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ABSTRACT

Generalized Category Discovery (GCD) is a challenging task that aims to recog-
nize seen and novel categories within unlabeled data by leveraging labeled data.
Designing a prototype classifier to identify unlabeled samples instead of relying on
traditional time-consuming clustering is well recognized as a milestone in GCD.
However, we discover there exists a bias in this classifier: some seen categories are
mistakenly classified as novel ones, leading to imbalanced pseudo-labeling during
classifier learning. Based on this finding, we identify the low discriminability
between seen and novel prototypes as the key issue. To address this issue, we pro-
pose DebiasGCD, an effective debiasing method that integrates dynamic prototype
debiasing (DPD) and local representation alignment (LRA). DPD dynamically
maintains inter-prototype margins, encouraging the network to strengthen the learn-
ing of class-specific features and enhance prototype discrimination. Additionally,
LRA promotes local representation learning, enabling DPD to capture subtle de-
tails that further refine the understanding of class-specific features. In this way, it
successfully improves prototype discriminability and generates more reliable pre-
dictions for seen classes. Extensive experiments validate that our method effectively
mitigates pseudo-labeling bias across all datasets, especially on fine-grained ones.
For instance, it delivers a 10.7% boost on ‘Old’ classes in CUB. Our code is avail-
able at https://anonymous.4open.science/r/DebiasGCD-34F0.

1 INTRODUCTION

Deep learning has achieved great success in computer vision (He et al., 2017; Ren et al., 2015;
Ronneberger et al., 2015; Szegedy et al., 2015; Redmon et al., 2016; Dosovitskiy et al., 2021; Caron
et al., 2021). However, these achievements are based on a close-world assumption, where test data
shares the same classes as the training data. This assumption fails in open-world scenarios (Geng et al.,
2021; Han et al., 2022; Zhang et al., 2023a; Wang et al., 2023b), where unlabeled data may encounter
unseen categories. To address this, a new paradigm called Generalized Category Discovery (GCD)
Vaze et al. (2022b) has been proposed and is gaining increasing attention. GCD requires models to
recognize seen and novel categories in unlabeled data by leveraging knowledge from labeled data,
making it suitable for open-world scenarios with vast amounts of unlabeled data.

There are mainly two existing approches for GCD: k-means clustering (Vaze et al., 2022b; Fei et al.,
2022; Zhao et al., 2023; Pu et al., 2023) and prototype classification (Wen et al., 2023; Wang et al.,
2024). The former identifies unlabeled samples by clustering their representations. However, it
often becomes computationally expensive with larger datasets due to the quadratic complexity of
clustering algorithms. Instead, Wen et al. Wen et al. (2023) adopts the latter approach, and proposes
SimGCD, replacing the clustering-based approach with a classifier. Specifically, they found that
using a classifier directly in GCD led to overfitting on seen categories, causing novel categories to
be misclassified as seen ones. To fix this, they introduced a mean-entropy-maximization regularizer
(Assran et al., 2022) to activate novel prototypes learning and improve pseudo-label reliability for the
prototype classifier. As a result, SimGCD replaces the time-consuming clustering with a prototype
classifier and achieves competitive performance, establishing itself as a robust baseline in GCD.

Although SimGCD successfully mitigates the overfitting bias on seen categories, a detailed investiga-
tion reveals that there also exists a new bias in the classifier: some seen categories are mistakenly
classified as novel ones, leading to imbalanced pseudo-labels during classifier learning. This issue
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Figure 1: Pseudo-labeling of seen samples in CUB (Wah et al., 2011): (a) shows that DebiasGCD
outperforms SimGCD by 10% in pseudo-labeling accuracy. (b) and (c) display the distribution
of specific pseudo-label assignments, where darker points indicate more assignments. In (b), the
darker points in the red rectangle highlight the bias, where seen category samples (y-axis, 0-100) are
incorrectly labeled as novel categories (x-axis, 100-200). In (c), DebiasGCD shows lighter colors,
indicating reduced imbalanced pseudo-labeling.

is clear when tracking the pseudo-labeling of seen categories. As shown in Fig. 1a, the blue curve
indicates that the pseudo-label accuracy in SimGCD fluctuates around 65% to the end. Fig. 1b further
details the pseudo-label assignment, where the diagonal line indicates correct classification, and the
points with deep color in the red rectangle highlight seen samples (Class id < 100) misclassified
as novel (Class id ⩾ 100). Consequently, SimGCD struggles with accurate pseudo-labeling of seen
categories during training. We attribute this bias to two reasons: indiscriminate prototype learning
and simple representation alignment. First, models trained with cross-entropy on labeled data with
only seen categories lack the guidance necessary to distinguish seen and novel classes. Therefore,
the prototypes of seen categories lack the discriminability to recognize samples, resulting in biased
pseudo-labeling. Second, the previous prototype classifiers (Wen et al., 2023; Vaze et al., 2023)
only utilize global representations (i.e. class token) for prototype learning with self-distillation
(Caron et al., 2021; Assran et al., 2022), ignoring the local ones (i.e. patch tokens) beneficial for
classification. This omission leads to insufficient feature guidance, hindering prototypes from learning
discriminative representations and compromising pseudo-label quality.

