

000 CORA: BOOSTING TIME SERIES FOUNDATION MODELS FOR MULTIVARIATE FORECASTING THROUGH 001 002 003 004 CORRELATION-AWARE ADAPTER

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Most existing Time Series Foundation Models (TSFMs) use channel indepen-
014 dent modeling and focus on capturing and generalizing temporal dependencies,
015 while neglecting the correlations among channels or overlooking the different as-
016 pects of correlations. However, these correlations play a vital role in Multivariate
017 time series forecasting. To address this, we propose a Co**R**elation-aware Adapter
018 (**CoRA**), a lightweight plug-and-play method that requires only fine-tuning with
019 TSFMs and is able to capture different types of correlations, so as to improve
020 forecast performance. Specifically, to reduce complexity, we innovatively de-
021 compose the correlation matrix into low-rank Time-Varying and Time-Invariant
022 components. For the Time-Varying component, we further design learnable poly-
023 nomials to learn dynamic correlations by capturing trends or periodic patterns. To
024 learn positive and negative correlations that appear only among some variables,
025 we introduce a novel dual contrastive learning method that identifies correlations
026 through projection layers, regulated by a Heterogeneous-Partial contrastive loss
027 during training, without introducing additional complexity in the inference stage.
028 Extensive experiments on 10 real-world datasets demonstrate that CoRA can im-
029 prove the TSFMs in multivariate forecasting performance.
030

031 1 INTRODUCTION

032 Time Series Foundation Models (TSFMs) that show strong generalization are proposed recently.
033 Through pre-training on large-scale time series data (Goswami et al., 2024; Liu et al., 2024e; Ekam-
034 baram et al., 2024a) or the use of large language models (Zhou et al., 2023; Liu et al., 2024d;c; Jin
035 et al., 2023), these models maintain strong reasoning abilities when handling new or unseen data.
036

037 At the same time, multivariate time series forecasting, as a pivotal domain in data analysis, is widely
038 applied in various industries (Qiu et al., 2024b; Wang et al., 2024b; Zhang et al., 2024). Properly
039 modeling and utilizing correlations in multivariate time series can significantly improve the per-
040 formance of forecasting models (Zhang & Yan, 2022; Liu et al., 2023; Wu et al., 2020). Based on
041 different interaction characteristics among variables, as shown in Figure 1a, correlation can be sum-
042 marized into three aspects: *dynamic correlation (DCorr)* describes the variation of variable rela-
043 tionships over time (Zhao et al., 2023; Cirstea et al., 2021); *heterogeneous correlation (HCorr)* focuses
044 on how variables interact with each other by considering positive and negative correlations (Huang
045 et al., 2023); *partial correlation (PCorr)* emphasizes that correlation exists only among certain vari-
046 ables, and modeling interactions across all variables can easily introduce noise (Chen et al., 2024;
047 Qiu et al., 2025c; Liu et al., 2024b). Considering more comprehensive correlations provides richer
048 information for the models.

049 However, most existing TSFMs focus on capturing and generalising temporal dependencies and ne-
050 glect relationships among variables (Goswami et al., 2024; Ansari et al., 2024; Liu et al., 2024e;c;
051 Jin et al., 2023; Shi et al., 2024). Although some models like TTM (Ekambaram et al., 2024a),
052 UniTS (Gao et al., 2024), and Moirai (Woo et al., 2024) employ different methods to model the
053 correlations among variables, they do not comprehensively consider multiple aspects of the cor-
054 relations. For example, TTM employs an MLP-based channel mixing approach, but the MLP

weights remain unchanged across different time steps, thereby failing to model DCorr while indiscriminately modelling all interactions, and thus failing to capture HCorr and PCorr explicitly.

While the attention mechanisms used in UniTS and Moirai assign different attention scores at different time points, they still interact all variables simultaneously without considering HCorr and PCorr, thus leading to suboptimal correlation modeling. Furthermore, due to the variations in correlations across different datasets, it is difficult to capture generalized correlations during the pre-training phase (Ekambaram et al., 2024a).

Thus, it motivates us to design a plugin that can be fine-tuned alongside TSFMs, which avoids issues caused by correlation differences across datasets during the pre-training phase. Meanwhile, it **possesses**

the ability to depict various correlations while also incorporating a lightweight design. However, this faces a major challenge: **balancing the complete modeling of various correlations with the lightweight design**. It is intrinsically difficult to model all three correlations in a unified manner. Although some models could address DCorr (Zhao et al., 2023; Cirstea et al., 2021), HCorr (Huang et al., 2023) and PCorr (Qiu et al., 2025c; Liu et al., 2024b) individually, they struggle to effectively encompass various correlations simultaneously. Moreover, existing variable interaction methods often rely on MLPs (Ekambaram et al., 2023; 2024b), Transformers (Liu et al., 2023; Jiang et al., 2023) and GNNs (Wu et al., 2020; Cai et al., 2024), etc., which have a time complexity of $\mathcal{O}(N^2)$, where N denotes the number of variables. Some methods (Zhang & Yan, 2022; Chen et al., 2024; Nie et al., 2024) have made efforts in reducing the complexity. However, end-to-end models such as Crossformer (Zhang & Yan, 2022) require modifying or redesigning the entire model structure, and thus cannot be directly used as plugins for TSFMs. Existing plugins are primarily designed for end-to-end forecasting models. CCM (Chen et al., 2024) requires additional pre-training together with the end-to-end models before it can be plugged in. C-LoRA (Nie et al., 2024) is designed to be trained with an end-to-end backbone from scratch. Overall, there is a lack of an efficient plugin specifically designed for downstream fine-tuning of TSFMs. More importantly, considering various correlations in these methods would lead to a higher complexity.

