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ABSTRACT

Generalized Category Discovery (GCD) is a challenging task that aims to recog-
nize seen and novel categories within unlabeled data by leveraging labeled data.
Designing a prototype classifier to identify unlabeled samples instead of relying on
traditional time-consuming clustering is well recognized as a milestone in GCD.
However, we discover there exists a bias in this classifier: some seen categories are
mistakenly classified as novel ones, leading to imbalanced pseudo-labeling during
classifier learning. Based on this finding, we identify the low discriminability
between seen and novel prototypes as the key issue. To address this issue, we pro-
pose DebiasGCD, an effective debiasing method that integrates dynamic prototype
debiasing (DPD) and local representation alignment (LRA). DPD dynamically
maintains inter-prototype margins, encouraging the network to strengthen the learn-
ing of class-specific features and enhance prototype discrimination. Additionally,
LRA promotes local representation learning, enabling DPD to capture subtle de-
tails that further refine the understanding of class-specific features. In this way, it
successfully improves prototype discriminability and generates more reliable pre-
dictions for seen classes. Extensive experiments validate that our method effectively
mitigates pseudo-labeling bias across all datasets, especially on fine-grained ones.
For instance, it delivers a 10.7% boost on ‘Old’ classes in CUB. Our code is avail-
able at https://anonymous.4open.science/r/DebiasGCD-34F0.

1 INTRODUCTION

Deep learning has achieved great success in computer vision ( , ; ) ;

, ). However, these achievements are based on a close-world assumption, where test data

shares the same classes as the training data. Thrs assumption fails in open-world scenarios ( ,

; ; , s ), where unlabeled data may encounter

unseen categorles To address this, a new paradrgm called Generalized Category Dlrcovery (GCD)

( ) has been proposed and is gaining increasing attention. GCD requires models to

recognize seen and novel categories in unlabeled data by leveraging knowledge from labeled data,
making it suitable for open-world scenarios with vast amounts of unlabeled data.

There are mainly two exrstrng approches for GCD: k-means clustering ( , ; ,
s ) and prototype classification ( , ;

) The former 1dent1ﬁes unlabeled samples by clustering their representations. However, 1t
often becomes computationally expensive with larger datasets due to the quadratic complexity of
clustering algorithms. Instead, Wen et al. ( ) adopts the latter approach, and proposes
SimGCD, replacing the clustering-based approach with a classifier. Specifically, they found that
using a classifier directly in GCD led to overfitting on seen categories, causing novel categories to
be misclassified as seen ones. To fix this, they introduced a mean-entropy-maximization regularizer
( , ) to activate novel prototypes learning and improve pseudo-label reliability for the
prototype classifier. As a result, SimGCD replaces the time-consuming clustering with a prototype
classifier and achieves competitive performance, establishing itself as a robust baseline in GCD.

Although SimGCD successfully mitigates the overfitting bias on seen categories, a detailed investiga-
tion reveals that there also exists a new bias in the classifier: some seen categories are mistakenly
classified as novel ones, leading to imbalanced pseudo-labels during classifier learning. This issue
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Figure 1: Pseudo-labeling of seen samples in CUB ( , ): (a) shows that DebiasGCD

outperforms SimGCD by 10% in pseudo-labeling accuracy. (b) and (c) display the distribution
of specific pseudo-label assignments, where darker points indicate more assignments. In (b), the
darker points in the red rectangle highlight the bias, where seen category samples (y-axis, 0-100) are
incorrectly labeled as novel categories (x-axis, 100-200). In (c), DebiasGCD shows lighter colors,
indicating reduced imbalanced pseudo-labeling.

is clear when tracking the pseudo-labeling of seen categories. As shown in Fig. 1a, the blue curve
indicates that the pseudo-label accuracy in SimGCD fluctuates around 65% to the end. Fig. 1b further
details the pseudo-label assignment, where the diagonal line indicates correct classification, and the
points with deep color in the red rectangle highlight seen samples (Class id < 100) misclassified
as novel (Class id > 100). Consequently, SimGCD struggles with accurate pseudo-labeling of seen
categories during training. We attribute this bias to two reasons: indiscriminate prototype learning
and simple representation alignment. First, models trained with cross-entropy on labeled data with
only seen categories lack the guidance necessary to distinguish seen and novel classes. Therefore,
the prototypes of seen categories lack the discriminability to recognize samples resulting in biased
pseudo-labeling. Second, the previous prototype classifiers (
only utilize global representatlons (i.e. class token) for prototype learmng w1th self- dlstlllatlon
R ), ignoring the local ones (i.e. patch tokens) beneficial for
class1ﬁcat10n ThlS omission leads to insufficient feature guidance, hindering prototypes from learning
discriminative representations and compromising pseudo-label quality.

