
RL Tango: Reinforcing Generator and Verifier
Together for Language Reasoning

Kaiwen Zha1,∗ Zhengqi Gao1,∗ Maohao Shen1 Zhang-Wei Hong2

Duane S. Boning1 Dina Katabi1

1MIT 2MIT-IBM Watson AI Lab

Abstract

Reinforcement learning (RL) has recently emerged as a compelling approach for
enhancing the reasoning capabilities of large language models (LLMs), where an
LLM generator serves as a policy guided by a verifier (reward model). However,
current RL post-training methods for LLMs typically use verifiers that are fixed
(rule-based or frozen pretrained) or trained discriminatively via supervised fine-
tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly
beyond their training distributions. To overcome these limitations, we propose
TANGO, a novel framework that uses RL to concurrently train both an LLM gener-
ator and a verifier in an interleaved manner. A central innovation of TANGO is its
generative, process-level LLM verifier, which is trained via RL and co-evolves with
the generator. Importantly, the verifier is trained solely based on outcome-level ver-
ification correctness rewards without requiring explicit process-level annotations.
This generative RL-trained verifier exhibits improved robustness and superior gener-
alization compared to deterministic or SFT-trained verifiers, fostering effective mu-
tual reinforcement with the generator. Extensive experiments demonstrate that both
components of TANGO achieve state-of-the-art results among 7B/8B-scale mod-
els: the generator attains best-in-class performance across five competition-level
math benchmarks and four challenging out-of-domain reasoning tasks, while the
verifier leads on the ProcessBench dataset. Remarkably, both components exhibit
particularly substantial improvements on the most difficult mathematical reasoning
problems. Code is at: https://github.com/kaiwenzha/rl-tango.

3.3x efficient

Reinforcing Generator & Verifier Together (Tango)Verifier
Warmup

9.1%

Figure 1: Generator and verifier training dynamics of TANGO. The generator and verifier co-evolve through
mutual reinforcement. Supported by the verifier, the generator of TANGO achieves significantly better training
efficiency and stronger final performance compared to vanilla GRPO. The generator accuracy is the pass@1
accuracy on the MATH 500 dataset, and the outcome F1 score of the verifier is reported on training data.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/kaiwenzha/rl-tango

1 Introduction

Large language models (LLMs) have recently demonstrated remarkable capabilities across a broad
spectrum of natural language processing (NLP) tasks [22, 5, 16]. Despite their impressive perfor-
mance, pretrained LLMs often struggle with complex reasoning tasks requiring multi-step thinking
and planning [23, 19]. To enhance reasoning abilities, LLMs typically undergo post-training via
supervised fine-tuning (SFT) [61, 10] or reinforcement learning (RL) [23, 19]. SFT teaches models
to mimic curated solutions, but this imitation-based training lacks interaction and generalizes poorly
to unfamiliar reasoning paths [9]. In contrast, RL frames learning as an active exploration process,
where models learn from experience and directly optimize for task success through trial and feedback,
enabling stronger generalization [9]. Therefore, RL has become a central component of recent
LLM post-training, with large-scale industrial deployments such as OpenAI’s o1 [23] and DeepSeek
R1 [19] demonstrating its effectiveness in unlocking advanced reasoning capabilities.

In LLM post-training with RL, the LLM generator acts as the policy model, where each action
corresponds to generating the next token based on the current sequence (the state). A reward model,
commonly known as a verifier, assesses the quality of the generated outputs and provides feedback
that is used to guide the generator’s policy updates using RL algorithms [41, 40, 43, 1].

However, a critical limitation of current RL post-training approaches [43, 50, 60] is their reliance on
a fixed verifier, typically implemented using rules-based metrics or a frozen pre-trained reward model.
This fixed verifier limits the potential improvement of the generator and is vulnerable to reward
hacking in distribution changes [14]. Ideally, verifiers should be trained jointly with generators [30],
enabling mutual improvement. Yet, designing an effective co-evolving system remains challenging.
Among recent attempts, PRIME [12] is, to the best of our knowledge, the only approach that trains
the generator alongside the verifier. However, PRIME’s verifier still faces critical shortcomings. First,
it employs a discriminative logit-based process reward model (PRM) that generates deterministic
reward signals, making it susceptible to reward hacking [13], despite being trained online. Second,
PRM is trained using SFT with outcome-level labels, despite these labels being collected in an online
manner. SFT significantly restricts verifier reasoning capabilities and generalization potential [9].

We argue that the effectiveness of a co-evolving system critically relies on the capabilities of both the
generator and the verifier. If one component is significantly weaker and lags behind, it can impede the
overall learning dynamics and limit mutual improvement. An effective co-evolutionary framework
requires both agents to be robust and to continuously enhance each other’s performance. To this
end, we introduce TANGO, a novel framework that jointly trains an LLM generator and an LLM
verifier in an interleaved manner via RL. Unlike existing methods that use frozen, discriminative,
or SFT-trained reward models [43, 60, 12], TANGO introduces a process-level, generative LLM
verifier that is trained via RL and co-evolves alongside the generator throughout training. Specifically,
the generator produces multi-step reasoning trajectories, while the verifier offers natural language
feedback comprising both step-level assessments and an overall correctness judgment. The generator
leverages gold outcome-level correctness signals combined with detailed step-level rewards from
the verifier, improving the efficiency of policy learning [48], and guiding the generator toward more
robust reasoning strategies [30]. Importantly, the verifier is trained exclusively using outcome-level
verification correctness rewards, without process-level annotations. Through RL, it progressively
refines its chain-of-thought [55] verification reasoning, gradually aligning its step-level feedback with
final correctness outcomes as the generator’s reasoning trajectories evolve.

TANGO offers a more effective design for the co-evolving generator-verifier system, addressing the
limitations of previous approaches. First, by training the verifier using RL rather than SFT, the
verifier develops stronger reasoning skills and generalizes better beyond supervised imitation. This
mirrors the rationale behind preferring RL over SFT when training generators under outcome-only
supervision. Second, the generative and sampling-based nature of TANGO’s verifier introduces
stochasticity into the reward signals, enhancing its robustness against reward hacking. Consequently,
through interleaved training, the generator and verifier mutually reinforce each other, enabling
improved reasoning strategies and superior generalization performance, as shown in Figure 1.

We conduct extensive experiments to evaluate the effectiveness of TANGO across diverse reasoning
tasks and experimental settings. Compared to vanilla RL methods trained only on outcome-level
rewards, TANGO achieves an average relative improvement of 25.5% on five competition-level math
benchmarks and 7.3% on four challenging out-of-domain reasoning tasks, consistently across three
RL algorithms. Remarkably, TANGO with GRPO doubles the accuracy on the most challenging

2

benchmark, AIME 2025, relative to vanilla GRPO. Furthermore, TANGO substantially outperforms
ORM- and PRM-based baselines, including PRIME. In a comprehensive comparison with prior
state-of-the-art LLM reasoning methods, TANGO establishes new state-of-the-art results among
7B/8B-scale models, delivering the best performance on the most difficult tasks, namely AIME 2025,
AIME 2024, and AMC 2023. TANGO verifier also sets a new state-of-the-art on ProcessBench [64],
despite not using process-level annotations. In particular, it achieves the highest step-level verification
performance on the most challenging subsets, OlympiadBench and Omni-MATH, significantly
surpassing previous methods, including the much larger Qwen2.5-Math-72B-Instruct model even
though our verifier is initialized from just a Qwen2.5-7B base model. Finally, an in-depth analysis on
an algorithmic reasoning task with available gold step-level labels confirms that TANGO effectively
bootstraps both the generator and verifier into highly capable states through mutual reinforcement.

2 Related Work

RL for LLM reasoning. RL was initially used to align LLM outputs with human preferences,
enhancing response quality, instruction-following, and style [8, 47, 67, 39, 25]. As LLMs expanded
into domains demanding multi-step reasoning and structured problem-solving such as mathematics,
coding [24, 2], and web navigation [66, 29], RL has evolved beyond basic alignment toward enhancing
LLM reasoning abilities [23, 19, 43, 27, 12, 60, 44, 37, 52, 7, 53]. A pivotal milestone was OpenAI’s
o1 [37, 23], which demonstrated RL’s effectiveness at scale. Subsequent research has further advanced
RL-based LLM reasoning through improved optimization algorithms [41, 40, 43, 1], curriculum-
based training [46, 60], and enriched evaluation benchmarks [11, 64, 49].

Reward modeling. Reward signals are critical for guiding LLM post-training toward desirable
behaviors and enabling effective inference-time scaling. Reward models (RMs a.k.a. verifiers)
are categorized as outcome reward models (ORMs) or process reward models (PRMs) based on
the granularity of evaluation. ORMs [39, 19, 35] assign a single scalar reward to the final token
in a response trajectory, resulting in sparse supervision. Typically discriminative, ORMs attach a
classification head to pretrained LLMs and are trained via SFT on labeled response pairs (preferred
vs. rejected) [67, 47, 12, 32]. Recently, generative ORMs have emerged [62, 33], producing explicit
rationales before assigning outcome scores.

