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Abstract
We develop a semi-amortized, policy-based, ap-
proach to Bayesian experimental design (BED)
called Stepwise Deep Adaptive Design (Step-
DAD). Like existing, fully amortized, policy-
based BED approaches, Step-DAD trains a design
policy upfront before the experiment. However,
rather than keeping this policy fixed, Step-DAD
periodically updates it as data is gathered, refin-
ing it to the particular experimental instance. This
test-time adaptation improves both the flexibility
and the robustness of the design strategy com-
pared with existing approaches. Empirically, Step-
DAD consistently demonstrates superior decision-
making and robustness compared with current
state-of-the-art BED methods.

1. Introduction
Adaptive experimentation plays a crucial role in science
and engineering: it enables targeted and efficient data ac-
quisition by sequentially integrating information gathered
from past experiment iterations into subsequent design deci-
sions (Atkinson et al., 2007; MacKay, 1992; Myung et al.,
2013). For example, consider an online survey that aims to
infer individual preferences through personalized questions.
By strategically tailoring future questions based on insights
from past responses, the survey can rapidly hone in on rele-
vant questions for each specific individual, enabling precise
preference inference with fewer, more targeted questions.

Bayesian experimental design (BED) offers a princi-
pled framework for solving such optimal design prob-
lems (Chaloner and Verdinelli, 1995; Rainforth et al., 2024;
Ryan et al., 2016). In BED, the quantity of interest (e.g.
individual preferences), is represented as an unknown pa-
rameter θ and modelled probabilistically through a joint
generative model on θ and experiment outcomes given de-
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signs. The goal is then to choose designs that are maximally
informative about θ. Namely, we maximize the Expected
Information Gain (EIG) (Lindley, 1956; 1972), which mea-
sures the expected reduction in our uncertainty about θ from
running an experiment with a given design.

The traditional adaptive BED approach, illustrated in Fig 1a,
involves iterating between making design decisions by op-
timizing the EIG of the next experiment step, and updat-
ing the underlying model through Bayesian updates that
condition on the data obtained so far. Unfortunately, this
approach leads to sub-optimal design decisions, as it is a
greedy, myopic, strategy that fails to consider future ex-
periment steps (Foster, 2021; Huan and Marzouk, 2016).
Furthermore, it requires substantial computation to be un-
dertaken at each experiment iteration, making it impractical
for real-time applications (Rainforth et al., 2024).

Foster et al. (2021) showed that this traditional framework
can be significantly improved upon by taking a policy-based
approach (PB-BED). As shown in Fig 1b, their Deep Adap-
tive Design (DAD) framework, and its extensions (Blau
et al., 2022; Ivanova et al., 2021; Lim et al., 2022), are
based on learning a design policy network that maps from
experimental histories to new designs. This policy is trained
before the experiment, then deployed to make design de-
cisions automatically at test time. This provides a fully
amortized approach that eliminates the need for significant
computation during the experiment itself, thereby enabling
real-time, adaptive, and non-myopic design strategies that
represent the current state-of-the-art in adaptive BED.

In principle, these fully amortized approaches can learn the-
oretically optimal design strategies (in terms of total EIG).
In practice, learning a policy that remains optimal for all
possible experiment realizations is rarely realistic. In par-
ticular, the dimensionality of experimental history expands
as the experiment progresses, making it increasingly diffi-
cult to account for all possible eventualities through upfront
training alone. Moreover, deficiencies in our model can
mean that data observed in practice can be highly distinct
from the simulated data used to train the policy.

To address these limitations, and allow utilisation of any
available computation during the experiment, we introduce
a hybrid, semi-amortized, PB-BED approach, called Step-
wise Deep Adaptive Design (Step-DAD). As illustrated in
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Fig 1c, Step-DAD periodically updates the policy during the
experiment. This allows the policy to be adapted using pre-
viously gathered data, refining it to maximize performance
for the particular realization of the data that we observe. In
turn, this allows Step-DAD to make more accurate design
decisions and provides significant improvements in robust-
ness to observing data that is dissimilar to that generated
in the original policy training. Empirical evaluations reveal
Step-DAD is able to provide significant improvements in
state-of-the-art design performance, while using substan-
tially less computation than the traditional BED approach.

2. Background
Guided by the principle of information maximization,
Bayesian experimental design (BED, Lindley, 1956) is a
model-based framework for designing optimal experiments.
Given a model p(θ)p(y | θ, ξ), describing the relationship
between experimental outcomes y, controllable designs ξ
and unknown parameters of interest θ, the goal is to select
the experiment ξ that maximizes the expected information
gain (EIG) about θ. The EIG, which is equivalent to the mu-
tual information between θ and y, is the expected reduction
in Shannon entropy from the prior to the posterior of θ:

I(ξ, y) = Ep(y|ξ)[H[p(θ)]−H[p(θ | ξ, y)]],

where p(y | ξ) = Ep(θ)[p(y | θ, ξ)] is the prior predictive
distribution of our model.

2.1. Traditional Adaptive BED

BED becomes particularly powerful in adaptive contexts,
where we allow the future design decision at time t, ξt,
to be informed by the data acquired up to that point,
ht−1 := (ξ1, y1), . . . , (ξt−1, yt−1), which we refer to as the
history. In the traditional adaptive BED framework (Ryan
et al., 2016), this is done by assimilating the data into the
model by fitting the posterior p(θ | ht−1), followed by the
maximization of the one-step ahead, or incremental, EIG

Iht−1(ξt) = E
[
H[p(θ | ht−1)]−H[p(θ | ht)]

]
, (1)

where the expectation is taken with respect to the marginal
distribution p(y | ξt, ht−1) = Ep(θ|ht−1)[p(y | θ, ξt, ht−1)].
We use the superscript ht−1 to emphasize conditioning on
the history currently available, setting h0 = ∅. This is a
closed-loop approach (Foster, 2022; Huan and Marzouk,
2016), explicitly integrating all of the acquired data to refine
beliefs about θ and inform subsequent design decisions.

Whilst this traditional framework offers a principled and
systematic way to optimize experimental designs, it comes
with some limitations. One drawback is its myopic nature
that greedily maximizes for the next best design and over-
looks the impact of future experiments, ultimately leading
to sub-optimal design decisions. Another limitation is the

significant computational expense incurred from the itera-
tive posterior inference and EIG optimization. In general,
the posterior computation is intractable and the EIG (1) esti-
mation is doubly intractable (Foster et al., 2019; Rainforth
et al., 2018). Since both of these steps must be conducted at
each step of the experiment, the traditional adaptive BED
approach is often impractical for real-time applications.

2.2. Amortized Policy-Based BED

In response to the limitations of traditional adaptive BED,
Foster et al. (2021) introduce the idea of amortizing the
adaptive design process through learnt policies. This amor-
tized policy-based BED (PB-BED) approach represents a
significant advancement over the traditional framework, de-
livering state-of-the-art non-myopic design optimization
whilst enabling real-time deployment.