To tackle the above issues, we propose an effective method called DebiasGCD to calibrate bias
between prototypes. First, we introduce a dynamic prototype debiasing (DPD) technique to reduce the
prediction bias induced by prototypes dynamically. This technique maintains inter-prototype margins
between classes, enhancing the network’s ability to learn more class-specific features, and reinforcing
the prototype discrimination. As a result, the classifier can generate more reliable pseudo-labels.
Second, we propose a local representation alignment (LRA) module to align the local representations
of different sample views in semi-supervised learning. This helps the classifier learn detailed class-
specific representations and facilitates the optimization of DPD. Additionally, we also adopt strong
and weak augmentation for instances following Vaze et al. (2023); Sohn et al. (2020). Finally, by
combining DPD and LRA, DebiasGCD creates clear boundaries for class prototypes, especially for
seen and novel classes, thus mitigating imbalanced pseudo-labeling.

To evaluate the effectiveness of our method, we conduct extensive experiments on six datasets,
including fine-grained and generic object classification datasets. Our approach significantly reduces
pseudo-labels bias, outperforming SimGCD (Wen et al., 2023) by 10.7%/5.2% on the ‘Old’ and ‘New’
classes in CUB, respectively. Meanwhile, DebiasGCD prevents a 10% drop in pseudo-label accuracy,
as shown in Fig. 1a. Fig. 1c further shows DebiasGCD produces less noise in the red rectangle
compared to SimGCD (Fig. 1b), indicating successful mitigation of imbalanced pseudo-labels.

In summary, our key contributions are as follows: 1) We investigate and discover a bias exists in
the classifier that leads to imbalanced pseudo-labeling in GCD semi-supervised learning; 2) We
propose effective debiased imbalanced pseudo-labeling, DebiasGCD, which combines DPD and LRA
to expand the distances between prototypes and extracts more local discriminative representation
features for recognizing instances in unlabeled data; 3) Extensive experimental results demonstrate
our proposed debiased learning removes bias effectively, improving the performance by a large
margin e.g., 10.7%/5.2% on ‘Old’ and ‘New’ classes in CUB, respectively.
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2 RELATED WORK

Semi-supervised Learning (SSL) tackles the issue of limited labeled data by integrating unlabeled
data from pre-defined classes (Goodfellow et al., 2014; Laine & Aila, 2017; Huang et al., 2021). Most
SSL methods adopt techniques like consistency-based regularization (Menon et al., 2021; Tarvainen
& Valpola, 2017; Miyato et al., 2019; Xie et al., 2020), pseudo-labeling (Sohn et al., 2020; Zhang
et al., 2022; Yu et al., 2023), and transfer learning (Chen et al., 2020b). Notably, pseudo-labeling
is an effective baseline using a weak augmented view’s prediction as a pseudo-label for a strong
view Berthelot et al. (2020); Sohn et al. (2020). Meanwhile, Wang et al. (2023a); Xu et al. (2021);
Zhang et al. (2021) improves performance by adjusting thresholds to select high-quality pseudo-
labels. However, traditional SSL methods assume the labeled and unlabeled data share the same
distribution, limiting its effectiveness in open-world settings. Recently, SSL has been extended to
out-of-distribution (OOD) detection (Huang et al., 2023; Yu et al., 2023; Du et al., 2023; Zheng et al.,
2023). For instance, FlatMatch Huang et al. (2023) minimizes cross-sharpness for consistent learning,
InPL Yu et al. (2023) uses energy-based pseudo-labeling to select pseudo-labeling for OOD data,
and ATOL Zheng et al. (2023) employs generated OOD data to improve detection. Increasingly, SSL
methods are being adapted for real-world scenarios.