To tackle the above issues, we propose an effective method called DebiasGCD to calibrate bias
between prototypes. First, we introduce a dynamic prototype debiasing (DPD) technique to reduce the
prediction bias induced by prototypes dynamically. This technique maintains inter-prototype margins
between classes, enhancing the network’s ability to learn more class-specific features, and reinforcing
the prototype discrimination. As a result, the classifier can generate more reliable pseudo-labels.
Second, we propose a local representation alignment (LRA) module to align the local representations
of different sample views in semi-supervised learning. This helps the classifier learn detailed class-
specific representations and facilitates the optimization of DPD. Additionally, we also adopt strong
and weak augmentation for instances following ( ); ( ). Finally, by
combining DPD and LRA, DebiasGCD creates clear boundaries for class prototypes, especially for
seen and novel classes, thus mitigating imbalanced pseudo-labeling.

To evaluate the effectiveness of our method, we conduct extensive experiments on six datasets,
including fine-grained and generic object classification datasets. Our approach significantly reduces
pseudo-labels bias, outperforming SimGCD ( , ) by 10.7%/5.2% on the ‘Old’ and ‘New’
classes in CUB, respectively. Meanwhile, DebiasGCD prevents a 10% drop in pseudo-label accuracy,
as shown in Fig. la. Fig. lc further shows DebiasGCD produces less noise in the red rectangle
compared to SimGCD (Fig. 1b), indicating successful mitigation of imbalanced pseudo-labels.

In summary, our key contributions are as follows: 1) We investigate and discover a bias exists in
the classifier that leads to imbalanced pseudo-labeling in GCD semi-supervised learning; 2) We
propose effective debiased imbalanced pseudo-labeling, DebiasGCD, which combines DPD and LRA
to expand the distances between prototypes and extracts more local discriminative representation
features for recognizing instances in unlabeled data; 3) Extensive experimental results demonstrate
our proposed debiased learning removes bias effectively, improving the performance by a large
margin e.g., 10.7%/5.2% on ‘Old’ and ‘New’ classes in CUB, respectively.
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2 RELATED WORK

Semi-supervised Learning (SSL) tackles the issue of limited labeled data by integrating unlabeled
data from pre-defined classes ( ; , ). Most
SSL methods adopt techniques like con51stency based regularlzatlon ( , ;

, ; , ), pseudo-labeling (

, ), and transfer learning ( , ). Notably, pseudo labehng
is an effectlve baseline using a weak augmented view’s prediction as a pseudo-label for a strong
view ( ); ( ). Meanwhile, ( ); ( );

( ) improves performance by adjusting thresholds to select high-quality pseudo-
labels. However, traditional SSLL methods assume the labeled and unlabeled data share the same
distribution, limiting its effectiveness in open-world settlngs Recently, SSL has been extended to
out-of-distribution (OOD) detection ( R s

). For instance, FlatMatch ( ) minimizes cross—sharpness for con51stent learnlng,
InPL ( ) uses energy-based pseudo-labeling to select pseudo-labeling for OOD data,
and ATOL ( ) employs generated OOD data to improve detection. Increasingly, SSL

methods are being adapted for real-world scenarios.

