
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE HÖLDER STABILITY OF MULTISET AND GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Extensive research efforts have been put into characterizing and constructing maxi-
mally separating multiset and graph neural networks. However, recent empirical
evidence suggests the notion of separation itself doesn’t capture several interesting
phenomena. On the one hand, the quality of this separation may be very weak, to
the extent that the embeddings of "separable" objects might even be considered
identical when using fixed finite precision. On the other hand, architectures which
aren’t capable of separation in theory, somehow achieve separation when taking
the network to be wide enough.
In this work, we address both of these issues, by proposing a novel pair-wise sepa-
ration quality analysis framework which is based on an adaptation of Lipschitz and
Hölder stability to parametric functions. The proposed framework, which we name
Hölder in expectation, allows for separation quality analysis, without restricting
the analysis to embeddings that can separate all the input space simultaneously.
We prove that common sum-based models are lower-Hölder in expectation, with
an exponent that decays rapidly with the network’s depth. Our analysis leads to
adversarial examples of graphs which can be separated by three 1-WL iterations,
but cannot be separated in practice by standard maximally powerful Message Pass-
ing Neural Networks (MPNNs). To remedy this, we propose two novel MPNNs
with improved separation quality, one of which is lower Lipschitz in expectation.
We show these MPNNs can easily classify our adversarial examples, and compare
favorably with standard MPNNs on standard graph learning tasks.

1 INTRODUCTION

Motivated by a multitude of applications, including molecular systems (Gilmer et al., 2017), social
networks (Borisyuk et al., 2024), recommendation systems (Gao et al., 2023) and more, permutation
invariant deep learning for both multisets and graphs have gained increasing interest in recent years.
This in turn has inspired several theoretical works analyzing common permutation invariant models,
and their expressive power and limitations.

For multiset data, it is known that simple summation-based multiset functions are injective, and as
a result, can approximate all continuous functions on multisets (Zaheer et al., 2017). These results
have been discussed and strengthened in many different recent publications (Wagstaff et al., 2019;
Amir et al., 2023; Tabaghi & Wang, 2024; Wang et al., 2024).

For graph neural networks (GNNs) the situation is more delicate, as all known graph neural networks
with polynomial complexity have limited expressive power. Our focus in this paper will be on the
Message Passing Neural Network (MPNN) (Gilmer et al., 2017) paradigm, which includes a variety
of popular GNNs (Xu et al., 2019; Gilmer et al., 2017; Kipf & Welling, 2017). In their seminal works,
Xu et al. (2019); Morris et al. (2019) analyze the separation capabilities of MPNNs, showing that an
MPNN f can separate two graphs G and H (i.e., f(G) ̸= f(H)) only if the Weisfeiler-Lehman (WL)
isomorphism test (Weisfeiler & Lehman, 1968) can also do so. Accordingly, maximally expressive
MPNNs are those which are able to separate all graph pairs which are WL-separable. They further
show that MPNNs which employ injective multiset functions are maximally expressive.

The theoretical ability of a permutation invariant network to separate a pair of objects (multi-
sets/graphs) is a necessary condition for all learning tasks which require such separation, e.g., binary

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

classification tasks where the two objects have opposite labels. However, while current theory ensures
separation, it tells us little about the separation quality, so that embeddings of "separable" objects may
be extremely similar, to the extent that in some cases, graphs which can be theoretically separated are
completely identical on a computer with fixed finite precision. This pheonomena was observed for
graphs with analytic activations and very small width, see (Bravo et al., 2024), figure 2 top.

In a non-parametric setting, separation quality of a function f can be studied via bi-Hölder stability
guarantees: for metric spaces (X, dX) and (Y, dY), a function f : X → Y is β upper-Hölder and α
lower-Hölder if there exist some positive constants c, C such that

cdX(x, x′)α ≤ dY (f(x), f(x
′)) ≤ CdX(x, x′)β ,∀x, x′ ∈ X.

The upper and lower Hölder conditions guarantee that embedding distances in Y will not be much
larger, or much smaller, than distances in the original space X (in our case a space of multisets or
graphs). A function f will have higher separation quality the closer the Hölder exponents are to one.
When β = 1 we say f is (upper) Lipschitz, and when α = 1 we say that f is lower Lipschitz.

Bi-Lipschitz stability analysis is a central topic in the study of frames Balan (1997); Alexeev et al.
(2012), phase retrieval Bandeira et al. (2014); Cheng et al. (2021), and several group-invariant learning
scenarios Cahill et al. (2020; 2024b). For multisets, Bi-Lipschitz stability results are known for
multiset-functions based on max-filters Cahill et al. (2024c) or sorting Balan et al. (2022). However,
this is not the case for more common sum-based multiset functions: Amir et al. (2023) showed that
Relu-sum multiset functions, which are based on summation of point-wise applied ReLU networks
(see (1) below) are never even injective. Multiset functions which use smooth activations instead, are
injective but not lower-Lipschitz. Accordingly, a remaining challenge, which we will address in this
paper, is characterizing the lower-Hölder stability of sum-based multiset functions.

For MPNN architectures for graphs, there are even less stability results. The upper Lipschitz-ness of
the MPNN GIN (Xu et al., 2019) and similar architectures was established in (Chuang & Jegelka,
2022), however lower Lipschitz or Hölder guarantees have not been addressed to date. Indeed, a
recent survey (Morris et al., 2024) lists bi-Lipschitz guarantees for MPNNs as one of the future
challenges for theoretical GNN research. We will address this challenge in this paper as well.

As a first step for our stability analysis, we need to establish how to extend notions of Hölder stability
to parametric functions. One simple approach is requiring the parametric function to be uniformly
Hölder, with the same exponent and constant regardless of the parameter choice. Indeed, we will
show that all parameteric functions we consider in this paper are uniformly upper-Lipschitz.

In contrast, we believe the notion of uniform lower-Hölder to be too stringent. For example, as
mentioned above, multiset networks based on ReLU activations are never injective, and so can’t be
uniformly lower-Hölder. Nonetheless, numerical estimates of the stability of such networks show
that wide ReLU networks have comparable or even better stability than injective smooth-activation-
based multiset functions (see Amir et al. (2023) Figure 2). Accordingly, we resort to a probabilistic
framework of Hölder stability in expectation, as presented in section 2.

Figure 1: Separation quality on a single
adversarial multiset-pair constructed as
described in appendix G.3.

Main results: multisets With respect to our new relaxed
notion of expected lower-Hölder, we show that ReLU-sum
multiset networks have an expected lower-Hölder expo-
nent of α = 3/2. Surprisingly, while smooth activations
lead to injectivity, we find that their expected Hölder ex-
ponent is much worse: at best it is equal to the maximal
number of elements in the multiset data, α ≥ n. This
scenario is summarized in Figure 1: For a given pair of
multisets, smooth activations will separate even with a
very small network width, but the separation quality can
be very poor. In contrast, shallow Relu-sum networks
may not attain separation. However, as width increases
separation will be obtained (with high probability), and
the expected quality of separation will surpass the quality
attained with smooth activations.

The relatively moderate exponent α = 3/2 of ReLU net-
works is guaranteed only when the range of the bias of the network contains the range of the multiset

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

features, an assumption which may be problematic to fulfill in practice. To address this, we suggest
an Adaptive ReLU summation network, where the bias is adapted to the values in the multiset. This
network is guaranteed the same 3/2 exponent while overcoming the range issue.

Finally, we consider multiset functions based on linear functions and column-wise sorting. These
were shown to be bi-Lipschitz, when wide enough, in (Balan et al., 2022). We show that they are
lower Lipschitz in expectation even with a width of 1.

Table 1: Summary of lower-Hölder
exponent bounds for multiset (top)
and graph (bottom) models.

Model bounds
relu sum α = 3/2

adaptive relu α = 3/2
smooth sum n ≤ α
sort based α = 1

ReluMPNN 1 + K+1
2 ≤ α

SmoothMPNN 2K+1 ≤ α
SortMPNN α = 1

Main Results: MPNNs MPNNs are constructed upon mul-
tiple application of multiset functions to node neighborhoods.
We consider four MPNNs based on the four multiset functions
we analyzed: SortMPNN, ReluMPNN, SmoothMPNN and
AdaptMPNN. We show that SortMPNN is lower-Lipschitz in
expectation, even with a width of 1. SortMPNN is thus the
first MPNN with both upper and lower Lipschitz guarantees.
In contrast, we show that ReluMPNN and SmoothMPNN are
only lower-Hölder, with an exponent that deteriorates as the
MPNN depth grows. The exponent bounds of both the graph
and multiset models appear in table 1.

Our analysis provides an adversarial example illustrating the
deterioration of the expected lower-Hölder exponent of sum-
based MPNNs as the depth increases. We show in Table 2 that sum-based MPNNs fail to learn a
simple binary classification task on such data, while SortMPNN and AdaptMPNN handle this task
easily. We also provide experiments on several graph datasets which show that SortMPNN often
outperforms standard MPNNs on non-adversarial data, and is more robust to reduction in model size.

1.0.1 Notation Sd−1 denotes the unit sphere {x ∈ Rd| ∥x∥2 = 1}. The notation ’a ∼ Sd−1

and b ∼ [−B,B]’ implies that the distribution on a (respectively b) is taken to be uniform on Sd−1

(respectively [−B,B]), and that a and b are drawn independently. The inner product of two vectors
a, b is denoted by a · b.

2 GENERAL FRAMEWORK

In this section, we present the framework for analyzing separation quality of parametric functions.
We begin by extending the notion of Hölder stability to a family of parametric functions.

2.1 HÖLDER STABILITY FOR PARAMETRIC FUNCTIONS

Let (X, dX) and (Y, dY) be psuedo-metric1spaces. Let W be some set of parameters, and let
f(x;w) : X × W → Y be a parametric function. We say that f(x;w) is uniformly Lipschitz
with constant L > 0, if for all w ∈ W , the function x 7→ f(x;w) is L-Lipschitz. This definition
can naturally be extended to other upper-Hölder exponents, but this will not be necessary as the
parametric functions we discuss in this paper will all end up being uniformly Lipschitz. Similarly,
we could define a notion of uniform lower-Hölder, but as discussed in this introduction, this notion
is too stringent for the problems we are discussing, and so we introduce the alternative notion of
lower-Hölder in expectation:

Definition 2.1. Let α > 0, p ≥ 1. Let (X, dX) and (Y, dY) be psuedo-metric spaces, and let
(W,B, µ) be a probability space. Let f(x;w) : X ×W → Y be a parametric function, so that for
every fixed x ∈ X the function f(x; ·) is measurable.

We say that f is α lower-Hölder in expectation if there exists a strictly positive c such that

cp ≤ Ew∼µ

{
dY (f(x;w), f(x

′;w))

dX(x, x′)α

}p
, ∀(x, x′) ∈ X ×X, with d(x, x′) > 0

1A psuedo metric dX differs from a standard metric only in that the dX(x1, x2) = 0 is possible even if
x1 ̸= x2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A few remarks on this definition are in order. Firstly, we note that if the set of w for which f(x;w) is
α lower-Hölder has positive probability, then f(x;w) will be α lower-Hölder in expectation. The
opposite is not true: Relu-sum networks for multisets are never injective, and hence never lower-
Hölder, but we will show that they are lower-Hölder in expectation. This is possible since it is defined
in a pairwise sense, similar to the separation analysis in Morris et al. (2019).

Next, we note that our definition takes an expectation over the parameters, but requires uniform
boundedness over x, x′ pairs. This choice was made since data distribution is unknown, while the
parameter distribution at initialization can be chosen by the algorithm. Furthermore, we conjecture
that bad separation at initialization will be difficult to overcome during training. Supporting evidence
for this claim will be shown later on (see table 2), where models with a large lower-Hölder in
expectation exponent, fail to learn an adversarial binary classification task.

Thirdly, we note that as with the standard Hölder definitions, Hölder in expectation exponents that
are closer to one will be regarded as having higher separation quality.

Fourthly, p in the definition refers to the ℓp norm chosen for the feature spaces. Results stated in the
introduction are for the default p = 2.

Finally, while the expected value across random parameters is informative as is, the variance can
potentially have a strong effect on the separation in practice. Luckily, our analysis will typically apply
for models f(x;w) of width 1, and models with width W can be viewed as stacking of W multiple
model instances. Wider models will have the same expected distortion as the width one model, but
the variance will converge to zero, in a rate proportional to 1/W For more details on this effect see
Appendix B.1.

We now proceed to analyze Hölder stability for parametric models on multisets.

3 MULTISET HÖLDER STABILITY

Standing assumptions: Throughout the rest of this section, we will say that (n, d, p,Ω, z) satisfy
our standing assumptions, if n, d are natural numbers, p ≥ 1, the set Ω is a compact subset of Rd,
and z will be a point in Rd \ Ω.

A multiset {{x1, . . . , xk}} is a collection of n unordered elements where (unlike sets) repetitions are
allowed. We denote by S≤n(Ω) and S=n(Ω) the space of all multisets with at most n elements
(respectively, exactly n elements), which reside in Ω.

A popular choice of a metric on S=n(Ω) is the Wasserstein metric

W1({{x1, . . . , xn}}, {{y1, . . . , yn}}) = min
τ∈Sn

n∑
j=1

∥xj − yτ(j)∥1

Following (Chuang & Jegelka, 2022), we extend the Wasserstein metric to the space S≤n(Ω) by
applying the augmentation map which adds the vector z to a given multiset until it is of maximal size
n:

ρ(z) ({{x1, . . . , xk}}) = {{x1, . . . , xk, xk+1 = z,xn = z}}
This induces the augmented Wasserstein metric W z

1 on S≤n(Ω),
W z

1 (S1, S2) =W1(ρ(z)(S1), ρ(z)(S2)), S1, S2 ∈ S≤n(Ω)

Now that we have introduced the augmented Wasserstein as the metric we will use for multisets, we
turn to analyze the multiset neural networks we are interested in.

A popular building block in architectures for multisets (Zaheer et al., 2017), as well as MPNNs (Xu
et al., 2019; Schütt et al., 2017; Gilmer et al., 2017), is based on summation of element-wise neural
network application. For a given activation σ : R → R, we define a parametric function mσ on
multisets in S≤n(Ω), with parameters (a, b) ∈ Rd ⊕ R, by

mσ({{x1, . . . , xr}}; a, b) =
r∑
i=1

σ(a · xi − b). (1)

We note that we focus on mσ with scalar outputs, since the variant with vector output has the same
Hölder properties, as discussed in the end of Section 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.0.1 ReLU summation We set out to understand the expected Hölder stability of mσ, starting
from the case σ = ReLU:
Theorem 3.1. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
b ∼ [−B,B]. Then mReLU (·; a, b) is uniformly Lipschitz. Moreover,

1. mReLU (·; a, b) is not α lower-Hölder in expectation for any α < p+1
p .

2. If ∥x∥ < B for all x ∈ Ω, then mReLU (·; a, b) is p+1
p lower-Hölder in expectation.

Proof idea: the ±ϵ example. The following example, which we nickname the ±ϵ example, gives
a good intuition for the Hölder behavior of mReLU. Denote Xϵ = {{−ϵ, ϵ}} and X2ϵ = {{−2ϵ, 2ϵ}}.
The Wasserstein distance between these two multisets is proportional to ϵ. Now, let us consider
the images of these multisets under mReLU, where we assume for simplicity that d = 1 and
a = 1. Note that when b > 2ϵ we will get ReLU(x − b) = 0 for all x in either sets, and so
mReLU(X2ϵ; 1, b) = mReLU(Xϵ; 1, b). We will get a similar results when b ≤ −2ϵ. In this case, for
every x ≥ −2ϵ we have ReLU(x− b) = x− b. Therefore, we will obtain that

mReLU(X2ϵ; 1, b) = (−2ϵ− b) + (2ϵ− b) = (−ϵ− b) + (ϵ− b) = mReLU(Xϵ; 1, b), ∀b < −2ϵ.

We conclude that |mReLU(X2ϵ; 1, b) − mReLU(Xϵ; 1, b)|p is zero for all b outside the inter-
val (−2ϵ, 2ϵ). Inside this interval of length 4ϵ, we will typically have |mReLU(X2ϵ; 1, b) −
mReLU(Xϵ; 1, b)|p ∼ ϵp, so that the expectation over all b will be proportional to 4ϵ · ϵp ∼ ϵp+1.
To ensure that the ratio between ϵp+1 and Wp(X2ϵ, Xϵ)

αp ∼ ϵαp will have a strictly positive lower
bound as ϵ → 0 , we need to choose α ≥ p+1

p . The proof that α = p+1
p is actually enough, and

several other details necessary to turning this argument into a full proof, are given in the appendix.