In contrast, PRMs [12, 7, 31, 53, 32, 54] provide fine-grained, step-level feedback throughout
the generation trajectory, facilitating more precise credit assignment [30] and improved training
efficiency [48]. This detailed feedback helps models efficiently explore policy spaces and develop
stronger reasoning capabilities. However, most existing PRMs remain discriminative, frozen, and
deterministic, rendering them brittle to distribution shifts and reward hacking [42], while also
requiring expensive step-level annotations. PRIME [12] partially addresses these issues by jointly
training a PRM via SFT alongside the generator, reducing annotation overhead. Yet, PRIME’s
logit-based, deterministic rewards still leave it vulnerable to hacking, and its SFT-based training
constrains generalization. To address these limitations, we propose a generative, process-level verifier
(generative PRM) that outputs stochastic, step-level rewards as textual judgments (e.g., “Correct”
or “Incorrect”). Unlike existing PRMs, both logits-based and generative, that rely exclusively on
SFT, ours is the first PRM trained using RL. We note that the idea of generative PRMs traces back
to LLM-as-a-judge [65], which uses frozen LLMs for scoring. More recent works [28, 63] have
explored SFT-based generative PRMs for inference time scaling, but these concurrent approaches
remain orthogonal to our work, as none involve RL-trained, co-evolving generative PRMs.

3 Method

3.1 Preliminaries

We denote the autoregressive LLM generator and verifier as πg and πv, respectively. For notational
simplicity, we use πθ as a unified symbol when an equation applies to both models. RL aims
to optimize a policy model by maximizing the expected cumulative discounted reward through
interactions with the environment, i.e., by taking actions and transitioning between states. In the
context of RL post-training for LLMs, the policy model corresponds to the LLM generator or verifier.
The state at step t is defined as the combination of the input prompt (i.e., a question) x and the
partially generated response o<t, while the action corresponds to generating the next token ot. To

3

LLM

Verifier

Multi-Step

Solution

Verification

LLM

Generator

Step Rewards

RL Update RL Update

Outcome
Rewards

Outcome
Rewards

Gold

Answer

Question

M
ul

ti-
S

te
p

 S
ol

ut
io

n
Ve

ri
fic

at
io

n

Question: Solve the equation (x² − 5x + 4)/(x − 1) = 3. Gold Answer: x = 7

<step>Step 1: Clear the denominator by multiplying both sides by (x − 1):

x² − 5x + 4 = 3x − 3.</step>

<step>Step 2: Bring all terms to the left: x² − 5x + 4 − 3x + 3 = 0.</step>

<step>Step 3: Combine like terms x² − 8x + 7 = 0 and factor to (x − 7)(x − 1) = 0.</step>

<step>Step 4: Select the smaller root and state x = 1.</step>

<step>Step 5: Conclude the solution is x = 1.</step>

<answer>x = 1</answer>

<step>Denominator cleared correctly. CORRECT</step>

<step>All terms moved to the left without error. CORRECT</step>

<step>Quadratic simplification and factoring are correct. candidate roots are

7 and 1. CORRECT</step>

<step>x = 1 is invalid. It makes the original denominator zero. INCORRECT</step>

<step>The solution fails the equation; the only valid root is x = 7. INCORRECT</step>

<final_verification>INCORRECT</final_verification>

Figure 2: Overview of the TANGO framework with a generation and verification example. Given a question,
the LLM generator produces a multi-step solution, which is then evaluated by the LLM verifier. The generator is
trained using both step-level rewards from the verifier and outcome-level rewards based on its final answer, while
the verifier is trained only with outcome-level rewards based on the correctness of its final judgment and format.

optimize πθ, policy gradient methods are employed to estimate the gradient of the expected reward
with respect to the policy parameters θ. Built upon it, a widely used surrogate objective [41, 40, 43, 1]
is formulated using importance sampling:

J (θ) = E
(x,y)∼P

o∼πθold (·|x)

{
1

|o|

|o|∑
t=1

[
min

(
ct(θ)Ât, clip (ct(θ), 1− ϵ, 1 + ϵ) Ât

)
− β DKL [πθ ∥πθref]

]}
,

ct(θ) =
πθ(ot | x,o<t)

πθold(ot | x,o<t)
,

(1)

where πθ, πθold , and πθref denote the current, old, and reference policy models respectively, |o|
is the sequence length, Ât is an estimator of the advantage at step t, and y is the gold answer
used to compute the reward and subsequently the advantage Ât. The hyperparameter ϵ controls
the clipping range of the importance sampling ratio, while β regulates the KL-divergence penalty
strength. RL algorithms mainly differ in their methods for estimating Ât, such as group-normalized
rewards (GRPO [43]), leave-one-out reward averaging (RLOO [1]), or batch-normalized rewards
(REINFORCE++ [21]).

3.2 TANGO

TANGO jointly trains an LLM generator and an LLM verifier via interleaved RL, creating a self-
reinforcing loop where each agent iteratively strengthens the other. Figure 2 illustrates the over-
all TANGO framework. Specifically, we alternate training the generator policy πg for Ng steps and
the verifier policy πv for Nv steps, repeating this cycle iteratively. Below, we detail the RL training
for each component. Please refer to Appendix C for the detailed algorithm flow of TANGO, and
Appendix F for more generation and verification examples.

RL-based LLM generator. Given a question-answer pair (x,y) from the training distribution P ,
the generator πgold produces a step-by-step solution og ∼ πgold(· | x). Our reward design is as follows:

• Rule-based outcome-level rewards: Extract the predicted answer ŷ from the generated solution
og , and compute an analytical rule-based outcome-level correctness reward:

rg,out(og) =

{
1, if ŷ = y,

0, otherwise.
(2)

• Step-level rewards from the verifier: We prepare a verification prompt using the question
x and the generator solution og, and then sample a verification response from the verifier
ov ∼ πv(· | x,og). If there are K reasoning steps in the generator response og, then the
response ov will also contain K step-wise judgments ystep,k ∈ {−1, 1}, where k = 1, 2, . . . ,K,
with −1 denoting ‘Incorrect’ and 1 denoting ‘Correct’. Please refer to the right part of Figure 2
for an example on {x,y,og,ov}. Finally, the step-level rewards are computed as:

Rg,step =
{
r
I(1)
g,step(og), . . . , r

I(K)
g,step(og)

}
, r

I(k)
g,step(og) =

ystep,k

K
∈
{
−1

K
,
1

K

}
, (3)

4

where I(k) is the index of the end token in the generator’s k-th reasoning step (k = 1, 2, . . . ,K).
We normalize the reward by the number of reasoning steps to remove policy’s bias toward step
length, allowing the generator to adaptively determine an appropriate number of steps based on
the problem. Essentially, our approach adopts a generative process-level verifier that produces
natural language judgments, enabling stochastic sampling-based step-wise evaluations.

We compute advantages separately for outcome-level and step-level rewards, combining them through
a weighted sum. Using GRPO [43] as an illustrative example (though TANGO is compatible with
other RL algorithms [1, 41], as shown in Section 4), the generator policy πgold samples a group of
M responses {oi

g}Mi=1, which are evaluated by the verifier to produce verification outputs {oi
v}Mi=1.

Each data sample (oi
g,o

i
v) contains Ki reasoning and verification steps. Below are the advantages:

• Outcome-level advantages: The outcome-level advantage of the i-th response Âi
g,out,t is

calculated by normalizing the group-level outcome rewards Rg,out = {rg,out(o
i
g)}Mi=1:

Âi
g,out,t =

rg,out(o
i
g)− mean(Rg,out)

std(Rg,out)
. (4)

• Step-level advantages: For step-level advantages, group-level normalization is performed
across all step reward elements from all responses within the group, i.e.,

Rg,step =

M⋃
i=1

Ri
g,step =

M⋃
i=1

{
r
I(1)
g,step(o

i
g), . . . , r

I(Ki)
g,step (oi

g)
}
. (5)

To clarify, the set size |Rg,step| =
∑M

i=1 K
i. Next, the step advantage of each token Âi

g,step,t is
calculated as the sum of the normalized rewards of its following steps:

Âi
g,step,t =

∑
{k|I(k)≥t}

r
I(k)
g,step(o

i
g)− mean(Rg,step)

std(Rg,step)
. (6)

We note that for a given sample (i.e., with fixed index i), the outcome-based advantages Âi
g,out,t

are the same across all tokens indexed by t, whereas the step-level advantages Âi
g,step,t may vary

across tokens. The final advantage is derived by blending the outcome advantage Eq. (4) and the step
advantage Eq. (6) with a hyperparameter α ∈ (0, 1):

Âi
g,t = (1− α)Âi

g,out,t + αÂi
g,step,t. (7)

We highlight two key design choices that are crucial to the success of our generator training:
• We apply an exponential decay schedule to α, which is essential to TANGO’s success. Early in

training, step-level supervision has a stronger influence to encourage exploration of reasoning
strategies. As training progresses, we gradually reduce its weight to promote stable convergence
and mitigate reward hacking.

