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Abstract
Recent work claims that large language models
display emergent abilities, abilities not present
in smaller-scale models that are present in larger-
scale models. What makes emergent abilities in-
triguing is two-fold: their sharpness, transition-
ing seemingly instantaneously from not present
to present, and their unpredictability, appearing
at seemingly unforeseeable model scales. We
present an alternative explanation for emergent
abilities: that for a particular task and model fam-
ily, when analyzing fixed model outputs, emer-
gent abilities appear due to the researcher’s choice
of metric. Specifically, nonlinear or discontin-
uous metrics produce apparent emergent abili-
ties, whereas linear or continuous metrics pro-
duce smooth, continuous, predictable changes
in model performance. We present our alterna-
tive explanation in a simple mathematical model,
then test it in three ways: we (1) make, test
and confirm predictions on the effect of metric
choice using the InstructGPT/GPT-3 family; (2)
make, test and confirm predictions about metric
choices in a meta-analysis on BIG-Bench; and
(3) show how to choose metrics to produce never-
before-seen seemingly emergent abilities on vi-
sion tasks. These analyses provide evidence that
alleged emergent abilities disappear with different
metrics or better statistics. Our work challenging
a popular conception speaks to challenges with
accurately evaluating generative AI models.

1. Introduction
Emergent properties of complex systems have long been
studied across disciplines, from physics to biology to math-
ematics. The idea of emergence was popularized by Nobel
Prize-winning physicist P.W. Anderson’s “More Is Different”
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(Anderson, 1972), which argues as the complexity of a sys-
tem increases, new properties may materialize that cannot
be predicted even from a precise quantitative understanding
of the system’s microscopic details. Recently, the idea of
emergence gained significant attention in machine learn-
ing due to observations that large language models (LLMs)
such as GPT (Brown et al., 2020), PaLM (Chowdhery et al.,
2022) and LaMDA (Thoppilan et al., 2022) exhibit so-called
“emergent abilities” (Wei et al., 2022; Ganguli et al., 2022;
Srivastava et al., 2022; Brown et al., 2020).

The term “emergent abilities of LLMs” was recently defined
as “abilities that are not present in smaller-scale models
but are present in large-scale models; thus they cannot be
predicted by simply extrapolating the performance improve-
ments on smaller-scale models” (Wei et al., 2022). We call
into question the claim that LLMs possess emergent abili-
ties, by which we specifically mean sharp and unpredictable
changes in model outputs as a function of model scale on
specific tasks. Our doubt stems from the observation that
emergent abilities seem to appear only under metrics that
nonlinearly or discontinuously scale any model’s per-token
error rate. As we later show, > 92% of emergent abilities on
BIG-Bench tasks (Srivastava et al., 2022) hand-annotated
by Wei (2022) appear under one of these two metrics:

Multiple Choice Grade def
={

1 if highest probability mass on correct option
0 otherwise

Exact String Match def
={

1 if output string exactly matches target string
0 otherwise

This raises the possibility of an alternative explanation for
the origin of LLMs’ emergent abilities: emergent abilities
are a mirage caused primarily by the researcher choosing
a metric that nonlinearly or discontinuously deforms per-
token error rates, and secondarily by possessing too few
test data to accurately estimate the performance of smaller
models, thereby causing smaller models to appear wholly
unable to perform the task.

To communicate our alternative explanation, we present it
as a simple mathematical model and demonstrate how it
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Figure 1. Emergent abilities of large language models are cre-
ated by the researcher’s chosen metrics, not unpredictable
changes in model behavior with scale. (A) Suppose the per-token
cross-entropy loss decreases monotonically with model scale, e.g.,
LCE scales as a power law. (B) The per-token probability of select-
ing the correct token asymptotes towards 1. (C) If the researcher
scores models’ outputs using a nonlinear metric such as Accuracy
(which requires a sequence of tokens to all be correct), the metric
choice nonlinearly scales performance, causing performance to
change sharply and unpredictably in a manner that qualitatively
matches published emergent abilities (inset). (D) If the researcher
instead scores models’ outputs using a discontinuous metric such
as Multiple Choice Grade (akin to a step function), the metric
choice discontinuously scales performance, again causing perfor-
mance to change sharply and unpredictably. (E) Changing from
a nonlinear metric to a linear metric such as Token Edit Distance,
scaling shows smooth, continuous and predictable improvements,
ablating the emergent ability. (F) Changing from a discontinuous
metric to a continuous metric such as Brier Score again reveals
smooth, continuous and predictable improvements in task per-
formance. Consequently, emergent abilities are created by the
researcher’s choice of metrics, not fundamental changes in model
family behavior on specific tasks with scale. For a more complete
exposition, see Schaeffer et al. (2023).