3.0.2 Adaptive ReLU To attain the (p + 1)/p exponent in theorem 3.1, we need to assume
that the bias is drawn from an interval [−B,B] which is large enough so that ∥x∥ < B for all
x ∈ Ω. This assumption may be difficult to satisfy, especially in MPNNs where the features in
intermediate layers are effected by previous parameter choices. Additionally, the ±ϵ example shows
that when b is outside the range of the multiset features, mReLU is not effective. Motivated by these
observations, we propose a novel parametric function for multisets, based on ReLU, where the bias
is automatically adapted to feature values. For a multiset X = {{x1, . . . , xr}} and a ∈ Rd, t ∈ [0, 1],
the adaptive ReLU function madapt

ReLU(X; a, t) is defined using m = min{a · x1, . . . , a · xr},M =
max{a · x1, . . . , a · xr}, b = (1− t)m+ tM and

madapt
ReLU(X; a, t) = [r,m,M,

1

r

r∑
i=1

ReLU(a · xi − b)]

The output of madapt
ReLU is a four dimensional vector . The last coordinate of the vector is essentially

mReLU, where the bias b now only varies between the minimal and maximal value of multiset features.
The first three coordinates are simple invariant features of the multisets: its cardinality and minimal
and maximal value. In the appendix we prove
Theorem 3.2. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
t ∼ [0, 1]. Then the function madapt

ReLU : S≤n(Ω) × Sd−1 × [0, 1] → R4 is uniformly Lipschitz and
p+1
p lower-Hölder in expectation. Moreover, when n ≥ 4, the function madapt

ReLU is not α lower-Hölder
in expectation for any α < p+1

p .

We note that while adaptive ReLU solves the ±ϵ example, a similar issue can be created for adaptive
ReLU with multisets such as {{1, 0, 0,−1}} and {{1, ϵ,−ϵ,−1}}, which force the adaptive bias to
cover the interval [1, 1]. Nonetheless, the delicate bias range assumption is no longer an issue.

3.0.3 Summation with smooth activation We now consider the Hölder properties of mσ when the
activation σ is smooth (e.g., sigmoid, SiLU, tanh). To understand this scenario, it can be instructive
to first return to the ±ϵ example. In this example, since the elements in Xϵ and X2ϵ both sum to
the same number, one can deduce that (for any choice of bias) the first order Taylor expansion of
mσ(X2ϵ) −mσ(Xϵ) will vanish, so that this difference will be of the order of ϵ2. Based on this

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

example we can already see that for smooth activations α ≥ 2. However, it turns out that there are
adversarial examples with much worse behavior. Specifically, note that Xϵ and X2ϵ are ’problematic’
because their first moments are identical. In the same spirit, by choosing a pair X,X ′ of distinct
multisets with n elements in R, whose first n− 1 moments are identical, we can deduce that α ≥ n:
Theorem 3.3. Assume (n, d, p,Ω, z) satisfy our standing assumptions, σ : R 7→ R has n continuous
derivatives, and a ∼ Sd−1, b ∼ [−B,B]. If the function mσ(·; a, b) is α lower-Hölder in expectation,
then α ≥ n.

Figure 2: l2 vs. W2 distance on multiple ad-
versarial multiset-pairs. Results are in accor-
dance with our theoretical results (see Table1)

3.0.4 Sort based We now present the fourth and fi-
nal multiset parametric function which we would like
to address. Based on ideas from (Balan et al., 2022;
Dym & Gortler, 2023), we consider the parametric
function

Sz(X; a, b) = b · sort(a · ρ(z)(X)) (2)

where X ∈ Rd×n and a, b are in Sd−1 and Sn−1

respectively. Note Sz explicitly includes the augmen-
tation by z, while in our previous discussions this
was not necessary for expected Hölder stability with
respect to W z

p . On the bright side, the sort-based
parametric functions are lower-Lipschitz in expecta-
tion.
Theorem 3.4. For (n, d, p,Ω, z) satisfying our stand-
ing assumptions. Assume that a ∼ Sd−1 and b ∼
Sn−1. Then Sz(·; a, b) is uniformly upper Lipschitz
and lower Lipschitz in expectation.

The proof of this claim is that such mappings were
shown to be bi-Lipschitz for all parameters, when duplicated enough times (with independent
parameters) (Balan et al., 2022). This implies bi-Lipschitzness in expectation for the duplicated
function, which in turn implies bi-Lipschitzness in expectation for a single function since the relevant
expectations are identical.

Summary In Figure 2, we choose a pair of distinct multisets X,X ′ with 16 scalar features each,
which have 15 identical moments (for details on how this was constructed see Subsection C.2 in
the appendix). The figure plots the distance between embedding distances versus the Wasserstein
distance, for pairs ϵX, ϵX ′, for varying values of ϵ. The figure illustrates that the α = 3/2 Hölder
exponent of ReLU (we take p = 2) and the α ≥ n exponent of sigmoid summation are indeed
encountered in this example. The sort and adaptive ReLU methods display a linear plot in this case.
Recall that while sort is indeed lower-Lipschitz in expectation, adaptive ReLU is not. In Remark C.6
in the Appendix, we will explain why adaptive ReLU displays a linear plot in this case, and how a
3/2 slope can be obtained by slightly changing this experiment.

4 MPNN HÖLDER STABILITY

We will now analyze the expected Hölder stability of MPNNs for graphs, using the various multiset
embeddings discussed previously. We begin by defining MPNNs, WL tests, and the graph WL-metric
of our choice.

4.1 MPNNS AND WL

We denote a graph by G = (V,E,X) where V are the nodes, E are the edges, and X = (xv)v∈V
are the initial node features. Throughout this section we will assume, as in the previous section, that
Ω is a compact subset of Rd, and z is some fixed point in Rd \ Ω. We denote the neighborhood of a
node v by Nv = {{u ∈ V |(u, v) ∈ E}}. MPNNs iteratively use the graph structure to redefine node
features in the following manner: initialize x(0)v = xv .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For k = 1 . . . ,K

AGGREGATE: c(k)v = ϕ(k)({{x(k−1)
u |u ∈ Nv}})

COMBINE: x(k)v = ψ(k)(x(k−1)
v , c(k)v)

In order to achieve a final graph embedding, a final READOUT step is performed

READOUT : cglobal = η({{x(K)
v |v ∈ V }})

We note that different instantiations of the COMBINE, AGGREGATE, and READOUT parametric
functions will lead to different architectures. We will discuss several choices, and their expected
Hölder stability properties, slightly later on. Once such an instantiation is chosen, an MPNN will
be a parametric model of the form f(G;w) = cglobal, where w denotes the concatenation of all
parameters of the COMBINE, AGGREGATE, and READOUT functions.

The Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Lehman, 1968; Huang & Villar,
2021) checks whether two graphsG,H are isomorphic (identical up to node permutation) by applying
an MPNN-like procedure while choosing the COMBINE, AGGREGATE and READOUT functions
to be hash functions, and running the procedure for at most K = max{|VG|, |VH |} (Morris et al.,
2019) iterations. The WL test can separate many, but not all, pairs of non-isomorphic graphs.

Notably, MPNNs can only separate pairs of graphs which are WL separable, and therefore if we hope
for MPNN Hölder stability in expectation, we need to choose a WL metric: a pseudo-metric on graphs
which is zero if and only if the pair of graphs cannot be separated by WL. Of the several possible
choices in the recent literature for such a metric (Grohe, 2020; Böker, 2021; Chen et al., 2022), we
choose the family of Tree Mover’s Distance (TMD(K)) suggested in (Chuang & Jegelka, 2022),
which is described in detail in Appendix E. TMD(K) is a distance which is non-zero if and only if
two graphs can be separated by K iterations of the WL test. It is based on recursive application of the
augmented Wasserstein to multisets of WL computation trees. We note that when K is large enough,
TMD(K) is a WL metric as discussed above.

4.2 MPNN STABILITY ANALYSIS

We now consider the Hölder stability of MPNNs. In this setting, the graph domain we consider are
graphs in G≤n(Ω), the collection of graphs with up to n nodes, and node features in a compact set
Ω ⊆ Rd.

It is natural to expect that the stability properties of an MPNN will be closely related to the AGGRE-
GATE, READOUT and COMBINE functions composing the MPNN. As a COMBINE function, we
will choose some parametric functions which is uniformly upper-Lipschtiz, and lower Lipschitz in
expectation. As the COMBINE function is a vector-to-vector function, this is easy to achieve even
via a linear function x(k)v = Ax

(k−1)
v +Ba

(k)
v . In Appendix D we prove the Lipschitz properties of

this and three other COMBINE choices.

The AGGREGATE and READOUT functions are multiset to vector functions, and we have discussed
the Hölder properties of four different such choices in Section 3. In practice, at each iteration k
we take Wk parallel copies of these functions with independent parameters (W corresponds to the
width of the MPNN). As discussed in the end of Subsection 2.1, this maintains the same results in
expectation while reducing the variance. For example, the SortMPNN architecture will be defined
using the sort-based parametric functions Sz from (2) via

AGGREGATE: c(k)v,i = Szk

(
{{x(k−1)

u |u ∈ Nv}}; a(k)i , b
(k)
i

)
, i = 1, . . .Wk

COMBINE: x(k)v = A(k)x(k−1)
v +B(k)c(k)v

READOUT : cglobali = SzK+1

(
{{x(K)

v |v ∈ V }}; a(K+1)
i , b

(K+1)
i

)
, i = 1, . . . ,WK+1

Similarly, we will use the terms AdaptMPNN, ReluMPNN and SmoothMPNN to denote the MPNN
obtained by replacing Sz with the appropriate functions madapt

ReLU, mReLU or mσ with a smooth σ.

Our first result regards the upper Lipschitz bound.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 4.1. (Uniformly Lipschitz MPNN embeddings, informal version) Let f : G≤n(Ω) → Rm
be an MPNN with K layers. If the functions used for the aggregation ϕ(k), combine ψ(k), and
readout η are all uniformly upper Lipschitz, then f is uniformly upper Lipschitz with respect to
TMD(K). In particular, ReluMPNN, SmoothMPNN, AdaptMPNN and SortMPNN are all uniformly
upper Lipschitz.

It would seem natural to expect that similar results will hold for lower-Hölder in expectation
guarantees: namely, that if the AGGREGATE, COMBINE and READOUT functions used in the
MPNN are lower-Hölder in expectation, then the overall MPNN will be lower-Hölder in expectation
as well. Unfortunately, this isn’t always the case. In Appendix F.2 we give an example of a pair of
graphs which cannot be separated by any choice of parameter of a Relu-MPNN with width 1 and
depth 2, even though they are separated by 2 iterations of WL.

The argument above does not rule out the possibility that a wider Relu-MPNN will be lower-Hölder
in expectation. Indeed, we suspect that this will be the case for an appropriate width W =W (d, n),
but we leave a formal proof of this result for future work. We do prove that, for arbitrarily wide
ReluMPNN and SmoothMPNN, we cannot obtain a very good Hölder exponent, with a bound that
deteriorates as the depth increases:
Theorem 4.2. Assume that ReluMPNN with depth K is α lower-Hölder in expectation with respect
to TMD(K), then α ≥ 1 + K+1

p . If SmoothMPNN with depth K is α lower-Hölder in expectation
then α ≥ 2K+1.

The proof of this theorem is based on an adversarial set of examples we call ϵ-Trees. These are
defined recursively, where the first set of trees are of height two, and the leaves contain the ±ϵ
multisets. Deeper trees are then constructed by building upon substructures from the trees in the
previous step as depicted in figure 6 alongside a rigorous formulation and proof in Appendix F.3.

In contrast to the previously discussed methods, SortMPNN is lower Lipschitz in expectation, even
with a width of 1.
Theorem 4.3. (informal) For any given W ≥ 1,K ≥ 0, SortMPNN with width W and depth K is
lower Lipschitz in expectation with respect to TMD(K).

While we don’t formally analyze the lower-Hölder properties of AdaptMPNN, we conjecture its
worst-case behavior will be similar to ReluMPNN. However, in some settings it will have better
stability. For example, for our adversarial ϵ-Trees example AdaptMPNN has a Lipschitz-like behavior,
as shown in Figure 3.

5 EXPERIMENTS

In the following experiments, we evaluate the four architectures SortMPNN, AdaptMPNN, Re-
luMPNN and SmoothMPNN. As the last two architectures closely resemble standard MPNN like
GIN (Xu et al., 2019) with ReLU/smooth activation, our focus is mainly on the SortMPNN and
AdaptMPNN architectures. In our experiments we consider several variations of these architectures
which were omitted in the main text for brevity, and are described in appendix G alongside further
experiment details.

Table 2: ϵ-Tree binary classifica-
tion results

Model Accuracy
GIN(Xu et al., 2019) 0.5
GCN(Kipf & Welling, 2017) 0.5
GAT(Velickovic et al., 2018) 0.5
ReluMPNN 0.5
SmoothMPNN 0.5
SortMPNN 1.0
AdaptMPNN 1.0

ϵ-Tree dataset In order to show that the expected (lower)
Hölder exponent is indeed a good indicator of separation quality,
and to further validate the importance of separation quality anal-
ysis, we first focus on the adversarial ϵ-tree construction used to
prove Theorem 4.2.

To begin with, we show how randomly initialized MPNNs with
the different multiset embeddings we analyzed distort the TMD
metric on the ϵ-trees. In figure 3 we plot the distance between
the embeddings provided by the MPNNs, as a function of the
parameter ϵ determining the ϵ trees (this parameter is proportional
to the TMD distance between the trees). We see how the lower-Hölder exponent increases with depth
for ReluMPNN and SmoothMPNN, in a manner which is consistent with the α = 1 + K+1

p and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Classification accuracy on TUdatasets (Morris et al., 2020). Best in bold, second underlined.

Dataset Mutag Proteins PTC NCI1 NCI109
GIN(Xu et al., 2019) 89.4±5.6 76.2±2.8 64.6±7 82.7±1.7 82.2±1.6
GCN(Kipf & Welling, 2017) 85.6±5.8 76±3.2 64.2±4.3 80.2±2.0 NA
GraphSage(Hamilton et al., 2017) 85.1±7.6 75.9±3.2 63.9±7.7 77.7±1.5 NA
SortMPNN 90.99±6.2 76.46±3.68 66.31±6.73 83.55±1.82 82.75±1.60
AdaptMPNN 90.41±6.1 75.12±3.64 66.87±5.37 82.77±1.72 83.26±0.86

2K+1 bounds suggested by Theorem 4.2 (for p = 2). SortMPNN, in contrast, displays virtually no
distortion in this example, and its behavior is consisten with the bi-Lipschitness predicted by our
theory. Similar results (without theoretical justification) can be observed for AdaptMPNN.

We then proceed to train a binary classifier using these MPNNs in an attempt to separate the tree pairs.

Figure 3: l2 vs. TMD on ϵ-Trees. The targeted ReluMPNN and
SmoothMPNN exponents deteriorate with depth, in accordance
with our theory (see Table 1)

The results in Table 2
show how SortMPNN and
AdaptMPNN achieve perfect
performance, while ReluMPNN
and SmoothMPNN, in addition
to several baseline MPNNs
completely fail. This serves
as proof to the importance of
separation quality analysis, espe-
cially in light of the fact smooth
activation MLP moments (Amir
et al., 2023) and GIN (Xu et al.,
2019) are in theory capable of
separation.

TUDataset While the ϵ-Tree
dataset emphasizes the impor-
tance of high separation quality,
validating our analysis, it is not
obvious what effect this has in
real world datasets, where we
don’t necessarily know how the exponent behaves. Therefore, we test SortMPNN and AdaptMPNN
on a subset of the TUDatasets (Morris et al., 2020), including Mutag, Proteins, PTC, NCI1 and
NCI109. Table 3 shows that SortMPNN and AdaptMPNN outperform several baseline MPNNs
(results are reported using the evaluation method from (Xu et al., 2019)). Note that in all experiments
we only compare to Vanilla MPNNs (1-WL), and not more expressive architectures which often do
reach better results, at a higher computational cost.

LRGB We further evaluate our architectures on two tasks from LRGB (Dwivedi et al., 2022b):
peptides-func, which is a multi-label graph classification task, and the peptides-struct regression task.
Results in table 4 show that SortMPNN and AdaptMPNN outperform other methods on peptides-func.
For peptides-struct, GCN is the best performing method with SortMPNN a close second.

Both experiments above adhere to the 500K parameter constraint as in (Dwivedi et al., 2022b). In
addition, we reran the peptides-struct experiment with a 100K, 50K, 25K, 7K and 1K parameter

Table 4: LRGB results. Best in bold, Second underlined.

Dataset peptides-func (AP↑) peptides-struct (MAE↓)
GINE(Hu* et al., 2020) 0.6621±0.0067 0.2473±0.0017
GCN(Kipf & Welling, 2017) 0.6860±0.0050 0.2460±0.0007
GatedGCN(Bresson & Laurent, 2018) 0.6765±0.0047 0.2477±0.0009
SortMPNN 0.6940±0.0049 0.2464±0.0024
AdaptMPNN 0.6934±0.0099 0.2484±0.0034

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

budget. The results in figure 8 in the appendix show SortMPNN and AdaptMPNN outperforming
GCN for smaller models, with SortMPNN achieving the best results. We believe this is related to the
fact that even a SortMPNN with width=1 is lower-Lipschitz in expectation, and accordingly when
only a small number of features is available, its advantage on other methods is more substantial.