• Empirically, we find that computing and normalizing the step and outcome advantages separately
before combining them yields significantly more stable learning than merging the rewards first
and computing a single advantage. This is because advantage normalization depends on the
scale and distribution of the underlying rewards. Merging step and outcome rewards before
normalization could distort their relative contributions due to scale mismatch, resulting in
instability and degraded performance. By normalizing each advantage independently, we
preserve their intended effects prior to aggregation.

RL-based LLM verifier. The verifier generates a verification response ov conditioned on the
question x and the generator’s solution og. As the example shown in Figure 2, the verifier’s
final judgment label yfinal ∈ {0, 1} can be extracted from ov, where yfinal = 1 indicates the verifier
considers the generator’s solution correct, and yfinal = 0 indicates incorrect. Given that the correctness
of the generator’s answer is known from Eq. (2), we define the verifier’s outcome-level reward based
on how well its final judgment matches this ground-truth correctness, as well as its format score:

rv,out(ov) = rv,correct(ov) + γ · rv,format(ov), rv,correct(ov) =

{
1, if yfinal = rg,out(og),

0, otherwise.
(8)

5

The default value of rv,format(ov) is set to 1.0 and is gradually reduced for each unmet formatting
criterion, such as the absence of step-wise justifications or discrepancies in step numbering between
the verifier output ov and the generator output og. The hyperparameter γ ∈ R+ controls the
contribution of the format score in the final outcome-level reward. The verifier is trained without any
process-level supervision, eliminating the need for step-level annotations. Empirically, we observe
that although the verifier is trained solely with outcome-level signals, it progressively learns to
produce accurate step-level judgments by refining its chain-of-thought verification reasoning through
RL training, thereby providing useful guidance to the generator.

A key challenge we observe in training the verifier is class imbalance in early stages of learning.
Since the generator initially produces mostly incorrect solutions which leads to most rg,out(o

i
g) = 0,

the majority of verifier supervision is biased toward negative labels. If we directly apply the original
GRPO advantage calculation (as used for the generator in Eq. (6)), we find that the verifier quickly
collapses to always predicting yfinal = 0, resulting in a trivial but locally stable solution. This collapse
not only harms verifier performance but also provides poor step-level verification reward signals
to the generator, degrading overall co-training dynamics. To mitigate this issue, we introduce a
class-aware reweighting scheme into the verifier’s advantage computation. Specifically, we apply
a sample-specific scaling factor s+ or s− based on the correctness of the corresponding generator
solution after normalizing the outcome rewards using the group Rv,out = {rv,out(o

i
v)}Mi=1 statistics:

Âi
v,t = si ×

rv,out(o
i
v)− mean(Rv,out)

std(Rv,out)
, si =

{
s+ ∈ R+, if rg,out(o

i
g) = 1,

s− ∈ R+, otherwise.
(9)

The coefficients {s+, s−} are set to be inversely proportional to the square root of the number of
samples with correct and incorrect generator outputs, respectively. In practice, we maintain these
values per batch using an exponential moving average (EMA) to ensure smooth updates throughout
training. To build intuition for Eq. (9), consider the case where most rewards rg,out(o

i
g) = 0, which

results in s+ > s−. Under this condition, Eq. (9) effectively amplifies the contribution of the
relatively fewer samples with rg,out(o

i
g) = 1 in the overall objective Eq. (1), while downweighting

the influence of the more frequent samples with rg,out(o
i
g) = 0.

Remarks. We highlight three key advantages of TANGO. First, our verifier is trained via RL, enjoy-
ing stronger reasoning and generalization capabilities without requiring costly step-level annotations.
Second, unlike prior logit-based methods, it produces transparent, text-based judgments that reduce
step-level noise and introduce sampling stochasticity, mitigating reward hacking. Third, the evolving
generator produces increasingly diverse outputs, exposing the verifier to broader reasoning patterns
and encouraging it to adapt new verification strategies, which in turn improves the generator.

4 Experiments

Base models. We primarily evaluate our method on mathematical tasks to assess reasoning capabil-
ity, and on unseen out-of-domain tasks to measure generalization. The generator uses Qwen2.5-Math-
7B [59] for its strong mathematical reasoning, while the verifier uses Qwen2.5-7B [58] due to its
larger context window accommodating both questions and generator outputs. Notably, Qwen2.5-7B
underperforms on math tasks, making our verifier initially weaker than the generator, unlike prior
work relying on stronger verifiers for distillation. Instead, our framework uses mutual reinforcement,
enabling both agents to co-evolve from weaker starts, yielding a more scalable and practical solution.

Implementation details. We first perform SFT on the generator using 113K math prompts from
Eurus-2-SFT-Data [12], guiding step-by-step reasoning enclosed in step tags. Responses are produced
using Llama-3.1-70B-Instruct [16] with a system prompt (see Appendix F). The verifier is initialized
directly from the base model without SFT. In the RL stage, we use 455K math question–answer pairs
from Eurus-2-RL-Data [12]. We set Ng = 3 and Nv = 1, i.e., the verifier updates once every three
generator steps, to compensate for slower generation optimization. The generator is trained for 200
steps by default (300 for Table 2 comparison). To prevent early instability, we warm up the verifier for
40 steps to learn the output formatting and reach a reasonable accuracy before guiding the generator.

Experiments are conducted using veRL [45], with 5 rollouts per prompt. Both generator and verifier
policies are trained using AdamW [34] with a constant learning rate 1 × 10−6, batch size 256,
and microbatch size 4. γ is set to 0.8. The coefficient α follows an exponential decay schedule,

6

Table 1: Performance comparison of TANGO with different vanilla RL algorithms on mathematical and
out-of-domain reasoning benchmarks. TANGO consistently yields substantial improvements across all tasks
when combined with various RL algorithms. All RL models are trained for 200 generator steps.

Mathematical Reasoning Out-of-Domain Reasoning

Model MATH500 AIME2024 AIME2025 AMC2023 OlympiadBench Avg. BGQA CRUXEval StrategyQA TableBench Avg.

TANGO-7B-SFT 66.6 3.3 3.3 27.5 28.1 25.8 46.6 44.3 85.9 34.4 52.8

GRPO 74.6 13.3 10.0 50.0 36.9 37.0 55.3 48.8 88.1 38.2 57.6
GRPO w/ TANGO 81.4 20.0 20.0 65.0 43.9 46.1 60.5 51.4 90.0 42.3 61.1

RLOO 74.0 13.3 10.0 52.5 36.0 37.2 55.0 48.5 87.5 38.6 57.4
RLOO w/ TANGO 80.8 23.3 16.7 67.5 45.3 46.7 60.9 52.9 90.4 43.0 61.8

REINFORCE++ 73.2 13.3 10.0 52.5 36.7 37.1 53.2 47.8 87.3 39.8 57.0
REINFORCE++ w/ TANGO 81.6 20.0 23.3 65.0 44.6 46.9 61.1 52.0 89.0 44.2 61.6

GRPO GRPO + ORM PRIME (PRM) Tango

Figure 3: Performance comparison of TANGO with ORM- and PRM-based baselines. TANGO consistently
outperforms models guided by ORM or PRM, demonstrating the superiority of our co-evolving framework in
boosting generator’s performance. For AIME, results for 2024 and 2025 are combined and shown below and
above the dashed line respectively. All models are trained for 200 generator steps. We reproduce and evaluate
PRIME at 200 steps, achieving better performance than the 240-step results reported in its original paper [12].

starting at 0.1 for GRPO and RLOO, and 0.5 for REINFORCE++, to balance step- and outcome-level
advantages with an emphasis on step-level guidance early in training. These relatively high initial
values of α encourage step rewards to guide early exploration more, while gradually decaying to
1×10−3 to reduce reward hacking risks in later training. All baselines share identical generator SFT
and RL configurations for fair comparison, with GRPO used as the default RL algorithm unless
otherwise specified. Please refer to Appendix D for more implementation details.

Benchmark and evaluation. We primarily evaluate the generator on five competition-level math
benchmarks: AIME 2025 [38], AIME 2024 [3], AMC 2023 [4], MATH-500 [32], and Olympiad-
Bench [20]. Following [44], we further assess general reasoning and generalization capabilities
using four out-of-domain benchmarks: logical reasoning (BoardgameQA, i.e., BGQA [26]), code
reasoning (CRUXEval [17]), commonsense reasoning (StrategyQA [15]), and tabular reasoning
(TableBench [56]). All models, including baselines, are evaluated via greedy decoding, reporting
zero-shot pass@1 accuracy, i.e., the percentage of problems correctly solved on the first attempt.
Additionally, we evaluate our verifier’s step-level verification accuracy on ProcessBench [64], which
contains annotated reasoning errors for competition-level math problems.