To address this, we propose CoRA, a lightweight plug-and-play method that only requires training on a few samples with TSFMs during the fine-tuning phase. By considering various correlations, CoRA utilises representations and original prediction from TSFMs to generate an enhanced prediction, as shown in Figure 1b. To complete modeling the **mentioned three types of** correlation, we first propose the **Dynamic Correlation Estimation (DCE)** module which can learn dynamic correlation matrices. Then we design the **Heterogeneous-Partial Correlation Contrastive Learning (HPCL)** that uses the correlation matrices from DCE to learn HCorr and PCorr adaptively. Specifically, to achieve lightweight, we innovatively decompose the correlation matrices into two low-rank components: Time-Varying and Time-Invariant in DCE module. To better understand how DCorr evolves, we propose a learnable polynomial to capture trend or periodic patterns within the DCorr effectively. Afterwards, to better distinguish of HCorr, we propose channel-aware projections to map the representations into positive and negative correlation spaces. The projections are guided by the novel Heterogeneous-Partial Contrastive Loss during the training process, which enables adaptive learning of PCorr in the two HCorr spaces. As a result, we can capture the **mentioned three types of** correlations with $\mathcal{O}(N)$ complexity during inference. Our contributions are summarized as follows:

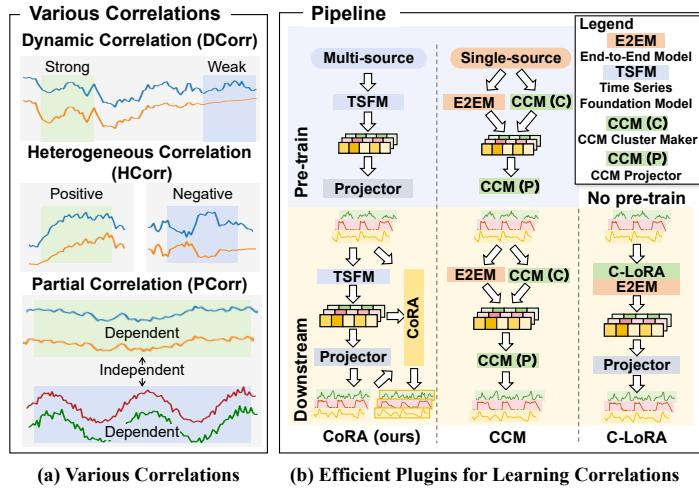


Figure 1: (a) Illustration of three different types of correlations, the formal definitions are provided in Appendix A. (b) Comparisons of different plugins for learning correlations

- 108 • We design a universal, lightweight plugin that allows the TSFMs to capture [the mentioned](#)
109 [three types of](#) correlations without re-pre-training the TSFMs.
- 110 • We propose a lightweight Dynamic Correlation Estimation module that can explicitly
111 model the dynamic patterns of correlations in a lightweight manner.
- 112 • We propose a novel Heterogeneous-Partial Correlation Contrastive Learning, which can
113 learn HCorr and PCorr through projection layers regulated by dual contrastive loss.
- 114 • We conducted extensive experiments on 10 real-world datasets. The results show that
115 CoRA effectively improves the performance of TSFMs in multivariate forecasting.

118 2 RELATED WORK

120 2.1 FOUNDATION MODELS FOR TIME SERIES FORECASTING

122 TSFMs for forecasting can be divided into two sections: **1) LLM-based Models:** These meth-
123 ods leverage the strong representational capacity and sequential modeling capability of LLMs to
124 capture complex patterns for time series modeling. Among them, GPT4TS (Zhou et al., 2023) and
125 CALF (Liu et al., 2024a) selectively modify certain parameters of LLMs [to](#) enable the model to adapt
126 to time series data. On the other hand, UniTime(Liu et al., 2024c), S²IP-LLM (Pan et al., 2024),
127 LLMMixer (Kowsher et al., 2024), and Time-LLM (Jin et al., 2023) focus on creating prompts to
128 trigger time series knowledge within LLMs. **2) Time Series Pre-trained Models:** Pre-training on
129 multi-domain time series equips these models with strong generalization capabilities. Among them,
130 ROSE (Wang et al., 2024a) and Moment (Goswami et al., 2024) restore the features of time series
131 data, enabling them to extract valuable information in an unsupervised manner. On the other hand,
132 TimesFM (Das et al., 2023) and Timer (Liu et al., 2024e), using an autoregressive approach, em-
133 ploy next-token prediction to learn time series representations. Generally speaking, most TSFMs
134 are based on channel-independent strategies, with only a few (Gao et al., 2024; Ekambaram et al.,
135 2024a; Woo et al., 2024) modeling relatively simple inter-variable relationships. The effects of more
136 complex correlations in TSFMs remain under-explored.

137 2.2 CORRELATION OF VARIABLES IN TIME SERIES FORECASTING

139 Channel correlation plays a crucial role in enhancing the predictions(Qiu et al., 2025a). They can
140 be divided into specialized models and plugins from a paradigm perspective. **1) Correlation Mod-
141 els:** These models are typically based on foundational architectures such as MLP (Ekambaram
142 et al., 2024b; 2023), GNN (Shang et al., 2021; Cai et al., 2024; Wu et al., 2020), and Trans-
143 former (Liu et al., 2023; Zhang & Yan, 2022). For example, TSMixer(Ekambaran et al., 2023) and
144 TTM(Ekambaram et al., 2024b) directly mix all variables using MLP. MTGNN(Wu et al., 2020)
145 and Ada-MsHyper(Shang et al., 2024) treat different variables as distinct nodes, performing mes-
146 sage passing to facilitate variable interactions. Furthermore, iTransformer(Liu et al., 2023) and
147 Crossformer(Zhang & Yan, 2022) treat different variables as distinct tokens and utilize transformers
148 to realize channel interaction. **2) Correlation Plugins:** Some plugins enhance the predictive capa-
149 bility of models by learning correlation. For example, LIFT (Zhao & Shen, 2024) leverages locally
150 stationary relationships to extract correlations. CCM (Chen et al., 2024) further performs clustering
151 and creates dedicated prediction heads for each cluster. However, the methods above either lack
152 comprehensive correlation modeling capabilities or possess substantial complexity.