Subgraph aggregation networks - Zinc12K Finally, we experiment the use of our meth-
ods as the backbone MPNN in a more advanced equivariant subgraph aggregation network
(ESAN) (Bevilacqua et al., 2022), which has greater separation power than MPNNs. To
this extent, we run the experiment from (Bevilacqua et al., 2022) on the ZINC12K dataset,
where we swap the base encoder from GIN (Xu et al., 2019) to SortMPNN and AdaptMPNN.

Table 5: MAE per base encoder for ESAN on ZINC12K.
Best in bold, second underlined.

Method GIN (Xu et al., 2019) SortMPNN AdaptMPNN
DS-GNN (ED) 0.172±0.008 0.157±0.007 0.176±0.008
DS-GNN (ND) 0.171±0.010 0.152±0.009 0.168±0.008
DS-GNN (EGO) 0.126±0.006 0.104±0.004 0.127±0.007
DS-GNN (EGO+) 0.116±0.009 0.115±0.008 0.126±0.007
DSS-GNN (ED) 0.172±0.005 0.169±0.004 0.173±0.007
DSS-GNN (ND) 0.166±0.004 0.167±0.006 0.167±0.008
DSS-GNN (EGO) 0.107±0.005 0.115±0.010 0.126±0.007
DSS-GNN (EGO+) 0.102±0.003 0.121±0.005 0.131±0.006

The results shown in table 5 show that
SortMPNN outperforms GIN in five
of the eight different scenarios. For
fair comparison, the models don’t sur-
pass the 100K parameter budget.

Code and timing Timing for the
LRGB experiment are provided in ta-
ble 7 in the appendix. SortMPNN
is marginally slower than GCN, and
AdaptMPNN is X1.87 times slower.
Code is available anonymously at 2 .

6 RELATED WORK

Sorting Sorting based operations were used for permutation invariant networks on multisets in
(Zhang et al., 2019), and as readout functions for MPNNs in (Balan et al., 2022; Zhang et al., 2018;
Duvenaud et al., 2015). To the best of our knowledge, our SortMPNN is the first network using
sorting for aggregations, and the first MPNN with provable bi-Lipschitz (in expectation) guarantees.

Bi-Lipschitz stability An alternative bi-Lipschitz embedding for multisets was suggested in (Cahill
et al., 2024a). This embedding has higher computational complexity then sort based embedding.
Some additional examples of recent works on bi-Lipschitz embeddings include (Balan & Tsoukanis,
2023; Cahill et al., 2024a; 2020). (Upper) Lipschitz stability of graph neural networks from a spectral
perspective is discussed in Gama et al. (2020); Pfrommer et al. (2021).

We note that (Böker et al., 2023) does provide lower and upper stability estimates for MPNNs with
respect to a WL metric. These stability estimates are in an ϵ−δ sense, which do not rule out arbitrarily
bad Hölder exponents. Moreover, they only consider graphs without node features. On the other
hand, their analysis is more general in that they consider graphs of arbitrary size, and their graphon
limit. In an additional recent work, Xu et al. (2023) introduced a GNN designed to be bi-Lipschitz
with respect to a weighted inner product space. Their approach, however, is limited to scenarios with
a fixed graph topology, where only scalar node features vary. This fixed topology justifies the use of
the weighted inner product space, which does not incorporate information about the graph structure.

7 SUMMARY AND LIMITATIONS

We presented expected Hölder stability analysis for functions based on ReLU summation, smooth
activation summation, adaptive ReLU, and sorting. Our theoretical and empirical results suggest
SortMPNN as a promising alternative to traditional sum-based MPNNs.

A computational limitation of SortMPNN is that it requires prior knowledge of maximal multiset
sizes for augmentation. We believe that future work will reveal ways of achieving lower-Lipschitz
architectures without augmentation. Other avenues of future work include analyzing Hölder properties
with respect to other graph metrics other than TMD, and resolving some questions we left open such
as upper bounds for the Hölder exponents of smooth activations.

2https://drive.filen.io/d/9e745743-42b7-4cb7-ae3b-2b4653b612f9#bwcvyWoNTmbQU7493xzx8EhEXAy9vj5v

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Boris Alexeev, Jameson Cahill, and Dustin G Mixon. Full spark frames. Journal of Fourier Analysis
and Applications, 18:1167–1194, 2012.

Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym. Neural injective functions
for multisets, measures and graphs via a finite witness theorem. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=TQlpqmCeMe.

Radu Balan. Stability theorems for fourier frames and wavelet riesz bases. Journal of Fourier
Analysis and applications, 3:499–504, 1997.

Radu Balan and Efstratios Tsoukanis. G-invariant representations using coorbits: Bi-lipschitz
properties, 2023.

Radu Balan, Naveed Haghani, and Maneesh Singh. Permutation invariant representations with
applications to graph deep learning. arXiv preprint arXiv:2203.07546, 2022.

Afonso S Bandeira, Jameson Cahill, Dustin G Mixon, and Aaron A Nelson. Saving phase: Injectivity
and stability for phase retrieval. Applied and Computational Harmonic Analysis, 37(1):106–125,
2014.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=dFbKQaRk15w.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Jan Böker. Graph similarity and homomorphism densities. arXiv preprint arXiv:2104.14213, 2021.

Jan Böker, Ron Levie, Ningyuan Teresa Huang, Soledad Villar, and Christopher Morris. Fine-grained
expressivity of graph neural networks. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=jt10uWlEbc.

Fedor Borisyuk, Shihai He, Yunbo Ouyang, Morteza Ramezani, Peng Du, Xiaochen Hou, Chengming
Jiang, Nitin Pasumarthy, Priya Bannur, Birjodh Tiwana, Ping Liu, Siddharth Dangi, Daqi Sun,
Zhoutao Pei, Xiao Shi, Sirou Zhu, Qianqi Shen, Kuang-Hsuan Lee, David Stein, Baolei Li, Haichao
Wei, Amol Ghoting, and Souvik Ghosh. Lignn: Graph neural networks at linkedin, 2024.

César Bravo, Alexander Kozachinskiy, and Cristóbal Rojas. On dimensionality of feature vectors in
mpnns. arXiv preprint arXiv:2402.03966, 2024.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018.

Jameson Cahill, Andres Contreras, and Andres Contreras-Hip. Complete set of translation invariant
measurements with lipschitz bounds. Applied and Computational Harmonic Analysis, 49(2):
521–539, 2020.

Jameson Cahill, Joseph W. Iverson, and Dustin G. Mixon. Towards a bilipschitz invariant theory,
2024a.

Jameson Cahill, Joseph W Iverson, and Dustin G Mixon. Towards a bilipschitz invariant theory.
Applied and Computational Harmonic Analysis, 72:101669, 2024b.

Jameson Cahill, Joseph W Iverson, Dustin G Mixon, and Daniel Packer. Group-invariant max filtering.
Foundations of Computational Mathematics, pp. 1–38, 2024c.

Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-
lehman meets gromov-wasserstein. In International Conference on Machine Learning, pp. 3371–
3416. PMLR, 2022.

11

https://openreview.net/forum?id=TQlpqmCeMe
https://openreview.net/forum?id=TQlpqmCeMe
https://openreview.net/forum?id=dFbKQaRk15w
https://openreview.net/forum?id=dFbKQaRk15w
https://www.wandb.com/
https://www.wandb.com/
https://openreview.net/forum?id=jt10uWlEbc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cheng Cheng, Ingrid Daubechies, Nadav Dym, and Jianfeng Lu. Stable phase retrieval from locally
stable and conditionally connected measurements. Applied and Computational Harmonic Analysis,
55:440–465, 2021.

Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
stability of graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=Qh89hwiP5ZR.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, pp. 2224–2232, Cambridge, MA, USA,
2015. MIT Press.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=wTTjnvGphYj.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 22326–22340. Curran Associates, Inc., 2022b.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.
pdf.

Nadav Dym and Steven J. Gortler. Low dimensional invariant embeddings for universal geometric
learning, 2023.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020. doi: 10.1109/TSP.2020.3026980.

Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin Chang,
Depeng Jin, Xiangnan He, and Yong Li. A survey of graph neural networks for recommender
systems: Challenges, methods, and directions, 2023.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.
URL https://api.semanticscholar.org/CorpusID:9665943.

Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings
of structured data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pp. 1–16, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=HJlWWJSFDH.

Ningyuan Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its vari-
ants. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 8533–8537, 2021. URL https://api.semanticscholar.org/
CorpusID:235780517.

12

https://openreview.net/forum?id=Qh89hwiP5ZR
https://openreview.net/forum?id=Qh89hwiP5ZR
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://api.semanticscholar.org/CorpusID:9665943
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://openreview.net/forum?id=HJlWWJSFDH
https://api.semanticscholar.org/CorpusID:235780517
https://api.semanticscholar.org/CorpusID:235780517

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pp. 4602–4609. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.33014602.
URL https://doi.org/10.1609/aaai.v33i01.33014602.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.

Christopher Morris, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Fabrizio Frasca, Ron Levie,
Derek Lim, Michael Bronstein, Martin Grohe, and Stefanie Jegelka. Future directions in founda-
tions of graph machine learning, 2024.

Samuel Pfrommer, Alejandro Ribeiro, and Fernando Gama. Discriminability of single-layer graph
neural networks. pp. 8508–8512, 06 2021. doi: 10.1109/ICASSP39728.2021.9414583.

Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature Communications, 8(1),
January 2017. ISSN 2041-1723. doi: 10.1038/ncomms13890. URL http://dx.doi.org/
10.1038/ncomms13890.

Puoya Tabaghi and Yusu Wang. Universal representation of permutation-invariant functions on vectors
and tensors. In Claire Vernade and Daniel Hsu (eds.), Proceedings of The 35th International
Conference on Algorithmic Learning Theory, volume 237 of Proceedings of Machine Learning
Research, pp. 1134–1187. PMLR, 25–28 Feb 2024. URL https://proceedings.mlr.
press/v237/tabaghi24a.html.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark, 2023.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Ingmar Posner, and Michael A. Osborne. On
the limitations of representing functions on sets. In International Conference on Machine Learning,
2019. URL https://api.semanticscholar.org/CorpusID:59292002.

Peihao Wang, Shenghao Yang, Shu Li, Zhangyang Wang, and Pan Li. Polynomial width is sufficient
for set representation with high-dimensional features. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=34STseLBrQ.

Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Charles Xu, Laney Goldman, Valentina Guo, Benjamin Hollander-Bodie, Maedee Trank-Greene, Ian
Adelstein, Edward De Brouwer, Rex Ying, Smita Krishnaswamy, and Michael Perlmutter. Blis-net:
Classifying and analyzing signals on graphs, 2023. URL https://arxiv.org/abs/2310.
17579.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/xu18c.html.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1609/aaai.v33i01.33014602
http://dx.doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1038/ncomms13890
https://proceedings.mlr.press/v237/tabaghi24a.html
https://proceedings.mlr.press/v237/tabaghi24a.html
https://openreview.net/forum?id=rJXMpikCZ
https://api.semanticscholar.org/CorpusID:59292002
https://openreview.net/forum?id=34STseLBrQ
https://arxiv.org/abs/2310.17579
https://arxiv.org/abs/2310.17579
https://proceedings.mlr.press/v80/xu18c.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 4438–4445. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11782. URL
https://doi.org/10.1609/aaai.v32i1.11782.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning set representations with
featurewise sort pooling. 2019. URL https://arxiv.org/abs/1906.02795.

A DEFINITIONS AND NOTATION

The following definitions and notation are used throughout the appendices.

• We use the function F (x, x′, w) = Fp,α,f (x, x
′, w) to denote

F (x, x′, w) =

{
dY (f(x,w), f(x

′, w))

dX(x, x′)α

}p
• We call a pair of multisets balanced, if the number of elements they contain are equal, and

otherwise we call them unbalanced.

B HÖLDER STABILITY IN EXPECTATION PROPERTIES

In this section we fill in the details of some properties of lower-Hölder in expectation functions,
which were discussed in Subsection 2.1.

B.1 REDUCING VARIANCE BY AVERAGING

GivenN ∈ N, we can extend f(x;w) : X×W → Y to a new parametric function fN : X×WN →
Y N defined as

fN (x;w1, . . . , wN) = [f(x,w1), . . . , f(x,wN)] (3)
where the f measure on WN is the product measure, and the distance we take on Y N is

dYN
([y1, . . . , yN], [y′1, . . . , y

′
N]) =

{
1

N

N∑
n=1

d(yn, y
′
n)
p

}1/p

The function FN corresponding to this choice of fN is

FN (x, x′, w) =

{
dYN

(fN (x,w), fN (x′,w))

dX(x, x′)α

}p
=

(
1

dX(x, x′)

)αp
1

N

N∑
n=1

d(f(x,wn), f(x
′, wn))

p

=
1

N

N∑
n=1

F (x, x′, wn)

Thus FN is the average of N independent copies of F , which implies that for all x ̸= x′ the random
variable FN (x, x′,w) has the same expectation as F , and its standard deviation is uniformly bounded

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1609/aaai.v32i1.11782
https://arxiv.org/abs/1906.02795

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

by σ/
√
N , where σ is a bound on the standard deviation of F (x, x′, w) which is uniform in x, x′

(assuming that such a bound exists). In particular, this means that for any x, x′, not only will the
expectation of FN (x, x′,w) be bounded by from below by mp, but also as N goes to infinity the
probability of FN (x, x′,w) being larger than mp − ϵ will go to one.

B.2 BOUNDEDNESS ASSUMPTIONS

In the scenarios we consider in this paper the metric spaces are bounded. Assume 0 < α < β, and the
distances between any two elements x, x′ in a metric space X are bounded by some constant B, then

d(x, x′)β = Bβ
(
d(x, x′)

B

)β
≤ Bβ

(
d(x, x′)

B

)α
= Bβ−αd(x, x′)α.

In other words, in bounded metric spaces, up to a constant, increasing the exponent decreases the
value. It follows that a parametric functions which is α lower Hölder in expectation is also β lower
Hölder in expectation.

B.3 COMPOSITION

In this section we discuss what happens when we compose two functions f(x;w) : X ×W 7→ Y
and g(y; v) : Y × V 7→ Z to get a new parametric function

g ◦ f(x;w, v) = g(f(x;w); v).

Lemma B.1. Given two parametric functions f(x;w) : X ×W 7→ Y and g(y; v) : Y × V 7→ Z
which are α and β lower Hölder in expectation with α, β ≥ 1, then g ◦ f is α · β lower Hölder in
expectation. Similarly, if f, g are uniformly upper Lipschitz, then f ◦ g is uniformly upper Lipschitz.

Proof. We omit the proof for uniform upper Lipschitz, and prove only the more chal-
lenging case of lower-Hölder in expectation. We have that for strictly positive mf ,mg,
Ew∼µ[{dY (f(x;w),f(x′;w))

dX(x,x′)α }p] ≥ mf and Ev∼γ [{dZ(g(y,v),g(y′,v))
dY (y,y′)β

}p] ≥ mg, from which we con-
clude

Ew,v∼(µ,γ)[{
dZ(g(f(x;w), v), g(f(x

′;w), v))

dX(x, x′)α·β
}p]

w,v are independent
=

∫
w

∫
v

{dZ(g(f(x;w), v), g(f(x
′;w), v))

dX(x, x′)α·β
}pdγdµ

=

∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p
∫
v

{dZ(g(f(x;w), v), g(f(x
′;w), v))

dY (f(x;w), f(x′;w))β
}pdγdµ

=

∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p · Ev∼γ [{

dZ(g(f(x;w), v), g(f(x
′;w), v))

dY (f(x;w), f(x′;w))β
}p]dµ

≥
∫
w

{dY (f(x;w), f(x
′;w))β

dX(x, x′)α·β
}p ·mgdµ

= mg · Ew∼µ[({
dY (f(x;w), f(x

′;w))

dX(x, x′)α
}p)β]

(∗)
≥ mg · (Ew∼µ[{

dY (f(x;w), f(x
′;w))

dX(x, x′)α
}p])β

≥ mg ·mβ
f

Where (∗) is true by Jensen’s inequality, since (dY (f(x;w),f(x′;w))
dX(x,x′)α)p is non negative, and ϕ : R+ ∪

{0} 7→ R, ϕ(t) = tβ is convex for β ≥ 1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C MULTISET EMBEDDINGS ANALYSIS PROOFS

The following are the proofs of the claims regarding the exponent of Hölder stability in expectation
from section 3.

Before stating and proving the relevant claims, we will present some lemmas that will be used
throughout this section and those that follow.

We first state the well known property of norm equivalence on finite dimensional normed spaces
Lemma C.1. Let 1 ≤ p, q ≤ ∞ and d ∈ N. There exists cp,q,d > 0 s.t. for any v ∈ Rd

∥v∥p ≥ cp,q,d · ∥v∥q

In particular, this means that
Lemma C.2. Let 1 ≤ p, q ≤ ∞ and Ω ⊆ Rd There exists Cp,q,d > 0 s.t. for any X,Y ∈ S≤n(Ω)

W (z)
p (X,Y) ≥ Cp,q,d ·W (z)

q (X,Y)

Proof.