PB-BED reformulates the design problem using a policy
π, which maps experimental histories to subsequent design
choices, π : ht−1 7→ ξt. The optimal policy is now the one
that maximizes the total EIG across the entire sequence of
T experiments (Foster et al., 2021; Shen and Huan, 2021)
I1→T (π) = Ep(hT |π) [H[p(θ)]−H[p(θ | hT )]] (2)

= Ep(θ)p(hT | θ,π) [log p(hT | θ, π)− log p(hT |π)] (3)

where p(hT | θ, π) =
∏T

t=1 p(yt | θ, ξt, ht−1), p(hT |π) =
Ep(θ)[p(hT | θ, π)], and ξt = π(ht−1) are all evaluated au-
toregressively. This policy-based formulation strictly gen-
eralizes the traditional adaptive BED approach, which can
be viewed as using a specific policy that maximizes the
incremental one-step-ahead EIG (1) at each iteration, that is
πtrad(ht−1) = argmaxξt I

ht−1

t−1→t(ξt).

Whilst the total EIG formulation (2) provides a unified train-
ing objective for the policy, it remains doubly intractable
like the standard EIG. The original Deep Adaptive Design
(DAD) method (Foster et al., 2021) addressed this by using
tractable variational lower bounds of the EIG (Foster et al.,
2019; 2020; Kleinegesse and Gutmann, 2020) coupled with
stochastic gradient ascent (SGA) schemes to directly train
a policy network taking the form of a deep neural network
directly mapping from histories to design decisions. It thus
provided a foundation for conducting PB-BED in practice.

A number of extensions to the DAD approach have since
been developed (Blau et al., 2022; Ivanova et al., 2021; Lim
et al., 2022), broadening its applicability to a wider class
of models by proposing alternative policy training schemes.
All share a core methodology, where the policy is trained
only once, offline, with experimental histories simulated
from the model p(θ)p(hT | θ, π). Once trained, it remains
unchanged during the live experiment and across multiple
experimental instances (e.g. different survey participants),
as illustrated in Fig 1b. This fully amortized approach elimi-
nates the need for posterior inference and EIG optimization
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Figure 1: Overview of adaptive BED approaches. The traditional BED approach fits a posterior after each experiment
iteration and optimizes for the next step best designs (i.e. greedily). Fully amortized policy-based BED approaches like
DAD train a policy once offline, before the live experiment, then deploy this as a fixed policy to make adaptive design
decisions during the experiment. Our semi-amortized approach enables periodic policy refinement during test-time.

at each step of the experiment, thereby allowing design
decisions to be made almost instantly at deployment.

3. Semi-Amortized PB-BED
Fully amortized PB-BED methods enable real-time deploy-
ment and provide design decisions that are typically superior
to those of the traditional framework. However, there are
many problems where we can afford to perform some test-
time training during the experiment itself. It is therefore
natural to ask whether we can usefully exploit such com-
putational availability to further improve the quality of our
design decisions? In particular, the fact that the current
state-of-the-art approaches for design quality are all fully
amortized suggests that improvements should be possible
when this is not a computational necessity.

To address this, we note that the computational gains of
fully amortized PB-BED methods comes at the cost of their
inability to adapt the policy itself in response to acquired
experimental data. We argue that this rigidity leads to sub-
optimal designs decisions, particularly in scenarios where
the real-world experimental data significantly deviates from
the simulated histories used during training of the policy.
Two primary factors contribute to this issue:

Imperfect training In fully amortized PB-BED we simu-
late experimental histories to try and learn a policy that will
generalize across the entire experimental space—effectively
learning a regressor from all possible histories to design
decisions. However, the effectiveness of any learner with
finite data/training is inevitably limited, especially in re-
gions of the input space where training data is sparse. In
short, we are learning a policy to cover all possible histo-
ries we might see, but at deployment we are dealing only
with a specific history that may be similar to few, if any, of
the histories we simulated during training. This challenge
is particularly exacerbated in experiments with extended
horizons, due to the high dimensionality of the resulting
histories. Additionally, the finite representational capacity
of the policy hinders perfect approximation even with in-

finite data. Together these lead to a discrepancy between
the learned policy π and the true optimal design strategy π∗,
producing an approximation gap for the learned policies.

Double reliance on the generative model Fully amortized
PB-BED relies on the generative model to both simulate
experimental histories for policy training and to evaluate
the success of our design decisions via the total resulting
information gained. In other words, we use the model in
both the expectation and information gain elements of the
EIG in (2). This dual reliance magnifies the consequences
of model misspecifications (Go and Isaac, 2022; Overstall
and McGree, 2022). Moreover, even if the model is well-
specified from a Bayesian inference perspective,there might
still be significant discrepancies between the prior-predictive
distribution, p(hT |π), used to simulate data in the policy
training and the true underlying data generating distribution.

The upshot of this is that we may see data at deployment
that is highly distinct from any simulated during the policy
training. The lack of mechanisms for integrating real exper-
imental data means that fully amortized approaches have
no mechanism to overcome this issue. This can be charac-
terized as a form of generalization gap—the learned policy
fails to generalize to the real-world experimental conditions,
due to its inability to integrate and respond to the actual
experimental data gathered so far (Hastie et al., 2009).

3.1. Online policy updating

To address these limitations, we propose a semi-amortized
PB-BED framework, which introduces dynamic adapt-
ability by allowing periodic updates to the policy during
deployment in response to acquired experimental data. In
short, it will update the original policy at one or more points
during the experiment, refining it to maximize the EIG of
the remaining steps, conditioned on the data gathered so far.

The motivation behind this semi-amortized framework is
the intuition that while a fully amortized policy is a strong
starting point, it can be significantly enhanced through tar-
geted refinements leveraging gathered data. Focusing for
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now on the case of a single policy update, the following
proposition formalizes this intuition and lays the theoretical
foundation for semi-amortized PB-BED.

Proposition 3.1 (Decomposition of total EIG). For any
design policy π, the total EIG of a T -step experiment can
be decomposed as

I1→T (π) = I1→τ (π) + Ep(hτ |π)[Ihτ

τ+1→T (π)], (4)

for any intermediate step 1 ≤ τ ≤ T , where

Ihτ

τ+1→T (π) =

Ep(θ|hτ )p(hτ+1:T |hτ ,θ,π)

[
log

p(hτ+1:T |hτ , θ, π)

p(hτ+1:T |hτ , π)

]
.

(5)

Proof. We can write the likelihood and marginal as

p(hT | θ, π) = p(hτ | θ, π)p(hτ+1:T |hτ , θ, π)

p(hT |π) = p(hτ |π)p(hτ+1:T |hτ , π).

Substituting in (2) and rearranging now yields

I1→T (π) = Ep(θ)p(hτ |θ,π)

[
log

p(hτ | θ, π)
p(hτ |π)

]
+

Ep(hτ |π)p(θ|hτ )p(hτ+1:T |hτ ,θ,π)

[
log

p(hτ+1:T |hτ , θ, π)

p(hτ+1:T |hτ , π)

]
= I1→τ (π) + Ep(hτ |π)[Ihτ

τ+1→T (π)] as required.