quantitatively reproduces the evidence offered in support
of emergent abilities of LLMs. We then test our alternative
explanation in three complementary ways: we (1) make,
test and confirm three predictions based on our alternative
hypotheses using the InstructGPT (Lowe & Leike, 2022) /
GPT-3 (Brown et al., 2020) model family; (2) meta-analyze
published benchmarks (Srivastava et al., 2022; Wei et al.,
2022) to reveal that emergent abilities only appear for spe-
cific metrics, not for model families on particular tasks; (3)
induce never-before-seen, seemingly emergent abilities in
multiple architectures across various vision tasks by inten-
tionally changing the metrics used for evaluation.

2. Alternative Explanation for Emergent
Abilities

What might cause smooth, continuous, predictable changes
in model family performance to appear sharp and unpre-
dictable? The researcher’s choice of a nonlinear or discon-

tinuous metric can distort the model family’s performance to
appear sharp and unpredictable. To expound, suppose that
within a model family, the test loss falls smoothly, continu-
ously and predictably with the number of model parameters.
One reason to believe this is the phenomenon known as
neural scaling laws: empirical observations that networks
exhibit power law scaling in the test loss as a function of
training dataset size, number of parameters or compute (Hes-
tness et al., 2017; Rosenfeld et al., 2019; Henighan et al.,
2020; Kaplan et al., 2020; Gordon et al., 2021; Hernandez
et al., 2021; Jones, 2021; Zhai et al., 2022; Hoffmann et al.,
2022; Clark et al., 2022; Neumann & Gros, 2022). For
concreteness, suppose we have a model family of different
numbers of parameters N > 0 such that the per-token cross
entropy falls as a power law with the number of parameters
N for constants c > 0, α < 0 (Fig. 1A):

LCE(N) =
(N
c

)α

Note we do not require this particular functional form to
hold; rather, we use it for illustrative purposes. Let V denote
the set of possible tokens, p ∈ ∆|V |−1 denote the true but
unknown probability distribution, and p̂N ∈ ∆|V |−1 denote
the N -parameter model’s predicted probability distribution.
In practice, p is unknown, so we substitute a one-hot distri-
bution of the observed token v∗ to compute the per-token
cross entropy as a function of number of parameters N :

LCE(N) = − log p̂N (v∗)

A model with N parameters then has a per-token probability
of selecting the correct token (Fig. 1B):

p(single token correct) = exp
(
− LCE(N)

)
Suppose the researcher then chooses a metric that requires
selecting L tokens correctly. For example, our task might
be L-digit integer addition, and a model’s output is scored
1 if all L output digits exactly match all target digits with
no additions, deletions or substitutions, 0 otherwise. If
the probability each token is correct is independent1, the
probability of scoring 1 is:

Accuracy(N) ≈ pN (single token correct)num. of tokens

This choice of metric nonlinearly scales performance with
increasing token sequence length. When plotting perfor-
mance on a linear-log plot, one sees a sharp, unpredictable
emergent ability on longer sequences (Fig. 1C) that closely
matches claimed emergent abilities (inset). What happens if