4.1 Main Results

Comparison with vanilla RL post-training methods. We first evaluate TANGO on standard RL al-
gorithms commonly used for LLM post-training – GRPO [43], RLOO [1], and REINFORCE++ [21]
– comparing each against its vanilla counterpart, which employs rule-based outcome rewards. The
generator’s performance after SFT is also included for reference. As shown in Table 1, integrat-
ing TANGO consistently yields substantial improvements across all benchmarks, particularly on
challenging math competitions. For example, TANGO with GRPO achieves relative gains of 50.4%
on AIME 2024, 100.0% on AIME 2025, and 30.0% on AMC 2023, averaging a 24.6% improvement
across all math tasks. Furthermore, TANGO with GRPO enhances generalization to out-of-domain
reasoning tasks, delivering an average relative improvement of 6.1%. Please refer to Appendix E for
more results using the Llama base model.

Similar trends occur with RLOO and REINFORCE++, often surpassing those seen with GRPO:
RLOO achieves relative gains averaging 25.5% on math and 7.7% on out-of-domain tasks, while

7

Table 2: System-level performance comparison with prior methods on mathematical and out-of-domain
reasoning benchmarks. TANGO achieves state-of-the-art performance among 7B/8B-scale models across both
domains. For math reasoning, results are from the original papers or prior work [18, 44], except PRIME [12],
which we reproduce and evaluate, finding it outperforms the best 592-step results reported in the original paper,
and for AIME 2025, which we evaluate for all methods. For out-of-domain reasoning, results are from [44]. Our
TANGO-Qwen-7B is trained for 300 steps. Best performance per task among 7B/8B models is bolded.

Mathematical Reasoning Out-of-Domain Reasoning

Model MATH500 AIME2024 AIME2025 AMC2023 OlympiadBench Avg. BGQA CRUXEval StrategyQA TableBench Avg.

Frontier LLMs
GPT-4o [22] 76.6 9.3 - 47.5 43.3 - - - - - -
Claude3.5-Sonnet [5] 78.3 16.0 - - - - - - - - -
o1-preview [23] 85.5 44.6 - 90.0 - - - - - - -
o1-mini [23] 90.0 56.7 - 95.0 65.3 - - - - - -

Open-sourced reasoning LLMs (large)
Llama-3.1-70B-Instruct [16] 68.0 13.3 - 42.5 29.4 - 58.3 59.6 88.8 34.2 -
OpenMath2-Llama3.1-70B [51] 71.8 13.3 - 45.0 30.1 - 68.7 35.1 95.6 46.8 -
NuminaMath-72B-CoT [6] 64.0 3.3 - 70.0 32.6 - - - - - -
Qwen2.5-Math-72B-Instruct [59] 82.6 23.3 - 70.0 49.0 - - - - - -
QwQ-32B-Preview [50] 90.6 50.0 33.3 77.5 61.2 62.5 71.1 65.2 88.2 51.5 69.0

Open-sourced reasoning LLMs (small)
Llama-3.1-8B-Instruct [16] 51.9 3.3 3.3 22.5 15.1 19.2 50.3 38.5 92.2 32.4 53.4
OpenMath2-Llama3.1-8B [51] 67.8 6.7 3.3 37.5 28.9 28.8 49.0 11.1 84.4 34.2 44.7
Qwen2.5-7B-Instruct [58] 75.5 10.0 6.7 52.5 35.5 36.0 53.0 58.1 91.3 43.2 61.4
Qwen2.5-Math-7B-Instruct [59] 83.6 16.7 10.0 62.5 41.6 42.9 51.3 28.0 85.3 36.2 50.2
rStar-Math-7B [18] 78.4 26.7 - 47.5 47.1 - - - - - -
Eurus-2-7B-PRIME [12] 80.4 26.7 13.3 60.0 43.7 44.8 - - - - -

Ours
TANGO-Qwen-7B 82.4 26.7 23.3 70.0 45.3 49.5 62.3 54.0 91.4 43.6 62.8

REINFORCE++ obtains gains of 26.4% and 8.1%, respectively. These results highlight TANGO’s
robustness and broad applicability across diverse RL algorithms and tasks.

We further visualize TANGO’s training dynamics in Figure 1. Notably, our method matches the
accuracy of vanilla GRPO after 200 generator steps in only 60 steps, a 3.3× improvement in training
efficiency (the figure plots global steps to account for both the generator and verifier). At 200
generator steps, TANGO also achieves a 9.1% higher relative accuracy, underscoring significant gains
in both training efficiency and reasoning quality.

Comparison with different RM baselines. We compare TANGO with ORM and PRM baselines
in Figure 3. For PRM, we select PRIME [12] as it similarly does not require step-level supervision,
making it directly comparable to our method. Note that our method uses the same SFT and RL data
as PRIME, as well as the same base model. Integrated with GRPO, TANGO substantially outperforms
both ORM and PRIME across all benchmarks. We attribute these gains to our co-evolving design,
where the generator and verifier mutually reinforce each other through interleaved RL training. Unlike
ORM, which provides only sparse, outcome-level feedback, our verifier delivers detailed, step-level
rewards, guiding the generator toward better reasoning. Compared to PRIME, our RL-trained verifier
offers more accurate and robust reasoning. Its generative, sampling-based verification introduces
stochasticity and enables longer chains of thought, resulting in rewards that are more resistant to
hacking and better aligned with true correctness, providing stronger and more informative supervision.

System-level comparison with prior methods. We further validate TANGO through a compre-
hensive system-level comparison against previous methods on mathematical and out-of-domain
reasoning benchmarks, as shown in Table 2. Among 7B/8B-scale reasoning LLMs, TANGO achieves
state-of-the-art performance, averaging 49.5% accuracy on math tasks and 62.8% on out-of-domain
tasks. The improvements are especially significant on challenging math competitions, with scores of
26.7% on AIME 2024, 23.3% on AIME 2025, and 70.0% on AMC 2023, surpassing all prior models
at similar scales. These gains highlight the effectiveness of our co-evolving training framework,
where the generator and verifier mutually reinforce each other through progressive refinement of
feedback, enabling deeper exploration and improved reasoning capabilities on complex problems.

4.2 Verifier Results of TANGO

In the previous section, we demonstrated that TANGO delivers a strong generator through co-evolving,
interleaved RL training. Here, we show that the verifier also significantly benefits from this co-
evolution, steadily improves throughout training and ultimately becomes highly effective.

8

Table 3: Evaluation results on ProcessBench. The verifier of TANGO achieves state-of-the-art performance
among 7B/8B-scale models without using any process labels. The metric reported is the F1 score of the respective
accuracies on erroneous and correct samples. Best performance per dataset among 7B/8B models is bolded.

Model GSM8K MATH OlympiadBench Omni-MATH Avg.

Open-sourced language models, prompted as critic models
Qwen2.5-32B-Instruct [58] 65.6 53.1 40.0 38.3 49.3
Llama-3.1-70B-Instruct [16] 74.9 48.2 46.7 41.0 52.7
Qwen2.5-Math-72B-Instruct [59] 65.8 52.1 32.5 31.7 45.5

Llama-3.1-8B-Instruct [16] 10.9 5.1 2.8 1.6 5.1
Qwen2.5-Math-7B-Instruct [59] 26.8 25.7 14.2 12.7 19.9
Qwen2.5-7B-Instruct [58] 36.5 36.6 29.7 27.4 32.6

Open-sourced process reward models (PRMs)
Math-Shepherd-PRM-7B [54] 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B [57] 50.4 33.4 13.8 15.8 28.4
RLHFlow-PRM-Deepseek-8B [57] 38.8 33.8 16.9 16.9 26.6
EurusPRM-7B [12] 56.6 43.0 27.3 26.8 35.1
Skywork-PRM-7B [36] 70.8 53.6 22.9 21.0 42.1

Our verifier
TANGO-Qwen-7B (verifier) 53.1 48.2 37.8 36.3 43.9

We first visualize the verifier’s final verification F1 score over training steps in Figure 1, observing
consistent improvement. Although the absence of gold step-level labels in our math training dataset
prevents direct tracking of step-wise accuracy, we provide such analysis using a well-designed
algorithmic reasoning task with step-level annotations in Section 4.3. There, we confirm that RL
training enhances both step-level and final verification performance throughout the training.

We further evaluate the step-level verification accuracy of our final verifier on ProcessBench [64],
a benchmark featuring competition-level math problems annotated with step-wise reasoning errors.
As shown in Table 3, TANGO’s verifier achieves state-of-the-art results among 7B/8B-scale models,
despite training without any step-level supervision. It notably excels on the most challenging subsets,
OlympiadBench and Omni-MATH, surpassing previous models significantly, even outperforming the
much larger Qwen2.5-Math-72B-Instruct, despite being initiated only from a Qwen2.5-7B base.

