference
goes like ϵ4. This is what we wanted. For general T , we will be able to apply this same argument
recursively T + 1 times to get the lower bound of 2T+1 for the smooth exponent.

Now, let us consider what happens when we replace the smooth activation with ReLU activation.
In This case too, the only features which really matter are those corresponding to v1, v2. Recalling
our analysis of the ±ϵ for ReLU activations, we note that if the bias of the network falls outside the
interval [−2ϵ, 2ϵ], then all node features xv1,w, xv2,w, x̂v2,w, x̂v2,w will all be identical. If the bias
does fall in that interval, then the difference between these node features can be bounded from above
by Cϵ for an appropriate constant C. When applying readout, there is a probability of ∼ ϵ2 that the
final global features will be distinct (if the parameters of aggregation, and the parameters of readout,
are both well behaved). The difference in this case can again be bounded by Cϵ. It follows that

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p ≤ Cϵ2ϵp

which will lead to a lower bound on the Hölder constant α ≥ (1 + 2
p ).

For general T , we will get that there is a probability of ∼ ϵT+1 to obtain any separation, and that, if
this separation occurs, the difference between features will be ≤ C · ϵ. As a result, the expectation

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p

will scale like ϵT+1+p, which leads to our lower bound on the exponent for ReLU activations.

G EXPERIMENTS

G.1 HARDWARE

All experiments were executed on an a cluster of 8 nvidia A40 49GB GPUs.

G.2 ARCHITECTURE VARIATIONS

In this subsection we will lay out the architectural variations that were considered for SortMPNN
and AdaptMPNN, that were omitted from the main text for brevity. We include explanations of these
variations with the connection between them and the theoretical analysis.

SortMPNN First off, we must choose how to model of the blank vector, since SortMPNN uses the
blank vector explicitly in (2). We propose three options for the (blank method):

1. Learnable: For every multiset aggregation function there is a unique learnable blank vector
that is used for augmentation. Since we assume the node features are from a compact subset
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of Rd, there exist valid augmentation vectors, and upon training we can expect the learnable
vector to converge to a valid augmentation vector. Note that this method assumes training
takes place.

2. Iterative update: In this method, the blank vector of each layer is the output of the previous
MPNN layers on the blank tree, where the blank tree node feature is set to zero. This
works under two assumptions: (1): The nodes in the dataset don’t have the feature zero.
(2): The intermediate layer outputs on computation trees from the data don’t clash with the
same layer output on the blank tree. This seems relatively reasonable since SortMPNN is
bi-Lipschitz in expectation, which in expectation should lead to injectivity.

3. Zero: simply using the zero vector as the blank vector. This works under the assumption
that the zero vector is neither a valid initial feature, nor a valid output of intermediate layers.
This is the weakest of the three, but was experimented with nonetheless.

Given a multiset X , we experimented with two variations for the aggregation implementation. Both
share step (1), but differ in step (2):

1. projection: X 7→ colsort(Aρ(z)(X)) := Y ∈ Rm×n, where A ∈ Rm×d.

2. collapse: In this step, we either perform (1) a matrix collapse: rowsum(B ⊙ Y ) where ⊙
is the element-wise product and B ∈ Rm×n or (2) a vector collapse: Y b, for b ∈ Rn.

Note that when choosing to use the matrix collapse, under the assumption that the blank method pro-
vides a valid blank vector, this is equivalent to running m separate copies of Sz (2) with independent
parameters (at least upon initialization), just like we proposed in the main text. When using the vector
collapse, the aggregation takes the form of multiple instances of Sz except that that the parameter b
used in the inner product is shared across instances. Note the Hölder expectation doesn’t change in
this case, but the variance is likely higher. We explored this option since it reduces the number of
parameters needed for the aggregation, potentially easing the optimization process.

In addition, we experimented with adding bias to the projection, and to the vector collapse.