1While the independence assumption is not true, the approxima-
tion yields results qualitatively matching the observed emergence
claims.
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Figure 2. Claimed emergent abilities evaporate upon changing
the metric. Left to Right: Mathematical Model, 2-Integer 2-Digit
Multiplication Task, 2-Integer 4-Digit Addition Task. Top: When
performance is measured by a nonlinear metric (e.g., Accuracy),
the InstructGPT/GPT-3 family’s performance appears sharp and
unpredictable on longer target lengths. Bottom: When perfor-
mance is instead measured by a linear metric (e.g., Token Edit
Distance), the family exhibits smooth, predictable improvements.

the researcher switches from a nonlinear metric like Accu-
racy, under which the per-token error rate scales geometri-
cally in target length (App. A.3), to an approximately linear
metric like Token Edit Distance, under which the per-token
error rate scales quasi-linearly in target length (App. A.2)?

Token Edit Distance(N) ≈ L
(
1− pN (single token correct)

)
The linear metric reveals smooth, continuous, predictable
changes in model performance (Fig. 1E). Similarly, if the
researcher uses a discontinuous metric like Multiple Choice
Grade, the researcher can find emergent abilities (Fig. 1D),
but switching to a continuous metric like Brier Score re-
moves the emergent ability (Fig. 1F). In summary, sharp
and unpredictable changes with increasing scale can be fully
explained by three interpretable factors: (1) the researcher
choosing a metric that nonlinearly or discontinuously scales
the per-token error rate, (2) having insufficient resolution
to estimate model performance in the smaller parameter
regime, with resolution set by 1/test dataset size, and (3)
insufficiently sampling the larger parameter regime.

3. Analyzing InstructGPT/GPT-3’s Emergent
Arithmetic Abilities

Previous papers prominently claimed the GPT (Brown et al.,
2020; Lowe & Leike, 2022) family2 displays emergent abil-
ities at integer arithmetic tasks (Ganguli et al., 2022; Srivas-
tava et al., 2022; Wei et al., 2022) (Fig. 1E). We chose these
tasks as they were prominently presented, and we focused
on the GPT family due to it being publicly queryable. To

2As of 2023-03-15, 4 models with 350M, 1.3B, 6.7B, 175B
parameters are available via the OpenAI API.
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Figure 3. Claimed emergent abilities evaporate upon using bet-
ter statistics. Left to Right: Mathematical Model, 2-Integer 2-
Digit Multiplication Task, 2-Integer 4-Digit Addition Task. Gen-
erating additional test data to increase the resolution reveals that
even on Accuracy, the InstructGPT/GPT-3 family’s performance is
above chance and improves in a smooth, continuous, predictable
manner that qualitatively matches the mathematical model.

test predictions made by our mathematical model, we col-
lected outputs from the InstructGPT/GPT-3 family on two
tasks: 2-shot multiplication between two 2-digit integers
and 2-shot addition between two 4-digit integers.

Prediction: Emergent Abilities Disappear With Differ-
ent Metrics On both tasks, the GPT family displays emer-
gent abilities if the target has 4 or 5 digits and if the metric
is Accuracy (Fig. 2, top) (Brown et al., 2020; Ganguli et al.,
2022; Wei et al., 2022). However, if one changes from
nonlinear Accuracy to linear Token Edit Distance while
keeping the models’ outputs fixed, the family’s performance
smoothly, continuously and predictably improves with in-
creasing scale (Fig. 2, bottom). This confirms our prediction
and supports our alternative that the source of emergent abil-
ities is the researcher’s choice of metric, not changes in
the model family’s outputs. Increasing the length of the
target string from 1 to 5 predictably decreases the family’s
performance in an approximately quasilinear manner.

Prediction: Emergent Abilities Disappear With Better
Statistics Our second prediction is that even on nonlinear
metrics such as Accuracy, smaller models do not have 0
accuracy, but rather have non-zero, above-chance accuracy
commensurate with choosing accuracy as the metric. To
properly measure models’ accuracy, we increased the reso-
lution by generating additional test data and found that on
both arithmetic tasks, all models in the InstructGPT/GPT-3
family achieve above-chance accuracy (Fig. 3). This con-
firms our second prediction. Increasing the length of the
target string from 1 to 5 predictably decreases the family’s
performance in an approximately geometric manner.