These results confirm that our verifier progressively improves both its outcome-level (Figure 1) and
step-level verification accuracy (Section 4.3) over the course of co-evolving RL training with the
generator. Ultimately, it delivers highly accurate step-level verification even on the most challenging
mathematical problems (Table 3).

4.3 Ablation Analysis with Gold Step-Level Information

In this section, we design an algorithmic reasoning task with gold step-level labels to enable a
detailed analysis of TANGO and better illustrate the co-evolution dynamics between the generator
and the verifier. Specifically, we adopt the last letter concatenation problem introduced in [55].
The prompt is constructed to elicit step-by-step reasoning from the generator, where the n-th step
involves extracting the last letter of the n-th word (see Appendix F for examples). This setup allows
us to automatically generate gold step-level outputs without any additional annotation effort when
constructing the training and evaluation datasets, and also enables evaluation of the verifier’s step-
level judgments. We use Qwen2.5-1.5B [58] as the base model for both the generator and the verifier.
We compare TANGO against three baselines: (i) the vanilla GRPO method without a verifier, (ii)
GRPO with TANGO while keeping the generator fixed, and (iii) GRPO with TANGO while keeping
the verifier fixed. More detailed experiment setups can be found in Appendix D.

TANGO (ours). As shown in Figure 4, when both the generator and verifier are jointly updated under
the TANGO framework, we observe consistent and strong improvements. The generator achieves
the best accuracy (left), while the verifier steadily improves on both step-level and outcome-level
F1 scores (middle and right). This result confirms that although the verifier is trained only with
outcome-level rewards, it gradually improves its step-level verification accuracy as RL enhances its
chain-of-thought reasoning. It also demonstrates that the generator and verifier mutually reinforce
each other, leading to stronger reasoning capabilities and more accurate verification.

Fixing generator. In this setting, only the verifier is updated. Initially, it learns from the fixed
generator’s output distribution and improves its F1 score. However, since the generator remains static,

9

Figure 4: Ablation of generator and verifier training dynamics in the algorithmic reasoning task. Left:
generator accuracy v.s. generator training steps; Middle: verifier step F1 score v.s. verifier training steps; Right:
verifier outcome F1 score v.s. verifier training steps. All curves are evaluated on unseen test data.

the verifier’s progress quickly plateaus, as shown in the middle and right panels. This underscores the
importance of continuously improving the generator to provide richer and more diverse reasoning
traces that can better support verifier training.

Fixing verifier. Although the verifier is frozen, its F1 scores (middle and right) shift slightly
as generator training alters its input distribution during evaluation. On the generator side (left),
performance remains flat for the first 20 steps due to inaccurate step-level feedback from the fixed
verifier, which misguides learning. As the α schedule gradually shifts focus from misleading step-
level to reliable gold outcome-level rewards, the generator starts to improve. However, its final
accuracy still lags behind the baseline, highlighting how static and inaccurate verifier feedback can
hinder learning, especially early on, when step-level signals are most critical for strategy exploration.

5 Conclusions

We present TANGO, a novel unified RL-based framework that jointly trains an LLM generator and
a generative, process-level verifier using RL in an interleaved manner. Unlike existing approaches
that rely on frozen or SFT-trained reward models, TANGO is the first to train the verifier via RL
and co-evolve it with the generator without requiring any process-level annotations. Extensive
experiments show that both the generator and verifier of TANGO, through mutual reinforcement,
achieve state-of-the-art performance across multiple challenging reasoning benchmarks.

10

References
[1] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier

Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization
for learning from human feedback in llms. arXiv:2402.14740, 2024.

[2] Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language
models for mathematical reasoning: Progresses and challenges. arXiv:2402.00157, 2024.

[3] AI-MO. Aime 2024. https://huggingface.co/datasets/AI-MO/
aimo-validation-aime, 2024.

[4] AI-MO. Amc 2023. https://huggingface.co/datasets/AI-MO/
aimo-validation-amc, 2024.

[5] Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

[6] Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina,
Kashif Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 72b cot. https:
//huggingface.co/AI-MO/NuminaMath-72B-CoT, 2024.

[7] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. In EMNLP, 2024.

[8] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NeurIPS, 2017.

[9] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of
foundation model post-training. arXiv:2501.17161, 2025.

[10] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. In JMLR, 2024.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv:2110.14168, 2021.

[12] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards.
arXiv:2502.01456, 2025.

[13] Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvi-
jotham, Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Help-
ing or herding? reward model ensembles mitigate but do not eliminate reward hacking.
arXiv:2312.09244, 2023.

[14] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In ICML, 2023.

[15] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies. In
Trans. Assoc. Comput. Linguist. MIT Press, 2021.

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv:2407.21783, 2024.

[17] Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida I Wang. Cruxeval: A benchmark for code reasoning, understanding and execution.
arXiv:2401.03065, 2024.

11

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://huggingface.co/AI-MO/NuminaMath-72B-CoT
https://huggingface.co/AI-MO/NuminaMath-72B-CoT

[18] Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and
Mao Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking.
arXiv:2501.04519, 2025.

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv:2501.12948, 2025.

[20] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. In ACL, 2024.

[21] Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
arXiv:2501.03262, 2025.

[22] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card.
arXiv:2410.21276, 2024.

[23] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card.
arXiv:2412.16720, 2024.

[24] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv:2310.06770, 2023.

[25] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv:2312.14925, 2023.

[26] Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and
Deepak Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradic-
tory information. In NeurIPS, 2023.

[27] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning
through refined credit assignment. arXiv:2410.01679, 2024.

[28] Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng,
Moontae Lee, Honglak Lee, and Lu Wang. Process reward models that think. arXiv:2504.16828,
2025.

[29] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv:2401.13649, 2024.

[30] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: A research direction. arXiv:1811.07871, 2018.

[31] Yansi Li, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Qiuzhi Liu, Rui Wang, Zhuosheng
Zhang, Zhaopeng Tu, Haitao Mi, et al. Dancing with critiques: Enhancing llm reasoning with
stepwise natural language self-critique. arXiv:2503.17363, 2025.

[32] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR,
2023.

[33] Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv:2504.02495, 2025.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

12

[35] Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, Weihan Cao, Jiangning Liu, Hongwei Liu, Junnan Liu,
Songyang Zhang, Dahua Lin, and Kai Chen. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv:2502.06781, 2025.

[36] Skywork o1 Team. Skywork-o1 open series. https://huggingface.co/Skywork,
November 2024.

[37] OpenAI. Learning to reason with llms, September 2024. Accessed: 2025-05-05.

[38] OpenCompass. Aime 2025. https://huggingface.co/datasets/opencompass/
AIME2025, 2025.

[39] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. In NeurIPS, 2022.

[40] Rafael Rafailov, Archit Sharma, Yiding Jiang, Ludwig Schmidt, and Stefano Ermon. Direct
preference optimization: Your language model is secretly a reward model. In NeurIPS, 2023.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347, 2017.

[42] Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv:2410.08146, 2024.

[43] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv:2402.03300, 2024.

[44] Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gregory
Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning with chain-
of-action-thought enhances llm reasoning via autoregressive search. arXiv:2502.02508, 2025.

[45] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv:2409.19256, 2024.

[46] Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement
finetuning via adaptive curriculum learning. arXiv:2504.05520, 2025.

[47] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize with human feedback. In
NeurIPS, 2020.

[48] Richard S. Sutton, Andrew G. Barto, et al. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[49] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Chal-
lenging big-bench tasks and whether chain-of-thought can solve them. arXiv:2210.09261,
2022.

[50] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.
github.io/blog/qwq-32b-preview/, November 2024.

[51] Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
data. arXiv:2410.01560, 2024.

[52] Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reason-
ing with reinforced fine-tuning. In ACL, 2024.

13

https://huggingface.co/Skywork
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

[53] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-and outcome-based feedback. arXiv:2211.14275, 2022.

[54] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In ACL, 2024.

[55] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In
NeurIPS, 2022.

[56] Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin
Shu, Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
for table question answering. In AAAI, 2025.

[57] Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

[58] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv:2412.15115,
2024.

[59] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv:2409.12122, 2024.

[60] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv:2503.14476, 2025.

[61] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurIPS, 2022.

[62] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. In ICLR, 2025.

[63] Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi
Qian, Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models
via generative reasoning. arXiv:2504.00891, 2025.

[64] Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical
reasoning. arXiv:2412.06559, 2024.

[65] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. In NeurIPS, 2023.

[66] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. In ICLR, 2024.

[67] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv:1909.08593, 2020.