Generalized Category Discovery (GCD) Vaze et al. (2022b) aims to train a model that can recognize
both seen and novel categories within unlabeled data. Unlike Novel Class Discovery (NCD) (Han
et al., 2019; Li et al., 2023; Yang et al., 2023), which treats unlabeled data as entirely new classes,
GCD assumes a mix of seen and novel classes. Current GCD methods can be categorized into two
paradigms: k-means clustering (Vaze et al., 2022b) and learnable classifiers (Wen et al., 2023). First,
most works adopt a clustering strategy to learn the representation center to recognize unlabeled
instances. XCon Fei et al. (2022) partitions datasets into visually similar sub-datasets using k-
means clustering, forcing the model to learn fine-grained features. GPC Zhao et al. (2023) uses a
Gaussian Mixture Model (GMM) and representation learning to cluster categories. AGCD Ma et al.
(2024) incorporates active learning to increase labeled data for clustering. PromptCAL Zhang et al.
(2023b) enhances semantic representations with prompt learning and contrastive affinity, but still
relies on SemiKMeans clustering (Vaze et al., 2022b). However, these methods are computationally
expensive, particularly with large datasets. To address this, parametric classifier methods have
emerged. SimGCD Wen et al. (2023) introduces a prototype classifier establishing a new GCD
baseline. µGCD Vaze et al. (2023) utilizes mean-teacher to enhance pseudo-label quality for SSL,
building upon SimGCD. It initially trains with the clustering-based GCD (Vaze et al., 2022b) before
fine-tuning with the classification head, which is time-intensive. In this paper, we also improve the
quality of pseudo-label for SSL in a time-saving manner based on SimGCD.

Prototypes Learning regards the class-specific representations in feature space as prototype centers
for each category (Snell et al., 2017). In most GCD works, instances are matched to the category with
a larger similarity to its prototype. For instance, DPN An et al. (2023) uses a decoupled prototypical
network to separate seen and novel categories, aligning them in labeled and unlabeled data to transfer
knowledge and capture semantics. TAN An et al. (2024) trains a model to align instances with
prototypes and estimate novel prototypes in unlabeled data based on category similarities. Some
works combine contrastive learning (Caron et al., 2021) with classifiers to learn the prototypes.
SimGCD Wen et al. (2023) first proposes to construct a parametric classifier with prototypes for
categories. It employs contrastive learning technique in labeled and unlabeled data to train the model
to learn the class discriminative features and then employs self-distillation (Caron et al., 2021; Assran
et al., 2022) to generate pseudo-labels for further optimization. Obviously, the parametric classifier
relieves the cost of transferring and aligning prototypes and is more effective in recognizing the
instances. Unfortunately, the classifier in SimGCD ignores training a set of more discriminative class
prototypes, leading to unreliable pseudo-labels.

3 PROBLEM STATEMENT AND PRELIMINARIES

Generalized category discovery (GCD). Suppose X is the input space, we assume the labeled
dataset Dl = {(xi, yi)} ∈ X × Yl, containing only known categories, and the unlabeled dataset
Du = {(xi, yi)} ∈ X × Yu, which includes both seen and novel categories, where Yl ⊂ Yu. The
objective of GCD is to categorize the samples in unlabeled data Du, using the labels from known
categories (Yl) and unlabeled data (Du). Notably, the total number of known and novel categories is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

denoted as K= |Yl ∪ Yu|, and K is known from prior works (Wen et al., 2023; Fini et al., 2021; Han
et al., 2022; Zhao & Han, 2021; Zhong et al., 2021).

Architecture. We investigate the problem in the domain of computer vision. Following SimGCD
(Wen et al., 2023), we construct a model fθ with parameter θ to map an input image to a label in Yu.
The structure of the model fθ includes an image encoder Φ, a projection head h, and a classification
head g. Given a sample xi, its feature representation is zi = Φ(xi) ∈ R(n+1)×d where n is the
number of patches, 1 corresponds to the class token, and d is the number of dimensions of the feature
space. The number of patches n = H×W

h×w where H and W are the height and width of the image, h
and w are the patch sizes.

Representation Learning. Just as GCD (Vaze et al., 2022b) and SimGCD (Wen et al., 2023), we
adopt contrastive learning (Caron et al., 2021) to extract representation features for categorizing
unlabeled data. Specifically, we perform supervised contrastive learning (Khosla et al., 2020) on
labeled data Dl and self-supervised contrastive learning (Chen et al., 2020a) on the whole data set.
The overall representation loss is denoted as Lrep(θ;D) (See Appendix).

Prototype Classifier. Unlike GCD (Vaze et al., 2022b), which uses a time-intensive clustering-based
approach such as k-means, SimGCD Wen et al. (2023) designs an effective prototypical classifier g
with parameter W ∈ Rd×k based on self-distillation (Caron et al., 2021; Assran et al., 2022). The
column vectors in W = [w0, . . . , wk−1] can be regarded as k prototypes, one corresponding to a
category (label). Given an input xi, its class token is the first row vector in its feature representation
zi, denoted as zcls

i . The cosine similarities between the class token and the prototypes are

si = [s0,i, s1,i, . . . , sk−1,i] =
[
⟨w0, z

cls
i

〉
,
〈
w1, z

cls
i

〉
, . . . ,

〈
wk−1, z

cls
i ⟩

]
(1)