153 3 PRELIMINARIES

155 **Time Series Forecasting.** Given a multivariate time series with length L and N channels $\mathbf{X}_t =$
156 $\{\mathbf{x}_{t-L:t}^i\}_{i=1}^N$, where each $\mathbf{x}_{t-L:t}^i \in \mathbb{R}^L$ is a sequence of observations [at time point \$t\$](#) . The forecasting
157 task is to predict future F length values $\hat{\mathbf{Y}}_t = \{\hat{\mathbf{x}}_{t:t+F}^i\}_{i=1}^N$. $\mathbf{Y}_t = \{\mathbf{x}_{t:t+F}^i\}_{i=1}^N$ denotes real future
158 values.

159 **Correlation-Aware Adapter for Foundation Models.** Given a TSFM \mathcal{F} , it is fine-tuned on down-
160 stream forecasting data \mathbf{X}_t^{ft} , formulated as $\hat{\mathbf{Y}}_t^{ft} = \mathcal{F}(\mathbf{X}_t^{ft})$. Meanwhile, the series representation
161 \mathbf{X}_t^{ft} of TSFM \mathcal{F} is produced.

Problem Definition: given X_t^{ft} , \hat{Y}_t^{ft} , \mathcal{X}_t^{ft} and Y_t^{ft} , we update \mathcal{F} into \mathcal{F}^* , where \mathcal{F}^* is an updated \mathcal{F} with CoRA plugged in. The inference can be performed as: $\hat{Y}_t^{test} = \mathcal{F}^*(X_t^{test})$.

4 METHODOLOGY

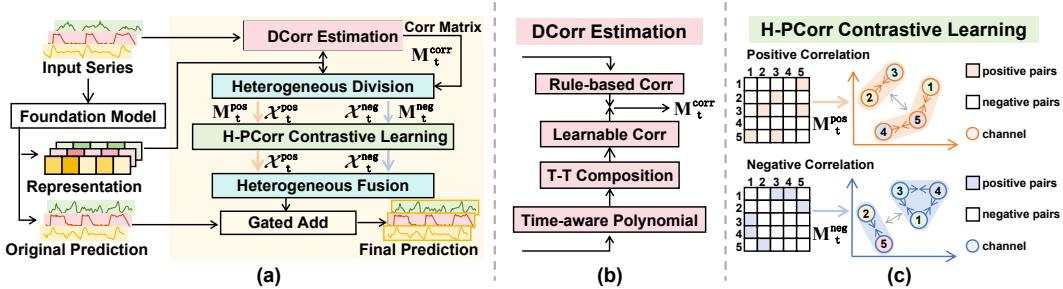


Figure 2: The framework of CoRA. (a) CoRA begins by learning DCorr in Dynamic Correlation Estimation module. Heterogeneous Division module projects representations into positive and negative spaces for HCorr. Then CoRA conducts H-PCorr Contrastive Learning in each space to guide projection and capture PCorr. (b) The DCorr Estimation module estimates correlations by combining Rule-based Correlations and Learnable Correlations, which are computed by Time-aware Polynomial and Time-Varying and Time-Invariant (T-T) Composition. (c) H-PCorr contrastive learning minimizes distances between strongly correlated channels and maximizes separation between weakly correlated channels in both positive and negative spaces.

In this work, we propose a **Correlation-Aware Adapter** (CoRA), a lightweight plugin that allows the TSFMs to capture various correlations during the fine-tuning stage. The framework of CoRA is visualized in Figure 2. CoRA operates on input series, original predictions, and representations from TSFMs to enhance the prediction accuracy. Our method consists of four processes: **(i) Dynamic Correlation Estimation.** This module utilize representations from TSFMs and input series to learn dynamic correlations and generate correlation matrices that guide subsequent contrastive learning. **(ii) Heterogeneous Division.** Some channels show dependencies on positive correlations, whereas some others show negative correlations. To better capture HCorr, we design the this module to process the representations from the backbone and learn representations of positive and negative correlations separately. **(iii) Heterogeneous Partial Correlation (H-PCorr) Contrastive Learning.** We propose H-PCorr Contrastive Learning within each representation of HCorr to learn PCorr by clustering only correlated channels. **(iv) Heterogeneous Fusion and prediction.** Finally, we fuse the representations after contrastive learning for positive and negative correlations in Heterogeneous Fusion module and generate new predictions. Then, both original and new predictions are gated and added together.

4.1 DYNAMIC CORRELATION ESTIMATION

Channels exhibit both stable dependencies that do not change across time and fluctuations that change across time. Motivated by this, we introduce an innovative method that decomposes the **learnable part of** correlation matrix $M_t^{corr} \in \mathbb{R}^{N \times N}$ at time t into two low-rank components: Time-Varying $Q_t \in \mathbb{R}^{N \times M}$ and Time-Invariant $V \in \mathbb{R}^{M \times M}$, which can separate distinct correlation components, as illustrated in Figure 3. Here, $R \in \mathbb{R}^{N \times N}$ denotes the **rule-based correlation matrix** which is added to the learnable part to incorporate more prior knowledge for enhancing correlation estimation. M is the hyperparameter for the post-decomposition rank, with $M < N$. This decomp

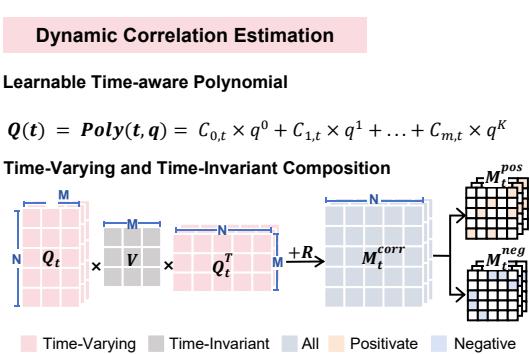


Figure 3: The details of DCorr Estimation
on of the learnable part offers greater parameter

efficiency, yet remains functionally equivalent to conventional additive decomposition (Cirstea et al., 2021), as formally proven in Theorem 1.