4. Meta-Analysis of Claimed Emergent
Abilities

Analyzing the GPT family is possible because the mod-
els are publicly queryable. However, other model fami-
lies claimed to exhibit emergent abilities are not publicly
queryable, nor are their generated outputs publicly available,
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Figure 4. Emergent abilities appear only for specific metrics,
not task-model families. (A) Possible emergent abilities appear
with at most 5 out of 39 BIG-Bench metrics. (B) Hand-annotated
data by Wei (2022) reveals emergent abilities appear only under 4
metrics. (C) > 92% of emergent abilities appear under one of two
metrics: Multiple Choice Grade and Exact String Match.

Figure 5. Changing the metric when evaluating task-model fam-
ily pairs causes emergent abilities to disappear. LaMDA dis-
plays emergent abilities when measured under the discontinuous
Multiple Choice Grade (not shown) that disappear when evaluated
under a continuous BIG-Bench metric: Brier Score.

meaning we are limited to analyzing the published results
themselves (Ganguli et al., 2022; Wei et al., 2022; Wei,
2022) contained in BIG-Bench (Srivastava et al., 2022).

Prediction: Emergent Abilities Should Appear with Met-
rics, not Task-Model Families If emergent abilities are
real, one should expect task-model family pairs to show
emergence for all reasonable metrics. However, if our al-
ternative explanation is correct, we should expect emergent
abilities to appear only under certain metrics. To test this,
we analyzed on which metrics emergent abilities appear.

34 of 39 preferred metrics in BIG-Bench display no pos-
sible emergent abilities according to the emergence score
introduced by Srivastava et al. (2022) (Fig. 4A). The re-
maining 5 are nonlinear or discontinuous, e.g., Exact String
Match, Multiple Choice Grade, ROUGE-L-Sum (App. A.4).
Because emergence score only suggests emergence, we also
analyzed hand-annotated task-metric-model family triplets
(Wei, 2022), and found emergent abilities appear with 4
metrics (Fig. 4B), with 2 metrics accounting for > 92%
of claimed emergent abilities (Fig. 4C): Multiple Choice
Grade (discontinuous) and Exact String Match (nonlinear).
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Figure 6. Induced emergent reconstruction ability in shallow
nonlinear autoencoders. (A) A published emergent ability (Sri-
vastava et al., 2022). (B) Shallow nonlinear autoencoders trained
on CIFAR100 (Krizhevsky, 2009) display smoothly decreasing
mean squared reconstruction error. (C) Using a newly defined
Reconstructionc metric (Eqn. 1) induces an unpredictable change.

Prediction: Changing Metric Removes Emergent Abili-
ties We focused on the LaMDA family (Thoppilan et al.,
2022) because its outputs are available through BIG-Bench.
For our analysis, we identified tasks on which LaMDA dis-
plays emergent abilities with Multiple Choice Grade, then
asked whether LaMDA still displays emergent abilities on
the same tasks with a different BIG-Bench metric: Brier
Score (Brier et al., 1950). Brier Score is a strictly proper
scoring rule for predictions of mutually exclusive outcomes.
LaMDA’s emergent abilities on the discontinuous Multiple
Choice Grade disappeared when we changed the metric to
the continuous Brier Score (Fig. 5).

5. Inducing Emergent Abilities in Networks on
Vision Tasks

To demonstrate how emergent abilities can be induced by
the researcher’s choice of metric, we show how to produce
emergent abilities in deep networks of various architectures:
fully connected, convolutional, self-attentional. We focus
on vision tasks because abrupt transitions in models’ capa-
bilities have not been observed to the best of our knowledge.