AdaptMPNN The main detail we left out from the main text is the fact that the output of madapt
ReLU is

in R4, whereas we would want it to be in R in order to be able to stack m instances and get an output
in Rd. In order to get the desired output dimension, we compose madapt

ReLU with a projection, and the
aggregation on a multiset X ∈ Rd×r as follows:

1. Stacked Adaptive ReLU:

Y :=

 m
adapt
ReLU(X; a1, t1)

...
madapt

ReLU(X; am, tm)

 ∈ Rm×4

2. Project: rowsum(B ⊙ Y ) where ⊙ is the element-wise product and B ∈ Rm×4 has rows
that are drawn uniformly independently from S3.

As we proved previously C.3, an inner product with a vector drawn uniformly from Sd−1 is bi-Hölder
in expectation. From composition properties B.1, this means that the above stacking of multiple
independent instances of project ◦madapt

ReLU keeps the Hölder properties of madapt
ReLU.

In addition, we experimented with four optional changes to the aggregation:

1. Adding the sum
∑
a · xj a 5’th coordinate to the output of madapt

ReLU. The idea behind this
choice is that the sum is an informative feature which is encountered when using the standard
ReLU activations and bias smaller than the minimal feature in the multiset. For adaptive
ReLU, this summation will only occur when t = 0.

2. Note that the adaptive relu uses the parameter t ∈ [0, 1] to choose a bias within the minimal
and maximal multiset values. When training, we experimented with either clamping t to
[0, 1] or otherwise lifting this constraint.
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3. We experimented with adding a bias term to the projection step, since this can potentially
lead to stronger expressivity.

4. the initialization of t was optionally chosen to be linspace between [0, 1].

G.3 ADVERSARIAL MULTISET DATASET EXPERIMENTS

Figure 1 and figure 2 both made use of the adversarial multiset pairs which are constructed as is
described in detail in section C.2.

To produce figure 1, we ran mrelu,mσ on a single adversarial pair of multisets that have 8 scalar
elements, with 7 equal moments between the multisets, with ϵ = 0.1.

To produce figure 2, we used 200 adversarial pairs, each containing 16 scalar elements, where each
pair shares the first 15 moments. The pairs differ in the value of ϵ, where ϵ ∈ [0, 1]

To further strengthen the evidence of the importance of expected Hölder stability, we performed two
additional experiments, where the analyzed models were trained on adversarial datasets.

First, we trained the models on 4 different datasets created as described in C.2. The four datasets were
constructed such that each consists of 100 pairs of graphs with n− 1 shared moments, where n is one
of 1,3,7,15 per dataset. The 100 pairs are constructed by creating the pair from C.2, and multiplying
all the multiset elements by ϵ, where ϵ ∈ np.linspace(0.01, 0.1, 100). In each pair, the multiset that
started the iterative construction process with the values {{−1, 1}} was assigned the label 0, and the
other was assigned the label 1. Then, these 100 pairs were randomly split into train, validation and
test (0.8/0.1/0.1). The per model test set accuracy results as a function of number of equal moments
is presented in figure 7a. We see that the better the expected Hölder exponent (depicted for this type
of dataset in figure 2), the better the post-training accuracy.

Since the first experiment makes use of a dataset that doesn’t expose adaptive ReLU’s worst-case
behavior, we proceed to repeat the experiment, except that now make a slight change to the dataset
multisets: for each multiset from the previous experiment, we add to the multisets two more elements
with the values 2 and −2. This causes the adaptive capabilities of adaptive ReLU to become useless,
since the largest and smallest values in the multiset are far larger than the values needed to separate
the values that are proportional to ϵ. The results are depicted in figure 7b.
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(a) Datasets constructed based on the
multiset construction from subsection
C.2.
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(b) Same datasets as 7a, with addi-
tional features {2,−2} targeting adap-
tive ReLU.

Figure 7: Test set accuracy for different configurations of datasets with equal moments.