W (z)
p (X,Y) =

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥pp


1/p

C.1
≥ cp,1,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥p


C.1
≥ cp,1,d · cp,q,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥q


C.1
≥ cp,1,d · cp,q,d · cq,1,d ·

min
τ∈Sn

n∑
j=1

∥ρ(z)(x)j − ρ(z)(y)τ(j)∥qq


1
q

= cp,1,d · cp,q,d · cq,1,d ·W (z)
q (X,Y)

The upper bound can be proven in the same manner.

Now that we are equipped with the above lemmas, we begin by proving for smooth functions.

C.1 SUMMING OVER A SMOOTH ACTIVATION

Theorem 3.3. Assume (n, d, p,Ω, z) satisfy our standing assumptions, σ : R 7→ R has n continuous
derivatives, and a ∼ Sd−1, b ∼ [−B,B]. If the function mσ(·; a, b) is α lower-Hölder in expectation,
then α ≥ n.

Proof. It is sufficient to prove the claim in the case where d = 1.

Since σ is n times continuously differentiable, there exists some constant C such that

| ∂
n

∂tn
σ(at+ b)| ≤ C,∀(t, a, b) ∈ [−1, 1]× Sd−1 × [−B,B].

Now, let f be any function with n continuous derivatives and |f (n)(t)| < C for all t ∈ [−1, 1]. For
x ∈ (−1, 1)n denote F (x) =

∑n
i=1 f(xi). (when f(t) = σ(at+ b) we have F (x) = mσ(x; a, b)).

By Taylor’s approximation of f around 0, there exists points c1, . . . , cn ∈ (−1, 1) such that

F (x) =

n∑
i=1

(
f(0) + f ′(0)xi +

f ′′(0)

2
x2i + . . .+

f (n−1)(0)

(n− 1)!
xn−1
i +

f (n)(ci)

n!
xni

)

= nf(0) + f ′(0)

n∑
i=1

xi +
f ′′(0)

2

n∑
i=1

x2i + . . .+
f (n−1)(0)

(n− 1)!

n∑
i=1

xn−1
i +

n∑
i=1

xni
f (n)(ci)

n!

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

It follows that if x, y are two vectors which are not the same, even up to permutation, but their first
n− 1 moments are identical, then for every ϵ ∈ (0, 1), the vectors ϵx and ϵy will also have the same
n− 1 moments, and so there exist c1, . . . , cn, d1, . . . , dn in (−1, 1) such that

|F (ϵx)− F (ϵy)| = ϵn|
n∑
i=1

f (n)(ci)

n!
xni +

n∑
i=1

f (n)(di)

n!
yni | ≤

2n

n!
Cϵn

In contrast, the Wasserstein distance between ϵx and ϵy scales like ϵ:
W z
p (ϵx, ϵy) =Wp(ϵx, ϵy) = ϵWp(x, y)

It follows that for all α < n, all parameters w = (a, b) ∈ Sd−1 × [−B,B], and all ϵ ∈ (0, 1),∣∣∣∣mσ(ϵx;w)−mσ(ϵy;w)

Wα
p (ϵx, ϵy)

∣∣∣∣p ≤ CWp(x, y)
−α 2n

n!
ϵ(n−α)p

Taking the expectation over the parameters w on the left hand side, we get the same inequality. Taking
the limit ϵ→ 0, we obtain

Ew
∣∣∣∣mσ(ϵx;w)−mσ(ϵy;w)

Wα
p (ϵx, ϵy)

∣∣∣∣p ≤ CWp(x, y)
−α 2n

n!
ϵ(n−α)p → 0

from which we deduce that mσ is not α lower-Hölder in expectation.

To conclude this argument , we note that there always exist x, y ∈ Rn which are not identical up to
permutation, but have the same first n− 1 moments. This is because it is known that no mapping
from (−1, 1)n to Rn, and in particular the mapping which takes a vector of length n to its first n− 1
moments, cannot be injective, up to permutations (Wagstaff et al., 2019). To ensure that x, y are in
(−1, 1)n, we can scale both vectors by a sufficiently small positive number. In the next subsection we
discuss a constructive method for producing pairs of sets with n− 1 equal moments.

C.2 CREATING SETS WITH n− 1 EQUAL MOMENTS

In the proof of theorem 3.3 we explained that for every natural n, there exists pairs of vectors
x, y ∈ Rn which are not identical, up to permutation, but have the same first n − 1 moments. We
now give a constructive algorithm to construct such pairs for n which is a power of 2, that is, n = 2k

for some natural k. This algorithm was used to produce figure 2 in the main text.

Our algorithm operates by recursion on k. For k = 1, our goal is to find a pair of vectors x(1), y(1) of
length 2k = 2, whose first 2k − 1 = 1 moments are equal. We can choose for example

x(1) = [−1, 1], y(1) = [−2, 2].

Now, assume that for a given k we have a pair of vectors x = x(k) and y = y(k) of length n = 2k

which are not identical, up to permutation, but whose first 2k − 1 moments are identical. We then
perform the following three steps:

step 1: We translate all coordinates of x and y by the same number t, which we take to be the
minimum of all coordinates in x and y. We thus get a new pair of vectors

x′ = [x1 − t, . . . , xn − t], y′ = [x1 − t, . . . , xn − t]

whose coordinates are all non-negative. These vectors are still distinct, even up to permutation, and
have the same first n− 1 = 2k − 1 moments.

step 2: We take the root of the non-negative entries in both vectors, to get new vectors

x′′ = [
√
x′1, . . . ,

√
x′n], y′′ = [

√
y′1, . . . ,

√
y′n].

These two vectors are distinct, even up to permutations, and they agree on the even moments
2, 4, . . . , 2(n− 1).

step 3: Finally, we define a new pair of vectors of cardinality 2n = 2k+1

x(k+1) = [−x′′, x′′], y(k+1) = [−y′′, y′′]
These two new vectors are still distinct up to permutations. There even moments up to order 2(n− 1)
are still identical. Moreover, all odd moments of both vectors are zero, and hence identical. In
particular, the two vectors have the same moments of order 1, 2, . . . , 2(n− 1), 2n− 1, which is what
we wanted.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.3 SORTING

Our goal in this subsection is proving

Theorem 3.4. For (n, d, p,Ω, z) satisfying our standing assumptions. Assume that a ∼ Sd−1 and
b ∼ Sn−1. Then Sz(·; a, b) is uniformly upper Lipschitz and lower Lipschitz in expectation.

Recall that Sz is defined via

Sz(X; a, b) = b · sort(a · ρ(z)(X))

Once ρ(z) is applied, we can think of Sz as operating on multisets with exactly n elements, coming
from the domain Ω∪{z}. The function Sz is then a composition of parametric functions L◦ s, where

L(y; b) = b · y (4)

and

s(X; a) = sort(aTX) (5)

By the rules of composition (Lemma B.1), it is sufficient to show that both functions are uniformly
Lipschitz, and lower-Lipschitz in expectation.

We first show for L

Lemma C.3. For every p ≥ 1, the function L : Rn × Sn−1 → R is uniformly upper-Lipschitz, and
lower Lipschitz in expectation.

Proof. Uniformly upper Lipschitz For every b ∈ Sn−1 and x, x′ ∈ Rn we have, using Cauchy-
Schwarz,

|L(x; b)− L(x′; b)| = |b · (x− x′), | ≤ ∥x− x′∥

so for all b we have a Lipschitz constant of 1.

Lower Lipschitz in expectation For every x ̸= x′ in Rn we have, due to lemma C.1, for the
appropriate c > 0

Eb∼Sn−1

[{
|L(x; b)− L(x′; b)|

∥x− x′∥p

}p]
≥ cp · Eb∼Sn−1

[{
|L(x; b)− L(x′; b)|

∥x− x′∥2

}p]
= cp · Eb∼Sn−1

[
|b · x− x′

∥x− x′∥2
|p
]

= cp · Eb∼Sn−1 [|b · e1|p] > 0

where the last equality is because the distribution is rotational invariant.

We now prove for s

Lemma C.4. Let d, n, p be natural numbers. Let s be as defined in (5), then s is uniformly upper
Lipschitz, and lower Lipschitz in expectation. (here, the domain of s is the space S=n(Ω) of multisets
with n elements in a compact set Ω ⊆ Rd, endowed with the W1 metric. a is drawn uniformly from
Sd−1, and the metric on the output of s is the ℓp distance).

Proof. Due to norm equivalence as stated in lemma C.1, it is sufficient to prove the claim when
p = 2.

Fix some balanced multisets X ̸∼ Y . Let σ be a permutation which minimizes
∑n
j=1 ∥xj − yτ(j)∥2

over all τ ∈ Sn. Then for every a ∈ Sd−1 we have, using Cauchy-Schwartz and norm equivalence

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.1

∥s(X; a)− s(Y ; a)∥22 = ∥sort(aTX)− sort(aTY)∥22

= min
τ∈Sn

n∑
j=1

|aTxj − aT yτ(j)|2

≤
n∑
j=1

|aTxj − aT yσ(j)|2

≤
n∑
j=1

∥xj − yσ(j)∥22

≤ C

 n∑
j=1

∥xj − yσ(j)∥2

2

=W1(X,Y)2

Concluding s is uniformly upper Lipschitz.

In addition, we also have that for large enough N , the function sN (·; a) (concatenation of s N times,
divided by 1/N) will be lower Lipschitz for Lebesgue almost every a ∈ Sd−1, as proved in (Balan
et al., 2022). In particular, it follows that sN is lower Lipschitz in expectation. As discussed in
Subsection B.1, this implies that s is lower Lipschitz in expectation as well.

C.4 ANALYZING RELU

Theorem 3.1. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
b ∼ [−B,B]. Then mReLU (·; a, b) is uniformly Lipschitz. Moreover,

1. mReLU (·; a, b) is not α lower-Hölder in expectation for any α < p+1
p .

2. If ∥x∥ < B for all x ∈ Ω, then mReLU (·; a, b) is p+1
p lower-Hölder in expectation.

Proof. We divide the proof into three parts, in accordance with the three parts of the theorem.

Part 1: Uniform Lipschitz We first prove a uniform Lipschitz bound for all balanced multisets Y, Y ′

of cardinality k ≤ n. Denote X = ρ(z)(Y), X ′ = ρ(z)(Y
′). Then for every permutation τ ∈ Sn,

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| = |mReLU (X; a, b)−mReLU (X

′; a, b)|

= |
n∑
i=1

ReLU(axi − b)−ReLU(ax′τ(i) − b)|

(∗)
≤

n∑
i=1

|(axi − b)− (ax′τ(i) − b)|

=

n∑
i=1

|a · (xi − x′τ(i))|

(∗∗)
≤

n∑
i=1

∥a∥2∥xi − xτ(i)∥2

=

n∑
i=1

∥xi − xτ(i)∥2,

where (*) is because ReLU is Lipschitz with constant 1, and (**) is from Cauchy-Schwartz.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since the inequality we obtain holds for all permutations τ , we can take the minimum over all
permutations to obtain that

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤W1(X,X

′) =W z
1 (Y, Y

′)

To address multisets Y, Y ′ of different sizes, we first note that since the elements of the multisets are
in Ω, and the parameters a, b come from a compact set, there exists some constant M > 0 such that

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤M.

On the other hand, for all Y, Y ′ of different sizes, we will always have that

W z
1 (Y, Y

′) ≥ dist(z,Ω) > 0

therefore

|mReLU (Y ; a, b)−mReLU (Y
′; a, b)| ≤M

W z
1 (Y, Y

′)

W z
1 (Y, Y

′)
≤ M

dist(z,Ω)
W z

1 (Y, Y
′)

Combining this with our bound for multisets of equal cardinality, we see that mReLU is uniformly
Lipschitz with constant max{1, M

dist(z,Ω)}.

Part 2: Lower bound on expected Hölder exponent

We show that mReLU is not β lower-Hölder in expectation for all β < (p+ 1)/p.

Let X be some matrix in Ωn whose first two columns are the same x1 = x2. Let q be a vector with
unit norm. For every ϵ > 0 define

Xϵ = [x1 − ϵq, x1 + ϵq, x3, . . . , xn]

It is not difficult to see that for all small enough ϵ we have that W1(Xϵ, X) = 2ϵ. On the other hand,
for every fixed a ∈ Sd−1 and b ∈ [−B,B] we have that, denoting y = a · x1 and δ = |ϵa · q|, we
have

mReLU (X; a, b)−mReLU (Xϵ; a, b) = 2ReLU(a · x1 − b)− ReLU(a · (x1 − ϵq)− b)

− ReLU(a(·x1 + ϵq)− b)

= 2ReLU(y − b)− [ReLU(y + δ − b) + ReLU(y − δ − b)]

Note that if b > y + δ then the expression above will be zero because all arguments of the ReLUs
will be negative, and if b < y − δ then the expression above will also be zero because the arguments
of all ReLUs will be positive so that we obtain

2ReLU(y− b)− [ReLU(y+ δ− b) +ReLU(y− δ− b)] = 2(y− b)− [y+ δ− b+ y− δ− b] = 0

Thus this expression will not vanish only if b ∈ [y− δ, y+ δ] which is an interval of diameter 2δ ≤ 2ϵ.
For each b in this interval we have, since ReLU is 1-Lipschitz, that

|2ReLU(y − b)− [ReLU(y + δ − b) + ReLU(y − δ − b)]| ≤
|ReLU(y − b)− ReLU(y + δ − b)|+ |ReLU(y − b)− ReLU(y − δ − b)| ≤ 2δ

So that in total the expectation for fixed a, over all b, is bounded by

Eb∼[−B,B]|mReLU (X; a, b)−mReLU (Xϵ; a, b)|p ≤ (2ϵ)pµ[y − δ.y + δ] ≤ 1

2B
(2ϵ)p+1

Which implies the same bound when taking the expectation over a and b. Thus overall we obtain for
all β < (p− 1)/p that

Ea,b
{
|mReLU (X; a, b)−mReLU (Xϵ; a, b)|

W1(X,Xϵ)β

}p
≤ 1

2B

(2ϵ)p+1

2β/pϵβ·p
=

2p+1

2B2β
ϵp+1−β·p ϵ→0→ 0

While if mReLU were β lower-Hölder in expectation this expression should have been uniformly
bounded away from zero.

Part 3: lower-Hölder in expectation Next we show that mReLU is (p + 1)/p lower-Hölder in
expectation. We first consider the restriction of mReLU to the subspace of S≤n(Ω) which contains
only multisets of cardinality exactly n. We denote this subspace by S=n(Ω). In this case, we realize

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

mReLU as the composition of two functions: the functions s(X; a) = sort(aTX) from Lemma C.4,
and the function q(x; b) =

∑
iReLU(xi − b) Note that indeed f(X; a, b) = (q ◦ s)(a, b). Since

we already know that s is lower Lipschitz in expectation, it is sufficient to show that q is (p+ 1)/p
lower-Hölder in expectation, due to the theorem on composition B.3.

Let us denote B̂ = max{∥x∥| x ∈ Ω}. By assumption B̂ < B.

Note that the domain of q is contained in

Ω[−B,B] = {x ∈ Rn| −B ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ B}.
Since the 2-norm and ∞-norm are equivalent on Rn C.1, to address the case of balanced multisets it
is sufficient to prove

Lemma C.5. Let p > 0, B > 0 and n be a natural number. Let qb(x) = q(x; b) be the function
described previously, defined on the domain

Ω[A,B] = x ∈ Rn| A ≤ x1 ≤ . . . ≤ xn ≤ B

There is a constant
Cn,p =

1

8n(B4−A)p

such that for all x, y ∈ Ω[A,B],

Eb∼[A,B]|qb(x)− qb(y)|p ≥ Cn,p∥x− y∥p+1
∞ .

Proof. Let x ̸= y be a pair in Ω[A,B]. Let s be an index for which |ys − xs| = ∥y − x∥∞. without
loss of generality assume that ys > xs. For every b ∈ R we denote ∆(b) = qb(y)− qb(x). Let t be
the smallest integer such that xt ≥ ys. Note that t > s. We now have

∆(ys) =

n∑
j=1

[ReLU(yj − ys)− ReLU(xj − ys)] =
∑
j>s

(yj − ys)−
∑
j≥t

(xj − ys)

=
∑
s<k<t

(yk − ys) +
∑
j≥t

(yj − xj)

Now

∆(xs) =
∑
i<s

ReLU(yi − xs) + (ys − xs) +
∑
j>s

[(yj − xs)− (xj − xs)]

≥ (ys − xs) +
∑
j>s

(yj − xj)

= (ys − xs) +
∑
s<k<t

(yk − ys) +
∑
s<k<t

(ys − xk) +
∑
j≥t

(yj − xj)

≥ (ys − xs) +
∑
s<k<t

(yk − ys) +
∑
j≥t

(yj − xj)

= (ys − xs) + ∆(ys)

We deduce that ∆(xs) − ∆(ys) ≥ ys − xs, and therefore at least one of |∆(xs)| and |∆(ys)| is
larger than ys−xs

2 , so we found some b0 for which |∆(b0)| ≥ ys−xs

2 . Next, we note that since ∆ is a
sum of 2n ReLU functions which are all 1-Lipschitz, ∆ is (2n) Lipschitz. Therefore if b is such that
|b− b0| ≤ δ := 1

8n (ys − xs) then

||∆(b)| − |∆(b0)|| ≤ |∆(b)−∆(b0)| ≤ 2nδ =
ys − xs

4

implying that |∆(b)| ≥ ys−xs

4 . Thus

Eb|qb(y)− qb(x)|p = Eb|∆(b)|p ≥ µ{b||b− b0| < δ} ·
[
ys − xs

4

]p
≥ δ

(B −A)4p
|ys − xs|p

=
1

8n(B −A)4p
|ys − xs|p+1 =

1

8n(B −A)4p
∥y − x∥p+1

∞

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Now let us consider the case of unbalanced multisets Y, Y ′ in S≤n(Ω). Our goal will be to show that
the distance between all unbalanced multisets is uniformly bounded from below away from zero.