Generalized Category Discovery (GCD) ( ) aims to train a model that can recognize
both seen and novel eategorles within unlabeled data. Unlike Novel Class Discovery (NCD) (

s R ), which treats unlabeled data as entirely new classes,
GCD assumes a mix of seen and novel classes. Current GCD methods can be categorized into two
paradigms: k-means clustering ( , ) and learnable classifiers ( R ). First,
most works adopt a clustering strategy to learn the representation center to recognize unlabeled
instances. XCon ( ) partitions datasets into visually similar sub-datasets using k-
means clustering, forcing the model to learn fine-grained features. GPC ( ) uses a
Gaussian Mixture Model (GMM) and representation learning to cluster categories. AGCD
( ) incorporates active learning to increase labeled data for clustering. PromptCAL
( ) enhances semantic representations with prompt learning and contrastive affinity, but still
relies on SemiKMeans clustering ( , ). However, these methods are computationally
expensive, particularly with large datasets. To address this, parametric classifier methods have
emerged. SimGCD ( ) introduces a prototype classifier establishing a new GCD
baseline. uGCD ( ) utilizes mean-teacher to enhance pseudo-label quality for SSL,
building upon SimGCD. It initially trains with the clustering-based GCD ( , ) before
fine-tuning with the classification head, which is time-intensive. In this paper, we also improve the
quality of pseudo-label for SSL in a time-saving manner based on SimGCD.

Prototypes Learning regards the class-specific representations in feature space as prototype centers
for each category ( , ). In most GCD works, instances are matched to the category with
a larger similarity to its prototype. For instance, DPN ( ) uses a decoupled prototypical
network to separate seen and novel categories, aligning them in labeled and unlabeled data to transfer
knowledge and capture semantics. TAN ( ) trains a model to align instances with
prototypes and estimate novel prototypes in unlabeled data based on category similarities. Some
works combine contrastive learning ( , ) with classifiers to learn the prototypes.
SimGCD ( ) first proposes to construct a parametric classifier with prototypes for
categories. It employs contrastive learning technique in labeled and unlabeled data to train the model
to learn the class discriminative features and then employs self-distillation (

, ) to generate pseudo-labels for further optimization. Obviously, the parametnc clas51ﬁer
relieves the cost of transferring and aligning prototypes and is more effective in recognizing the
instances. Unfortunately, the classifier in SimGCD ignores training a set of more discriminative class
prototypes, leading to unreliable pseudo-labels.

3 PROBLEM STATEMENT AND PRELIMINARIES

Generalized category discovery (GCD). Suppose & is the input space, we assume the labeled
dataset D! = {(z;,y;)} € X x ), containing only known categories, and the unlabeled dataset
D* = {(xi,yi)} € X x Y., which includes both seen and novel categories, where }; C J,,. The
objective of GCD is to categorize the samples in unlabeled data D", using the labels from known
categories ();) and unlabeled data (D*). Notably, the total number of known and novel categories is
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denoted as K =|Y; U )|, and K is known from prior works ( s ; R ;

, ; , ; ; )
Architecture. We investigate the problem in the domain of computer vision. Following SimGCD
( , ), we construct a model fy with parameter 6 to map an input image to a label in ).

The structure of the model fy includes an image encoder ®, a projection head h, and a classification
head g. Given a sample x:;, its feature representation is z; = ®(z;) € R("t1)*4 where n is the
number of patches, 1 corresponds to the class token, and d is the number of dimensions of the feature
space. The number of patches n = H XW where H and W are the height and width of the image, h
and w are the patch sizes.

Representation Learning. Just as GCD ( , ) and SimGCD ( s ), we
adopt contrastive learning ( , ) to extract representation features for categorizing
unlabeled data. Specifically, we perform supervised contrastive learning ( , ) on
labeled data D' and self-supervised contrastive learning ( s ) on the whole data set.
The overall representation loss is denoted as L., (6; D) (See Appendix).

Prototype Classifier. Unlike GCD ( , ), which uses a time-intensive clustering-based
approach such as k-means, SimGCD ( ) designs an effectlve prototypical classifier g
with parameter W € Rka based on self-distillation ( s , ). The
column vectors in W = [wy, ..., wy_1] can be regarded as k prototypes one corresponding to a
category (label). Given an input x;, its class token is the first row vector in its feature representation
z;, denoted as z¢'*. The cosine similarities between the class token and the prototypes are

8i = [50,is 81,45+ -+ Sk—1,i] = [(Woazll‘> <W1>Zfl€>> AWk_1,2 dg)] (D

After obtaining the similarities s;, we can perform softmax and imitate the traditional classifier to get

the pseudo-logits by:

_ exp(si/7)

p ( L ) - k—1 :
Zj:o exp (8;,;/7)

where the logits of views x and x’, forwarded to the student and teacher network, correspond to
pr (x;) and pg (x}), respectively. Then, it employs a standard cross-entropy loss to supervise the
learning of the prototype classifier in al/l data in unsupservised way:

@

4s(0;D) = |D| > (pr (x:),log (ps (%)) + (pr (x}) ,log (ps (w:))) 3)
x;, €D

Note that the model also jointly trained utilizing a standard cross-entropy loss on labeled data in
supervised way, represented as L2, (6; D') along with an entropy regularization, £,.(6; D). Therefore,
the total classification loss is denoted as: L.5(0; D) = (0; DY) + LY (0; D) + L,.(0; D).