14

https://github.com/RLHFlow/RLHF-Reward-Modeling

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, supported by numerical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4 and Appendix D for full implementation details to
reproduce our experiment results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [No]
Justification: We are committed to reproducibility and will open-source the code, and data
upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included all details of experiment setups. Please refer to Section 4
and Appendix D for further information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: As described in the Benchmark and Evaluation of Section 4, the results are
evaluated via greedy decoding, which is deterministic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the information on the computing resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed broader impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We propose a new RL post-training framework using the standard academic
open-sourced datasets and models. This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the relevant papers and provided the licenses of the assets in
Appendix G.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

19

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Broader Impacts

We introduce a novel framework that jointly trains a generator and a verifier via interleaved RL, with
the goal of enhancing the reasoning capabilities of language models through mutual reinforcement.
While we believe this approach can meaningfully improve the reliability, interpretability, and general-
ization of LLM reasoning, several potential societal risks associated with such advancements warrant
careful consideration.

First, as models become increasingly proficient at producing fluent and logically structured multi-step
outputs, there is a risk that such capabilities may be applied in settings where correctness is difficult
to ascertain, or where persuasive yet flawed reasoning can lead to harmful outcomes, for instance, in
domains like education, policymaking, or scientific communication. Second, although the verifier
provides step-level natural language feedback that is more transparent and less noisy than scalar
reward signals, such responses may still be perceived as authoritative even when incorrect, particularly
by non-expert users. Third, the use of RL in open-ended generation remains imperfectly understood,
and may introduce unintended behaviors through reward misalignment or policy over-optimization.

That said, we note that these concerns are not unique to our approach, but reflect broader challenges
in RL for LLM reasoning. Our design choices, such as employing generative, text-based verification
and sampling-based reward signals, may help mitigate some known issues related to rigidity and
reward hacking. Moreover, by training the verifier through RL rather than supervised imitation, our
framework encourages the verifier to develop more accurate and adaptive verification strategies, which
may help reduce the likelihood of producing misleading or unjustified assessments. Nonetheless, we
encourage responsible and cautious use of this framework, particularly in domains where reasoning
quality directly impacts users or high-stakes decisions.

B Limitations

While TANGO demonstrates strong performance across a range of reasoning tasks, several aspects
merit further discussion. First, the co-evolving RL training in TANGO offers a higher performance
ceiling compared to single-agent RL approaches, but realizing this potential requires careful tuning,
such as generator–verifier update schedule and advantage mixing strategy. While the framework
remains effective with minimal tuning, achieving optimal performance relies on well-coordinated
training dynamics. Second, jointly training the generator and verifier in TANGO introduces additional
computation compared to optimizing the generator alone, but the overhead is modest in practice.
Much like verifying a mathematical proof is easier than constructing one, the verifier’s task is
more sample-efficient and easier to optimize than generation, allowing less frequent updates. We
empirically find that updating the verifier once every three generator steps strikes a good balance
between performance and efficiency, keeping the overall cost comparable to single-agent setups.
Lastly, while our evaluation spans both mathematical and several structured out-of-domain reasoning
tasks, including logic, code, commonsense, and tabular reasoning, it does not yet cover more
open-ended domains such as long-context reasoning, multi-hop fact verification, or dialogue-based
reasoning. We expect TANGO can generalize to such settings, which we reserve for future work.

22

C TANGO Algorithm Flow

The algorithm flow of TANGO is detailed in Algorithm 1.

Algorithm 1: Interleaved RL Training of Generator and Verifier in TANGO

Input: Training data distribution P , generator policy πg , verifier policy πv , mixing weight α,
rollout size M , generator update steps Ng , verifier update steps Nv

Output: Trained generator πg and verifier πv

while not converged do
for n = 1 to Ng do

Sample a batch B ∼ P . For each (x,y) ∈ B, generate M rollouts of multi-step solutions
{oi

g}Mi=1 ∼ πg(· | x) and query the verifier to generate corresponding verifications:
oi
v ∼ πv(· | x,oi

g), i = 1, 2, . . . ,M .
Extract predicted answer ŷi from oi

g and step-level judgments {yistep,k}K
i

k=1 from oi
v .

Compute generator advantages {Âi
g,t}Mi=1 via Eq. (7). Perform policy gradient update

on generator πg using Âi
g,t.

end
for n = 1 to Nv do

Sample a batch B ∼ P . For each (x,y) ∈ B, generate a multi-step solution
og ∼ πg(· | x) and query the verifier to generate M verification rollouts:
{oi

v}Mi=1 ∼ πv(· | x,og), i = 1, 2, . . . ,M .
Extract final judgment yifinal from oi

v . Compute verifier advantages {Âi
v,t}Mi=1 via Eq. (9).

Perform policy gradient update on verifier πv using Âi
v,t.

Update EMA reweighting coefficients s+ and s−.
end

end

D Additional Experiment Details

D.1 Main Experiments

In addition to the experimental setup described in Section 4, we provide further details below.

For the SFT stage, we first generate training data by prompting Llama-3.1-70B-Instruct (system
prompt shown in Section F.1) with a decoding temperature of 0.1 and a top-p value of 0.5. The
generated responses are then used to perform SFT on the generator base model Qwen2.5-Math-7B.
We conduct full-parameter SFT using a learning rate of 5 × 10−6 with the AdamW optimizer, a
cosine annealing learning rate schedule, and a warmup ratio of 0.1. The model is trained for 800
steps with a batch size of 64.

For the RL stage, both the generator and verifier generate rollouts using a sampling temperature of
1.0 and a top-p value of 1.0. We set the KL loss coefficient β to 0.001. The EMA decay factor for
tracking correct and incorrect samples from the generator is set to 0.8.

D.2 Algorithmic Reasoning Experiment

For the algorithmic reasoning task, specifically, the last-letter concatenation experiment presented in
Section 4.3, we first construct SFT datasets by randomly generating 2 to 4 words, each containing 3
to 6 characters. These datasets are used to train both the generator and verifier for several dozen steps,
primarily to ensure that the Qwen-2.5-1.5B base models learns to follow the specified instructions and
produce outputs that conform to the required format. For RL training dataset, we similarly generate
input sequences consisting of 2 to 10 words, with each word containing 3 to 10 characters. The test
dataset is constructed in the same manner but includes slightly longer sequences, 2 to 12 words with
3 to 12 characters, to cover the evaluation of the model’s out-of-distribution generalization ability.
Most training hyperparameters follow those used in the main experiments detailed in Section 4 and
Appendix D.1, except that we use a batch size of 64 and an exponential learning rate decay schedule
for the generator. For the three baseline settings, vanilla GRPO, fixing the generator, and fixing the
verifier, we adopt the same configurations to ensure a fair comparison.

23

E Additional Results Using the Llama Base Model

To further demonstrate the generalizability of TANGO, we include results from a Llama base model
in addition to the Qwen series of models. Specifically, we conducted experiments using Llama-3.1-
8B-Instruct [16] as the base model for both the generator and verifier, following the same training
and evaluation protocol as in Table 1. The results are presented in the table below.

Table 4: TANGO performance using Llama-3.1-8B-Instruct as the base model on mathematical
benchmarks. TANGO still achieves substantial improvements across datasets on Llama base models.

Model MATH500 AIME2024 AIME2025 AMC2023 OlympiadBench Avg.

Llama3.1-8B-Instruct (Base) 46.4 3.3 3.3 22.5 13.6 17.9

TANGO-Llama3.1-8B-SFT 49.4 3.3 3.3 25.0 15.0 19.2
GRPO 56.2 10.0 3.3 35.0 20.9 25.1
GRPO w/ TANGO 60.5 13.3 6.7 40.0 23.6 28.8

These results show that even when using Llama as the base model, TANGO continues to deliver
significant improvements, demonstrating strong generalization across different model families. This
further confirms that TANGO’s effectiveness stems from our interleaved RL co-evolving framework,
rather than being specific to any particular model family.

F Additional Generation and Verification Examples

F.1 Mathematical Reasoning

Generator’s Prompt in Math Reasoning

You are a helpful Assistant that solves mathematical problems step-by-step.
Your task is to provide a detailed solution process within specific tags.

You MUST follow this exact format:
1. Start with a <think> section containing your step-by-step reasoning.
2. Inside <think>, each distinct logical step MUST be enclosed in its own <step> </step>
tags.
3. After <think>, provide the final answer within <answer> </answer> tags, using the \boxed
{} format.

Here is an example of the required format:

User: Calculate 15 - (3 * 2).
Assistant: <think>
<step>First, calculate the expression inside the parentheses, which is 3 multiplied by 2.</
step>
<step>3 * 2 equals 6.</step>
<step>Next, subtract the result from the original number, which is 15 minus 6.</step>
<step>15 - 6 equals 9.</step>
</think>
<answer>\boxed{9}</answer>

You MUST strictly adhere to this format.
- Output ONLY the content within <think>, <step>, and <answer> tags.
- Do NOT include any text or characters before the opening <think> tag or after the closing
</answer> tag.

- Ensure every part of your step-by-step reasoning is inside <step> </step> tags within the
<think> </think> section.

- Provide the final answer inside <answer>\boxed{}</answer>. Your final answer will be
extracted automatically by the \boxed{} tag.