We estimate the two components separately and then compose them back into the original correlation. The Time-Varying component represents the fluctuations in correlations across time. As time series data inherently have trends and periodic characteristics, the correlations that measure their dependencies also exhibit such variations across the entire time series (Liu et al., 2022). Thus, we propose Learnable Time-aware Polynomials to estimate the changes, as polynomials can be effective in modeling temporal patterns by sharing a common basis across different time steps. Based on a global adaptive method, the Time-Invariant component aims to capture the stable dependencies among channels that do not change over time. Finally, we compute the correlation matrix M_t^{corr} by composing learnable correlations and combining with the rule-based correlation \mathbf{R} . This correlation matrix is then used for H-PCorr Contrastive Learning.

4.1.1 LEARNABLE TIME-AWARE POLYNOMIALS

Most existing approaches (Shang et al., 2024; Cirstea et al., 2021; Zhao et al., 2023) struggle to accurately express the time-varying characteristics of DCorr due to the lack of explicit modeling of dynamic regularities.

In a stationary time series, we can use a well-behaved mathematical function to effectively approximate the fluctuations of the correlation. Considering that high-order polynomials provide better non-linear capacity than first-order ones, we use learnable polynomials to estimate \mathbf{Q}_t . The proof of this approximation capability is detailed in Theorem 2.

We construct a K -order Time-aware Polynomials with a shared matrix basis:

$$\mathbf{Q}_t = \sum_{i=0}^K C_{i,t} \mathbf{q}^i, \quad (\mathbf{q}^i = \underbrace{\mathbf{q} \odot \mathbf{q} \odot \cdots \odot \mathbf{q}}_{i \text{ times}}), \quad (1)$$

where $\mathbf{Q}_t \in \mathbb{R}^{N \times M}$ denote the Time-Varying component at time step t . $C_{i,t} \in \mathbb{R}^N$ is the i -th coefficient that varies over time, while $\mathbf{q} \in \mathbb{R}^{N \times M}$ is the globally learnable basis, which represents the pattern of changes over time. We define \mathbf{q}^i as the i -times Hadamard product of the matrix \mathbf{q} , where the operation \odot is the element-wise Hadamard product.

For convenience, we define the collection of $C_{i,t}$ as the matrix $\mathbf{C}_t = (C_{0,t}, \dots, C_{K,t}) \in \mathbb{R}^{N \times K}$. It is the dependency coefficient of each channel for pattern q^i and exhibits different values at different times, determined by specific data. Therefore, we learn the mapping f between the representations of time series \mathbf{X}_t and coefficients \mathbf{C}_t to estimate it :

$$\mathbf{C}_t = f(\mathbf{X}_t) \in \mathbb{R}^{N \times K}. \quad (2)$$

Since only the polynomial coefficients need to be estimated with f , rather than the entire varying component, we can use a simple MLP to implement it.

4.1.2 TIME-VARYING AND TIME-INVARIANT COMPOSITION

Since the time-invariant part does not change over time, it should be globally unique. Inspired by self-learned graphs (Shang et al., 2024; Wu et al., 2020), we use global learnable vectors to capture the implicit stable dependencies among channels:

$$\mathbf{V} = \text{Sigmoid}(\text{ReLU}(\mathbf{E}_1 \mathbf{E}_2^T)), \quad (3)$$

where $\mathbf{V} \in \mathbb{R}^{M \times M}$ denote the Time-Invariant component of DCorr. $\mathbf{E}_1, \mathbf{E}_2 \in \mathbb{R}^{M \times d_e}$ are learnable vectors, d_e is used to expand the dimensions, thereby enhancing the representation capacity.

As the statistics-based Pearson coefficient can describe simple linear correlation, we use it as the initialization for the final DCorr and build upon it to learn more complex correlations. The Pearson coefficient is calculated as follows:

$$r_{x,y} = \frac{\sum_{i=1}^L (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^L (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^L (y_i - \bar{y})^2}}, \quad (4)$$

270 where x, y are two variables in \mathbf{X}_t . $r_{x,y}$ denotes the correlation coefficient among them, while \bar{x} and
 271 \bar{y} indicate the mean values of x and y , respectively, L is the size of input series. We use $\mathbf{R} \in \mathbb{R}^{N \times N}$
 272 to denote the collection of r . Overall, our DCorr includes rule-based correlation \mathbf{R} , time-varying
 273 components \mathbf{Q}_t , and time-invariant components \mathbf{V} . The final estimated correlation is formulated as
 274 the sum of the learnable and rule-based parts in the following equation:

$$\mathbf{M}_t^{\text{corr}} = \mathbf{R} + \mathbf{Q}_t \mathbf{V} \mathbf{Q}_t^T. \quad (5)$$

277 4.2 HETEROGENEOUS CORRELATION DIVISION

279 Positive and negative correlations affect the channels differently, and the proportion of their contribution
 280 also varies among different channels. Motivated by Squeeze-and-Excitation (Hu et al., 2018)
 281 (SE), we propose a channel-aware projector that can adjust the weights of channels based on
 282 contextual information during projection to better project the representations into positive and negative
 283 spaces and learn Heterogeneous Correlation (HCorr).