Bias in Prototype Classifier. Fig. la shows that the baseline exhibits pseudo-label bias (blue
curve) in seen samples in unlabeled data. From Eq. (2), we see that the pseudo-label pr(x;) is
generated by calculating the similarity between a sample’s class token and class prototypes. If the
prototypes are too similar, this lack of discrimination may lead to incorrect labels. These errors in
the teacher network’s pseudo-labels can reinforce biases and cause further misclassifications in the
student network through Eq. (3). Without intervention, the model remains stuck in these biases, as
indicated by the persistent bias shown in the blue curve in Fig. la.

cls cls

To address this bias, the common approach is to improve the discriminative power of class prototypes.
However, we can’t directly modify the classifier weights. Instead, we focus on adjusting the pseudo-
labels p(x;) generated by the prototypes, allowing back-propagation to update the classifier and
optimize the class prototypes.

4 DEBIASED IMBALANCED PSEUDO-LABELING

In this section, we propose an effective debiased method for GCD, DebiasGCD, as motivated in
Sec. 1 and illustrated in Fig. 2. Concretely, we describe the proposed Dynamic Prototype Debiasing
(DPD) in Sec. 4.1 and Local Representation Alignment (LRA) modules in Sec. 4.2, respectively.
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Figure 2: The overall framework of DebiasGCD. First, DPD enhances prototype discriminability
using Lrank to push the ground-truth prototype wg; and Top-/N smallest probability prototypes
[wp, w1, ..., wk_1] to maintain a margin. Next, LRA aligns patch tokens from Image Encoder,
enriching class tokens sent to prototypes and facilitating DPD to discover more category-specific
features. Finally, teacher network prototypes are updated by those from the student network.

4.1 DYNAMIC PROTOTYPE DEBIASING

Motivation. Although the prototype classifier learning ( , ) has alleviated the costly
clustering process and improved accuracy compared to GCD ( , ), it encounters
a bias in generating imbalanced pseudo-labels for semi-supervised learning, as shown in Fig. la
and Fig. 1b. This bias arises because SimGCD relies solely on contrastive learning (see Sec. 3)
and does not directly optimize prototypes for pseudo-label generation. Therefore, we argue that
enhancing the discriminability of each prototype is essential. To tackle this, we propose the Dynamic
Prototype Debiasing (DPD) strategy, which dynamically augments class-specific discriminability
among prototypes to mitigate bias in a pseudo-label generation.

Inspired by ( ), who use adaptive margin loss to reduce bias in semi-supervised
learning, we adopt a similar approach to improve the separation between prototypes. However,
instead of generating class-balanced logits as in ( ), we take a more granular approach
by applying prototype ranking loss. Specifically, we enforce this ranking-based loss on labeled data to
dynamically increase the margin between prototypes, enhancing their ability to distinguish between
classes. This enhanced discriminability in the classification of our method is shown in Fig. 3.

Formally, let ps(x;) = [pg,p}, e p?_l] from Eq. (2) represents the probability vector for sample

x; in D! from student network, where k is the number of categories. As shown in Fig. 2, We employ
a margin ranking loss to rank the ground-truth prototype wg; and the Top-N smallest prototypes wy,
based on the probabilities from the prototype classifier (see Sec. 3). First, we obtain the remaining
probabilities except for the ground-truth ones p%t(a:i) = [ ft} and sort these probabilities from

smallest to largest, resulting in pre””“d( i) = [pl 1 pgk )} . Subsequently, we select the
Top-N smallest probability within one sample denoted as pTO’F N( i), where N is a hyperparameter

and N <k — 1. Then, we apply the margin ranking loss as follows:

Lrani(0:D') = |Dl S wax (0, (p () = pE7 N (@) + margin) @
x,;eD!

where D! is labeled data, r is a ranking label ( 1 or -1), setting r = 1 assume p%t(wi) rank higher
than pToP N(x;). The margin is a pre-defined boundary value. If the distance between w?"