After obtaining the similarities si, we can perform softmax and imitate the traditional classifier to get
the pseudo-logits by:

p(xi) =
exp (si/τ)∑k−1

j=0 exp (si,j/τ)
. (2)

where the logits of views x and x′, forwarded to the student and teacher network, correspond to
pT (xi) and pS (x′

i), respectively. Then, it employs a standard cross-entropy loss to supervise the
learning of the prototype classifier in all data in unsupservised way:

Lu
cls(θ;D) = − 1

|D|
∑
xi∈D

⟨pT (xi) , log (pS (x′
i))⟩+ ⟨pT (x′

i) , log (pS (xi))⟩ (3)

Note that the model also jointly trained utilizing a standard cross-entropy loss on labeled data in
supervised way, represented as Ls

cls(θ;Dl) along with an entropy regularization, Lr(θ;D). Therefore,
the total classification loss is denoted as: Lcls(θ;D) = Ls

cls(θ;Dl) + Lu
cls(θ;D) + Lr(θ;D).

Bias in Prototype Classifier. Fig. 1a shows that the baseline exhibits pseudo-label bias (blue
curve) in seen samples in unlabeled data. From Eq. (2), we see that the pseudo-label pT (xi) is
generated by calculating the similarity between a sample’s class token and class prototypes. If the
prototypes are too similar, this lack of discrimination may lead to incorrect labels. These errors in
the teacher network’s pseudo-labels can reinforce biases and cause further misclassifications in the
student network through Eq. (3). Without intervention, the model remains stuck in these biases, as
indicated by the persistent bias shown in the blue curve in Fig. 1a.

To address this bias, the common approach is to improve the discriminative power of class prototypes.
However, we can’t directly modify the classifier weights. Instead, we focus on adjusting the pseudo-
labels p(xi) generated by the prototypes, allowing back-propagation to update the classifier and
optimize the class prototypes.

4 DEBIASED IMBALANCED PSEUDO-LABELING

In this section, we propose an effective debiased method for GCD, DebiasGCD, as motivated in
Sec. 1 and illustrated in Fig. 2. Concretely, we describe the proposed Dynamic Prototype Debiasing
(DPD) in Sec. 4.1 and Local Representation Alignment (LRA) modules in Sec. 4.2, respectively.
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Figure 2: The overall framework of DebiasGCD. First, DPD enhances prototype discriminability
using Lrank to push the ground-truth prototype wgt and Top-N smallest probability prototypes
[w0,w1, . . . ,wk−1] to maintain a margin. Next, LRA aligns patch tokens from Image Encoder,
enriching class tokens sent to prototypes and facilitating DPD to discover more category-specific
features. Finally, teacher network prototypes are updated by those from the student network.

4.1 DYNAMIC PROTOTYPE DEBIASING

Motivation. Although the prototype classifier learning (Wen et al., 2023) has alleviated the costly
clustering process and improved accuracy compared to GCD (Vaze et al., 2022b), it encounters
a bias in generating imbalanced pseudo-labels for semi-supervised learning, as shown in Fig. 1a
and Fig. 1b. This bias arises because SimGCD relies solely on contrastive learning (see Sec. 3)
and does not directly optimize prototypes for pseudo-label generation. Therefore, we argue that
enhancing the discriminability of each prototype is essential. To tackle this, we propose the Dynamic
Prototype Debiasing (DPD) strategy, which dynamically augments class-specific discriminability
among prototypes to mitigate bias in a pseudo-label generation.

Inspired by Wang et al. (2022), who use adaptive margin loss to reduce bias in semi-supervised
learning, we adopt a similar approach to improve the separation between prototypes. However,
instead of generating class-balanced logits as in Wang et al. (2022), we take a more granular approach
by applying prototype ranking loss. Specifically, we enforce this ranking-based loss on labeled data to
dynamically increase the margin between prototypes, enhancing their ability to distinguish between
classes. This enhanced discriminability in the classification of our method is shown in Fig. 3.