284 To distinguish the dependency of channels on Heterogeneous Correlation, we project the representations
 285 into two spaces. Specifically, we use SE mechanism to aggregate contextual information over
 286 time and adaptively calculate projection weights among channels. The channel-aware projection
 287 layer \mathcal{P} with \mathbf{X}_t^{in} and $\mathbf{X}_t^{\text{out}}$ is shown as follows:

$$\mathbf{X}_t^{\text{proj}} = \text{MLP}_1(\text{LayerNorm}(\mathbf{X}_t^{\text{in}})) \in \mathbb{R}^{P \times N \times d}, \quad (6)$$

$$W = \text{SoftMax}(\text{MLP}_2(\text{LayerNorm}(\mathbf{X}_t^{\text{in}}))) \in \mathbb{R}^N, \quad (7)$$

$$\mathbf{X}_t^{\text{out}} = \mathbf{X}_t^{\text{in}} + \mathbf{X}_t^{\text{proj}} \odot \text{expand}(W), \quad (8)$$

293 where `LayerNorm` refers to the layer normalization operation, which enhances the model’s general-
 294 isation ability. $\text{MLP}_1 := \mathbb{R}^d \rightarrow \mathbb{R}^d$ is used for preliminary projection. $\text{MLP}_2 := \mathbb{R}^{P \times d} \rightarrow \mathbb{R}^1$ is
 295 used to compute channel weights. W denotes the adaptive channel weight.

296 We perform two identical projection transformations on \mathbf{X}_t to obtain the representations of the
 297 positive and negative latent spaces:

$$\mathbf{X}_t^{\text{pos}} = \mathcal{P}_1(\mathbf{X}_t) \in \mathbb{R}^{(P \times N \times d)}, \quad \mathbf{X}_t^{\text{neg}} = \mathcal{P}_2(\mathbf{X}_t) \in \mathbb{R}^{(P \times N \times d)}, \quad (9)$$

300 where \mathcal{P}_1 and \mathcal{P}_2 are the same channel-aware projection operations, and they consist of N_1 proj-
 301 ection layers like \mathcal{P} . $\mathbf{X}_t^{\text{pos}}$ and $\mathbf{X}_t^{\text{neg}}$ are representations projected into spaces of positive and negative
 302 correlations, respectively. They contain channel information with adaptive adjustments and will
 303 subsequently be used for contrastive learning.

304 It is noteworthy that the Heterogeneous Correlation Division module cannot directly accomplish
 305 the disentanglement of heterogeneous correlations. Instead, this separation is achieved under the
 306 guidance of the contrastive learning framework detailed in the next section.

308 4.3 HETEROGENEOUS PARTIAL CORRELATION CONTRASTIVE LEARNING

310 To capture Partial Correlation, we design Partial Contrastive Learning, which uses the correlation
 311 matrix derived from Dynamic Correlation Estimation (DCE) and representations from Heteroge-
 312 neous Correlation Division (HD) to enable adaptive cluster learning.

313 We leverage Contrastive Learning’s advantages for clustering to capture PCorr. Compared to existing
 314 methods (Chen et al., 2024; Qiu et al., 2025c), this approach facilitates the fine-grained interac-
 315 tion among relevant channels. Moreover, it does not add an extra burden during inference.

317 First based on the estimated correlation $\mathbf{M}_t^{\text{corr}}$, we define the heterogeneous correlations as $\mathbf{M}_t^{\text{pos}}$
 318 and $\mathbf{M}_t^{\text{neg}}$ to decouple the complex interactions among variables:

$$\mathbf{M}_t^{\text{pos}} = \begin{cases} m_t^{\text{corr}}, & \text{if } \text{corr} > \epsilon \\ 0, & \text{else} \end{cases}, \quad \mathbf{M}_t^{\text{neg}} = \begin{cases} m_t^{\text{corr}}, & \text{if } \text{corr} < -\epsilon \\ 0, & \text{else} \end{cases}, \quad (10)$$

322 where m_t^{corr} is the element of $\mathbf{M}_t^{\text{corr}}$, ϵ is the learnable threshold. The following process is for the
 323 positive correlation in the positive latent space; the same operation is performed on the negative
 latent spaces.

The matrix M_t^{pos} is used to select positive and negative samples for each variable. In the designed contrastive learning if $M_t^{\text{pos}}[i, j] = 0$, it is considered a negative pair; otherwise, it is considered a positive pair. The loss for the positive correlation can be expressed as follows:

$$\mathcal{L}_{\text{pos}} = -\frac{1}{N} \sum_{i=1}^N \log\left(\frac{\sum_{j=1}^N M_t^{\text{pos}}[i, j] \exp(\text{sim}(\mathcal{X}_t^{\text{pos}}[i], \mathcal{X}_t^{\text{pos}}[j])/\tau)}{\sum_{k=1}^N \exp(\text{sim}(\mathcal{X}_t^{\text{pos}}[i], \mathcal{X}_t^{\text{pos}}[k])/\tau)}\right), \quad (11)$$

where $\text{sim}(\cdot)$ represents the cosine similarity, and τ is the temperature coefficient used to control the degree of contrastive learning constraints. The following equation gives the final loss:

$$\mathcal{L} = \gamma(\mathcal{L}_{\text{pos}} + \mathcal{L}_{\text{neg}}) + \mathcal{L}_{\text{Forecast}}, \quad (12)$$

where γ is the tuning coefficient, and $\mathcal{L}_{\text{Forecast}}$ is the forecasting loss.

4.4 HETEROGENEOUS FUSION AND PREDICTION

Finally, we project the representations of the two heterogeneous latent spaces into a shared space and then fuse them to perform prediction. Considering that some channels may require more correlation interaction while others may require more independence, we conduct a convex combination:

$$\tilde{\mathcal{X}}_t^{\text{pos}} = \mathcal{P}_3(\mathcal{X}_t^{\text{pos}}), \quad \tilde{\mathcal{X}}_t^{\text{neg}} = \mathcal{P}_4(\mathcal{X}_t^{\text{neg}}), \quad (13)$$

$$\hat{Y}_t^* = \beta \text{Linear}(\tilde{\mathcal{X}}_t^{\text{pos}} + \tilde{\mathcal{X}}_t^{\text{neg}}) + (1 - \beta) \hat{Y}_t, \quad (14)$$

where \mathcal{P}_3 and \mathcal{P}_4 consist of N_2 projection layers like \mathcal{P} , as given by equations (6-8). Linear represents the linear prediction head, $\beta \in [0, 1]^N$ is a learning parameter denotes the gated weight.