'wf is less than margin, the loss is 0; otherwise, the loss increases linearly. Minimizing L (6; D)

and
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ensures a margin between the correct prototype wg; and the lowest-ranked w in Top-N probabilities,
improving prototype discriminability and pseudo-label accuracy.

4.2 LOCAL REPRESENTATION ALIGNMENT

It’s worth noting that the preV10us prototype classifiers ( ; , ) relied
solely on global representations in semi-supervised learning, neglectmg local detail supervision,
which is crucial in fine-grained datasets like CUB. For instance, birds with similar global features
(e.g., color, shape) can be misclassified, reducing pseudo-label quality. In contrast, our approach
encourages learning from local features, such as bill shape variations, to enhance prototype learning
and improve classifier discriminability.

We propose a Local Representation Alignment (LRA) module to maintain semantic consistency
of local features, improving the class token’s ability to gather global information in the attention
mechanism and enhancing the quality of pseudo-labels. Given an input x;, its patch tokens are
all features except the first row vector of class token in its feature representation z;, denoted as

feat e R™¥4 nis patch tokens as explained in the architecture on Sec. (3), d is feature dimension.

feat 1 the feature dimension:

exp (zfmt/7'>
SEtes ()
The feature distribution pf©%*(z!) is produced from another sample x, using a sharper temperature

7. Similar to the classification in Eq. (3), the LRA loss applies a simple cross-entropy loss between
weak and strong views:

Lo (D) =~ §D< P (@) Jog (5 (2)) ) + (PE (1) log (5 (@1)))
(6)

As we know, the class token for classification aggregates information about patch tokens through the at-

C,L'-P,T
()
..pT 4
o exp ( C"j;’" )
Where C and P are short for class token and patch token, respectively. The alignments make local
features (patch tokens P) become more consistent in the feature space, making it easier to identify

local features of the same object or scene in different views, thus enhancing global semantic (class
tokens C”) extraction.

Next we apply softmax on z;

ple ) = )

tention mechanism ( , ): Cf = Z o OzUP where a;; =

In summary, the LRA module aligns the local representations of two view samples, allowing class
tokens to aggregate detailed feature information and thus enhancing the DPD approach for a more
discriminative classifier.

Overall Loss. we combine the classification loss (Eq. (3)) and local representation alignment
loss (Eq. (6)) in self-distillation. The ultimate supervision loss in prototype classifier training is
updated as Lerf—gis = L35(0; DY) + LY(0; D) + - Lpaten (0; D), where L2, (0; D') is a standard

cls

Baseline

cross-entropy loss on labeled data, and LY, (6; D) is proposed in Eq. (3).

By simply integrating the Dynamic Prototype Debiasing (DPD) and Local Representation Align-
ment (LRA) modules, we propose a debiased pseudo-labeling in GCD (DebiasGCD). The overall
loss for debiasing is formulated as:

L= Lep(0;D) — H(O; D) + Lserf—ais(0; D) +8 + Lyani(0;D') 0

Baseline Updated

where «, (3 are balance factors controlling the prototypical classifier learning, and H (0; D) represents
the mean-entropy-maximisation regulariser ( , ). Notably, the balance factors for
the baseline losses are the same as those of SimGCD. The algorithm in the appendix describes one
training step of our proposed DebiasGCD.
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Table 1: Datase overview for GCD, containing the specific classes (‘Old’ and ‘New’) and correspond-
ing images of labeled (D') and unlabeled sets (D%).