Formally, let pS(xi)=
[
p0i , p

1
i , . . . , p

k−1
i

]
from Eq. (2) represents the probability vector for sample

xi in Dl from student network, where k is the number of categories. As shown in Fig. 2, We employ
a margin ranking loss to rank the ground-truth prototype wgt and the Top-N smallest prototypes wn

based on the probabilities from the prototype classifier (see Sec. 3). First, we obtain the remaining
probabilities except for the ground-truth ones pgt

S (xi)=
[
pgti

]
, and sort these probabilities from

smallest to largest, resulting in preversed
S (xi) =

[
p0i , p

1
i , . . . , p

(k−2)
i

]
. Subsequently, we select the

Top-N smallest probability within one sample, denoted as pTop−N
S (xi), where N is a hyperparameter

and N ≤k − 1. Then, we apply the margin ranking loss as follows:

Lrank(θ;Dl) =
1

|Dl|
∑

xi∈Dl

max
(
0,−r

(
pgt
S (xi)− pTop−N

S (xi)
)
+ margin

)
(4)

where Dl is labeled data, r is a ranking label ( 1 or -1), setting r=1 assume pgt
S (xi) rank higher

than pTop−N
S (xi). The margin is a pre-defined boundary value. If the distance between wgt

i and
wgt

i is less than margin, the loss is 0; otherwise, the loss increases linearly. Minimizing Lrank(θ;Dl)
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ensures a margin between the correct prototype wgt and the lowest-ranked wN in Top-N probabilities,
improving prototype discriminability and pseudo-label accuracy.

4.2 LOCAL REPRESENTATION ALIGNMENT

It’s worth noting that the previous prototype classifiers (Wen et al., 2023; Wang et al., 2024) relied
solely on global representations in semi-supervised learning, neglecting local detail supervision,
which is crucial in fine-grained datasets like CUB. For instance, birds with similar global features
(e.g., color, shape) can be misclassified, reducing pseudo-label quality. In contrast, our approach
encourages learning from local features, such as bill shape variations, to enhance prototype learning
and improve classifier discriminability.

We propose a Local Representation Alignment (LRA) module to maintain semantic consistency
of local features, improving the class token’s ability to gather global information in the attention
mechanism and enhancing the quality of pseudo-labels. Given an input xi, its patch tokens are
all features except the first row vector of class token in its feature representation zi, denoted as
zfeat
i ∈ Rn×d, n is patch tokens as explained in the architecture on Sec. (3), d is feature dimension.

Next, we apply softmax on zfeat
i to the feature dimension:

pfeat(xi) =
exp

(
zfeat
i /τ

)
∑d−1

j=0 exp
(
zfeat
i,j /τ

) , (5)

The feature distribution pfeat(x′
i) is produced from another sample x′

i, using a sharper temperature
τ . Similar to the classification in Eq. (3), the LRA loss applies a simple cross-entropy loss between
weak and strong views:

Lpatch(θ;D) = − 1

|D|
∑
xi∈D

〈
pfeat
T (xi) , log

(
pfeat
S (x′

i)
)〉

+
〈
pfeat
T (x′

i) , log
(
pfeat
S (xi)

)〉
(6)

As we know, the class token for classification aggregates information about patch tokens through the at-

tention mechanism (Dosovitskiy et al., 2021): C ′
i =

∑N−1
j=0 αijPj , where αij =

exp

(
Ci·P

T
j√

d

)
∑N−1

m=0 exp

(
Ci·PT

m√
d

) ,

Where C and P are short for class token and patch token, respectively. The alignments make local
features (patch tokens P ) become more consistent in the feature space, making it easier to identify
local features of the same object or scene in different views, thus enhancing global semantic (class
tokens C ′) extraction.

In summary, the LRA module aligns the local representations of two view samples, allowing class
tokens to aggregate detailed feature information and thus enhancing the DPD approach for a more
discriminative classifier.

Overall Loss. we combine the classification loss (Eq. (3)) and local representation alignment
loss (Eq. (6)) in self-distillation. The ultimate supervision loss in prototype classifier training is
updated as Lself−dis = Ls

cls(θ;Dl) + Lu
cls(θ;D)︸ ︷︷ ︸

Baseline

+α ·Lpatch(θ;D), where Ls
cls(θ;Dl) is a standard

cross-entropy loss on labeled data, and Lu
cls(θ;D) is proposed in Eq. (3).

By simply integrating the Dynamic Prototype Debiasing (DPD) and Local Representation Align-
ment (LRA) modules, we propose a debiased pseudo-labeling in GCD (DebiasGCD). The overall
loss for debiasing is formulated as:

L = Lrep(θ;D)−H(θ;D)︸ ︷︷ ︸
Baseline

+Lself−dis(θ;D)︸ ︷︷ ︸
Updated

+β · Lrank(θ;Dl) (7)

where α, β are balance factors controlling the prototypical classifier learning, and H(θ;D) represents
the mean-entropy-maximisation regulariser (Assran et al., 2022). Notably, the balance factors for
the baseline losses are the same as those of SimGCD. The algorithm in the appendix describes one
training step of our proposed DebiasGCD.
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Table 1: Datase overview for GCD, containing the specific classes (‘Old’ and ‘New’) and correspond-
ing images of labeled (Dl) and unlabeled sets (Du).