We first induce an emergent ability to reconstruct images
in shallow nonlinear autoencoders trained on CIFAR100
(Krizhevsky, 2009). To emphasize that the sharpness of the
metric is responsible for emergent abilities, we intentionally
define a discontinuous metric that measures a network’s
ability to reconstruct a dataset as the average number of test
data with squared reconstruction error below threshold c:

Reconstructionc
def
=

1

N

∑
n

I
[
||xn − x̂n||2 < c

]
(1)

The autoencoder family displays smoothly decreasing
squared reconstruction error as the number of units increases
(Fig. 6B). Under our newly defined metric, the autoencoder
family exhibits a sharp and seemingly unpredictable recon-
struction ability (Fig. 6C) that qualitatively matches pub-
lished emergent abilities (Fig. 6A). For the convolutional
and transformer examples, see App. B.
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A. Approximate Behavior of Metrics on Sequential Data
How do different metrics behave when used to measure autoregressive model outputs? Precisely answering this question is
tricky and possibly analytically unsolvable, so we provide an approximate answer here.

Notationally, we consider N test data of length L (here, length is measured in tokens) with targets denoted
tn

def
= (tn1, tn2, ...tnL), the autoregressive model has a true-but-unknown per-token error probability of ϵ ∈ [0, 1] and

the model outputs prediction t̂n
def
= (t̂n1, t̂n2, ...t̂nL). This assumes that the model’s per-token error probability is constant,

which is empirically false, but modeling the complex dependencies of errors is beyond our scope.

A.1. Per-Token Error Probability is Resolution-Limited

Note that because we have N test data, each of length L, our resolution for viewing the per-token error probability ϵ is
limited by 1/NL. Here, resolution refers to “the smallest interval measurable by a scientific instrument; the resolving
power.” To explain what resolution means via an example, suppose one wants to measure a coin’s probability of yielding
heads. After a single coin flip, only two outcomes are possible (H, T), so the resolution-limited probability of heads is
either 0 or 1. After two coin flips, four outcomes are possible (HH, HT, TH, TT), so the resolution-limited probability of
heads is now one of 0, 0.5, 1. After F coin flips, we can only resolve the coin’s probability of yielding heads up to 1/F .
Consequently, we introduce a resolution-limited notation:

ab
def
= a rounded to the nearest integer multiple of 1/b (2)

A.2. Token Edit Distance

We first consider an adaptation of the Levenshtein (string edit) distance for models that function on tokens rather than
characters, an adaptation we term the token edit distance. The token edit distance between two token sequences tn, t̂n is
defined as the integer number of additions, deletions or substitutions necessary to transform tn into t̂n (or vice versa).

Token Edit Distance(tn, t̂n)
def
= Num Substitutions + Num. Additions + Num. Deletions (3)

=

L∑
ℓ=1

I[tnℓ ̸= t̂nℓ] + Num. Additions + Num. Deletions (4)

≥
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ] (5)

The expected token edit distance is therefore:

E[Token Edit Distance(tn, t̂n)] ≥ E[
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ]] (6)

=

L∑
ℓ=1

p(tnℓ ̸= t̂nℓ) (7)

≈ L(1− ϵ) (8)

The resolution-limited expected token edit distance is therefore:

E[Token Edit Distance(tn, t̂n)]NL ≥ L
(
1− ϵNL

)
(9)

From this, we see that the expected token edit distance scales approximately linearly with the resolution-limited per-token
probability. The real rate is slightly higher than linear because additions and deletions contribute an additional non-negative
cost, but modeling this requires a model of how likely the model is to overproduce or underproduce tokens, which is
something we do not currently possess.
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A.3. Accuracy

Accuracy(tn, t̂n)
def
= I[No additions] I[No deletions]

L∏
l=1

I[tnl = t̂nl] (10)

≈
L∏

l=1

I[tnl = t̂nl] (11)

As with the Token Edit Distance (App. A.3), we ignore how likely the language model is to overproduce or underproduce
tokens because we do not have a good model of this process. Continuing along,

E[logAccuracy] =
∑
l

E[log I[tnl = t̂nl]] (12)

≤
∑
l

logE[I[tnl = t̂nl]] (13)

≈ L log(1− ϵ) (14)

Taking an approximation that would make most mathematicians cry:

E[Accuracy] ≈ exp(E[logAccuracy]) (15)

= (1− ϵ)L (16)
(17)

This reveals that accuracy approximately falls geometrically with target token length. The resolution-limited expected
accuracy is therefore:

E[Accuracy]NL = (1− ϵ)LNL (18)

From this we can see that choosing a nonlinear metric like Accuracy is affected significantly more by limited resolution
because Accuracy forces one to distinguish quantities that decay rapidly.