This decomposition of the total EIG into two distinct
components—the EIG accumulated up to an intermediate
step τ , and the expected EIG for subsequent steps condi-
tional on the history at that point hτ—demonstrates that the
optimality of a policy for the latter phases of the experiment,
from τ + 1 to T , is solely determined by the model hτ .

To see this, first note that, without loss of generality, we can
break down the definition of our policy into how it behaves
when given histories of length less than τ and when it is
given longer histories, such that π(ht) = π0(ht) if t < τ
and π(ht) = πτ (ht) if t ≥ τ . We can thus rewrite (4) as

I1→T (π) = I1→τ (π0) + Ep(hτ |π0)[I
hτ

τ+1→T (πτ )].

Here the first term is independent of πτ , while π0 affects the
second one only through its influence on the distribution of
hτ . At deployment time, we will have a specific hτ once we
reach step τ of the experiment, and so the conditional opti-
mal policy for the remaining steps given the data gathered so
far is argmaxπτ

Ihτ

τ+1→T (πτ ), which is independent of π0.

Our semi-amortized framework is now based around exploit-
ing this independence to refine the policy midway through
the experiment by introducing a step design policy πs. Ini-
tially, πs uses the fully amortized policy π0 for the first τ
steps of the experiment. Here π0 trained as if would be
used for the full experiment, such that we maximize its total
EIG, I1→T (π0). After step τ , πs switches to a new policy

πτ , which is trained to maximize the total remaining EIG,
Ihτ

τ+1→T (πτ ), as defined in (5).

This gives us an infer-refine process for semi-amortization
in PB-BED that mirrors the two stage procedure characteris-
tic of traditional adaptive BED (cf Fig. 1a and Fig. 1c). The
infer stage entails fitting the posterior distribution p(θ |hτ )
with the data up to τ . The subsequent refine stage learns
a customized policy πτ for the remaining steps of the ex-
periment by maximizing (5). It therefore allows for more
effective design decisions than the fully amortized approach.
However, unlike the traditional BED approach, which is
greedy and requires updates at every experimental step, our
semi-amortized method offers a superior non-myopic design
strategy and allows for selective updates.

It is important to acknowledge that this approach requires
some computation during the experiment, which can pose
challenges in applications where design decisions must be
made very quickly. However, in many cases there is some
computation time available, and our semi-amortized ap-
proach can exploit this, even if the available time is limited.
In particular, as we will show in subsequent sections, im-
provements to the policy can often be achieved with minimal
additional training, such that substantial gains are often pos-
sible without drastically compromising deployment speed.
As such, semi-amortized PB-BED still maintains large com-
putational benefits over traditional adaptive BED.

Multi-step policy updates We can naturally extend our
approach to include a multi-step update mechanism, not-
ing that Proposition 3.1 can be applied recursively to break
down the total EIG into more segments. To this end, we
define a refinement schedule, T = τ0, τ1, · · · , τK—an in-
creasing sequence defining the points at which the policy is
refined. We adopt the convention τ0 = 0 and h0 = ∅, mark-
ing the offline optimization of the fully-amortized policy π0.
For τk > 0, we follow our two-stage infer-refine procedure.
In general, the more often we refine the policy, the better
it will be (albeit with diminishing returns), at the cost of
increasing the required deployment-time computation.

4. Stepwise Deep Adaptive Design
We introduce Stepwise Deep Adaptive Design (Step-DAD)
to implement our semi-amortized PB-BED framework in
practice. Building on DAD and the infer-refine procedure
outlined in the last section, Step-DAD employs stochas-
tic gradient ascent schemes to optimize variational lower
bounds on the remaining EIG (5) to sequentially train the
step policy πs in a scalable manner. An overview of Step-
DAD is presented in Algorithm 1 in Appendix A

The two key components of Step-DAD’s aforementioned
infer-refine procedure are an inference method for approxi-
mating p(θ|hτ ), and a refinement strategy for using this to
update our policy. Standard inference techniques (such as
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variational inference or Monte Carlo methods) can be used
for the former as discussed in our experiments. Our focus
here will therefore instead be on our specialized procedure
for policy refinement and the policy architecture itself.

4.1. Policy refinement

Due to its doubly intractable nature, the task of optimizing
the remaining EIG, Ihτk

τk+1→T (π), presents a notable
challenge. In selecting an appropriate scalable and efficient
estimator for it, we wish to ensure compatibility with a
wide range of inference schemes for p(θ |hτk). Namely,
as this serves as an updated ‘prior’ during the policy
refinement, it is important that we use an EIG estimator that
does not require evaluations of the prior density, to ensure
compatibility with sample-based inference schemes.

Lower bound estimators such as the explicit-likelihood-
based sequential Prior Contrastive Estimator (sPCE, Fos-
ter et al., 2021), as well as the implicit likelihood In-
foNCE (Ivanova et al., 2021; van den Oord et al., 2018)
and NWJ (Kleinegesse and Gutmann, 2020; Nguyen et al.,
2010) bounds, align with this requirement. For generative
models with explicit likelihoods (implicit models are dis-
cussed in Appendix B) we therefore use the sPCE bound:

Lhτk

τk+1→T (π)=E

[
log

p(hτk+1:T |θ0, hτk , π)
1

L+1

∑L
ℓ=0 p(hτk+1:T |θℓ, hτk , π)

]
.

(6)

Step-DAD parameterizes π by a neural network and opti-
mizes an appropriate objective, such as (6), with respect
to the network parameters using stochastic gradient ascent
(SGA) schemes (Kingma and Ba, 2014; Robbins and Monro,
1951). Following Foster et al. (2021), we use path-wise
gradients in the case of reparametrizable distributions (Mo-
hamed et al., 2020; Rezende et al., 2014), and score function
(REINFORCE) otherwise (Williams, 1992).

4.2. Policy architecture

Similar to Foster et al. (2021), our policy architecture is
based on individually embeding each design-outcome pair
(ξi, yi) ∈ ht into a fixed-dimensional representation, be-
fore aggregating them across t to produce a summary vector.
This allows for condensing varied-length experimental histo-
ries into a consistent dimensionality, to handle variable his-
tory sizes. The summary vector is then mapped to the next
experimental design ξt+1. For the aggregation mechanism,
the choice between permutation invariant and autoregressive
architectures depends on the nature of the data. When the
data ht is exchangeable, permutation invariant architectures
like DeepSets (Zaheer et al., 2017) or SetTransformer (Lee
et al., 2019) are suitable. In contrast, sequential or time-
series data would benefit from autoregressive models like
transformers (Vaswani et al., 2017).