User: For how many integers n does the expression√
log(n2) − (logn)2

logn − 3

represent a real number, where log denotes the base 10 logarithm?
Assistant:

24

Generator’s Response in Math Reasoning

<think>

<step>First, simplify the expression inside the square root: log(n2) − (logn)2.</step>

<step>Using the logarithm property log(n2) = 2 logn, the expression becomes 2 logn − (logn)2.</
step>

<step>So the expression inside the square root is 2 log n−(log n)2

log n−3 .</step>

<step>Factor the numerator: 2 logn − (logn)2 = logn(2 − logn).</step>

<step>The expression now is
√

log n(2−log n)
log n−3 .</step>

<step>For the expression to be a real number, the fraction log n(2−log n)
log n−3 must be non-negative

and logn ̸= 3.</step>
<step>Consider the critical points where the numerator or the denominator is zero: logn = 0,
logn = 2, and logn = 3.</step>

<step>logn = 0 implies n = 1.</step>
<step>logn = 2 implies n = 100.</step>
<step>logn = 3 implies n = 1000.</step>
<step>Now, analyze the intervals determined by these critical points: (0, 1), (1, 2), (2, 3),
(3,∞).</step>
<step>For (0, 1): 0 < logn < 1 implies logn(2 − logn) > 0, and logn − 3 < 0, so the fraction is
positive.</step>
<step>For (1, 2): 0 < logn < 2 and logn − 3 < −1, so the numerator and denominator must be
either both positive or both negative. Since 0 < logn − 3 < −1, the fraction is always
negative.</step>
<step>For (2, 3): 1 < logn < 2 implies logn(2 − logn) > 0, and logn − 3 < −1, so the fraction is
negative.</step>
<step>For (3,∞): logn > 0 and logn − 3 > 1, so the numerator and denominator are both
negative, making the fraction positive.</step>
<step>Thus, the expression is defined for 0 < n < 1 and 100 < n < 1000.</step>
<step>The integers in these intervals are n = 1 and n = 101, 102, . . . , 999, which gives us 1 +
999 integers.</step>
</think>

<answer> 1000 </answer>

25

Verifier’s Prompt in Math Reasoning

You are a verification assistant specialized in mathematical reasoning. Your task is to
carefully evaluate the provided solution step by step, checking for mathematical
correctness and logical coherence. You will be given the original problem and the Assistant’
s solution, which contains a specific number of steps within <step> tags. You MUST verify
EACH <step> block found in the Assistant’s solution and provide your judgment using the
exact format specified in the instructions. You MUST output ONLY the content within the
specified verification tags and nothing else.

Here is the problem you need to verify, and the Assistant’s solution:

Problem: For how many integers n does the expression√
log(n2) − (logn)2

logn − 3

represent a real number, where log denotes the base 10 logarithm?
Assistant’s Solution:
<think>

<step>First, simplify the expression inside the square root: log(n2) − (logn)2.</step>

<step>Using the logarithm property log(n2) = 2 logn, the expression becomes 2 logn − (logn)2.</
step>

<step>So the expression inside the square root is 2 log n−(log n)2

log n−3 .</step>

<step>Factor the numerator: 2 logn − (logn)2 = logn(2 − logn).</step>

<step>The expression now is
√

log n(2−log n)
log n−3 .</step>

<step>For the expression to be a real number, the fraction log n(2−log n)
log n−3 must be non-negative

and logn ̸= 3.</step>
<step>Consider the critical points where the numerator or the denominator is zero: logn = 0,
logn = 2, and logn = 3.</step>

<step>logn = 0 implies n = 1.</step>
<step>logn = 2 implies n = 100.</step>
<step>logn = 3 implies n = 1000.</step>
<step>Now, analyze the intervals determined by these critical points: (0, 1), (1, 2), (2, 3),
(3,∞).</step>
<step>For (0, 1): 0 < logn < 1 implies logn(2 − logn) > 0, and logn − 3 < 0, so the fraction is
positive.</step>
<step>For (1, 2): 0 < logn < 2 and logn − 3 < −1, so the numerator and denominator must be
either both positive or both negative. Since 0 < logn − 3 < −1, the fraction is always
negative.</step>
<step>For (2, 3): 1 < logn < 2 implies logn(2 − logn) > 0, and logn − 3 < −1, so the fraction is
negative.</step>
<step>For (3,∞): logn > 0 and logn − 3 > 1, so the numerator and denominator are both
negative, making the fraction positive.</step>
<step>Thus, the expression is defined for 0 < n < 1 and 100 < n < 1000.</step>
<step>The integers in these intervals are n = 1 and n = 101, 102, . . . , 999, which gives us 1 +
999 integers.</step>
</think>

<answer> 1000 </answer>

The Assistant’s solution contains 17 steps within <step> tags.

Please verify this solution step by step. For each of the 17 <step> blocks in the Assistant’
s Solution, you MUST provide ONE corresponding verification analysis within a <step> tag
inside the <step_verification> section. After verifying all steps, provide a final overall
judgment in the <final_verification> tag.

You MUST follow this exact format:

<step_verification>
<step>Step 1 Analysis: Your detailed verification reasoning goes here. Conclude with only
one judgement: \boxed{CORRECT} or \boxed{INCORRECT}</step>
<step>Step 2 Analysis: Your detailed verification reasoning goes here. Conclude with only
one judgement: \boxed{CORRECT} or \boxed{INCORRECT}</step>
... [CONTINUE for ALL 17 <step> blocks in the Assistant’s Solution] ...
</step_verification>

<final_verification>\boxed{CORRECT} or \boxed{INCORRECT}</final_verification>

Here is an example:

Problem: What is 5 * 3 + 1?
Assistant’s Solution:
<think>
<step>First, multiply 5 by 3. 5 * 3 = 15.</step>

26

<step>Then, add 1 to the result. 15 + 1 = 16.</step>
</think>
<answer>\boxed{16}</answer>

Your Verification:
<step_verification>
<step>Step 1 Analysis: The multiplication 5 * 3 is correctly calculated as 15. This step is
mathematically sound. \boxed{CORRECT}</step>

<step>Step 2 Analysis: Adding 1 to the previous result (15) gives 16, which is correct.
This step follows logically and is mathematically accurate. \boxed{CORRECT}</step>
</step_verification>
<final_verification>\boxed{CORRECT}</final_verification>

IMPORTANT INSTRUCTIONS (Read Carefully):
1. The Assistant’s solution has 17 steps. You MUST analyze and provide a verification for
EACH and EVERY one of these steps. The number of <step> tags within your <step_verification>
section MUST be exactly 17.

2. You MUST analyze the step and provide YOUR OWN verification reasoning - DO NOT copy the
original solution text.
3. Each verification <step> must end with EXACTLY ONE judgement: either \boxed{CORRECT} or \
boxed{INCORRECT}.
4. Your final verification within <final_verification> must judge whether the overall
solution and final answer are correct.
5. You MUST output ONLY the content within the <step_verification> and <final_verification>
tags. Do NOT output anything else.

Your Verification:

27

Verifier’s Response in Math Reasoning

<step_verification>
<step>Step 1 Analysis: The simplification of the expression inside the square root is
necessary before proceeding further. The step is correctly identifying the need to simplify

the expression. CORRECT </step>

<step>Step 2 Analysis: The logarithmic property log(n2) = 2 logn is applied correctly,

transforming the expression into 2 logn − (logn)2. This step is mathematically sound.

CORRECT </step>

<step>Step 3 Analysis: The expression inside the square root is correctly rewritten after

applying the logarithmic property from Step 2. CORRECT </step>

<step>Step 4 Analysis: Factoring out logn from the numerator results in logn(2 − logn), which

is a valid algebraic operation. CORRECT </step>

<step>Step 5 Analysis: The expression is correctly simplified to
√

log n(2−log n)
log n−3 . This step

follows logically from the previous steps. CORRECT </step>

<step>Step 6 Analysis: For the square root to represent a real number, the argument must be
non-negative. Additionally, the denominator cannot be zero, meaning logn ̸= 3. This

condition is correctly identified. CORRECT </step>

<step>Step 7 Analysis: Identifying the critical points where the numerator or denominator
equals zero is crucial for determining the sign of the fraction. The critical points are

correctly identified as logn = 0, logn = 2, and logn = 3. CORRECT </step>

<step>Step 8 Analysis: When logn = 0, it implies n = 100 = 1. This step is correct.

CORRECT </step>

<step>Step 9 Analysis: When logn = 2, it implies n = 102 = 100. This step is also correct.

CORRECT </step>

<step>Step 10 Analysis: When logn = 3, it implies n = 103 = 1000. This step is correct.