Dataset CUB SCars FGCV-Aircraft CIFAR-10 CIFAR-100 ImageNet-100
od 100 98 50 5 50 50
11
Labeled D 1 a0es 1.5k 2.0k 1.7k 12.5k 20.0k 31.9k
. New 200 19 100 10 100 100
Unlabeled D 1 oes 45k 6.1k 5.0k 37.5k 30.0k 95.3k

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the effectiveness of our approach on six datasets, including three generic

object recognition datasets (namely CIFAR-10/100 ( , ) and ImageNet-100 (

, )) and three semantic shift benchmarks (SSB) ( , ) as well as fine-grained
datasets: CUB ( , ), Stanford Cars ( , ), and FGVC-Aircraft (

, ). Following GCD ( , ), we randomly sub-sampling 50% of the seen

categories within the training set to construct labeled set D', with the remaining seen and novel
category images constituting the unlabeled subset D*. Table 1 details our experimental split protocol.
Evaluation protocols. Following GCD ( , ) evaluation protocol, we employ clustering
accuracy (ACC) to evaluate the model performance across all datasets. Concretely, ACC is computed
using the predicted labels § with ground truth labels y*, defined as ACC = Zgl 1(yr =p(Gi)).
where M = |D"|, and p aligns predicted cluster assignments with ground truth class labels using the
Hungarian optimal assignment algorithm ( , ).

Implementation details. Following GCD works ( , ; s ), we use a
ViT-B/16 backbone ( , ), pre-trained with DINO ( , ). During
training, we fine-tune only the last attention block of the backbone across all datasets. We adopt
strong/weak data augmentation strategies ( , ) as outlined in previous research (

, ), applying strong augmentation to the student network and weak augmentation to the
teacher network. Our setup includes a batch size of 128, 200 training epochs, and an initial learning
rate of 0.1 with cosine decay. During classifier training, we initial 7 = 0.07, warming up to 0.04
within the first 30 epochs. Parameters r and margins are set to 1 in Eq. (4), and we use a random
seed of 1. Experiments are implemented in PyTorch on Nvidia Tesla V100 GPUs.

5.2 QUANTITATIVE COMPARISON

Table 2: Classification results on SSB ( , ) and generic object recognition datatsets.
Bold represents the best results, underline is the second-best. A denotes margins ahead of SimGCD.

Methods CUB Stanford Cars FGVC-Aircraft CIFAR-10 CIFAR-100 ImageNet-100
All Ol New AllL Old New All Old New Alll Old New All Old New All Old New
k-means ( ) 343 389 3201 128 106 138 160 144 168 836 857 825 520 522 508 727 755 713
RankStats+ ( ) 333 51,6 242 283 618 121 269 364 222 468 192 605 582 776 193 371 616 2438
UNO+ ( ) 351 49.0 281 355 705 186 403 564 322 686 983 538 695 806 472 703 950 579
ORCA ( ) 353 456 302 235 501 107 220 31.8 171 818 862 796 690 774 520 735 926 639
GCD ( ) 513 566 487 390 576 299 450 411 469 915 979 882 73.0 762 665 741 89.8 663
GPC ( ) 520 555 475 382 589 274 433 407 448 906 976 87.0 754 846 60.1 753 934 66.7
XCon ( ) 521 543 510 405 588 317 477 444 494 960 973 954 742 812 603 77.6 935 69.7
PromptCAL ( ) 629 644 621 502 70.1 406 522 522 523 979 966 985 812 842 753 831 927 783
HGCD (2023) 657 680 646 565 68.1 509 538 554 53.0 - - - - - - - - -
DCCL ( ) 635 608 649 431 557 362 - - - 963 965 969 753 768 702 80.5 905 762
SimGCD ( ) 603 656 577 538 719 450 542 591 51.8 97.1 951 98.1 80.1 812 778 83.0 93.1 719
DebiasGCD (Ours) 674 763 630 618 789 53.6 568 657 523 974 954 984 841 842 840 842 940 793
A +7.1  +10.7 +52 +8.0 +7.0 +8.6 +2.6 +6.6 +0.5 +0.3 +03 +0.3 +4.0 +3.0 +62 +1.2 +09 +14

Comparison with Baseline. We compare our DebiasGCD with other methods on both SSB and
generic object recognition datasets, as shown in Table 2. Identifying fine-grained samples in GCD is
challenging due to their subtle differences, such as similar heads with different-sized bills. Excitingly,
our method outperforms SimGCD on fine-grained datasets. Specifically, on CUB and Stanford Cars,
it achieves a 10.7%/5.2% and 7.0%/8.6 % improvement on ‘Old* and ‘New’ classes, respectively.
Additionally, DebiasGCD performs well on generic object recognition datasets, with improvements of
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Figure 5: Pseudo-labeling in SimGCD (Column 1, with
Figure 4: DebiasGCD achieves higher bias) and our method (Column 2, with less noise) for
pseudo-label accuracy than SimGCD Aircraft and CIFAR-100. Note that there are 80 seen
across all datasets. categories and 20 novel categories in CIFAR-100.