In principle, one could train an entirely new policy πτk at
each refinement step τk, potentially even varying the specific
architecture between these. Though such a strategy may
occasionally be advantageous, we instead, propose a more
pragmatic and lightweight approach: leveraging the already
established fully amortized policy π0 as a baseline and fine-
tuning it for subsequent steps. In our experiments we do
this using full fine-tuning of all policy parameters, but one
could instead implement more parameter-efficient methods
if needed, for example, only adjusting the last few layers.

5. Related Work
The idea of using a design policy in the context of adap-
tive BED was first proposed by Huan and Marzouk (2016).
Leveraging dynamic programming principles, the policy
they learn aims to establish a mapping from explicit poste-
rior representations—serving as the state in reinforcement
learning (RL) terminology—to subsequent design choices.
As a result, each iteration of the experiment necessitates sub-
stantial computational resources for updating the posterior.
The concept of fully amortized policy-based BED, which
directly maps data collected to design decisions, has only re-
cently been introduced (Foster et al., 2021) and subsequently
extended to differentiable implicit models (Ivanova et al.,
2021) and downstream tasks (Huang et al., 2024). While
Step-DAD uses the policy training approach of DAD and
iDAD based on direct SGA of variational bounds (e.g. (6)),
our semi-amortized PB-BED framework is also compatible
with more RL-based design policy training approaches, like
those of Blau et al. (2022) and Lim et al. (2022), which are
more suited to discrete design spaces. We emphasize that
none of these previous approaches have looked to refine the
policy during the experiment itself.

As discussed in §2.1, adaptive BED has traditionally em-
ployed a two-step greedy strategy, involving posterior infer-
ence followed by an EIG optimization (Foster et al., 2019;
2020; Huan and Marzouk, 2014; Kleinegesse and Gutmann,
2019; 2020; 2021; Kleinegesse et al., 2021; Myung et al.,
2013; Overstall and McGree, 2020; Price et al., 2018; Ryan
et al., 2016; Vincent and Rainforth, 2017). While Step-DAD
diverges from these in its EIG optimization by training poli-
cies instead of designs, it does share their need to perform
posterior inference. The inference scheme used by previous
work has varied between problems and the needs of the un-
derlying Bayesian model being used, with sequential Monte
Carlo (Del Moral et al., 2006; Drovandi et al., 2014; Rain-
forth, 2017; Vincent and Rainforth, 2017) and likelihood-
free (Huan and Marzouk, 2013; Lintusaari et al., 2017;
Sisson et al., 2018; Thomas et al., 2016) inference schemes
proving popular. There is also growing recent interest in
approaches that utilize inference itself as part of the EIG
optimization. (Amzal et al., 2006; Iollo et al., 2024; 2025;
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Iqbal et al., 2024a;b). Important considerations in choosing
this scheme include the availability of an explicit likelihood,
the ability to take derivatives, and computational budget.

The challenge of model misspecification in BED remains
a critical, but relatively underexplored, problem (Farquhar
et al., 2021; Feng et al., 2015; Go and Isaac, 2022; Overstall
and McGree, 2022; Rainforth et al., 2024; Sloman et al.,
2022). Fully amortized PB-BED is particularly vulnerable
to model misspecification due to its reliance on a singular
learning phase without the capacity to integrate real-world
experimental feedback. As we will see in the experiments,
our semi-amortized PB-BED methodology, whilst not di-
rectly tackling the issue of misspecification, typically does
enhance robustness to misspecification, due to enabling iter-
ative data integration and policy refinement.

Finally, BED shares important connections to reinforcement
learning (Sutton and Barto, 2018). Most notably, it
has been shown that the adaptive BED problem can be
formulated as various forms of Markov Design Processes
(MDPs (Doshi-Velez and Konidaris, 2016; Guez et al., 2012;
Ross et al., 2007)), using the incremental EIG as the reward
and either the posterior (Huan and Marzouk, 2016) or, more
practically, the history as the state (Blau et al., 2022; Foster,
2021). Here PB-BED approaches are most closely linked
with offline model-based RL (Kidambi et al., 2020; Levine
et al., 2020; Moerland et al., 2023; Ross and Bagnell, 2012;
Yu et al., 2020), in that they learn a policy upfront which
can then be deployed. However, PB-BED varies in many
significant ways from typical RL settings. For example,
we do not have access to any data to train our policy, but
are instead focused on optimal sequential decision-making
under a given model. We can also typically directly use
SGA to train the policy as we have access to end-to-end
differentiable objectives and our rewards are typically not
sparse. We also note that our extension of fully-amortized
PB-BED to semi-amortized PB-BED is quite distinct to the
typical generalization of offline RL approaches to hybrid RL
approaches (Ball et al., 2023; Song et al., 2023; Zheng et al.,
2022), as we are making refinements to the local policy
during a single rollout using the same objective as original
amortized policy. Our approach of refining a learned policy
as new data becomes available also shares some similarities
with Model Predictive Control (Qin and Badgwell, 2003).

6. Experiments
We empirically evaluate Step-DAD on a range of design
problems, comparing its performance against DAD to de-
termine the additional EIG achieved by the step policy πs

over the fully amortized policy π0. We further consider
several other baselines for comparison. Static design learns
a fixed set of designs prior to the experiment by optimising
a PCE bound (Foster et al., 2020) that is equivalent to (6),
but which is defined in terms of the designs rather than pol-

Table 1: Source Location Finding. Upper and lower
bound estimates of total EIG. We report τ = 6, rest in
Table 11 in the Appendix. Errors show ±1s.e., com-
puted over 16 (2048) histories for step methods (rest).
DAD was trained for 50K steps, Step-DAD for 2.5K.

Method Lower bound (↑) Upper bound (↓)

Random 3.612 ± 0.012 3.613 ± 0.012
Static 3.945 ± 0.026 3.946 ± 0.026
Step-Static (τ = 6) 3.974 ± 0.008 3.975 ± 0.008
DAD 7.040 ± 0.012 7.089 ± 0.013
Step-DAD (τ = 6) 7.759 ± 0.114 7.765 ± 0.114

icy parameters (i.e. it learns a non-adaptive policy whose
design choices are fixed). The Step-Static baseline is a
two-stage approach that first trains a set of τ static designs
by optimizing a PCE bound on I1→τ (ξ1, . . . , ξτ ), before
approximating the posterior and training a new conditional
set of static designs for the last T − τ steps by optimizing a
PCE bound on Ihτ

τ+1→T (ξτ+1, . . . , ξT ). When possible, we
include Problem-Specific baselines used for the relevant
experiment before, instead considering a Random design
strategy when not. In all cases, the number of contrastive
samples used during training was L = 1023.

Our main metric for assessing the quality of various design
strategies is the total EIG, I1→T (π), as given in (2). For
the baselines, we approximate it via a version of the sPCE
lower bound (6) with L = 105 to ensure a tight bound, along
with its upper bound counterpart—the sequential Nested
Monte Carlo estimator (sNMC, Foster et al., 2021) (see Ap-
pendix B). For Step-DAD, we instead use a conservative
lower bound estimate on its difference in performance com-
pared to the original DAD network, before adding this to the
corresponding DAD estimate (see Appendix C.3). This en-
sures any biases from using bounds instead of the true EIG
lead to underestimation of the gains Step-DAD gives. Full
details on experimental details are provided in Appendix C.