G.4 ϵ-TREE DATASET

Distortion experiment The experiment depicted in 3 was run on a set of 1, 000 pairs of trees with
ϵ going from 0.05 to 0.4. The first 500 trees are of height h = 3 and were input to MPNNs of depth
d = 1, and the other 500 trees were of height h = 4 and were input to MPNNs of depth d = 2.
The plots in figure 3 were separated by MPNN depth in order for the phenomenon to be clearly
visible. We note that the feature of all non-leaf nodes which appear with 0 in figure 6, was set to
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be 1. All the models in the experiment used linear combination as the combine function, had an
embedding dimension of 45, 000, except SortMPNN that used an embedding dimension of 2, 048 due
to resource constraints. The large width was used to show the behavior of the MPNNs as we approach
the expected value over the parameters. In order to plot the curve in each subplot, the minimal
ratio rmin = l2/TMDα was computed for each graph pair where α is the theoretical lower-Hölder
exponent. Then, rmin · xα was plotted. Note that rmin was only computed for half of the pairs with
the largest TMD values in order to avoid the case where the embedding distance is zero leading to
rmin = 0.

Throughout the experiment, double precision was used in order to capture the small differences as
needed. The measured embedding distance was taken over the output of the readout function, without
further processing.

Separation experiment For the trained graph separation experiment, 100 pairs of ϵ trees of height
h = 4 with ϵ ∈ [0.1, 1] were used. Trees corresponding to the first row in figure 6 were given the
label 0, and trees from the second row were given the label 1. The models were trained by inputting a
single pair as a batch per training iteration. All models were composed of 2 message passing layers,
followed by readout and a single linear layer to obtain a logit. All of {64, 128, 256, 512} were tested
for the embedding dimension with results consistent regardless of the embedding dimension. The
models were trained for 10 epochs using the adamw optimizer and a learning rate of 0.01.

In an attempt to see the difference in quality between ReluMPNN and SmoothMPNN on this dataset,
we reran the above, using the ’smallest’ tree hight in our adversarial construction (h = 3, d = 1),
and used a single message passing layer. However, even in this setting both ReluMPNN and
SmoothMPNN completely failed to achieve separation.

G.5 TUDATASET

Results on datasets that appear in table 3 for GIN, GCN, GraphSage are from (Xu et al., 2019),
except for GIN on NCI109 which is from (Chuang & Jegelka, 2022). The reported results in 3 for
the fully trained SortMPNN and AdaptMPNN were chosen out to be the best single result out of 30
random hyper-parameter choices from the following hyperparameters: batch size∈ {32, 64}, depth∈
[2− 5], embed dim∈ {16, 32, 64}, combine∈ {ConcatProject, LinearCombination, LTSum},
dropout∈ {0, 0.1, 0.2},output mlp depth ∈ {1, 2, 3}, weight decay ∈ {0, 0.01, 0.1}, lr∈
[0.0001, 0.01], optimizer ∈ [adam, adamw], #epochs= 500. In addition, for SortMPNN the blank
method was taken to be iterative update, and the collapse method was taken to be from {matrix,
vector} without bias begin used at any stage. For AdaptMPNN, adding the sum of the multiset was a
hyper-parameter, as was the choice if to clamp the parameter t to be in [0, 1]. The choice of the 30
random configurations was chosen with wandb (Biewald, 2020) sweeps.

As stated in the main text, results are reported as in (Xu et al., 2019). Namely, we report the mean
and standard deviation of the validation performance over stratified 10-folds, where the validation
curves of all 10 folds are aggregated, and the best epoch is chosen.

G.6 LRGB

In both experiments from table 4, the models adhere to the 500K parameter limit. The hyper-
parameters were tuned for a single seed, and then the configuration with the best validation results
was rerun for 4 different seeds. We report the mean and standard deviation on the test set in table
2. The code from the official LRGB github repo was used to run these experiments, with the only
change being the addition of our architectures. The reported results for other models are taken from
(Tönshoff et al., 2023).

Note that any theoretical result we presented that made use of a uniform distribution on the unit
sphere holds also for any t-normalized unit sphere, i.e. x|∥x∥ = t, where t ∈ R, where only the
multiplicative constants in the proofs will change. In this experiment, for SortMPNN we normalized
the parameters sampled from the unit sphere as follows: (1) the parameter a was sampled from a 1

d -
normalized sphere, (2) the parameter b was sampled from a 1

n -normalized sphere. This normalization
was chosen through hyper-parameter tuning on the validation set.
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peptides-func For SortMPNN, the following hyper-parameters were used to achieve the results
shown in the table 4: blank method - learnable, collapse method - vector, bias used both in projection
and collapse, combine - ConcatProject, embedding dimension - 165, message passing layers - 4,
final mlp layers - 3, dropout - 0.05, weight decay - 0.01, positional encoding - RWSE (Dwivedi
et al., 2022a), learning rate - 0.005, scheduler - cosine with warmup, optimizer - adamW. Number of
parameters: 494865.