For fixed a ∈ Sd−1 denote y = a · Y and y′ = a · Y ′. Denote x = ρ(−B)(y), that is, x is the
multiset obtained from adding elements with value −B to y until it has Y elements. Similarly, denote
x′ = ρ(−B)(y

′). Note that since y and y′ don’t have the same number of elements, and all entries of
y are in [−B′, B′], we have that

∥x− x′∥∞ ≥ B −B′.

For all b ∈ [−B,B] we have that ReLU(−B − b) = 0, and therefore, according to Lemma C.5, we
have

Eb|mReLU (Y ; a, b)−mReLU (Y
′; a, b)|p = Eb|qb(y)− qb(y

′)|p

= Eb|qb(x)− qb(x
′)|p ≥ Cn,p∥x− x′∥p+1

∞ ≥ Cn,p(B −B′)p+1

We deduce that

Ea,b|mReLU (Y ; a, b)−mReLU (Y
′; a, b)|p ≥ Cpn,p(B −B′)p

= Cpn,p(B −B′)p
(
W z

1 (Y, Y
′)

W z
1 (Y, Y

′)

)p+1

≥ C (W z
1 (Y, Y

′))
p+1

For an appropriate constant C, where we use the fact that W z
1 is bounded from above. We have

obtained a (p+ 1)/p lower Hölder bound for both balanced and unbalanced multisets, and so we are
done.

Adaptive ReLU
Theorem 3.2. For (n, d, p,Ω, z) satisfying our standing assumptions, assume that a ∼ Sd−1 and
t ∼ [0, 1]. Then the function madapt

ReLU : S≤n(Ω) × Sd−1 × [0, 1] → R4 is uniformly Lipschitz and
p+1
p lower-Hölder in expectation. Moreover, when n ≥ 4, the function madapt

ReLU is not α lower-Hölder
in expectation for any α < p+1

p .

Proof. To prove this theorem, we first recall the definition of madapt
ReLU

m = min{a · x1, . . . , a · xr}, M = max{a · x1, . . . , a · xr}, b = (1− t)m+ tM

madapt
ReLU(X; a, t) = [r,m,M,

1

r

r∑
i=1

ReLU(a · xi − b)]

To begin with, we note that the case of unbalanced multisets is easy to deal with. There exists
constants 0 < c = 1 < C such that, for every pair of unbalanced multisets Y, Y ′, and every choice of
parameters a, t,

1 ≤ ∥madapt
ReLU(X; a, t)−madapt

ReLU(X; a, t)∥p ≤ C

The lower bound follows from the fact that the first coordinate of madapt
ReLU is the cardinality of the sets.

The upper bound follows from compactness. Similarly, the augmented Wasserstein distance between
all unbalanced multisets in S≤n(Ω) is uniformly bounded from above and below. This can be used
to obtain both uniform upper Lispchitz bounds, and lower Hölder bounds, as discussed in previous
proofs.

Thus, it is sufficient to prove uniform upper Lispchitz bounds, and lower Hölder bounds in expectation,
for balanced multisets. Without loss of generality we can assume the balanced multisets both have
maximal cardinality n. So we need to prove the claim on the space S=n(Ω).

We can write madapt
ReLU, restricted to S=n(Ω), as a composition

madapt
ReLU(X; a, t) = Q ◦ s(X; a.t)

where s(X; a) = sort(aTX), which is the uniformly upper Lipschitz, and lower Lipschitz in
expectation function defined in Lemma C.4, and Q(x; t) is defined via

m = min{x1, . . . , xn}, M = max{x1, . . . , xn}, b = (1− t)m+ tM

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

and

Q(x; t) = [n,m,M,
1

n

n∑
i=1

ReLU(xi − b)]

As s is is uniformly upper Lipschitz, and lower Lipschitz in expectation, it is sufficient to show that
Q is upper Lipchitz, and lower Hölder in expectation.

We note that since Ω is bounded, there exists some B > 0 such that ∥x∥ ≤ B, ∀x ∈ Ω, and for this
B we have that the image of s is contained in

Ω[−B,B] = {x ∈ Rn| −B ≤ x1 ≤ . . . ≤ xn ≤ B}

We can therefore think of Ω[−B,B] as the domain of Q.

We begin with the upper Lipschitz bound. Let x, y be vectors in Ω[−B,B], which we identify with
multisets with n elements in R. Denote the maximum and minimum of x by Mx and mx. Define the
maximum and minimum of y by My and my . Denote

ϕ(s, t,m,M) = ReLU(s− [(1− t)m+ tM])

Then for all t ∈ [0, 1].

||Q(X; t)−Q(Y ; t)||p ≤ C · ||Q(X; t)−Q(Y ; t)||1

= C · (|mx −my|+ |Mx −My|+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|)

≤ C · (|mx −my|+ |Mx −My|+
1

n

n∑
i=1

|xi − yi + t(Mx −Mx) + (1− t)(mx −my)|)

≤ C · (|mx −my|+ |Mx −My|+
1

n

n∑
i=1

(|xi − yi|+ |(Mx −My)|+ |(mx −my))|)

≤ C · (||x− y||∞ + ||x− y||∞ +
1

n

n∑
i=1

3 · ||x− y||∞)

= 5C · ||x− y||∞ ≤ 5CC ′ · ||x− y||p

Where C,C ′ are the constants obtained from norm equivalence over Rn.

To obtain a Hölder lower bound, the idea of the proof is that for given balanced multisets x, y ∈ Rn,
we know from the analysis of mReLU that we can get a lower-Hölder bound when considering biases
going between

mx,y = min{mx,my} and Mx,y = max{Mx,My}

and then showing that the difference between this case and the function Q where the bias range
depends on the maximum and minimum of the individual multisets x, y, is proportional to the
different between the minimum and maximum of x and y, which also appear in Q. Indeed, since
ReLU is Lipschitz we have for every s,m,M, m̂, M̂ in R and t ∈ [0, 1] that

|ϕ(s, t,m,M)− ϕ(s, t, m̂, M̂)| ≤ | − t(M − M̂)− (1− t)(m− m̂)| (6)

≤ t|M − M̂ |+ (1− t)|m− m̂| ≤ |M − M̂ |+ |m− m̂|

Next, to bound ∥Q(x; t)−Q(y; t)∥p, due to equivalence of norms, it is sufficient to bound ∥Q(x; t)−
Q(y; t)∥1. We obtain

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

∥Q(x; t)−Q(y; t)∥1 =|mx −my|+ |Mx −My|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

= |mx −mxy|+ |Mx −Mxy|+ |mxy −my|+ |Mxy −My|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

(6)
≥ 1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(xi, t,mx,Mx)|

+
1

n
|
n∑
i=1

ϕ(yi, t,my,My)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)|

+
1

n
|
n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

triangle ineq.
≥ 1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(xi, t,mx,Mx)

+

n∑
i=1

ϕ(yi, t,my,My)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)

+

n∑
i=1

ϕ(xi, t,mx,Mx)−
n∑
i=1

ϕ(yi, t,my,My)|

=
1

n
|
n∑
i=1

ϕ(xi, t,mxy,Mxy)−
n∑
i=1

ϕ(yi, t,mxy,Mxy)|

= |q(x; (1− t)mxy + tMxy)− q(y; (1− t)mxy + tMxy)|
By Lemma C.5, we deduce that

Et∼[0,1]∥Q(x; t)−Q(y; t)∥p1 ≥ Eb∼[mxy,Mxy]|q(x; b)− q(y; b)|p

≥ 1

8n4p(Mxy −mxy)
∥y − x∥p+1

∞ ≥ 1

16nB4p
∥y − x∥p+1

∞

by invoking the equivalence of the infinity norm and p norm we are done.

Finally, we will show that, when n ≥ 4, adaptive ReLU cannot be α-Hölder for any α > (p+ 1)/p.
This argument is essentially a reduction to our argument in the standard ReLU summation case. For
simplicity of notation we prove this for the case where d = 1. Extending the argument to the d ≥ 1
case is straightforward.

For any ϵ > 0, consider the sets

X = {{0, 0, 1,−1}}, Xϵ = {{ϵ,−ϵ, 1,−1}}.
and note that

W1(X,Xϵ) = 2ϵ.

Next, we note that for all a in the zero dimensional unit circle {−1, 1} we have that a · X =
X, a ·Xϵ = Xϵ, and moreover, that X and Xϵ have the same number of elements. Therefore

Ea,t∥madapt
ReLU(Xϵ; a, t)−madapt

ReLU(X; a, t)∥p =
1

4
Eb∼[−1,1]|ReLU(−ϵ−b)+ReLU(ϵ−b)−2ReLU(−b)|.

Next, we note, as in previous arguments, that

|ReLU(−ϵ− b) + ReLU(ϵ− b)− 2ReLU(−b)|p = 0, ∀b ̸∈ [−ϵ, ϵ]
|ReLU(−ϵ− b) + ReLU(ϵ− b)− 2ReLU(−b)|p < (2ϵ)p, ∀b ∈ R

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Thus, if b is in [−ϵ, ϵ], which occurs with probability ϵ, the expression above will be at most (2ϵ)p,
and otherwise it will be zero. The expectation of this expression over b is thus bounded by 2pϵp+1.
Piecing all this together, we obtain for all β < (p+ 1)/p

Ea,t

[
∥madapt

ReLU(Xϵ; a, t)−madapt
ReLU(X; a, t)∥p

W β
1 (X,Xϵ)

]p
≤ 1

4p
2pϵp+1

2p·βϵp·β
= 2p(1−2−β)ϵp(

p+1
p −β) ϵ→0→ 0.

This shows that madapt
ReLU is not β lower-Hölder in expectation.

Remark C.6. The last part of the proof above can be used to derive adversarial examples on which
adaptive-ReLU will have bad distortion: namely,

X = {{0, 0, 1,−1}}, Xϵ = {{ϵ,−ϵ, 1,−1}}.
On these examples, adaptive-ReLU and ReLU summation will both encounter high distortion. In
contrast, the examples discussed in the main text, like

Y = {{0, 0}}, Yϵ = {{ϵ,−ϵ}}

one can verify directly that the expectation of |madapt
ReLU(Y

′, a, t)−madapt
ReLU(Y, a, t)|p scales linearly in

ϵp. This is because the bias for these examples naturally is in the range [−ϵ, ϵ] where ’it can make a
difference’, while in the X,Xϵ example, the bias is chosen from all of [−1, 1] and its probability to
land in the domain [−ϵ, ϵ] where ’it can make a difference’ scales like ϵ.

We believe this gives a good intuition for the reason why adaptive-ReLU is successful on many of
the adversarial examples illustrated in the text, and also suggests how they can be changed so that
adaptive ReLU will fail: we simply need to take these examples and add to all multisets considered
a large positive and a large negative element. An example of this idea is shown in Figure 7, where
adaptive-ReLU is initially successful in a classification task based on adversarial examples (subplot
(a)), but fails completely once a large positive and negative element are added (subplot (b)).

D LIPSCHITZ COMBINE OPERATIONS

In this section we describe how to construct COMBINE functions which are both uniformly Lipschitz,
and lower-Lipschitz in expectation. The input to these functions are a pair of vectors x1, y1 with the
metric ∥x1∥p + ∥y1∥p. The output will be a vector (or scalar), and the metric on the output space
will again be the p norm.

Our analysis covers four 2-tuple embeddings, all of which are uniformly upper Lipschitz, and lower
Lipschitz in expectation.
Theorem D.1. Let p > 0, the following 2-tuple embeddings are all bi-Lipschitz in expectation with
respect to lp and the 2-tuple metric previously defined.

1. Linear combination: Given a 2-tuple (x, y) ∈ Rd × Rd and α ∼ U [−D,D] we define

f(x, y;α) = α · x+ y

2. Linear transform and sum: Given a 2-tuple (x, y) ∈ Rk × Rl, and A ∈ Rl×k, whose rows
are independently and uniformly sampled from Sk−1, we define

f(x, y;A) = Ax+ y

3. Concatenation: This embedding concatenates the tuple entries, and has no parameters

f(x, y) =

[
x
y

]
4. Concat and project: Given (x, y) ∈ Rk × Rl and θ ∼ Sk+l−1

f(x, y; θ) = θ ·
[
x
y

]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 4: Distortion of the 2-tuple embeddings as a function of input and embedding dimension.
LC=linear combination, LTSum=linear transform and sum, CP=concat project, C=concatenation.

We note that the last method, concat and project, is the method used in the definition of SortMPNN in
the main text. We also note that the first method, linear combination, is the method used in (Xu et al.,
2019). Unlike the other methods, it requires the vectors x, y to be of the same dimension.

In order to compare the proposed COMBINE functions which all share the bi-Lipschitz in expectation
property, one could further explore separation quality by comparing the distortion defined by M

m
where M (m) is the upper (lower) Lipschitz in expectation bound. A lower distortion would indicate
that the function doesn’t change the input metric as much (possibly up to multiplication by some
constant), resulting in high quality separation.

In figure 4, we plot the empirical distortion of the different COMBINE functions with varying input
and embedding dimensions. The embedding dimension is controlled by stacking multiple instances
of the functions with independent parameters. Note that concatenation isn’t parametric and therefore
we only have a single output dimension for it.

The experiment is run on 1, 000 different random tuple pairs {(x, y), (z, w)} for each of the four
input dimensions experimented with, where x, y, z, w ∈ Rin_dim. All random data vectors are sampled
with entries drawn from the normal distribution. The empirical distortion is then computed by taking
the largest empirical ratio M between the input and output distances and dividing it by the smallest
ratio m between the input and output distances.

As we see in the figure, all proposed functions stabilize around a constant value as the embedding
dimension increases. This value is the expected distortion on the experiment data. We can see that
concat and project maintains low expected distortion across all settings, while linear combination
has a higher expected distortion but not by much. Linear transform and sum seems to have higher
expected distortion for lower input dimensions, but it improves with large input dimensions, matching
concat and project distortion.

Another interesting result is that we can see that concat and project seems to have the highest variance
of the three for most input dimensions, since the empirical distortion for low embedding dimensions
is higher than other functions in most cases.

Proof of Theorem D.1.

Linear combination: Let x, z ∈ Rk, y, w ∈ Rl We begin by proving that f is lower Lipschitz in
expectation.

Eα∼U [−D,D][||f(x, y;α)− f(z, w;α)||pp] = Eα∼U [−D,D][||(α · x+ y)− (α · w + z)||pp]

= Eα∼U [−D,D][||α · (x− z) + (y − w)||pp]
From norm equivalence C.1, ∃c1 s.t.

≥ c1 · Eα∼U [−D,D][||α · (x− z) + (y − w)||p1]
Jensen’s ineq.

≥ c1 · Eα∼U [−D,D][||α · (x− z) + (y − w)||1]p

= c1 · Eα∼U [−D,D][||α · (x− z)||1 + ||(y − w)||1]p

From norm equivalence C.1, ∃c2 s.t.

≥ c1 · c2 · (Eα∼U [−D,D][|α|] · ||(x− z)||p + ||(y − w)||p)p

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

= c1 · c2 · (
D

2
· ||(x− z)||p + ||(y − w)||p)p

≥ c1 · c2 ·min(1,
D

2

p

) · (||(x− z)||p + ||(y − w)||p)p

For uniform upper Lipschitz bounds we have

||f(x, y;α)− f(z, w;α)||p = ||(α · x+ y)− (α · w + z)||p
≤ ∥α · x− α · w∥p + ∥y − z∥p
≤ max(1, D)p · (||(x− z)||p + ||(y − w)||p)

Linear transform and sum: We prove lower-Lipschitzness in expectation. Let ai denote the i’th
row of A. Recall that for any 1 ≤ i ≤ l, ai is drawn uniformly from Sk−1. Let x, z ∈ Rk, y, w ∈ Rl

EA[||f(x, y;A)− f(z, w;A)||pp] = EA[||A(x− z) + (y − w)||pp]

= EA[
l∑
i=1

|ai · (x− z)|p +
l∑

j=1

|yj − wj |p] =
l∑
i=1

Eai∼Sk−1 [|ai · (x− z)|p] +
l∑

j=1

|yj − wj |p

From lemma C.3 ∃b > 0 s.t.

EA[||f(x, y;A)− f(z, w;A)||pp] ≥ n · b · ||x− z||pp + ||y − w||pp

Let us denote t =
[
||x− z||p
||y − w||p

]
∈ R2. Then

n · b · ||x− z||pp + ||y − w||pp ≥ min(1, n · b) · (||x− z||pp + ||y − w||pp) = min(1, n · b) · ||t||pp
From norm equivalence C.1, ∃c > 0

≥ min(1, n · b) · c · ||t||p1 = min(1, n · b) · c · (||x− z||p + ||y − w||p)p

Uniform upper Lipschitzness is straightforward to prove.