6.1. Source Location Finding
We first consider the source location finding experiment
from Foster et al. (2021), which draws upon the acoustic
energy attenuation model, detailed in Sheng and Hu (2005).
The objective of the experiment is to infer the locations of
some hidden sources using noisy measurements, y, of their
combined signal intensity. Each source emits a signal that
decreases in intensity according to the inverse-square law.
A full description of the model is given in Appendix C.5.

We begin by learning a fully amortized DAD policy to per-
form T = 10 experiment steps to locate a single source. We
chose a training budget of 50K gradient steps this policy, as
we found that further training did not significantly improve
performance with our chosen architecture.

Single policy update We systematically evaluate our Step-
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Figure 2: Sensitivity to training budget for location finding
experiment. DAD policies are trained for 50K or 10K steps,
Step-DAD policies are refined for 2.5K. Errors show ±1s.e.

DAD approach by exploring all possible fine-tuning steps,
τ = 1, . . . , 9. We use importance sampling for posterior
inference and fine-tune the policy for 2.5K steps. Results
for τ = 6 are presented in Table 1, whilst Table 11 in the
Appendix shows performance for all values of τ .

Sensitivity to training budget We investigate the overall
resource efficiency of Step-DAD by comparing to DAD
under two training budgets. The full budget is as before at
50K gradient steps, whilst the reduced budget is limited to
10K steps, both then followed by 2.5K finetuning steps for
the Step-DAD networks. Figure 2 presents a conservative
comparison, showing upper bound estimates for DAD and
lower bound estimates for Step-DAD. The results reveal
that Step-DAD consistently outperforms its respective DAD
baseline for all τ > 1 at both budget levels (the apparent
slight drop for τ is likely due to the conservative estimation
scheme used). Interestingly, Step-DAD with the reduced
budget matches or exceeds the DAD with the full budget
for all τ > 3, thereby achieving better results with nearly 5
times fewer total training steps.

We note that the performance advantage of Step-DAD over
DAD appears to be most pronounced when fine-tuning oc-
curs just past the midpoint of the experiment, that is for
τ = 6, 7 or 8. At this stage, our method can effectively
leverage the accumulated data to refine the policy, while
ensuring there are enough experiment steps remaining to
benefit from the improved, customized policy.

Multiple sources We next consider a more complex setting
of locating 2, 4 and 6 sources, which correspond to a 4-,
8- and 12-dimensional unknown parameter, respectively.
Table 2 shows the results, indicating a consistent positive
EIG difference for Step-DAD over DAD.

6.2. Robustness to prior perturbations

In BED, selecting an appropriate prior is critical as it both
influences our final posterior, and the data we gather in the
first place (Go and Isaac, 2022; Simchowitz et al., 2021).

Table 2: Location finding multiple sources. Reported
for τ = 7, Step-DAD (10K, 2.5K). Errors show ±1s.e.

θ dim EIG difference DAD, total EIG (upper)

4 0.701 ± 0.023 6.483 ± 0.055
8 0.426 ± 0.014 7.111 ± 0.067

12 0.423 ± 0.012 6.956 ± 0.056
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Figure 3: Sensitivity to prior perturbations in the loca-
tion finding experiment. Total EIG for Step-DAD remains
more robust compared to DAD, which drops to zero.

Fully amortized PB-BED approaches can be particularly
prone to pathologies from imperfect prior choices, as the
prior dictates the generated data the policy is trained on.
Namely, if the prior predictive poorly matches the true data
generating process (DGP), we may observe data at deploy-
ment that is highly distinct to anything seen in the policy
training. To evaluate if Step-DAD can improve robustness
to prior imperfections, we now consider a case where the
prior, p(θ), used for the offline policy training leads to
a DGP that is significantly different to the true DGP ob-
served at deployment. To this end, we introduce a test-time
prior p̃(θ), and evaluate the policy performance under the
DGP p̃(y1:T |ξ1:T ) = Ep̃(θ)[

∏T
t=1 p(yt|θ, ξt, ht−1)], using

the EIG under this alternative model as an evaluation metric

Ip̃(θ)(π) := Ep̃(θ)p(hT |θ,π) [log p(hT | θ, π)− log p̃(hT |π)] ,
where p̃(hT |π) = Ep̃(θ)[p(hT |θ, π)].

The results for the source location finding design problem
are shown in Figure 3. It reveals that Step-DAD consistently
outperforms the DAD baseline across all degrees of prior
shift we consider, with the EIG for DAD decreasing to essen-
tially zero with the increased prior shift, whilst Step-DAD is
able to deliver positive information gains. This robustness
is anticipated due to Step-DAD’s ability to assimilate data
gathered and adjust policies in light of new evidence.

6.3. Test-Time Compute Ablations

We now perform ablations to better understand how test-
time performance is impacted by restrictions on computa-
tional budget. Firstly, for the location finding experiment we
consider three different per-step budgets for the inference
and then vary the amount of fine-tuning steps performed
for updating the StepDAD network. As shown in Figure 4,
total EIG generally improves with higher computational
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Figure 4: EIG as a function of wall time in the location
finding experiment (T=10, τ = 6), varying both the infer-
ence budget and the number of fine-tuning steps (between
250 and 10000 steps). Here 100% inference budget corre-
sponds to taking 20000 importance samples.
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Figure 5: Sensitivity to number of interventions for loca-
tion finding experiment (T=10) for different inference bud-
gets (100% = 20000 importance samples). EIG increases
with more interventions, then plateaus. Each update corre-
sponds to posterior inference + 2.5k fine-tuning steps.

budgets, with diminishing returns for large budgets. The
performance for the 100% and 200% inference budgets are
quite similar, indicating our inference has been successful,
but a performance drop is seen when only using 20% of our
previous inference budget. Importantly though, significant
gains relative to DAD (corresponding to 0s wall time in the
plot) are still achieved with small budgets corresponding to
around a minute of wall time.

Secondly, we evaluate how performance evolves as a func-
tion of the number of interventions. Each intervention con-
sists of updating the posterior and applying 2.5k fine-tuning
steps. Figure 5 shows that Total EIG consistently increases
with more interventions across all inference budgets, before
eventually plateauing. We note that even for a small number
of interventions, there is increased performance over DAD
(corresponding to 0 interventions in the plot), demonstrat-
ing the utility of Step-DAD even in settings of constrained
test-time compute budget.
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Figure 6: Hyperbolic temporal discounting. EIG im-
provement of Step-DAD over DAD after fine-tuning the
policy at step τ . The fully amortized DAD policy is trained
for 100K steps, step-policy is refined for 1K steps.

Table 3: Hyperbolic temporal discounting. Estimates of
total EIG, I1→20(π). Errors indicate ± 1 s.e., ran over 16
(2048) histories for the step methods (rest). Baselines as
reported in Foster et al. (2021), except DAD and Random.