0.5% on CIFAR-10, 4.0% on CIFAR-100, and 1.2% on ImageNet-100 for ‘All’ classes. These results
demonstrate that DebiasGCD successfully captures local representation features, generating high-
quality pseudo-labels for prototypical learning. Furthermore, Fig. 4 shows that the pseudo-labeling
accuracy increases significantly after debiasing across all datasets, and Fig. 5 indicates our debi-
ased method recorrects pseudo-labeling effectively in FGVC-Aircraft and CIFAR-100, respectively.

Visualizations of Feature and Attention Dis- ‘ '
tributions. Firstly, We first use t-SNE to vi- ; 2 . ,
sualize the feature space of five randomly se- wy 3 ’ o ‘ .

lected categories from CIFAR-100, both seen AT - 5

and novel. As shown in Fig. 3, our debiasing ap- B ol Y -

proach creates clearer margins and tighter clus- &*‘ by & i

ters compared to DINO and SimGCD, demon- ‘ -
strating better classification discriminability.

Secondly, we visualize the attention maps of (a) SimGCD (b) Ours
different attention heads in the image encoder

® to show their focus on various image regions. Figure 3: t-SNE visualization of 10 randomly sam-
As shown in Fig. 6, compared to the baseline pled classes from the CIFAR-100. @ denotes seen
SimGCD, our method highlights class-specific classes, while % represents novel classes. Our
object parts while reducing background noise, proposed DebiasGCD demonstrates fewer misclas-
indicating that DebiasGCD effectively enhances sified samples in both seen and novel categories
local representation learning. compared to the baseline SimGCD.

5.3 ABLATION STUDY

To examine the contributions of various elements of our proposed approach, we conduct extensive
experiments on both SSB and generic object recognition datasets, as shown in Tables 3, 4 and Fig. 7.

Effect of Dynamic Prototype Debiasing (DPD). Rows (1) in Table 3 illustrate the impact of
incorporating DPD. This technique significantly improves accuracy, especially when combined with
LRA. Comparing Row (1) with SimGCD (Row (0)), DPD enhances performance in ‘New’ classes for
CIFAR-10 and CIFAR-100 and improves all metrics (‘All’, ‘Old’, and ‘New’) for CUB and Stanford
Cars. These results highlight the efficacy of DPD in improving model performance.

Effect of Local Representation Aligning (LRA). Rows (2) also show the impact of introducing
LRA. Like DPD, LRA enhances performance in ‘New’ classes for CIFAR-10 and CIFAR-100 and
improves all metrics for CUB and Stanford Cars when comparing Row (2) with SimGCD (Row (0)).
Additionally, LRA further improves performance across ‘All’ classes by 3.9%, 3.8%, 1.9%, and 6.9%
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Figure 6: Attention visualization of 12 different attention heads in the final layer of the image encoder
on FGVC-Aircraft and CUB, respectively.

Table 3: Ablation study on the different components of our approach. ‘L’ and ‘Lpaen’ are losses
corresponding to the proposed DPD in Eq. (4) and LRA in Eq. (6), respectively. Row (0) shows the
baseline SimGCD results.

Index Component CUB SCars CIFAR-100
Lrank Lpatch All Old New Al Old New  All Old New
0) X X 60.3 65.6 577 53.8 719 450 80.1 81.2 778
) v X 620 668 59.6 578 774 476 82.0 827 81.3
3) X v 63.5 68.5 61.0 58.0 770 489 81.1 826 78.0
4) v v 674 763 63.0 61.8 789 53.6 842 842 84.0

in all datasets combined with DPD, as shown by comparing Rows (2) and (3). This also indicates
LRA’s effectiveness when paired with DPD.