Concatenation: We show that this non-parametric function is bi-Lipschitz. Let x, z ∈ Rk, y, w ∈ Rl.

Denote as before t =
[
||x− z||p
||y − w||p

]
∈ R2. Then the distance difference in the output space is given

by ||f(x, y)− f(z, w)||pp = ∥t∥p, while the difference in the input space is given by

∥x− z∥p + ∥y − w∥p = ∥t∥1.

The claim follows from equivalence of p norm and 1 norm on R2 C.1.

Concat and project: The claim follows from the fact that the concatenation operation is bi-Lipschitz,
and Lemma C.3.

E TREE MOVER’S DISTANCE

In this appendix section we review the definition of the Tree Mover’s Distance (TMD) from (Chuang
& Jegelka, 2022), which is the way we measures distances between graphs in this paper.

We first review Wasserstein distances. Recall that if (X,D) is a metric space, Ω ⊆ X is a subset, and
z is some point in X with dist(z,Ω) > 0, then we can define the Wasserstein distance on the space
of multisets consisting of n elements in Ω via

W1({{x1, . . . , xn}}, {{y1, . . . , yn}}) = min
τ∈Sn

n∑
j=1

D(xj , yτ(j))

The augmentation map on multisets of size r ≤ n is defined as

ρ(z) ({{x1, . . . , xr}}) = {{x1, . . . , xr, xr+1 = z,xn = z}}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and the augmented distance on multisets of size up to n is defined via

W
(z)
D,1(X, X̂) =WD,1(ρ(z)X, ρ(z)X̂)

We now return to define the TMD. We consider the space of graphs G≤n(Ω), consisting of graphs
with ≤ n nodes, with node features coming from a compact domain Ω ⊆ Rd. We also fix some
z ∈ Rd \ Ω. The TMD is defined using the notion of computation trees:
Definition E.1. (Computation Trees). Given a graph G = (V,E) with node features {{xv}}v∈V , let
T

(0)
v be the rooted tree with a single node v, which is also the root of the tree, and node features xv.

For K ∈ N+ let T (K)
v be the depth-K computation tree of node v constructed by connecting the

neighbors of the leaf nodes of T (K−1)
v to the tree. Each node is assigned the same node feature it

had in the original graph G. The multiset of depth-K computation trees defined by G is denoted
by T (K)

G := {{T (K)
v }}v∈V . Additionally, for a tree Tr with root r, we denote by Tr the multiset of

subtrees that root at the descendants of r.
Definition E.2. (Blank Tree). A blank tree T̄z is a tree (graph) that contains a single node and no
edge, where the node feature is the blank vector z.

Recall that by assumption, all node features will come from the compact set Ω, and z ̸∈ Ω.

We can now define the tree distance:
Definition E.3. (Tree Distance).3 The distance between two trees Ta, Tb with features from Ω and
z ̸∈ Ω, is defined recursively as

TD(Ta, Tb) :=

{
∥xa − xb∥p +W

(T̄z)
TD,1(Ta, Tb) if K > 0

∥xa − xb∥p otherwise

where K denotes the maximal depth of the trees Ta and Tb.
Definition E.4. (Tree Mover’s Distance). Given two graphs, G,H and w,K ≥ 0, the tree mover’s
distance is defined as

TMD(K)(G,H) =W
(T̄z)
TD,1(T

(K)
G , T (K)

H)

where T (K)
G and T (K)

H denote the multiset of all depth K computational trees arising from the graphs
G and H , respectively. We refer the reader to (Chuang & Jegelka, 2022) where they prove this is a
pseudo-metric that fails to distinguish only graphs which cannot be separated by K iterations of the
WL test.

F MPNN HÖLDER PROOFS

In the main text we informally stated the following theorem
Theorem 4.1. (Uniformly Lipschitz MPNN embeddings, informal version) Let f : G≤n(Ω) → Rm
be an MPNN with K layers. If the functions used for the aggregation ϕ(k), combine ψ(k), and
readout η are all uniformly upper Lipschitz, then f is uniformly upper Lipschitz with respect to
TMD(K). In particular, ReluMPNN, SmoothMPNN, AdaptMPNN and SortMPNN are all uniformly
upper Lipschitz.

Before stating the formal theorem and proof, we will present an important lemma alongside some
assumptions and notation that will be used throughout this section.
Lemma F.1. Let Ω ⊆ Rd be a compact set and let f : G≤n(Ω) → Rm be a depth K MPNN such
that all the aggregation ϕ(k), combine ψ(k) and readout η are continuous. Let zk ̸∈ Ωk, where Ωk is
the set of all possible feature vectors after running k ≤ K message passing layers. Then, for any
G ∈ G≤n(Ω), v ∈ VG and for any p ≥ 1, there exist C ≥ c > 0 such that

C · TD(T (k)
v , T̄z) ≥ ||zk − x(k)v ||p ≥ c · TD(T (k)

v , T̄z)

3Note the difference from the original definition in (Chuang & Jegelka, 2022) is due to our choice to set the
depth weight to 1 and using the 1-Wasserstein which is equivalent to optimal transport

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proof. We begin by showing that Ωk is compact.

Since the number of nodes in graphs fromG≤n(Ω) is bounded, the set of all possible graph topologies,
i.e. pairs (V,E) with at most n nodes, is finite. Let (V,E) be such a fixed topology. For every k, the
function f (k)V,E ((xv)v∈Ω, θ) mapping features Ω and parameters θ to new parameter x(k)v is continuous
since the aggregation and combine functions are continuous. Accordingly the image f(k)V,E(Ω) is
compact, and therefore

Ωk =
⋃

(V,E),|V |≤n

f
(k)
V,E(Ω)

is compact as well.

Therefore:
a := inf

x∈Ωk

||x− zk||p > 0

d := sup
x∈Ωk

||x− zk||p <∞

Additionally, since Ω is compact and z ̸∈ Ω, we can show recursively, starting from k = 1, that for
all k ∈ {0 . . . ,K} and all trees T (k)

v ∈ T (k)
G≤n(Ω),

b := inf
T

(k)
v ∈T (k)

G≤n(Ω)

TD(T̄z, T
(k)
v) > 0

e := sup
T

(k)
v ∈T (k)

G≤n(Ω)

TD(T̄z, T
(k)
v) <∞

Where T (k)
G≤n(Ω) denotes the set of all possible height-k computation trees from G≤n(Ω). Therefore,

∀G ∈ G≤n(Ω), v ∈ VG:

d

b
· TD(T̄z, T

k
v) ≥ d · b

b
= d ≥ ||zk − x(k)v ||p ≥ a = a · e

e
≥ a

e
· TD(T̄z, T

k
v)

To conclude we define C := d
b , c :=

a
e .

Assumptions and notations As stated in the main text, we consider graphs with up to n nodes. We
will also make the disjointness assumption: We assume as previously that the initial features of the
graphs all reside in a compact set Ω = Ω0 ⊆ Rd. We denote by Ωk the space of all possible features
which can be obtained by the MPNN at question after k iteration, with any choice of parameters.
This set is also compact (see proof of F.1). The disjointness assumptions is that the ’augmentation
vector’ zk is not in Ωk, for all k = 0, 1, . . . ,K.

We define for k = 0, . . . ,K − 1

x(k)v,s =

{
x
(k)
s if (v, s) ∈ E
zk if otherwise

, and T (k)
v,s =

{
T

(k)
s if (v, s) ∈ E
T̄z if otherwise

For K we denote

x(K)
s =

{
x
(K)
s if s ∈ V
zK if otherwise

, and T (K)
s =

{
T

(K)
s if s ∈ V
T̄z if otherwise

We will also denote

x
(k)
v,• = [x

(k)
v,1, . . . , x

(k)
v,n] and x(K)

• = [x
(K)
1 , . . . , x(K)

n]

We can now state the full formal statement of the theorem:

Theorem F.2. (Uniformly Lipschitz MPNN embeddings, full version) Let p ≥ 1 and K ∈ N, Let
f : G≤n(Ω) → Rm be a continuous MPNN with K message passing layers. Under the above
assumptions F and given the following holds for all 1 ≤ k ≤ K:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1. The aggregation, ϕ(k), is uniformly upper Lipschitz w.r.t. the augmented Wasserstein distance
W

(zk)
1 on S≤n(Ωk).

2. The combine function ψ(k), is uniformly upper Lipschitz.

3. the readout function η, is uniformly upper Lipschitz w.r.t. the augmented Wasserstein
distance W

z(K+1)

1 on S≤n(ΩK+1)..

Then, there exist constants C1, C2 > 0 such that

1. The node embeddings after k message passing layers are uniformly upper Lipschitz w.r.t.
TD on their depth k computation trees

∥x(k)v − x(k)u ∥pp ≤ C1 · TDp(T (k)
v , T (k)

u)

2. The graph embeddings are uniformly upper Lipschitz w.r.t. TMD(K)

∥cglobal − ĉglobal∥pp ≤ C2 · TMD(K)(G, Ĝ)p

Proof. Since we are proving for uniformly Lipschitz, we will allow ourselves to omit the parameters
for ease of notation, as the proof holds for any set of parameters.

Proof of First Claim Let u, v ∈ G. The proof will be by induction on k. for k = 0, by definition

∥x(0)v − x(0)u ∥pp = TDp(T (0)
v , T (0)

u)

We now assume correctness for k − 1 and prove for k.

1. First, using the properties of ϕ(k) and the induction hypothesis we get:

∥ϕ(k)(N (k−1)
v)− ϕ(k)(N (k−1)

u)∥pp ≤ cϕW
p
1 (x

(k−1)
v,• , x

(k−1)
u,•)

C.2
≤ cϕ · c1W p

p (x
(k−1)
v,• , x

(k−1)
u,•) = cϕ · c1(min

τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥p)

p

C.1
≤ cϕ · c1 · c2(min

τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
p)

ind. hypothesis+F.1
≤ cϕ · c1 · c2 · c(k−1)

n∑
s=1

TDp(T (k−1)
v,s , T

(k−1)
u,τ∗(s))

C.1
≤ cϕ · c1 · c2 · c(k−1) · c3(

n∑
s=1

TD(T (k−1)
v,s , T

(k−1)
u,τ∗(s)))

p

= cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,•)

Where τ∗ := argminτ∈Sn

∑n
s=1 TD(T

(k−1)
v,s , T

(k−1)
u,τ(s)), c1, c2, c3 are the relevant constants

from the lemmas we used and c is the multiplication of all previous constants.

2. Next, we note that

TD(T (k−1)
v , T (k−1)

u) ≤ TD(T (k)
v , T (k)

u)

Since the depth k − 1 computation trees are subtrees of the depth k computation trees.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

3. Next, using the properties of ψ(k), the induction hypothesis and the above we get:

∥x(k)v − x(k)u ∥pp = ∥ψ(k)(x(k−1)
v , ϕ(k)(N (k−1)

v))− ψ(k)(x(k−1)
u , ϕ(k)(N (k−1)

u))∥pp
≤ cψ · (∥x(k−1)

v − x(k−1)
u ∥pp + ∥ϕ(k)(N (k−1)

v)− ϕ(k)(N (k−1)
u)∥pp)

ind. hypothesis
≤ cψ · (c(k−1)TD

p(T (k−1)
v , T (k−1)

u) + ∥ϕ(k)(N (k−1)
v)− ϕ(k)(N (k−1)

u)∥pp)
1
≤ cψ · (c(k−1)TD

p(T (k−1)
v , T (k−1)

u) + cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,•))

2
≤ cψ · (c(k−1)TD

p(T (k)
v , T (k)

u) + cW p
TD,1(T

(k−1)
v,• , T

(k−1)
u,•))

C.1
≤ cψ ·max(c(k−1), c) · c4(TD(T (k)

v , T (k)
u) +WTD,1(T

(k−1)
v,• , T

(k−1)
u,•))p

≤ cψ ·max(c(k−1), c1) · c4 · 2p · TDp(T (k)
v , T (k)

u)

Where c4 is the relevant constant from norm equivalence, concluding the proof of the first claim.

Proof of Second Claim Let us denote the final message passing features corresponding to the
nodes of G by x(K)

v , and the depth-K computation trees corresponding to each node of G by T (K)
v .

Similarly, we denote the features corresponding to the nodes of Ĝ by x̂(K)
v and the trees by T̂ (K)

v .
Then, using the properties of η and first part of the theorem we get

∥cglobal − ĉglobal∥pp = ∥η(x(K)
•)− η(x̂

(K)
•)∥pp

≤ cηW
p
1 (x

(K)
• , x̂

(K)
•)

C.2
≤ cη · c1W p

p (x
(K)
• , x̂

(K)
•) = cη · c1(min

τ∈Sn

n∑
s=1

∥x(K)
s − x̂

(K)
τ(s)∥

p
p)

(∗)
≤ cη · c1 · C ·

n∑
s=1

TDp(T (K)
s , T̂

(K)
τ∗(s))

C.1
≤ cη · c1 · C · c2 · (

n∑
s=1

TD(T (K)
s , T̂

(K)
τ∗(s)))

p

= cη · c1 · C · c2 · TMD(K)(G, Ĝ)p

Where (*) is the first claim and lemma F.1, c1, c2 are the relevant constants from norm equivalence
and τ∗ = argminτ∈Sn

∑n
s=1 TD(T

(K)
s , T̂

(K)
τ(s)), concluding the proof.

F.1 SORTMPNN

In the main text we stated the informal theorem

Theorem 4.3. (informal) For any given W ≥ 1,K ≥ 0, SortMPNN with width W and depth K is
lower Lipschitz in expectation with respect to TMD(K).

We next state the theorem formally and present the proof.

Our results in this section hold for any number of MPNN iterations K, and any choice of ’widths’
W1, . . . ,WK+1. For simplicity we prove this for the apriori hardest case, W1 = 1 = . . . =WK+1.
We will call this version of SortMPNN thin-SortMPNN.

Explicitly, thin-SortMPNN is defined by:

SortMPNN: For k = 1 . . . ,K

AGGREGATE: c(k)v = sort
(
a(k) · x(k−1)

v,•

)
COMBINE: x(k)v = d(k) · concat(x(k−1)

v , c(k)v)

Note that we omit the second inner product in the definition of Sz as it is superfluous: this inner-
product would be subsumed by the following inner product with d(k) in the COMBINE function.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

The READOUT function is given by

READOUT : cglobal = b(K+1) · sort
(
a(K+1) · x(K)

•

)
,

We will denote by θ(k) the concatenation of all network parameters up to the creation of the node
features x(k)v , where θ(0) is just an ’empty vector’. We denote all network parameters, including
those used by the readout function by θ(K+1). The distribution on each of the parameter vectors
a(k), b(k), d(k) is taken to be uniform on the unit sphere of the relevant dimension, as discussed in the
main text.

We will now state our theorem on lower Lipschitzness of thin-SortMPNN.
Theorem F.3. (lower Lipschitz SortMPNN, formal) Under the above assumptions F, and given
a(k), b(k) are distributed uniformly on the appropriate unit sphere, then for thin-SortMPNN with
depth K the following holds:

1. The node embeddings after k message passing layers are lower Lipschitz in expectation
w.r.t. TD on their depth k computation trees

Eϕ(k) [∥x(k)v − x(k)u ∥pp] ≥ c1 · TDp(T (k)
v , T (k)

u)

2. The graph embeddings are lower Lipschitz in expectation w.r.t. TMD(K)

Eϕ(K+1) [∥cglobal − ĉglobal∥pp] ≥ c2 · TMD(K)(G, Ĝ)p

For the proof of the theorem we will need the following simple but useful lemma
Lemma F.4. Let D,N be natural numbers and p > 1. Then there exists a positive δ = δ(D,N, p)
such that, for all N fixed vectors x1, . . . , xN in RD

P
{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥p,∀i = 1, . . . , N

}
≥ 1/2

Proof of Lemma F.4. Due to equivalence of norms C.1, it is sufficient to prove the claim when p = 2.

For every y ∈ SD−1 and δ > 0, denote

B(y, δ) = {a ∈ SD−1| |a · y| < δ}
We note that for any fixed positive δ and y, y′ ∈ SD−1, the probability of B(y, δ) and B(y′, δ) will
be the same, due to the rotation invariance of the uniform measure on SD−1, and the fact that if R is
a rotation taking y to y′, then

a ∈ B(y, δ) iff |a · y| < δ iff |Ra ·Ry| < δ iff Ra ∈ B(y′, δ)

We can therefore denote the probability of B(y, δ) by pδ , and this definition does not depend on the
choice of y. Next, note that pδ is a non-negative seuence converging monotonely to 0 as δ → 0.
Accordingly,we can choose some δ0 such that pδ < 1

2N .