Dataset CUB SCars FGCV-Aircraft CIFAR-10 CIFAR-100 ImageNet-100

Labeled Dl Old 100 98 50 5 50 50
Images 1.5k 2.0k 1.7k 12.5k 20.0k 31.9k

Unlabeled Du New 200 196 100 10 100 100
Images 4.5k 6.1k 5.0k 37.5k 30.0k 95.3k

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the effectiveness of our approach on six datasets, including three generic
object recognition datasets (namely CIFAR-10/100 (Krizhevsky et al., 2009) and ImageNet-100 (Tian
et al., 2020)) and three semantic shift benchmarks (SSB) (Vaze et al., 2022b) as well as fine-grained
datasets: CUB (Wah et al., 2011), Stanford Cars (Krause et al., 2013), and FGVC-Aircraft (Maji
et al., 2013). Following GCD (Vaze et al., 2022b), we randomly sub-sampling 50% of the seen
categories within the training set to construct labeled set Dl, with the remaining seen and novel
category images constituting the unlabeled subset Du. Table 1 details our experimental split protocol.
Evaluation protocols. Following GCD (Vaze et al., 2022b) evaluation protocol, we employ clustering
accuracy (ACC) to evaluate the model performance across all datasets. Concretely, ACC is computed
using the predicted labels ŷ with ground truth labels y∗, defined as ACC = 1

M

∑M
i=1 1 (y

∗
i = p (ŷi)),

where M = |Du|, and p aligns predicted cluster assignments with ground truth class labels using the
Hungarian optimal assignment algorithm (Kuhn, 1955).

Implementation details. Following GCD works (Vaze et al., 2022b; Wen et al., 2023), we use a
ViT-B/16 backbone (Dosovitskiy et al., 2021), pre-trained with DINO (Caron et al., 2021). During
training, we fine-tune only the last attention block of the backbone across all datasets. We adopt
strong/weak data augmentation strategies (Sohn et al., 2020) as outlined in previous research (Vaze
et al., 2023), applying strong augmentation to the student network and weak augmentation to the
teacher network. Our setup includes a batch size of 128, 200 training epochs, and an initial learning
rate of 0.1 with cosine decay. During classifier training, we initial τ = 0.07, warming up to 0.04
within the first 30 epochs. Parameters r and margins are set to 1 in Eq. (4), and we use a random
seed of 1. Experiments are implemented in PyTorch on Nvidia Tesla V100 GPUs.

5.2 QUANTITATIVE COMPARISON

Table 2: Classification results on SSB (Vaze et al., 2022a) and generic object recognition datatsets.
Bold represents the best results, underline is the second-best. ∆ denotes margins ahead of SimGCD.

Methods CUB Stanford Cars FGVC-Aircraft CIFAR-10 CIFAR-100 ImageNet-100

All Old New All Old New All Old New All Old New All Old New All Old New
k-means MacQueen et al. (1967) 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ Han et al. (2022) 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ Fini et al. (2021) 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA Liu et al. (2023) 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9
GCD Vaze et al. (2022b) 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3
GPC Zhao et al. (2023) 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7
XCon Fei et al. (2022) 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 96.0 97.3 95.4 74.2 81.2 60.3 77.6 93.5 69.7
PromptCAL Zhang et al. (2023b) 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3
µGCD Vaze et al. (2023) 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 - - - - - - - - -
DCCL Pu et al. (2023) 63.5 60.8 64.9 43.1 55.7 36.2 - - - 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2
SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
DebiasGCD (Ours) 67.4 76.3 63.0 61.8 78.9 53.6 56.8 65.7 52.3 97.4 95.4 98.4 84.1 84.2 84.0 84.2 94.0 79.3
∆ +7.1 +10.7 +5.2 +8.0 +7.0 +8.6 +2.6 +6.6 +0.5 +0.3 +0.3 +0.3 +4.0 +3.0 +6.2 +1.2 +0.9 +1.4

Comparison with Baseline. We compare our DebiasGCD with other methods on both SSB and
generic object recognition datasets, as shown in Table 2. Identifying fine-grained samples in GCD is
challenging due to their subtle differences, such as similar heads with different-sized bills. Excitingly,
our method outperforms SimGCD on fine-grained datasets. Specifically, on CUB and Stanford Cars,
it achieves a 10.7%/5.2% and 7.0%/8.6% improvement on ‘Old‘ and ‘New’ classes, respectively.
Additionally, DebiasGCD performs well on generic object recognition datasets, with improvements of
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Figure 4: DebiasGCD achieves higher
pseudo-label accuracy than SimGCD
across all datasets.
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Figure 5: Pseudo-labeling in SimGCD (Column 1, with
bias) and our method (Column 2, with less noise) for
Aircraft and CIFAR-100. Note that there are 80 seen
categories and 20 novel categories in CIFAR-100.