Method Lower bound (↑) Upper bound (↓)

Random 2.249 ± 0.010 2.249 ± 0.010
Kirby (2009) 1.861 ± 0.008 1.864 ± 0.009
Static 2.518 ± 0.007 2.524 ± 0.007
Frye et al. (2016) 3.500 ± 0.029 3.513 ± 0.029
Greedy (BADapted) 4.454 ± 0.016 4.536 ± 0.018
DAD 4.778 ± 0.013 4.808 ± 0.014
Step-DAD (τ=10) 6.711 ± 0.040 6.721 ± 0.040

6.4. Hyperbolic Temporal Discounting

Temporal discounting describes the tendency for individuals
to prefer smaller immediate rewards over larger delayed
ones. This phenomenon is a key concept in psychology
and economics and has been used to study important social
and individual behaviors (Critchfield and Kollins, 2001),
including dietary choices (Bickel et al., 2021), exercise
habits (Tate et al., 2015), patterns of substance abuse and
addictive behaviours (Story et al., 2014). An individual’s
time delay preference is typically measured by asking them
a series of questions, such as “Would you prefer $R now or
$100 in D days time?” Here the tuple ξ = (R,D) defines
our experimental design, and the experiment outcome y is
the participant’s decision to either accept or reject the delay.

Single update Using the hyperbolic discounting model
introduced in Mazur (1987) and as implemented by Vincent
(2016), we train a DAD policy for 100K gradient steps,
aimed at designing T = 20 experiments. We select a grid of
tuning steps τ in the range from 2 to 18 in increments of 2.
For posterior inference, we use simple importance sampling
to draw samples from the posterior p(θ |hτ ) and 1% of the
original training budget (i.e. 1K gradient steps).

Figure 6 reports the results and illustrates that Step-DAD
yields an improvement in total EIG for all choices of τ when
compared to the baseline DAD policy. The largest increase
occurs around, and shortly after, the middle of the exper-
iment, aligning with our previous intuition: here sufficient
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data has been accumulated to inform a meaningful posterior
update, whilst sufficient number of experiments remain to
effectively deploy the refined policy. Table 3 demonstrates
the superiority of Step-DAD over conventional baselines, in-
cluding those derived from psychology research (Frye et al.,
2016; Kirby, 2009; Vincent and Rainforth, 2017) and tradi-
tional BED approaches such as the BADapted (Vincent and
Rainforth, 2017) approach which was specifically designed
for this problem. It also outperforms the static BED strategy,
highlighting the effectiveness of adaptive design strategies
in extracting more valuable information from experiments.

Multiple updates and design extrapolation We extend
the deployment of DAD and Step-DAD policies for this
problem to T = 40 experiment steps, doubling the scope at
which they were originally trained, i.e. without retraining
the DAD network. Step-DAD is fine-tuned at two steps, τ
and 2τ , with τ ∈ {5, 6, 7, 8}. As Table 4 shows, Step-DAD
demonstrates significantly improved capacity to extract in-
formation in later stages, beyond its initial training. This
highlights the robustness and flexibility of our method in
extending experimental horizons compared to DAD.

6.5. Constant Elasticity of Substitution (CES)

We conclude our evaluation with the Constant Elasticity of
Substitution (CES) model, a framework from behavioral
economics to analyse the relative utility of two baskets of
goods (Arrow et al., 1961). This model emulates how eco-
nomic actors specify their relative preference y between
these baskets on a sliding scale. We follow the experimen-
tal setup of Foster et al. (2019), with full details given in
Appendix C.7. The CES model faces challenges due to y
being sampled from a censored normal distribution, concen-
trating probability at observation boundaries and creating
local maxima (Blau et al., 2022; Foster et al., 2019).

Table 5 shows that Step-DAD outperforms all baselines.
Step-Static also achieves on-par results with Greedy (vPCE),
highlighting the benefits of semi-amortized design strategies
in this model. We note the performance of DAD is worse
than Step-Static. This can be attributed to the discontinu-
ities in the censored likelihood (Eq.(29) in the Appendix)
that complicate the training of the policy, often resulting in

Table 4: Hyperbolic temporal discounting: extrapolating
designs. Comparison of EIG upper bound for DAD and
lower bound for Step-DAD across tuning steps τ and T =
40. Errors indicate ±1s.e., computed over 16 histories.

EIG from τ (↑) EIG from 2τ (↑)

τ DAD Step-DAD DAD Step-DAD

5 3.9± 0.24 4.8± 0.14 2.1± 0.36 4.6± 0.18
6 3.4± 0.30 5.1± 0.07 1.7± 0.30 4.7± 0.12
7 3.0± 0.35 4.4± 0.30 1.3± 0.23 4.4± 0.11
8 2.6± 0.36 4.7± 0.13 1.0± 0.19 4.2± 0.13

Table 5: Constant Elasticity of Substitution. Estimates on
total EIG, I1→10(π). DAD and Static trained for 50K steps;
step variants finetuned for 10K steps. Errors denote ± 1 s.e.

Method Lower bound (↑) Upper bound (↓)

Random 2.487± 0.007 2.487± 0.007
Greedy (vPCE) 13.333± 0.975 13.343± 0.975
Static 9.279± 0.020 11.183± 0.0453
Step-Static (τ = 5) 13.010± 0.185 13.682± 0.189
DAD 10.181± 0.021 11.478± 0.042
Step-DAD (τ = 5) 13.879 ± 0.352 14.623 ± 0.363

convergence to suboptimal local maxima.

7. Conclusions
In this work, we introduced the idea of a semi-amortized
approach to PB-BED that enhances the flexibility, robust-
ness and effectiveness of fully amortized design policies.
Our method, Stepwise Deep Adaptive Design (Step-DAD),
dynamically updates its step policy in response to new
data through a systematic ‘infer-refine’ procedure that
refines the design policy for the remaining experiments
in light of the experimental data gathered so far. This
iterative refinement enables the step policy to evolve as
the experiment progresses, ensuring more robust and
tailored design decisions, as demonstrated in our empirical
evaluation. Step-DAD thus improves our ability to conduct
more efficient, informed, and robust experiments, opening
new avenues for exploration in various scientific domains.
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A. Algorithm

Algorithm 1 Overview of Step-DAD
Input: Generative model p(θ)p(y | θ, ξ), experimental budget T , refinement schedule T ={τ0, τ1, . . . , τK+1}, with

τ0=0, τK+1=T , training budgets {Nτk}k=1:K

Output: Dataset hT = {(ξt, yt)}t=1:T

OFFLINE STAGE: BEFORE THE LIVE EXPERIMENT
▷ Set h0 = ∅.
while Computational budget does not exceed N0 do

▷ Train fully-amortized π0 as in Foster et al. (2021)
end

ONLINE STAGE: DURING THE LIVE EXPERIMENT
for k = 1, . . . ,K + 1 do

for τk−1 < t ≤ τk do
▷ Compute design ξt = πτk−1

(ht−1)
▷ Run experiment ξt, observe an outcome yt
▷ Update the dataset ht = ht−1 ∪ (ξt, yt)

end
If k = K + 1 then return hT end
while Computational budget does not exceed Nk do

▷ Fit a posterior p(θ |hτk)
▷ Fine-tune policy πτk by optimizing (6)

end
end

B. Further EIG bounds
The sequential Nested Monte Carlo (sNMC) (Foster et al., 2021) upper bound is given by

Uhτk
τk+1→T (π) := E

[
log

p(hτk+1:T |hτkθ0, π)
1
L

∑L
ℓ=1 p(hτk+1:T | θℓ, π)

]
, (7)

which we use to evaluate different design strategies.