4.5 COMPLEXITY ANALYSIS

The computational complexities are $\mathcal{O}(N^2)$ for the DCorr Estimation (DCE, Section 4.1) and H-PCorr Contrastive learning (HPCL, Section 4.3), and $\mathcal{O}(N)$ for HCorr Division (HD, Section 4.2). Most of the complexity arises from DCE and HPCL, which are only required during training. In the inference phase, since CoRA only includes HD modules, the time complexity is $\mathcal{O}(N)$.

Figure 5 shows CoRA imposes only minimal additional time on TSFMs, during fine-tuning and inference. The details of complexity analysis are included in Appendix B.

5 THEORETICAL ANALYSIS

5.1 THE SIGNIFICANCE OF TIME-VARYING AND TIME-INVARIANT COMPOSITION

A straightforward approach to modeling dynamic correlations is to decompose the correlation matrix into the sum of a time-varying matrix and a time-invariant matrix (Cirstea et al., 2021; Wu et al., 2019). However, this approach has parameter complexity. Our method can reduce the complexity while achieving the same effect.

Theorem 1 *When the time series is locally stationary, the Time-Varying and Time-Invariant Decomposition allows $\mathbf{Q}_t \mathbf{V} \mathbf{Q}_t^T$ to contain both time-varying and time-invariant information, like conventional additive decomposition.*

Specifically, $\mathbf{Q}_t \mathbf{V} \mathbf{Q}_t^T$ can be expressed as the sum of a time-invariant matrix \mathbf{M}_i and a time-varying matrix \mathbf{M}_v , as shown below:

$$\mathbf{Q}_t \mathbf{V} \mathbf{Q}_t^T = \mathbf{M}_i + \mathbf{M}_v. \quad (15)$$

This indicates that our decomposition approach remains functionally equivalent to conventional additive decomposition. Notably, the expression $\mathbf{Q}_t \mathbf{V} \mathbf{Q}_t^T$ is the learnable component of the correlation matrix $\mathbf{M}_t^{\text{corr}}$, as defined in Equation 5.

378 5.2 THE FITTING ABILITY OF TIME-AWARE POLYNOMIALS
379380 Time-aware polynomials can model complex time-varying correlation relationships, and the error
381 bound decreases as the degree K of the polynomial increases.
382383 **Theorem 2** *When the time series is locally stationary, we can approximate the underlying correla-
384 tion matrix with a high-order polynomial.*385 *Specifically, assuming that the correlation is a smooth function of the basis q , the true correlation
386 component Q_t^* can be expressed as $\mathcal{F}(q)$. The error bound can be formalized as follows.*
387

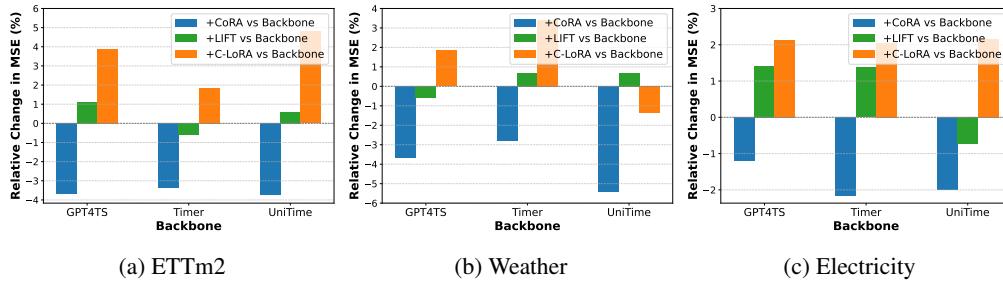
388
$$|Q_t^* - Q_t| = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!} q^{(K+1)}, \xi \in [-|q|, |q|]. \quad (16)$$

389
390

391 This indicates that by selecting an appropriate K , we can strike an effective balance between model
392 effectiveness and computational efficiency, thereby enabling the efficient estimation of dynamic
393 correlations. We provide the proof of Theorems 1-2 in the Appendix C.
394395 6 EXPERIMENT
396397 6.1 EXPERIMENTAL DETAILS
398400 **Datasets.** To conduct comprehensive and fair comparisons for different models, we conduct exper-
401 iments on ten well-known forecasting benchmarks as the target datasets, including ETT (4 subsets),
402 Electricity, Traffic, Solar, weather, AQShunyi and ZafNoo, which cover multiple domains. More
403 details of the benchmark datasets are included in Table 4 of Appendix D.1.
404405 **Baselines and Implementation.** We choose the latest state-of-the-art models to serve as baselines,
406 including 3 Time Series LLM-based models (GPT4TS, AutoTimes, UniTime) and 3 Time Series
407 pre-trained models (Moment, Chronos, Timer). We utilize the FM4TS-Bench Li et al. (2025) code
408 repository for unified evaluation. More implementation details are included in D.3. To keep consis-
409 tent with previous works, we adopt Mean Squared Error (MSE) and Mean Absolute Error (MAE) as
410 evaluation metrics. We provide our code at <https://anonymous.4open.science/r/CoRA-D968>.
411412 6.2 MAIN RESULTS
413414 Comprehensive forecasting results of TSFMs with and without using CoRA are listed in Table 1. We
415 have the following observations: i) Compared to fine-tuning without CoRA, fine-tuning with CoRA
416 achieves better results in average results and results of different forecasting horizons (Table 6 and
417 Table 7, in Appendix E) for both LLM-based models and time series pre-trained models, even in 5%
418 few-shot settings. ii) Sharing the same pre-trained parameters, TTM’s Channel-Dependent (CD) and
419 Channel-Independent (CI) versions differ only in their module configurations during downstream
420 fine-tuning. We implement a CI version of TTM, fine-tuned with CoRA and compare it with a
421 CD version which is fine-tuned without CoRA. The better performance of the former demonstrates
422 that considering the mentioned three types of correlations allows the model to better understand the
423 inter-channels interaction.
424425 6.3 COMPARISON WITH OTHER CORRELATION PLUGINS
426427 To better validate the effectiveness of CoRA, we compare it with LIFT Zhao & Shen (2024) and
428 C-LoRA Nie et al. (2024). We select GPT4TS, UniTime and Timer as the backbone and set H to 96.
429 As shown in Figure 4, since LIFT and C-LoRA are not specifically designed for TSFMs, the limited
430 training samples in the few-shot setting lead to a degradation in their performance, negatively im-
431 pacting the effectiveness of the TSFMs. In contrast, CoRA, designed specifically for TSFMs, learns
432 multiple correlations from the TSFMs’ representations, allowing it to fully leverage their predictive
433 capabilities. More comparisons with other fine-tuning setting are included in the Appendix F.1.
434