Effect of Top N in Dynamic Prototype Debiasing. In Sec. 4.1, we propose a debiased imbalanced
pseudo-labeling strategy via a ranking-based prototype loss (Eq. 4). Fig. 7 shows the performance
across different Top N values on all datasets. Specifically, N =0 indicates the performance of the
baseline without debiasing. When N =1, we select the smallest value in the probability vector p(x;),
resulting in p"**¢"*¢?(z;) = [p?] for a sample @; in Eq. (4). Compared to SimGCD (N =0), our
method improves consistently performance in all classes (‘All’, ‘Old’, and ‘New’) for various N
values in CUB, Stanford Cars, CIFAR-10, and CIFAR-100 datasets.
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Figure 7: Ablation on the Top-/N in DPD in SSB and generic object recognition datasets.
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Effect of Hyperparameters o and 5. Table 4 outlines the values of « and 5 used in Eq. (7). The
parameter « regulates the influence of detailed feature learning on the prototype classifier, while 8
controls the balance of prototype margins within the DPD framework. Here, we fix o« = 1 for local
representation alignment and adjust /3 to optimize margin balancing. As shown in the table, a setting
of # = 1 delivers superior performance for CUB and Aircraft, whereas 5 = 0.5 yields better results
for Stanford Cars, CIFAR-10, CIFAR-100, and ImageNet-100. Consequently, we set 5 = 1 for CUB
and Aircraft, and 8 = 0.5 for the remaining datasets.

Table 4: Ablation study on « and 5 of Eq. (7) in SSB and generic object recognition datasets.

CUB Stanford Cars FGCV-Aircraft CIFAR-10 CIFAR-100 ImageNet-100

o B Al Old New All Old New Al Old New All Old New All Old New All Old New
05 6.1 700 567 618 789 53.6 549 674 487 974 954 984 842 825 83.6 804 940 793
1.0 674 763 63.0 589 817 479 568 657 524 973 967 976 819 849 759 833 945 776

5.4 EXTEND TO OTHER OPEN-WORLD WORK

It is worth noting that our proposed method serves as a plug-and-play solution that can be seamlessly
integrated with other open-world works, such as LegoGCD ( , ) and SPTNet (

, ). Specifically, we incorporate the proposed DPD and LRA modules into the above
frameworks in fine-grained datasets CUB, Stanford Cars, and generic dataset CIFAR-100. Table
5 shows that our components enhance classification performance in LegoGCD across all datasets,
particularly improving the accuracy on ‘New’ categories by 3.2% and 5.1% in the fine-grained CUB
and Stanford Cars datasets, respectively. Furthermore, our modules contribute to an increase in
overall (‘All’) accuracy in SPTNet, with gains of 1.0% and 3.0% on the CUB and Stanford Cars
datasets. Although the performance on the CIFAR-100 dataset has slightly decreased (-0.1 in ‘All’),
we believe it can be improved with further parameter adjustments. Overall, our proposed method is
effective and can be applied to other open-world scenarios.

Table 5: Classification results on other open-world works combined with our proposed components
across fine-grained and generic recognition datasets. A indicates margins after debiasing.

Index \ Methods CUB Stanford Cars CIFAR-100

All Old New All Old New All Old New
€))] LegoGCD ( ) 638 719 598 573 757 483 81.8 814 825
2) With debiasing 66.7 72.1 640 609 76.1 534 82.6 842 8l.1
3) A 29 +0.2 +32 +36 +04 +51 +08 +2.8 -14
“4) SPTNet ( ) 658 688 651 59.0 792 493 813 843 756
5) With debiasing 66.8 73.1 6377 620 780 544 812 840 76.0
(6) A 1.0 +43 -14 +3.0 -12 +4.1 -0.1 0.3 +04

6 CONCLUSION

In this paper, we first investigate the previously unrecognized bias of imbalanced pseudo-labeling
in the GCD task. We then propose an effective debiasing method, DebiasGCD, to address this
imbalance between seen and novel categories in classifier prototype learning. To implement this
debiasing, we propose a dynamic prototype debiasing technique to maintain a margin between
prototypes dynamically, encouraging the network to explore category-specific features and enhance
prototype distinction. Furthermore, to improve the learning for more discriminable representations
in DPD, we propose a local representations alignment module to discover more subtle features that
benefit classification, especially in fine-grained datasets. Extensive results show that our DebiasGCD
significantly outperforms the baseline SimGCD, effectively mitigating the pseudo-labeling bias.
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