CORRECT </step>

<step>Step 11 Analysis: The intervals determined by the critical points are correctly
identified as (0, 1), (1, 2), (2, 3), and (3,∞). However, since n must be an integer, the

interval (0, 1) should not be considered. INCORRECT </step>

<step>Step 12 Analysis: For the interval (0, 1), the analysis is incorrect because n cannot
be less than 1 if it is an integer. The correct interval to consider would be [1, 1), which

is empty. INCORRECT </step>

<step>Step 13 Analysis: For the interval (1, 2), the analysis is incorrect. It should state
that the fraction is negative because the numerator is positive and the denominator is

negative. INCORRECT </step>

<step>Step 14 Analysis: For the interval (2, 3), the analysis is incorrect. It should state
that the fraction is positive because the numerator is negative and the denominator is

negative. INCORRECT </step>

<step>Step 15 Analysis: For the interval (3,∞), the analysis is incorrect. It should state
that the fraction is negative because the numerator is negative and the denominator is

positive. INCORRECT </step>

<step>Step 16 Analysis: Based on the analysis of the intervals, the expression is defined
for 100 < n < 1000. The conclusion about the intervals is partially incorrect due to the

misinterpretation of the first interval. INCORRECT </step>

<step>Step 17 Analysis: The count of integers in the intervals is incorrect based on the
corrected intervals. There are no integers in (0, 1), and the correct count for 101 ≤ n ≤ 999

is 999 − 101 + 1 = 899. Including n = 1 incorrectly adds to the confusion. INCORRECT </step>

</step_verification>

<final_verification> INCORRECT </final_verification>

28

F.2 Algorithmic Reasoning

Generator’s Prompt in Last Letter Concatenation

A conversation between User and Assistant. The User asks a question, and the Assistant
solves it step by step.

The Assistant thinks through the problem in clear, logical steps, with each step enclosed
in <step> </step> tags within the overall <think> </think> section. Each <step> </step> tag
pair should enclose ALL content for that step. After completing the thinking process, the

Assistant provides the final answer within <answer> </answer> tags.

The Assistant should strictly follow the format below:

<think>
<step>Your detailed reasoning. |Status|: Letters </step>
<step>Your detailed reasoning. |Status|: Letters </step>
...
</think>
<answer>\boxed{Your final letters}</answer>

User: You are given several words. Your task is to extract the last letter of each word and
concatenate them to form a new word.

This is the problem: prepurpose, overflown, lovesick, burghalpenny, toran, outworn,
coadjacence, forgotten, imperilment, epidictical

Let us think step by step and please follow the format: <step> Your detailed reasoning. |
Status|: Letters </step>. In the n-th step, extract the last letters of the first n words
and replace Letters with the concatenation of these letters. Finally, return your result
using the following format: <answer>\boxed{your final letters}</answer>

You must output exactly 10 steps for this problem. Do not skip or add any extra steps.

Assistant:

Generator’s Response in Last Letter Concatenation

<think>
<step>Extract the last letter from prepurpose, get e. |Status|: e</step>
<step>Extract the last letter from overflown, get d. |Status|: ed</step>
<step>Extract the last letter from lovesick, get k. |Status|: edk</step>
<step>Extract the last letter from burghalpenny, get y. |Status|: edky</step>
<step>Extract the last letter from toran, get n. |Status|: edkyn</step>
<step>Extract the last letter from outworn, get n. |Status|: edkynn</step>
<step>Extract the last letter from coadjacence, get e. |Status|: edkynne</step>
<step>Extract the last letter from forgotten, get d. |Status|: edkynned</step>
<step>Extract the last letter from imperilment, get m. |Status|: edkynnedm</step>
<step>Extract the last letter from epidictical, get l. |Status|: edkynnedml</step>
</think>

<answer> edkynnedml </answer>

29

Verifier’s Prompt in Last Letter Concatenation

You are a verification assistant specializing in algorithmic reasoning. Your task is to
carefully evaluate each step in the provided solution for a last letter concatenation
problem --- The problem involves concatenating the last letters of a list of words to form
a new string. You must verify EACH numbered step in the solution and provide your judgment
using the exact format specified in the instructions.

Here is the problem you need to verify, and the Assistant’s solution:

Problem: prepurpose, overflown, lovesick, burghalpenny, toran, outworn, coadjacence,
forgotten, imperilment, epidictical

Assistant’s Solution:
<think>
<step>Extract the last letter from prepurpose, get e. |Status|: e</step>
<step>Extract the last letter from overflown, get d. |Status|: ed</step>
<step>Extract the last letter from lovesick, get k. |Status|: edk</step>
<step>Extract the last letter from burghalpenny, get y. |Status|: edky</step>
<step>Extract the last letter from toran, get n. |Status|: edkyn</step>
<step>Extract the last letter from outworn, get n. |Status|: edkynn</step>
<step>Extract the last letter from coadjacence, get e. |Status|: edkynne</step>
<step>Extract the last letter from forgotten, get d. |Status|: edkynned</step>
<step>Extract the last letter from imperilment, get m. |Status|: edkynnedm</step>
<step>Extract the last letter from epidictical, get l. |Status|: edkynnedml</step>
</think>

<answer> edkynnedml </answer>

The Assistant’s solution contains 10 steps within <step> tags.

Please verify this solution step by step. For each of the 10 <step> blocks in the Assistant’
s Solution, you MUST provide ONE corresponding verification analysis within a <step> tag
inside the <step_verification> section. After verifying all steps, provide a final overall
judgment in the <final_verification> tag.

You MUST follow this exact format:

<step_verification>
<step>Step 1 Analysis: Your detailed verification reasoning goes here. Conclude with only
one judgement: \boxed{CORRECT} or \boxed{INCORRECT}</step>
<step>Step 2 Analysis: Your detailed verification reasoning goes here. Conclude with only
one judgement: \boxed{CORRECT} or \boxed{INCORRECT}</step>
... [CONTINUE for ALL 10 <step> blocks in the Assistant’s Solution] ...
</step_verification>
<final_verification>\boxed{CORRECT} or \boxed{INCORRECT}</final_verification>

IMPORTANT INSTRUCTIONS (Read Carefully):
1. The Assistant’s solution has 10 steps. You MUST analyze and provide a verification for
EACH and EVERY one of these steps. The number of <step> tags within your <step_verification>
section MUST be exactly 10.

2. You MUST analyze the step and provide YOUR OWN verification reasoning - DO NOT copy the
original solution text.
3. Each verification <step> must end with EXACTLY ONE judgement: either \boxed{CORRECT} or \
boxed{INCORRECT}.
4. Your final verification within <final_verification> must judge whether the overall
solution and final answer are correct.
5. You MUST output ONLY the content within the <step_verification> and <final_verification>
tags. Do NOT output anything else.

Your Verification:

30

Verifier’s Response in Last Letter Concatenation

<step_verification>
<step>Step 1 Analysis: The last letter of prepurpose is e; Assistant gets e in its response.

CORRECT </step>

<step>Step 2 Analysis: The last letter of overflown is n; Assistant gets d in its response.

INCORRECT </step>

<step>Step 3 Analysis: The last letter of lovesick is k; Assistant gets k in its response.

CORRECT </step>

<step>Step 4 Analysis: The last letter of burghalpenny is y; Assistant gets y in its

response. CORRECT </step>

<step>Step 5 Analysis: The last letter of toran is n; Assistant gets n in its response.

CORRECT </step>

<step>Step 6 Analysis: The last letter of outworn is n; Assistant gets n in its response.

CORRECT </step>

<step>Step 7 Analysis: The last letter of coadjacence is e; Assistant gets e in its

response. CORRECT </step>

<step>Step 8 Analysis: The last letter of forgotten is n; Assistant gets d in its response.

INCORRECT </step>

<step>Step 9 Analysis: The last letter of imperilment is t; Assistant gets m in its

response. INCORRECT </step>

<step>Step 10 Analysis: The last letter of epidictical is l; Assistant gets l in its

response. CORRECT </step>

</step_verification>

<final_verification> CORRECT </final_verification>

G Licenses for Assets

All models, datasets, and codebases used in our experiments are open-sourced and adopted under
permissive research licenses, as detailed in Table 5.

Table 5: Licenses for external assets used in our experiments.

Asset Type License / Terms

Qwen2.5-Math-7B [59] Model Apache 2.0
Qwen2.5-7B [58] Model Apache 2.0
Llama-3.1-70B-Instruct [16] Model Llama 3.1 Community License
Qwen2.5-1.5B [58] Model Apache 2.0
Eurus-2-SFT-Data [12] Dataset MIT
Eurus-2-RL-Data [12] Dataset MIT
MATH 500 [32] Dataset MIT
AIME 2024 [3] Dataset Apache 2.0
AIME 2025 [38] Dataset MIT
AMC 2023 [4] Dataset Apache 2.0
OlympiadBench [20] Dataset Apache 2.0
BoardgameQA [26] Dataset CC-BY 4.0
CRUXEval [17] Dataset MIT
StrategyQA [15] Dataset MIT
TableBench [56] Dataset Apache 2.0
ProcessBench [64] Dataset Apache 2.0
veRL [45] Codebase Apache 2.0

31