432
433
434
Table 1: Multivariate forecasting results in the 5% few-shot setting with MSE are averaged across
435 four different forecasting horizons $H \in \{96, 192, 336, 720\}$. The better results are highlighted in
436 **bold**. Full and MAE results are available in Appendix E.

Model	LLM-Based						Pre-trained						Confidence Interval
	GPT4TS (2023)		CALF (2025)		UniTime (2024)		Moment (2024)		Timer (2024)		TTM (2024)		
	Plugin	X	✓	X	✓	X	✓	X	✓	X	✓	X	✓
ETTh1	0.468	0.456	0.444	0.433	0.739	0.712	0.551	0.537	0.446	0.432	0.406	0.393	99%
ETTh2	0.377	0.361	0.376	0.365	0.399	0.385	0.369	0.356	0.357	0.343	0.345	0.331	99%
ETTm1	0.390	0.378	0.375	0.363	0.407	0.392	0.455	0.439	0.359	0.346	0.358	0.344	95%
ETTm2	0.279	0.267	0.274	0.263	0.293	0.278	0.277	0.270	0.262	0.250	0.259	0.249	99%
Electricity	0.207	0.201	0.175	0.166	0.202	0.191	0.200	0.196	0.242	0.229	0.181	0.173	99%
Traffic	0.441	0.430	0.435	0.424	0.456	0.444	0.453	0.437	0.458	0.439	0.486	0.468	95%
Solar	0.254	0.244	0.229	0.223	0.252	0.245	0.226	0.218	0.217	0.207	0.269	0.259	99%
Weather	0.254	0.243	0.238	0.229	0.255	0.240	0.251	0.243	0.247	0.238	0.226	0.214	99%
AQShunyi	0.849	0.830	0.732	0.714	0.743	0.715	0.693	0.670	0.736	0.708	0.701	0.678	99%
ZafNoo	0.564	0.552	0.549	0.532	0.563	0.540	0.533	0.516	0.539	0.517	0.505	0.483	99%

463
464
465
466
467
468
469
470
471
472
473
474
Figure 4: Correlation Plugins comparison in 5% few-shot fine-tuning setting.475
476
6.4 ABLATION STUDY

477
478
479
480
481
482
483
484
485
To investigate the effectiveness of CoRA, we conduct comprehensive experiments. In our work,
the DCorr Estimation (DCE) is used to learn DCorr and generate the labels required for H-PCorr
Contrastive Learning (HPCL), while HPCL utilizes these labels to guide the projectors in the
Heterogeneous Division (HD) module. Therefore, they cannot operate independently. We utilize naive
implementations in place of the original modules within certain variants.

486
487
488
489
490
491
492
Table 2: The MSE results of various variants.

Dataset	ETTm2						Electricity			Confidence Interval
	DCE	HD	HPCL	GPT4TS	UniTime	Timer	GPT4TS	UniTime	Timer	
	X	X	X	0.279±0.002	0.293±0.003	0.262±0.003	0.207±0.003	0.202±0.003	0.242±0.002	99%
1	X	X	X	0.279±0.002	0.293±0.003	0.262±0.003	0.207±0.003	0.202±0.003	0.242±0.002	99%
2	O	O	✓	0.277±0.002	0.287±0.002	0.259±0.002	0.206±0.001	0.197±0.002	0.237±0.002	99%
3	O	✓	✓	0.274±0.002	0.284±0.003	0.256±0.002	0.204±0.001	0.195±0.001	0.235±0.002	95%
4	✓	O	✓	0.271±0.001	0.282±0.002	0.254±0.002	0.203±0.001	0.196±0.002	0.234±0.002	99%
5	✓	✓	✓	0.267±0.001	0.278±0.002	0.250±0.001	0.201±0.001	0.191±0.001	0.229±0.002	99%

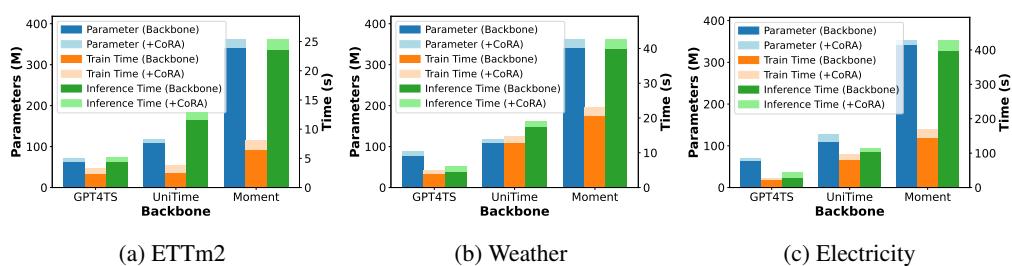
X denotes a module removed, ✓ denotes a module added, O denotes replace a module with a naive implementation.