Now, assume we are given N fixed points in RD. Without loss of generality we can assume the first
M points are non-zero, and the last N −M points are zero. We then have

P
{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥2,∀i = 1, . . . , N

}
= P

{
a ∈ SD−1| |a · xi| ≥ δ∥xi∥2,∀i = 1, . . . ,M

}
= P

{
a ∈ SD−1| |a · xi

∥xi∥2
| ≥ δ, ∀i = 1, . . . ,M

}
= 1− P

(
∪Mi=1B(

xi
∥xi∥2

, δ0)

)
≥ 1−

M∑
i=1

P
(
B(

xi
∥xi∥2

, δ0)

)
≥ 1− M

2N

≥ 1− N

2N
=

1

2
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Using the lemma, we can now prove the theorem:

Proof of Theorem F.3. In general, to show that a function f : X ×W → Y is lower-Lipschitz in
expectation, it suffices to show that there exist δ, ϵ > 0 such that for all x1, x2 ∈ X , the probability of
the set {w ∈W : |f(x1,w)−f(x2,w)|

dX(x1,x2)
> ϵ} is larger than δ. We will use this alternative requirement

in the proof of both parts of the theorem.

Proof of First Claim For ease of notation, we will use W throughout this proof to denote W T̄z

TD,1,

and W p(·, ·) =W T̄z

TD,1(·, ·)p.

We prove the claim be induction on k. For k = 0 we have equality

∥x(0)v − x(0)u ∥p = TDp(T 0
v , T

0
u)

We now assume correctness for k − 1 and prove for k. Now note that

1. With probability of at least pk−1 on θ(k−1), we know that for all nodes u, v

∥x(k−1)
v − x(k−1)

u ∥p ≥ ckTD
p(T (k−1)

v , T (k−1)
u)

2. Once θ(k−1) is fixed, and all features x(k−1)
v are determined, we can use Lemma F.4 to show

that with an appropriate δ > 0 and probability of at least 1/2 on a(k),

|a(k) · (x− y)| ≥ δ∥x− y∥

for all x, y in the set {x(k)v }v∈V ∪ {zk}. It follows that, with probability 1/2pk−1 on
(a(k), θ(k−1))

∥c(k)v − c(k)u ∥pp = ∥sort
(
a(k) · x(k−1)

v,•

)
− sort

(
a(k) · x(k−1)

u,•

)
∥pp

= min
τ∈Sn

n∑
s=1

|a(k) · (x(k−1)
v,s − x

(k−1)
u,τ(s))|

p

≥ min
τ∈Sn

n∑
s=1

δp∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
2

≥ δpCp1 min
τ∈Sn

n∑
s=1

∥x(k−1)
v,s − x

(k−1)
u,τ(s)∥

p
p

(∗)
≥ δpCp1 c̃k min

τ∈Sn

TDp(T (k−1)
v,s , T

(k−1)
u,τ(s))

≥ δpCp1 c̃kC2

[
min
τ∈Sn

TD(T (k−1)
v,s , T

(k−1)
u,τ(s))

]p
= ck,1W

p(T (k−1)
v , T (k−1)

u)

where in the last equation we used ck,1 to denote the product of all constants appearing
previously. (*) is the induction hypothesis and lemma F.1.

3. Once (a(k), θ(k−1)) are determined, we know that c(k)v and x(k−1)
v are determined. Thus,

for an appropriate positive δ′, we know that with probability of at least 1/2 on d(k), and thus

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

with probability of at least pk := pk−1/4 on θ(k) = (d(k), a(k), θ(k−1)), we have

|x(k)v − x(k)u |p = |d(k) · concat(x(k−1)
v − x(k−1)

u , c(k)v − c(k)u)|p

≥ (δ′)p∥concat(x(k−1)
v − x(k−1)

u , c(k)v − c(k)u)∥pp
≥ (δ′)p

(
∥x(k−1)

v − x(k−1)
u ∥pp + ∥c(k)v − c(k)u ∥pp

)
≥ (δ′)pck−1TD

p(T (k−1)
v , T (k−1)

u) + (δ′)pck,1W
p(T (k−1)

v , T (k−1)
u)

≥ (δ′)pmin{ck−1, ck,1}∥x(0)v − x(0)u ∥pp +W p(T (k−1)
v , T (k−1)

u)

(∗)
≥ C(δ′)pmin{ck−1, ck,1}

(
∥x(0)v − x(0)u ∥p +W (T (k−1)

v , T (k−1)
u)

)p
= ckTD

p(T (k)
v , T (k)

u)

where in the last equation we used ck to denote all constants incurred up to this step. In
the inequality (*) we used equivalence of norms in euclidean space, with an appropriate
constant C.

This concludes the proof of the first part of the theorem.

Proof of Second Claim Let us denote the final message passing features corresponding to the
nodes of G by x(K)

v , and the depth-K computation trees corresponding to each node of G by T (K)
v .

Similarly, we denote the features corresponding to the nodes of Ĝ by x̂(K)
v and the trees by T̂ (K)

v . By
applying the first part of the theorem (to the disjoint union of the graphs G and Ĝ), we know that
with probablity of at least pK on the parameters θK , we have that

|x(K)
v − x̂(K)

u |p ≥ ckTD
p(T (K)

v , T̂ (K)
u)

Once θK is fixed, all node features x(K)
v and x̂(K)

u are determined. By Lemma F.4, we have for an
appropriate δ > 0 that, with probablity of at least 1/2 on a(K+1),

|a(K+1) · (x(K)
v − x̂(K)

u)| ≥ δ∥x(K)
v − x̂(K)

u ∥2, ∀u, v ∈ [n].

It follows that for an appropriate δ′, with probability of at least pk/4 on θK+1 =
(b(K+1), a(K+1), θK)

|cglobal − ĉglobal|p = |b(K−1) · [sort
(
a(K+1) · x(K)

•

)
− sort

(
a(K+1) · x̂(K)

•

)
]|p

≥ δ′p∥sort
(
a(K+1) · x(K)

•

)
− sort

(
a(K+1) · x̂(K)

•

)
∥pp

= δ′p min
τ∈Sn

n∑
v=1

|a(K+1) · x(K)
v − a(K+1) · x̂(K)

τ(v)|
p

≥ (δ · δ′)p min
τ∈Sn

n∑
v=1

∥x(K)
v − x

(K)
τ(u)∥

p
p

(∗)
≥ (C · δ · δ′)p

(
min
τ∈Sn

n∑
v=1

∥x(K)
v − x

(K)
τ(u)∥p

)p
≥ (C · δ · δ′)pTMD(K)(G, Ĝ)

where for (∗) we used equivalence of norms in Euclidean spaces, and the last inequality uses the first
claim and lemma F.1.

F.2 MPNN WITH LOWER-HÖLDER COMPONENTS ISN’T NECESSARILY LOWER-HÖLDER

Consider the following setting: we consider graphs in G≤n(Ω) where Ω = [−2, 2] ⊆ R. Assume
we have an MPNN f with two layers, where the aggregation functions are the one dimensional

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

functions q : (x1, . . . , xn) 7→
∑n
i=1 ReLU(xi − b) where b ∼ [−3, 3]. We showed this type of

multiset aggregation is Lower-Hölder in expectation C.4. We claim that with these one-dimensional
aggregations and for any COMBINE function, there are graphs G1, G2 ∈ G≤n(Ω) which can be
separated by two iterations of 1-WL, but cannot be separated by two of our MPNN iterations, for any
choice of network parameters. An illustration of these graphs is given in Figure 5. The parameter ϵ
can be taken to be any fixed number in (0, 1/2). As can be seen, the depth-2 computation trees of the
nodes at level 2 (children of the root, filled in red) differ between the graphs. Therefore, the 1-WL
test will succeed in determining the graphs are non-isomorphic after two iterations.

We now explain why the aforementioned MPNN won’t succeed in separating the graphs in two
iterations. In our analysis, we use the names of the nodes defined in the figure: a1, . . . , e1 for the
nodes of G1 and a2, . . . , e2 for the nodes of G2. We denote that feature vector at (e.g.,) a1 after the
k-th iteration by a(k)1 .

The core reason for the failure of two iterations of the MPNN to separateG1, G2 is that, depending on
the value of b, the first aggregation will not be able to simultaneously separate the multisets {{−ϵ, ϵ}}
and {{0, 0}} and the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}. In general, we can consider three options,
depending on the value of b:

1. b ∈ [−3,−ϵ]∪ [ϵ, 1−ϵ]∪ [1+ϵ, 3]: In this case, the aggregation won’t separate the multisets
{{−ϵ, ϵ}} and {{0, 0}}, and it also won’t separate the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}.
In this case, after the first message passing layer, we will get equality between the corre-
sponding features of nodes a(1)1 = a

(1)
2 = c

(1)
1 = c

(1)
2 , b

(1)
1 = b

(1)
2 = d

(1)
1 = d

(1)
2 . This

means the multisets {{a(1)1 , b
(1)
1 }} and {{a(1)2 , b

(1)
2 }} will be equal, and so will the multisets

{{c(1)1 , d
(1)
1 }} and {{c(1)2 , d

(1)
2 }}. Therefore, the second message passing iteration will result in

the equality between the corresponding features of nodes e(2)1 = e
(2)
2 , f

(2)
1 = f

(2)
2 , and the

graphs won’t be separated.

2. b ∈ (−ϵ, ϵ): In this case the aggregation can separate the multisets {{−ϵ, ϵ}} and {{0, 0}}, but
not the multisets {{1− ϵ, 1 + ϵ}} and {{1, 1}}.
In this case, after a single message passing layer, we will get equality between features of
the nodes a(1)1 = a

(1)
2 , c

(1)
1 = c

(1)
2 , d

(1)
1 = b

(1)
2 = b

(1)
1 = d

(1)
2 .

This means the multisets {{a(1)1 , b
(1)
1 }} and {{a(1)2 , b

(1)
2 }} will be equal, and so will the mul-

tisets {{c(1)1 , d
(1)
1 }} and {{c(1)2 , d

(1)
2 }}. Therefore, the second message passing iteration will

result in the equality between the corresponding features of nodes e(2)1 = f
(2)
2 , f

(2)
1 = e

(2)
2 ,

and the graphs won’t be separated.

3. b ∈ (1 − ϵ, 1 + ϵ): In this case the aggregation can separate the multisets {{1 − ϵ, 1 + ϵ}}
and {{1, 1}}, but not the multisets {{−ϵ, ϵ}} and {{0, 0}}.
This will lead to a similar result as the previous case, just with a slight change to the
equivalence classes of the nodes.

Overall, we have shown that the proposed MPNN, which is composed of lower-Hölder in expectation
components, fails to separate the above graphs for any choice of parameters. Therefore, it cannot be
lower-Hölder in expectation w.r.t. TMD(2).

We note that the graphs can be separated by a similar ReLUMPNN which is wider, or has additional
message passing layers. Our point here is just that there exists an MPNN with K message passing
layers, composed of lower-Hölder in expectation components, which isn’t lower Hölder in expectation
w.r.t. TMDK .

F.3 RELUMPNN AND SMOOTHMPNN

In the main text of the paper we stated the following informal theorem

Theorem 4.2. Assume that ReluMPNN with depth K is α lower-Hölder in expectation with respect
to TMD(K), then α ≥ 1 + K+1

p . If SmoothMPNN with depth K is α lower-Hölder in expectation
then α ≥ 2K+1.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 5: A pair of labeled graphs G1 (top) and G2 (bottom) used to prove that MPNNs with Hölder
building blocks aren’t necessarily Hölder

We note that the distribution on the parameters taken in this theorem is the same as described
throughout the text. The aggregation used for both MPNNs at hand is of the form

{{x1, . . . , xs}} 7→
s∑
i=1

ρ(a · xi − b)

where a and b are drawn uniformly from the unit sphere and some interval [−B,B] respectively. Of
course, in ReluMPNN ρ = ReLU while with smoothMPNN ρ is a smooth function. The parameters
of the linear COMBINE function are also selected uniformly in the unit sphere.

ϵ-Tree dataset The proof of the theorem is based on a family of adversarial example which we
denote by ϵ-trees. The recursive construction depends on two parameters: a real number ϵ, and an
integer T = 0, 1, This will give us a pair of trees (G, Ĝ) where G = G(T, ϵ), Ĝ = Ĝ(T, ϵ).

The recursive construction of ϵ trees is depicted in Figure 6. In the first step T = 0, we define ’trees’
a0, b0, c0, d0 which consist of a single node, with feature value of ϵ,−ϵ, 2ϵ and −2ϵ, respectively. We
connect a0, b0 via a new root with feature value 0 to create the tree G0 = G(T = 0, ϵ), as depicted in
the left hand side of Figure 6. We do the same thing with c0, d0 to obtain the tree Ĝ0 = Ĝ(T = 0, ϵ).

We now proceed recursively, again as shown in Figure 6. Assuming that for a given T we have
defined the trees aT , bT , cT , dT , GT , ĜT , we define the corresponding trees for T + 1 as shown in
the figure:

For example, aT+1 is constructed by joining together two copies of aT and two copies of bT
at a common root with feature value 0 as shown in the figure on the right hand side. From the
figure one can also infer the construction of bT+1, cT+1, dT+1 from aT , bT , cT , cT . Finally, the tree
GT+1 is constructed by joining together cT+1, dT+1 while ĜT+1 is constructed by joining together
aT+1, bT+1

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Proof of Theorem 4.2. Denoting an MPNN of depth T by fT (G,w), where w denotes the network’s
parameters, our goal is to provide bounds of the form

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p ≤ Cϵpβ (7)

where β depends on T and the activation used, and on the other had show that
TMDT (G(T, ϵ), Ĝ(T, ϵ)) scales linearly in ϵ. This will prove that the MPNN cannot be α-lower
Hölder with any α < β.

We can see that TMDT (G(T, ϵ), Ĝ(T, ϵ)) scales linearly in ϵ because the TMD is homogenous.
Namely, given any G = (V,E,X) and ϵ > 0, let ϵG = (V,E, ϵX). Then for any T we have

TMDT (ϵG, ϵĜ) = ϵ · TMDT (G, Ĝ).

We now turn to estimate the exponent β in (7), for smooth or ReLU activations, and different values
of T . To avoid cluttered notation we will explain what occurs for low values T = 0 and T = 1 in
detail, and outline the argument for larger T .

When T = 0, we apply an MPNN of depth T = 0 to the graphs G0, Ĝ0, which means that we
just apply a readout function to the initial features. This is exactly the ±ϵ example discussed in the
main text, and so (7) will hold with β = (p+ 1)/p with ReLU activations, and β = 2 with smooth
activations.

We now consider the case T = 1. Here we apply we an MPNN of depth T = 1 to the graphs G1, Ĝ1.
Let us denote the nodes of G1 by V1, using the natural correspondence defined by the figure (middle)
we can think of V1 as the nodes of Ĝ1 as well. We denote the node feature values at node v after a
single MPNN iteration by xv,w and x̂v,w, where w denotes the network parameters as before.

Note that for the root r we have that xr,w = x̂r,w for any choice of parameters w.

At initialization, all leaves of the treesG0, G1 are assigned one of the values ϵ,−ϵ, 2ϵ,−2ϵ (according
to the labeling a0, b0, c0 or d0). If two leaves are assigned the same value (both are denoted by, say,
a0), then they will have the same node feature after a single message passing iteration, since they are
only connected to their father, and all fathers have the same initial node feature.

We now consider the two remaining nodes. We denote the node connected to the root from the left by
v1 and the node connected to the root from the right by v2.

Let us first focus on the smooth activation case. We note that the children of v1 and v2, in both
graphs, have initial features of order ϵ, and the all sum to the same value zero. By considering the
Taylor approximation of the activation, as discussed in the proof of Theorem 3.3, we see that for an
appropriate constant C we have that for all small enough ϵ,

|cv,w − ĉu,w| ≤ Cϵ2, for all parameters w (8)

where v and u could either be v1 or v2, and we recall that cv,w is the output of the aggregation
function, applied to the initial features of the neighbors of v in G (and ĉu,w is defined analogously
for the neighbors of u in Ĝ).

Additionally, we note that for every parameter w we have that

cv1,w + cv2,w = 2 [ψw(ϵ) + ψw(−ϵ) + ψw(2ϵ) + ψw(−2ϵ)] = ĉv1,w + ĉv2,w (9)

where ψw denotes the neural network used for aggregation. The next step in the MPNN procedure is
the COMBINE step, after which we will have a bound of the form (9), namely

|xv,w − x̂u,w| ≤ Cϵ2, for all parameters w (10)

since the COMBINE functions we use are uniformly Lipschitz, and we will also have or every
parameter w we have that

xv1,w + xv2,w = x̂v1,w + x̂v2,w (11)
since our COMBINE function is linear.

Now, when applying the readout function, we have eleven node features in the multiset of nodes
of G1 and Ĝ1. For any parameter vector w, if we remove the nodes v1, v2, we get two identical
multisets. Therefore, we only need to bound the difference

∥ [ηw(xv1,w) + ηw(xv2,w)]− [ηw(x̂v1,w) + ηw(x̂v2,w] ∥

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 6: ϵ-tree dataset construction: The trees are built using basic elements at, bt, ct, dt. At step T ,
the basic elements are defined using subtrees from the previous step.

Since by (11) the features sum to the same value, and all are the same up to ϵ2, this difference
goes like ϵ4. This is what we wanted. For general T , we will be able to apply this same argument
recursively T + 1 times to get the lower bound of 2T+1 for the smooth exponent.