0.5% on CIFAR-10, 4.0% on CIFAR-100, and 1.2% on ImageNet-100 for ‘All’ classes. These results
demonstrate that DebiasGCD successfully captures local representation features, generating high-
quality pseudo-labels for prototypical learning. Furthermore, Fig. 4 shows that the pseudo-labeling
accuracy increases significantly after debiasing across all datasets, and Fig. 5 indicates our debi-
ased method recorrects pseudo-labeling effectively in FGVC-Aircraft and CIFAR-100, respectively.

(a) SimGCD (b) Ours

Figure 3: t-SNE visualization of 10 randomly sam-
pled classes from the CIFAR-100. ● denotes seen
classes, while ✖ represents novel classes. Our
proposed DebiasGCD demonstrates fewer misclas-
sified samples in both seen and novel categories
compared to the baseline SimGCD.

Visualizations of Feature and Attention Dis-
tributions. Firstly, We first use t-SNE to vi-
sualize the feature space of five randomly se-
lected categories from CIFAR-100, both seen
and novel. As shown in Fig. 3, our debiasing ap-
proach creates clearer margins and tighter clus-
ters compared to DINO and SimGCD, demon-
strating better classification discriminability.
Secondly, we visualize the attention maps of
different attention heads in the image encoder
Φ to show their focus on various image regions.
As shown in Fig. 6, compared to the baseline
SimGCD, our method highlights class-specific
object parts while reducing background noise,
indicating that DebiasGCD effectively enhances
local representation learning.

5.3 ABLATION STUDY

To examine the contributions of various elements of our proposed approach, we conduct extensive
experiments on both SSB and generic object recognition datasets, as shown in Tables 3, 4 and Fig. 7.

Effect of Dynamic Prototype Debiasing (DPD). Rows (1) in Table 3 illustrate the impact of
incorporating DPD. This technique significantly improves accuracy, especially when combined with
LRA. Comparing Row (1) with SimGCD (Row (0)), DPD enhances performance in ‘New’ classes for
CIFAR-10 and CIFAR-100 and improves all metrics (‘All’, ‘Old’, and ‘New’) for CUB and Stanford
Cars. These results highlight the efficacy of DPD in improving model performance.

Effect of Local Representation Aligning (LRA). Rows (2) also show the impact of introducing
LRA. Like DPD, LRA enhances performance in ‘New’ classes for CIFAR-10 and CIFAR-100 and
improves all metrics for CUB and Stanford Cars when comparing Row (2) with SimGCD (Row (0)).
Additionally, LRA further improves performance across ‘All’ classes by 3.9%, 3.8%, 1.9%, and 6.9%
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SimGCD SimGCDDebiasGCD DebiasGCD

Figure 6: Attention visualization of 12 different attention heads in the final layer of the image encoder
on FGVC-Aircraft and CUB, respectively.

Table 3: Ablation study on the different components of our approach. ‘Lrank’ and ‘Lpatch’ are losses
corresponding to the proposed DPD in Eq. (4) and LRA in Eq. (6), respectively. Row (0) shows the
baseline SimGCD results.

Index Component CUB SCars CIFAR-100

Lrank Lpatch All Old New All Old New All Old New
(0) ✗ ✗ 60.3 65.6 57.7 53.8 71.9 45.0 80.1 81.2 77.8
(2) ✓ ✗ 62.0 66.8 59.6 57.8 77.4 47.6 82.0 82.7 81.3
(3) ✗ ✓ 63.5 68.5 61.0 58.0 77.0 48.9 81.1 82.6 78.0
(5) ✓ ✓ 67.4 76.3 63.0 61.8 78.9 53.6 84.2 84.2 84.0

in all datasets combined with DPD, as shown by comparing Rows (2) and (3). This also indicates
LRA’s effectiveness when paired with DPD.

Effect of Top N in Dynamic Prototype Debiasing. In Sec. 4.1, we propose a debiased imbalanced
pseudo-labeling strategy via a ranking-based prototype loss (Eq. 4). Fig. 7 shows the performance
across different Top N values on all datasets. Specifically, N=0 indicates the performance of the
baseline without debiasing. When N=1, we select the smallest value in the probability vector p(xi),
resulting in preversed(xi)=

[
p0i
]

for a sample xi in Eq. (4). Compared to SimGCD (N =0), our
method improves consistently performance in all classes (‘All’, ‘Old’, and ‘New’) for various N
values in CUB, Stanford Cars, CIFAR-10, and CIFAR-100 datasets.
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Figure 7: Ablation on the Top-N in DPD in SSB and generic object recognition datasets.
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Effect of Hyperparameters α and β. Table 4 outlines the values of α and β used in Eq. (7). The
parameter α regulates the influence of detailed feature learning on the prototype classifier, while β
controls the balance of prototype margins within the DPD framework. Here, we fix α = 1 for local
representation alignment and adjust β to optimize margin balancing. As shown in the table, a setting
of β = 1 delivers superior performance for CUB and Aircraft, whereas β = 0.5 yields better results
for Stanford Cars, CIFAR-10, CIFAR-100, and ImageNet-100. Consequently, we set β = 1 for CUB
and Aircraft, and β = 0.5 for the remaining datasets.