For AdaptMPNN - the following hyper-parameters were used: the bias parameter t was clamped to
stay within [0, 1], the sum of a multiset was added as a 5’th coordinate, bias added in project, collapse
method - LinearCombination, embedding dimension - 220, message passing layers - 6, final mlp
layers - 3, dropout - 0.05,weight decay - 0.01, positional encoding - RWSE, learning rate - 0.001,
scheduler - cosine with warmup, optimizer - adamW. Number of parameters: 480915.

peptides-struct For SortMPNN: blank method - learnable, collapse method - vector, bias not used
both in projection or collapse, combine - LinearCombination, embedding dimension - 200, message
passing layers - 6, final mlp layers - 3, dropout - 0, weight decay - 0.01, positional encoding - LapPE
(Dwivedi & Bresson, 2021), learning rate - 0.005, scheduler - step, optimizer - adamW. Number of
parameters: 493858.

For AdaptMPNN:the bias parameter t was clamped to stay within [0, 1], the sum of a multiset was
added as a 5’th coordinate, bias added in project, collapse method - LinearCombination, embedding
dimension - 220, message passing layers - 6, final mlp layers - 3, dropout - 0,weight decay - 0.1,
positional encoding - LapPE, learning rate - 0.001, scheduler - step, optimizer - adamW. Number of
parameters: 480973.

small models Additional experiments run on peptides struct were performed by running models
with the exact same hyper-parameters aside from the width. Results are shown in figure 8. Exact
width and number of parameters (including for the 500K budget) appear in table 6.

Figure 8: pep-struct, #params vs. MAE

Table 6: [width | #params] per model for each
parameter budget

Budget SortMPNN AdaptMPNN GCN
500K [200 | 493.8K] [220 | 478.8K] [235 | 488K]
100K [70 | 95.9K] [95 | 98.6K] [100 | 98.4K]
50K [48 | 47.3K] [65 | 49.3K] [68 | 48.8K]
25K [34 | 24.9K] [44 | 24.3K] [46 | 24.2K]
7K [17 | 6.7K] [22 | 6.7K] [23 | 6.8K]
1K [3 | 922] [5 | 915] [5 | 982]

G.7 SUBGRAPH AGGREGATION NETWORKS

In this experiment, we made use of edge features. The incorporation of edge features was done via
the concatenation of the edge and relevant node features, followed by a linear layer projecting the
concatenated vector to the desired dimension. The projected vector was then passed through a ReLU
activation.

Test set mean and standard deviation were computed over 10 random seeds. Hyper-parameters were
chosen by randomly running 40 configurations with the DS edge deleted configuration, and choosing
the best. the validation set was done using a single seed. The code provided with (Bevilacqua et al.,
2022) was used to run these experiments, with the only change being the addition of our architectures.

SortMPNN Both for the DS and DSS experiments, the model consisted of 5 message passing
layers, used sum Jumping Knowledge (JK) from (Xu et al., 2018), Combine - ConcatProject, matrix
collapse, bias was added to projection, blank method - learnable. The model was trained for 400
epochs with lr=0.01 and batch size of 128.
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AdaptMPNN Both for the DS and DSS experiments, the model consisted of 5 message passing
layers, sum JK for DS and last for DSS, combine - ConcatProject, sum wasn’t added, t was clapmed
to [0, 1], bias was added throughout aggregation steps. The model was trained for 400 epochs, with lr
of 0.005 for DS and 0.01 for DSS.

H RUNTIME

Model GINE GCN SortMPNN AdaptMPNN
Avg. time per epoch (s) 12.16 14.25 16.08 26.77

Table 7: Average time per epoch of various models on the
peptides-struct dataset. Average taken over 250 epochs.
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