For implicit models we can utilize the InfoNCE bound (van den Oord et al., 2018), which is given by

LInfoNCE(π, U) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
, (8)

or the NWJ bound (Nguyen et al., 2010), given by:

LNWJ(π, U) := Ep(θ)p(hT |θ,π)
[
U(hT , θ)− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))]

]
, (9)

where in both bounds U is a learnt critic function, U : hT × θ 7→ R.

C. Experiment details
C.1. Computational resources

The experiments were conducted using Python and open-source tools. PyTorch (Paszke et al., 2019) and Pyro (Bingham
et al., 2018) were employed to implement all estimators and models. Additionally, MlFlow (Zaharia et al., 2018) was utilized
for experiment tracking and management. Experiments were performed on two separate GPU servers, one with 4xGeForce
RTX 3090 cards and 40 cpu cores; the other one with 10xA40 and 52 cpu cores. Every experiment was ran on a single GPU.
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C.2. Policy architecture

In the same vein as Foster et al. (2021), we leverage the permutation invariance of EIG in our BED problem settings to allow
for more efficient network training and weight sharing. That is to say we represent histories of varying lengths by a single
fixed dimensional representations R(ht) parameterized by an encoder network Eϕ1

(inheriting notation from Foster et al.
(2021)),

R(ht) :=

t∑
k=1

Eϕ1(ξk, yk). (10)

Our policy then becomes: πϕ(ht) = Fϕ2(R(ht)) where Fϕ2 is a decoder network. The specific architectures for the encoder
and decoder networks are given in Sections C.5 and C.6.

C.3. Evaluation details

When evaluating fully amortized policies, we employ the sPCE (6) lower bound and sNMC (7) upper bound using a
large number of contrastive samples, L = 100K, drawn from the prior to approximate the inner expectation. The outer
expectation is approximated using N = 2048 draws from the model p(θ)p(hT | θ, π). To approximate the total EIG quantity
for Step-DAD efficiently, we use

∆I(πs, π0) := I1→T (π
s)− I1→T (π0) (11)

= Ep(hτ |π0)[I
hτ

τ+1→T (π
s)− Ihτ

τ+1→T (π0)] (12)

≥ Ep(hτ |π0)

[
Lhτ

τ+1→T (π
s)− Uhτ

τ+1→T (π0)
]
, (13)

and add that difference to our corresponding lower/upper bound estimates of I1→τ (π0) (which can be directly estimated
using the sPCE and sNMC bounds respectively). Here we are using a combination of an upper and lower bound is done
to ensure any reported gains from StepDAD are conservatively underestimated, as well as reducing the variance in our
estimates.

Note, as found in Blau et al. (2022), the lower and upper bounds are less tight compared to other experiments. In
this experiment, total EIG was simply calculated with the higher variance alternative as follows: EIG1→τ (π0)+
Ep(hτ |π0) [EIGτ→T (π

s)].

C.4. Baselines

Static The Static (fixed) baseline pre-selects a fixed ξ1, ..., ξT ahead of the experiment before any observations. As in all
cases, designs are optimized to maximise the EIG. This non-adaptive approach used PCE bound to optimize the design set
ξ1, ..., ξT and can be thought of treating the entire sequence of experiments as a single experiment (Foster et al., 2021).

Step-Static Step-Static computes a set of designs for ξ1, ..., ξτ before a posterior update and subsequent computation of
designs ξτ , ..., ξT . Each set of designs are selected following the static methodology outlined above.

Random As the name implies, this baseline selects a random sample of designs ξ1, ..., ξT . Thus the most non-informed
naive approach.

C.5. Location Finding

The objective of the experiment is to ascertain the location, θ, of K sources. K is presumed to be predetermined. The
intensity at each selected design choice, ξ, represents a noisy observation log y | θ, ξ centered around the logarithm of the
underlying model, µ(θ, ξ)

µ(θ, ξ) = b+

K∑
k=1

αk

(m+ ||θk − ξ||)2
. (14)

In the given context, αk may be either predetermined constants or random variables, b > 0 represents a fixed background
signal, and m is a constant representing maximum signal

log[y | θ, ξ] ∼ N (logµ(θ, ξ), σ2). (15)

We assumed a normal standard prior at training: θk
i.i.d.∼ N (0d, Id).
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C.5.1. TRAINING DETAILS

Tables 6 and 7 outline the architecture of the DAD policy network. The model hyperparameters used are outlined in Tables
8, 9 and 10.

Table 6: Source location finding. Encoder network Eϕ1
, architecture as in Foster et al. (2021)

Layer Overview Dimension Activation

Design-outcome ξ, y 3 -
H1 Fully connected 64 RELU
H2 Fully connected 256 RELU

Output Fully Connected 16 -

Table 7: Source location finding. Decoder network Fϕ2
, architecture as in Foster et al. (2021)

Layer Overview Dimension Activation

Input E(ht) 16 -
H1 Fully connected 128 RELU
H1 Fully connected 16 RELU

Output ξ 2 -

Table 8: Source location finding. Parameter Values

Parameter Value

αk 1 for all k
Max signal, m 10−4

Base signal, b 10−1

Observation noise scale, σ 0.5

Table 9: Source location finding. Parameters for training pre-training DAD/Step-DAD

Parameter Value

Batch size 1024
Number of negative samples 1023
Number of gradient steps (default) 50K
Learning rate (LR) 0.0001

Table 10: Source location finding. Parameters for Step-DAD finetuning

Parameter Value

Number of theta rollouts 16
Number of posterior samples 20K
Finetuning learning rate (LR) 0.0001
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Figure 7: Sensitivity to training budget for location finding experiment. DAD policies are trained for 50K or 10K
steps, Step-DAD policies are refined for 0.5K steps. Step-DAD outperforms its respective DAD baseline for all τ . Errors
show ±1s.e.

Table 11: Source location finding. Total EIG for Step-DAD for various tuning steps τ . Base DAD network was pretrained
for 50k steps before subsequent 2.5k finetuning steps at τ .