A.4. ROUGE-L-Sum

Another BIG-Bench metric (Srivastava et al., 2022) is ROUGE-L-Sum (Lin, 2004), a metric based on the longest common
subsequence (LCS) between two sequences. Section 3.2 of (Lin, 2004) gives the exact definition, but the key property is
that ROUGE-L-Sum measures the “union” LCS, which means “stitching” together LCSs across the candidate and multiple
references. As explained in the original paper: if the candidate sequence is c = w1w2w3w4w5, and if there are two reference
sequences r1 = w1w2w6w7w8 and r2 = w1w3w8w9w5, then LCS(r1, c) = w1w2 and LCS(r2, c) = w1w3w5, then the
union -LCS of c, r1, r2 is w1w2w3w5, with length 4. Intuitively, this disproportionately benefits models with smaller error
rates because their mistakes can be “stitched” across multiple references; this is confirmed in simulation (Fig. 7).

B. Inducing Emergent Abilities in Networks on Vision Tasks
B.1. Emergent Classification of MNIST Handwritten Digits by Convolutional Networks

We begin by inducing an emergent classification ability in a LeNet convolutional neural network family (LeCun et al., 1998),
trained on the MNIST handwritten digits dataset (LeCun, 1998). This family displays smoothly increasing test accuracy as
the number of parameters increase (Fig. 8B). To emulate the accuracy metric used by emergence papers (Ganguli et al., 2022;
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Figure 7. ROUGE-L-Sum is a sharp metric. Simulations show that as the per-token error probability slightly increase (e.g. from 0.05 to
0.1), the ROUGE-L-Sum metric sharply falls.
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Figure 8. Induced emergent MNIST classification ability in convolutional networks. (A) A published emergent ability from the
BIG-Bench Grounded Mappings task (Wei et al., 2022). (B) LeNet trained on MNIST (LeCun, 1998) displays a predictable, commonplace
sigmoidal increase in test accuracy as model parameters increase. (C) When accuracy is redefined as correctly classifying K out of K
independent test data, this newly defined metric induces a seemingly unpredictable change.
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Figure 9. Induced emergent classification ability in autoregressive Transformers. (A) A published emergent ability on the MMLU
benchmark (Ganguli et al., 2022). (B) Autoregressive transformers trained to classify Omniglot images display increasing accuracy with
increasing scale. (C) When accuracy is redefined as classifying all images correctly, a seemingly emergent ability appears.

Wei et al., 2022; Srivastava et al., 2022), we use subset accuracy: 1 if the network classifies K out of K (independent) test
data correctly, 0 otherwise. Under this definition of accuracy, the model family displays an “emergent” ability to correctly
classify sets of MNIST digits as K increases from 1 to 5, especially when combined with sparse sampling of model sizes
(Fig. 8C). This convolutional family’s emergent classification ability qualitatively matches published emergent abilities, e.g.,
at the BIG-Bench Grounded Mappings task (Wei et al., 2022) (Fig. 8A).

B.2. Emergent Classification of Omniglot Characters by Autoregressive Transformers

We next induce emergent abilities in Transformers (Vaswani et al., 2017) trained to autoregressively classify Omniglot
handwritten characters (Lake et al., 2015), in a setup inspired by recent work (Chan et al., 2022): Omniglot images are
embedded by convolutional layers, then sequences of embedded image-image class label pairs are fed into decoder-only
transformers. We measure image classification performance on sequences of length L ∈ [1, 5], again via subset accuracy: 1
if all L images are classified correctly (Fig. 9B), 0 otherwise. Causal transformers display a seemingly emergent ability to
correctly classify Omniglot handwritten characters (Fig. 9C) that qualitatively matches published emergent abilities (Fig.
9A).
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