Table 4: Ablation study on α and β of Eq. (7) in SSB and generic object recognition datasets.

CUB Stanford Cars FGCV-Aircraft CIFAR-10 CIFAR-100 ImageNet-100

α β All Old New All Old New All Old New All Old New All Old New All Old New

1 0.5 61.1 70.0 56.7 61.8 78.9 53.6 54.9 67.4 48.7 97.4 95.4 98.4 84.2 82.5 83.6 80.4 94.0 79.3
1.0 67.4 76.3 63.0 58.9 81.7 47.9 56.8 65.7 52.4 97.3 96.7 97.6 81.9 84.9 75.9 83.3 94.5 77.6

5.4 EXTEND TO OTHER OPEN-WORLD WORK

It is worth noting that our proposed method serves as a plug-and-play solution that can be seamlessly
integrated with other open-world works, such as LegoGCD (Cao et al., 2024) and SPTNet (Wang
et al., 2024). Specifically, we incorporate the proposed DPD and LRA modules into the above
frameworks in fine-grained datasets CUB, Stanford Cars, and generic dataset CIFAR-100. Table
5 shows that our components enhance classification performance in LegoGCD across all datasets,
particularly improving the accuracy on ‘New’ categories by 3.2% and 5.1% in the fine-grained CUB
and Stanford Cars datasets, respectively. Furthermore, our modules contribute to an increase in
overall (‘All’) accuracy in SPTNet, with gains of 1.0% and 3.0% on the CUB and Stanford Cars
datasets. Although the performance on the CIFAR-100 dataset has slightly decreased (-0.1 in ‘All’),
we believe it can be improved with further parameter adjustments. Overall, our proposed method is
effective and can be applied to other open-world scenarios.

Table 5: Classification results on other open-world works combined with our proposed components
across fine-grained and generic recognition datasets. ∆ indicates margins after debiasing.

Index Methods CUB Stanford Cars CIFAR-100

All Old New All Old New All Old New
(1) LegoGCD Cao et al. (2024) 63.8 71.9 59.8 57.3 75.7 48.3 81.8 81.4 82.5
(2) With debiasing 66.7 72.1 64.0 60.9 76.1 53.4 82.6 84.2 81.1
(3) ∆ 2.9 +0.2 +3.2 +3.6 +0.4 +5.1 +0.8 +2.8 -1.4
(4) SPTNet Wang et al. (2024) 65.8 68.8 65.1 59.0 79.2 49.3 81.3 84.3 75.6
(5) With debiasing 66.8 73.1 63.7 62.0 78.0 54.4 81.2 84.0 76.0
(6) ∆ 1.0 +4.3 -1.4 +3.0 -1.2 +4.1 -0.1 -0.3 +0.4

6 CONCLUSION

In this paper, we first investigate the previously unrecognized bias of imbalanced pseudo-labeling
in the GCD task. We then propose an effective debiasing method, DebiasGCD, to address this
imbalance between seen and novel categories in classifier prototype learning. To implement this
debiasing, we propose a dynamic prototype debiasing technique to maintain a margin between
prototypes dynamically, encouraging the network to explore category-specific features and enhance
prototype distinction. Furthermore, to improve the learning for more discriminable representations
in DPD, we propose a local representations alignment module to discover more subtle features that
benefit classification, especially in fine-grained datasets. Extensive results show that our DebiasGCD
significantly outperforms the baseline SimGCD, effectively mitigating the pseudo-labeling bias.

REFERENCES

Wenbin An, Feng Tian, Qinghua Zheng, Wei Ding, QianYing Wang, and Ping Chen. Generalized
category discovery with decoupled prototypical network. In AAAI, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wenbin An, Feng Tian, Wenkai Shi, Yan Chen, Yaqiang Wu, Qianying Wang, and Ping Chen. Transfer
and alignment network for generalized category discovery. In AAAI, 2024.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient
learning. In ECCV, 2022.

David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and
Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmentation
anchoring. In ICLR, 2020.

Xinzi Cao, Xiawu Zheng, Guanhong Wang, Weijiang Yu, Yunhang Shen, Ke Li, Yutong Lu, and
Yonghong Tian. Solving the catastrophic forgetting problem in generalized category discovery. In
CVPR, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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