τ Lower bound (↑) Upper bound (↓)

1 (Worst) 7.050 (± 0.103) 7.065 (± 0.103)
2 7.295 (± 0.119) 7.305 (± 0.120)
3 7.476 (± 0.102) 7.482 (± 0.103)
4 7.676 (± 0.118) 7.680 (± 0.118)
5 7.536 (± 0.182) 7.540 (± 0.182)
6 7.759 (± 0.114) 7.765 ± 0.114)
7 7.748 (± 0.091) 7.757 (± 0.091)

8 (Best) 7.877 (± 0.082) 7.892 (± 0.082)
9 7.623 (± 0.035) 7.652 (± 0.035)

DAD 7.040 (± 0.012) 7.089 (± 0.013)

C.5.2. OPTIMAL τ

The optimal value for EIG occurs at a range around τ ∈ [6, 7, 8] (Table 11). Figure 7 demonstrates a further ablation from
Section 6.1 where we now finetune the Step-DAD policies for 0.5K steps instead of 2.5K. We observe the same behavior
for this reduced finetuning as before. Additionally, we note Step-DAD under the reduced 10K pretraining budget still
outperforms DAD under the full 50K budget for τ = 6.

C.5.3. MULTIPLE SOURCES

As a further ablation, we test the robustness of a semi-amortized approach to the more complex task of location finding with
multiple sources of signal. We find a positive EIG difference in all cases, once again demonstrating the benefits of using
the semi-amortized Step-DAD network compared to the baseline fully amortized DAD network. Increasing the number
of sources leads to a reduction in the EIG difference. However, this is expected given the increasing complexity of the
task compared to the fixed number of steps post τ to adjust the decision making policy in the semi amortized setting. All
experiments were run with τ = 7. Refer to Table 2 in main paper for results.

C.6. Hyperbolic Temporal Discounting Model
Building on Foster et al. (2021), Mazur (1987) and Vincent (2016), we consider a hyperbolic temporal discounting model. A
participant’s behaviour is characterized by the latent variables θ = (k, α) with prior distributions as follows:

log k ∼ N (−4.25, 1.5) α ∼ HalfNormal(0, 2). (16)
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HalfNormal distribution denotes a Normal distribution truncated at 0. For given k, α, the value of the two propositions “£R
today” and “£100 in D days” with design ξ = (R,D) are given by:

V0 = R, V1 =
100

1 + kD
. (17)

Participants select V1 in place of V0 with probability modelled as:

p(y = 1|k, α,R,D) = ϵ+ (1− 2ϵ)Φ

(
V1 − V0

α

)
. (18)

We fix ϵ = 0.01 and ϕ is the c.d.f of the standard Normal Distribution

Φ(z) =

∫ z

−∞

1√
2π

exp−1

2
z2. (19)

As in Foster et al. (2021), the design parameters R,D have the constraints D > 0 and 0 < R < 100. R,D are represented
in an unconstrained space ξd, ξr and transformed using the below maps

D = exp(ξd) R = 100 · sigmoid(ξr). (20)

Tables 12 and 13 outline the architecture of the DAD policy network. Tables 20 and 15 give the hyper-parameters for
training the DAD/Step-DAD policies for the hyperbolic temporal discounting model.

Table 12: Hyperbolic Temporal Discounting model. DAD encoder network.

Layer Overview Dimension Activation

Design input ξd, ξr 2 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus
H3 Fully connected 16 -
H3’ Fully connected 16 -

Output y ⊙ H3 + (1− y)⊙ H3′ 16 -

Table 13: Hyperbolic Temporal Discounting model. DAD decoder (emission) network

Layer Overview Dimension Activation

Input R(ht) 16 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus

Output ξd, ξr 2 -

Table 14: Hyperbolic Temporal Discounting model. Parameters for training of the DAD network.

Parameter Value

Batch size 1024
Number of negative samples 1023
Number of gradient steps (default) 100K
Learning rate (LR) 5× 10−5

Annealing frequency 1K
Annealing factor 0.95
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Table 15: Hyperbolic Temporal Discounting model. Parameters for Step-DAD policy finetuning.

Parameter Value

Number of theta rollouts 16
Number of posterior samples 20K
Finetuning learning rate (LR) 5× 10−5

C.7. Constant Elasticity of Substitution (CES)
This experiment builds upon a behavioral economic model in which participants compare the differing utility, U(x), of two
presented baskets of goods x (Arrow et al., 1961). In this experiment x ∈ [0, 100]3 represents non-negative quantities of
three goods which together form the basket for evaluation.

The agent compares the two baskets x and x′ by evaluating their individual utility U(x) and subsequently indicating their
preference using a sliding scale ranging from 0 to 1 following the probabilistic model defined below. The latent variables
governing this framework would in practice vary across individuals; representing their unique preferences. Thus the
experimental design objective is to infer each of these latent parameters and therefore understand the individual preference
model of the decision maker in question. The priors are defined as follows:

ρ ∼ Beta(1, 1) (21)
α ∼ Dirichlet([1, 1, 1]) (22)

log u ∼ N (1, 3) (23)
(24)

The probabilistic model is expressed as:

U(x) =

(∑
i

xρ
iαi

)1/ρ

(25)

µη = (U(x)− U(x′))u (26)
ση = (1 + ∥x− x′∥)τ · u (27)

η ∼ N (µη, σ
2
η) (28)

y = clip(sigmoid(η), ϵ, 1− ϵ) (29)

The values of the hyper-parameters used in the model are detailed in Table 16.

Table 16: CES model. Hyper-parameter values.

Parameter Value

τ 0.005
ϵ 2−22

Table 17: CES model. DAD embedding layers. Outcomes and Designs are embedded and then concatenated before being
passed into the encoder.

Layer Overview Dimension Activation

Input ξd or y 6 or 1 -
Output Fully connected (Layer Norm) 32 ReLU
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Figure 8: Constant Elasticity of Substitution. Improvement in EIG by Step-DAD over DAD after fine-tuning. DAD is
trained for 50K steps, with Step-DAD undergoing an additional 10K finetuning steps. Step-DAD (lower) outperforms the
DAD baseline. DAD was initialized with designs from the Static methodology to overcome challenges introduced by the
accumulated probability mass at the boundaries following censoring.

Table 18: CES model. DAD encoder network.

Layer Overview Dimension Activation

Input Embedding 64 -
H1 Fully connected (Layer Norm) 128 ReLU

Output Fully connected (Layer Norm) 32 ReLU

Table 19: CES model. DAD decoder (emission) network

Layer Overview Dimension Activation

Input Embedding 32 -
H1 Fully connected 128 ReLU

Output Fully connected 6 -

Table 20: CES model. Parameters for training of the DAD network.

Parameter Value

Batch size 100
Number of negative samples 1024
Number of gradient steps (default) 50K
Learning rate (LR) 1× 10−4 - 1× 10−5

Annealing frequency 1K

Table 21: CES model. Parameters for Step-DAD policy finetuning.

Parameter Value

Number of theta rollouts 16
Number of posterior samples 20K
Finetuning learning rate (LR) 1× 10−5
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