Now, let us consider what happens when we replace the smooth activation with ReLU activation.
In This case too, the only features which really matter are those corresponding to v1, v2. Recalling
our analysis of the ±ϵ for ReLU activations, we note that if the bias of the network falls outside the
interval [−2ϵ, 2ϵ], then all node features xv1,w, xv2,w, x̂v2,w, x̂v2,w will all be identical. If the bias
does fall in that interval, then the difference between these node features can be bounded from above
by Cϵ for an appropriate constant C. When applying readout, there is a probability of ∼ ϵ2 that the
final global features will be distinct (if the parameters of aggregation, and the parameters of readout,
are both well behaved). The difference in this case can again be bounded by Cϵ. It follows that

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p ≤ Cϵ2ϵp

which will lead to a lower bound on the Hölder constant α ≥ (1 + 2
p).

For general T , we will get that there is a probability of ∼ ϵT+1 to obtain any separation, and that, if
this separation occurs, the difference between features will be ≤ C · ϵ. As a result, the expectation

Ew∥fT (G(T, ϵ), w)− fT (Ĝ(T, ϵ), w)∥p

will scale like ϵT+1+p, which leads to our lower bound on the exponent for ReLU activations.

G EXPERIMENTS

G.1 HARDWARE

All experiments were executed on an a cluster of 8 nvidia A40 49GB GPUs.

G.2 ARCHITECTURE VARIATIONS

In this subsection we will lay out the architectural variations that were considered for SortMPNN
and AdaptMPNN, that were omitted from the main text for brevity. We include explanations of these
variations with the connection between them and the theoretical analysis.

SortMPNN First off, we must choose how to model of the blank vector, since SortMPNN uses the
blank vector explicitly in (2). We propose three options for the (blank method):

1. Learnable: For every multiset aggregation function there is a unique learnable blank vector
that is used for augmentation. Since we assume the node features are from a compact subset

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

of Rd, there exist valid augmentation vectors, and upon training we can expect the learnable
vector to converge to a valid augmentation vector. Note that this method assumes training
takes place.

2. Iterative update: In this method, the blank vector of each layer is the output of the previous
MPNN layers on the blank tree, where the blank tree node feature is set to zero. This
works under two assumptions: (1): The nodes in the dataset don’t have the feature zero.
(2): The intermediate layer outputs on computation trees from the data don’t clash with the
same layer output on the blank tree. This seems relatively reasonable since SortMPNN is
bi-Lipschitz in expectation, which in expectation should lead to injectivity.

3. Zero: simply using the zero vector as the blank vector. This works under the assumption
that the zero vector is neither a valid initial feature, nor a valid output of intermediate layers.
This is the weakest of the three, but was experimented with nonetheless.

Given a multiset X , we experimented with two variations for the aggregation implementation. Both
share step (1), but differ in step (2):

1. projection: X 7→ colsort(Aρ(z)(X)) := Y ∈ Rm×n, where A ∈ Rm×d.

2. collapse: In this step, we either perform (1) a matrix collapse: rowsum(B ⊙ Y) where ⊙
is the element-wise product and B ∈ Rm×n or (2) a vector collapse: Y b, for b ∈ Rn.

Note that when choosing to use the matrix collapse, under the assumption that the blank method pro-
vides a valid blank vector, this is equivalent to running m separate copies of Sz (2) with independent
parameters (at least upon initialization), just like we proposed in the main text. When using the vector
collapse, the aggregation takes the form of multiple instances of Sz except that that the parameter b
used in the inner product is shared across instances. Note the Hölder expectation doesn’t change in
this case, but the variance is likely higher. We explored this option since it reduces the number of
parameters needed for the aggregation, potentially easing the optimization process.

In addition, we experimented with adding bias to the projection, and to the vector collapse.

AdaptMPNN The main detail we left out from the main text is the fact that the output of madapt
ReLU is

in R4, whereas we would want it to be in R in order to be able to stack m instances and get an output
in Rd. In order to get the desired output dimension, we compose madapt

ReLU with a projection, and the
aggregation on a multiset X ∈ Rd×r as follows:

1. Stacked Adaptive ReLU:

Y :=

 m
adapt
ReLU(X; a1, t1)

...
madapt

ReLU(X; am, tm)

 ∈ Rm×4

2. Project: rowsum(B ⊙ Y) where ⊙ is the element-wise product and B ∈ Rm×4 has rows
that are drawn uniformly independently from S3.

As we proved previously C.3, an inner product with a vector drawn uniformly from Sd−1 is bi-Hölder
in expectation. From composition properties B.1, this means that the above stacking of multiple
independent instances of project ◦madapt

ReLU keeps the Hölder properties of madapt
ReLU.

In addition, we experimented with four optional changes to the aggregation:

1. Adding the sum
∑
a · xj a 5’th coordinate to the output of madapt

ReLU. The idea behind this
choice is that the sum is an informative feature which is encountered when using the standard
ReLU activations and bias smaller than the minimal feature in the multiset. For adaptive
ReLU, this summation will only occur when t = 0.

2. Note that the adaptive relu uses the parameter t ∈ [0, 1] to choose a bias within the minimal
and maximal multiset values. When training, we experimented with either clamping t to
[0, 1] or otherwise lifting this constraint.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

3. We experimented with adding a bias term to the projection step, since this can potentially
lead to stronger expressivity.

4. the initialization of t was optionally chosen to be linspace between [0, 1].

G.3 ADVERSARIAL MULTISET DATASET EXPERIMENTS

Figure 1 and figure 2 both made use of the adversarial multiset pairs which are constructed as is
described in detail in section C.2.

To produce figure 1, we ran mrelu,mσ on a single adversarial pair of multisets that have 8 scalar
elements, with 7 equal moments between the multisets, with ϵ = 0.1.

To produce figure 2, we used 200 adversarial pairs, each containing 16 scalar elements, where each
pair shares the first 15 moments. The pairs differ in the value of ϵ, where ϵ ∈ [0, 1]

To further strengthen the evidence of the importance of expected Hölder stability, we performed two
additional experiments, where the analyzed models were trained on adversarial datasets.

First, we trained the models on 4 different datasets created as described in C.2. The four datasets were
constructed such that each consists of 100 pairs of graphs with n− 1 shared moments, where n is one
of 1,3,7,15 per dataset. The 100 pairs are constructed by creating the pair from C.2, and multiplying
all the multiset elements by ϵ, where ϵ ∈ np.linspace(0.01, 0.1, 100). In each pair, the multiset that
started the iterative construction process with the values {{−1, 1}} was assigned the label 0, and the
other was assigned the label 1. Then, these 100 pairs were randomly split into train, validation and
test (0.8/0.1/0.1). The per model test set accuracy results as a function of number of equal moments
is presented in figure 7a. We see that the better the expected Hölder exponent (depicted for this type
of dataset in figure 2), the better the post-training accuracy.

Since the first experiment makes use of a dataset that doesn’t expose adaptive ReLU’s worst-case
behavior, we proceed to repeat the experiment, except that now make a slight change to the dataset
multisets: for each multiset from the previous experiment, we add to the multisets two more elements
with the values 2 and −2. This causes the adaptive capabilities of adaptive ReLU to become useless,
since the largest and smallest values in the multiset are far larger than the values needed to separate
the values that are proportional to ϵ. The results are depicted in figure 7b.

1 3 7 15
Equal Moments

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

(a) Datasets constructed based on the
multiset construction from subsection
C.2.

1 3 7 15Equal Moments
0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Sort
Adaptive
ReLU
Smooth

(b) Same datasets as 7a, with addi-
tional features {2,−2} targeting adap-
tive ReLU.

Figure 7: Test set accuracy for different configurations of datasets with equal moments.

G.4 ϵ-TREE DATASET

Distortion experiment The experiment depicted in 3 was run on a set of 1, 000 pairs of trees with
ϵ going from 0.05 to 0.4. The first 500 trees are of height h = 3 and were input to MPNNs of depth
d = 1, and the other 500 trees were of height h = 4 and were input to MPNNs of depth d = 2.
The plots in figure 3 were separated by MPNN depth in order for the phenomenon to be clearly
visible. We note that the feature of all non-leaf nodes which appear with 0 in figure 6, was set to

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

be 1. All the models in the experiment used linear combination as the combine function, had an
embedding dimension of 45, 000, except SortMPNN that used an embedding dimension of 2, 048 due
to resource constraints. The large width was used to show the behavior of the MPNNs as we approach
the expected value over the parameters. In order to plot the curve in each subplot, the minimal
ratio rmin = l2/TMDα was computed for each graph pair where α is the theoretical lower-Hölder
exponent. Then, rmin · xα was plotted. Note that rmin was only computed for half of the pairs with
the largest TMD values in order to avoid the case where the embedding distance is zero leading to
rmin = 0.

Throughout the experiment, double precision was used in order to capture the small differences as
needed. The measured embedding distance was taken over the output of the readout function, without
further processing.

Separation experiment For the trained graph separation experiment, 100 pairs of ϵ trees of height
h = 4 with ϵ ∈ [0.1, 1] were used. Trees corresponding to the first row in figure 6 were given the
label 0, and trees from the second row were given the label 1. The models were trained by inputting a
single pair as a batch per training iteration. All models were composed of 2 message passing layers,
followed by readout and a single linear layer to obtain a logit. All of {64, 128, 256, 512} were tested
for the embedding dimension with results consistent regardless of the embedding dimension. The
models were trained for 10 epochs using the adamw optimizer and a learning rate of 0.01.

In an attempt to see the difference in quality between ReluMPNN and SmoothMPNN on this dataset,
we reran the above, using the ’smallest’ tree hight in our adversarial construction (h = 3, d = 1),
and used a single message passing layer. However, even in this setting both ReluMPNN and
SmoothMPNN completely failed to achieve separation.

G.5 TUDATASET

Results on datasets that appear in table 3 for GIN, GCN, GraphSage are from (Xu et al., 2019),
except for GIN on NCI109 which is from (Chuang & Jegelka, 2022). The reported results in 3 for
the fully trained SortMPNN and AdaptMPNN were chosen out to be the best single result out of 30
random hyper-parameter choices from the following hyperparameters: batch size∈ {32, 64}, depth∈
[2− 5], embed dim∈ {16, 32, 64}, combine∈ {ConcatProject, LinearCombination, LTSum},
dropout∈ {0, 0.1, 0.2},output mlp depth ∈ {1, 2, 3}, weight decay ∈ {0, 0.01, 0.1}, lr∈
[0.0001, 0.01], optimizer ∈ [adam, adamw], #epochs= 500. In addition, for SortMPNN the blank
method was taken to be iterative update, and the collapse method was taken to be from {matrix,
vector} without bias begin used at any stage. For AdaptMPNN, adding the sum of the multiset was a
hyper-parameter, as was the choice if to clamp the parameter t to be in [0, 1]. The choice of the 30
random configurations was chosen with wandb (Biewald, 2020) sweeps.

As stated in the main text, results are reported as in (Xu et al., 2019). Namely, we report the mean
and standard deviation of the validation performance over stratified 10-folds, where the validation
curves of all 10 folds are aggregated, and the best epoch is chosen.

G.6 LRGB

In both experiments from table 4, the models adhere to the 500K parameter limit. The hyper-
parameters were tuned for a single seed, and then the configuration with the best validation results
was rerun for 4 different seeds. We report the mean and standard deviation on the test set in table
2. The code from the official LRGB github repo was used to run these experiments, with the only
change being the addition of our architectures. The reported results for other models are taken from
(Tönshoff et al., 2023).

Note that any theoretical result we presented that made use of a uniform distribution on the unit
sphere holds also for any t-normalized unit sphere, i.e. x|∥x∥ = t, where t ∈ R, where only the
multiplicative constants in the proofs will change. In this experiment, for SortMPNN we normalized
the parameters sampled from the unit sphere as follows: (1) the parameter a was sampled from a 1

d -
normalized sphere, (2) the parameter b was sampled from a 1

n -normalized sphere. This normalization
was chosen through hyper-parameter tuning on the validation set.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

peptides-func For SortMPNN, the following hyper-parameters were used to achieve the results
shown in the table 4: blank method - learnable, collapse method - vector, bias used both in projection
and collapse, combine - ConcatProject, embedding dimension - 165, message passing layers - 4,
final mlp layers - 3, dropout - 0.05, weight decay - 0.01, positional encoding - RWSE (Dwivedi
et al., 2022a), learning rate - 0.005, scheduler - cosine with warmup, optimizer - adamW. Number of
parameters: 494865.

For AdaptMPNN - the following hyper-parameters were used: the bias parameter t was clamped to
stay within [0, 1], the sum of a multiset was added as a 5’th coordinate, bias added in project, collapse
method - LinearCombination, embedding dimension - 220, message passing layers - 6, final mlp
layers - 3, dropout - 0.05,weight decay - 0.01, positional encoding - RWSE, learning rate - 0.001,
scheduler - cosine with warmup, optimizer - adamW. Number of parameters: 480915.

peptides-struct For SortMPNN: blank method - learnable, collapse method - vector, bias not used
both in projection or collapse, combine - LinearCombination, embedding dimension - 200, message
passing layers - 6, final mlp layers - 3, dropout - 0, weight decay - 0.01, positional encoding - LapPE
(Dwivedi & Bresson, 2021), learning rate - 0.005, scheduler - step, optimizer - adamW. Number of
parameters: 493858.

For AdaptMPNN:the bias parameter t was clamped to stay within [0, 1], the sum of a multiset was
added as a 5’th coordinate, bias added in project, collapse method - LinearCombination, embedding
dimension - 220, message passing layers - 6, final mlp layers - 3, dropout - 0,weight decay - 0.1,
positional encoding - LapPE, learning rate - 0.001, scheduler - step, optimizer - adamW. Number of
parameters: 480973.

small models Additional experiments run on peptides struct were performed by running models
with the exact same hyper-parameters aside from the width. Results are shown in figure 8. Exact
width and number of parameters (including for the 500K budget) appear in table 6.

Figure 8: pep-struct, #params vs. MAE

Table 6: [width | #params] per model for each
parameter budget

Budget SortMPNN AdaptMPNN GCN
500K [200 | 493.8K] [220 | 478.8K] [235 | 488K]
100K [70 | 95.9K] [95 | 98.6K] [100 | 98.4K]
50K [48 | 47.3K] [65 | 49.3K] [68 | 48.8K]
25K [34 | 24.9K] [44 | 24.3K] [46 | 24.2K]
7K [17 | 6.7K] [22 | 6.7K] [23 | 6.8K]
1K [3 | 922] [5 | 915] [5 | 982]

G.7 SUBGRAPH AGGREGATION NETWORKS

In this experiment, we made use of edge features. The incorporation of edge features was done via
the concatenation of the edge and relevant node features, followed by a linear layer projecting the
concatenated vector to the desired dimension. The projected vector was then passed through a ReLU
activation.

Test set mean and standard deviation were computed over 10 random seeds. Hyper-parameters were
chosen by randomly running 40 configurations with the DS edge deleted configuration, and choosing
the best. the validation set was done using a single seed. The code provided with (Bevilacqua et al.,
2022) was used to run these experiments, with the only change being the addition of our architectures.

SortMPNN Both for the DS and DSS experiments, the model consisted of 5 message passing
layers, used sum Jumping Knowledge (JK) from (Xu et al., 2018), Combine - ConcatProject, matrix
collapse, bias was added to projection, blank method - learnable. The model was trained for 400
epochs with lr=0.01 and batch size of 128.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

AdaptMPNN Both for the DS and DSS experiments, the model consisted of 5 message passing
layers, sum JK for DS and last for DSS, combine - ConcatProject, sum wasn’t added, t was clapmed
to [0, 1], bias was added throughout aggregation steps. The model was trained for 400 epochs, with lr
of 0.005 for DS and 0.01 for DSS.

H RUNTIME

Model GINE GCN SortMPNN AdaptMPNN
Avg. time per epoch (s) 12.16 14.25 16.08 26.77

Table 7: Average time per epoch of various models on the
peptides-struct dataset. Average taken over 250 epochs.

43

	Introduction
	Notation

	General framework
	Hölder stability for parametric functions

	Multiset Hölder stability
	ReLU summation
	Adaptive ReLU
	Summation with smooth activation
	Sort based

	MPNN Hölder Stability
	MPNNs and WL
	MPNN stability analysis

	Experiments
	Related work
	Summary and Limitations
	Definitions and notation
	Hölder stability in expectation properties
	Reducing variance by averaging
	Boundedness assumptions
	Composition

	Multiset embeddings analysis proofs
	Summing over a smooth activation
	Creating sets with n-1 equal moments
	Sorting
	Analyzing ReLU

	Lipschitz COMBINE operations
	Tree Mover's Distance
	MPNN Hölder Proofs
	SortMPNN
	MPNN with lower-Hölder components isn't necessarily lower-Hölder
	ReluMPNN and SmoothMPNN

	Experiments
	Hardware
	Architecture variations
	Adversarial Multiset dataset experiments
	-tree dataset
	TUDataset
	LRGB
	Subgraph aggregation networks

	Runtime