Specifically, we replace the DCE module with a series-level Pearson correlation coefficient, which cannot model DCorr, and the HD module with a single-branch projection layer, which is unable to capture PCorr. The comparison between Row 1-2 demonstrates the effectiveness of HPCL; however,

486 its performance is limited due to its inability to capture multiple types of correlations. In Rows 2-
 487 4, the addition of either the DCE or HD module to HPCL further enhances performance, which
 488 confirms the efficacy of both modules. In Row 5, the combination of all three modules achieves the
 489 best performance.
 490

491 6.5 MODEL ANALYSIS

492
 493 **Efficiency Analysis** Our proposed CoRA, as a lightweight plugin for TSFMs, shows strong effi-
 494 ciency, particularly during the inference phase. Figure 5 shows a comparative analysis of the effi-
 495 ciency of TSFMs with and without the application of CoRA. We selected three datasets in ascending
 496 order of the number of channels: ETTm2 ($N = 7$), Weather ($N = 21$), and Electricity ($N = 321$).
 497 For the experiments, both the look-back window L and the forecasting horizon H were set to 96.
 498 Train time and Inference time refer to the duration of a single training epoch and the total time re-
 499 quired to process all samples during inference, respectively. The results show that, compared to the
 500 backbone itself, the use of CoRA does not introduce significant additional time or parameter num-
 501 bers. Moreover, as the number of channels (N) increases, CoRA maintains its efficiency without
 502 noticeable degradation compared to the backbone, particularly during inference.
 503



504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 Figure 5: Efficiency Analysis of TSFMs with and without the application of CoRA.

Data Analysis While the previous results focused on the 5% fine-tuning setting, we expand the analysis to provide a more comprehensive view and to explicitly explore the impact of fine-tuning data volume on performance. Specifically, we fine-tune the TTM and CALF backbones on the ETTm2 and Weather datasets, using 3%, 5%, 10%, and 20% of the available training data. The MSE results are summarized in the Table 12. As the results indicate, CorA still yields a modest performance improvement even in a low-data regime using only 3% of the data.

Sensitivity Analysis and Visualization The Data Sensitivity of CoRA in different few-shot setting are presented in Appendix F.1. The Parameter Sensitivity analyses for the polynomial's degree K , the decomposition size M , and the number of projection layers N_1, N_2 are presented in Appendix F.2. The Visualization of heterogeneous spaces are presented in Appendix F.3.

7 CONCLUSION

In this paper, we propose a lightweight Correlation-Aware Adapter (CoRA) that enhances the predictive performance of Time Series Foundation Models (TSFMs) by considering the mentioned three types of correlation relationships. Comprehensive experiments on real-world datasets demonstrate that CoRA can improve the forecast performance of TSFMs.

540 ETHICS STATEMENT
541542 Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
543 fiable information. The proposed adapter for Time Series Foundation Models in Multivariate Time
544 Series Forecasting is designed for beneficial applications in system reliability and safety monitoring.
545 No human subjects were involved in this research.546
547 REPRODUCIBILITY STATEMENT
548549 The performance of CoRA and the datasets used in our work are real, and all experimen-
550 tal results can be reproduced. We have released our model code in an anonymous repository:
551 <https://anonymous.4open.science/r/CoRA-D968>. Once the paper is accepted, we will release the
552 scripts for all settings.553 REFERENCES
554555 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
556 Oleksandr Shchur, Syama Syndar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
557 Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gor-
558 don Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language
559 of time series. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.560 Wanlin Cai, Yuxuan Liang, Xianggen Liu, Jianshuai Feng, and Yuankai Wu. Msgnet: Learning
561 multi-scale inter-series correlations for multivariate time series forecasting. In *AAAI*, pp. 11141–
562 11149, 2024.563 Jialin Chen, Jan Eric Lenssen, Aosong Feng, Weihua Hu, Matthias Fey, Leandros Tassiulas, Jure
564 Leskovec, and Rex Ying. From similarity to superiority: Channel clustering for time series fore-
565 casting. In *NeurIPS*, 2024.566 Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin Pan. Enhancenet:
567 Plugin neural networks for enhancing correlated time series forecasting. In *ICDE*, pp. 1739–1750,
568 2021.569 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
570 time-series forecasting. *arXiv preprint arXiv:2310.10688*, 2023.571 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
572 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *SIGKDD*,
573 2023.574 Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M
575 Gifford, and Jayant Kalagnanam. Ttms: Fast multi-level tiny time mixers for improved zero-shot
576 and few-shot forecasting of multivariate time series. *arXiv preprint arXiv:2401.03955*, 2024a.577 Vijay Ekambaram, Arindam Jati, Nam H. Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M.
578 Gifford, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained models for enhanced
579 zero/few-shot forecasting of multivariate time series. *CoRR*, abs/2401.03955, 2024b.580 Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
581 Marinka Zitnik. Units: Building a unified time series model. *arXiv preprint arXiv:2403.00131*,
582 2024.583 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
584 Moment: A family of open time-series foundation models. *arXiv preprint arXiv:2402.03885*,
585 2024.586 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *Proceedings of the IEEE*
587 *conference on computer vision and pattern recognition*, pp. 7132–7141, 2018.

594 Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
 595 Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement. In
 596 *NeurIPS*, 2023.

597

598 Maowei Jiang, Pengyu Zeng, Kai Wang, Huan Liu, Wenbo Chen, and Haoran Liu. Fecam: Fre-
 599 quency enhanced channel attention mechanism for time series forecasting. *Advanced Engineering
 600 Informatics*, 58:102158, 2023.

601 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 602 uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-lm: Time series forecasting by reprogramming
 603 large language models. *arXiv preprint arXiv:2310.01728*, 2023.

604

605 Md Kowsler, Md Shohanur Islam Sobuj, Nusrat Jahan Prrottasha, E Alejandro Alanis, Ozlem Ozmen
 606 Garibay, and Niloofar Yousefi. Llm-mixer: Multiscale mixing in llms for time series forecasting.
 607 *arXiv preprint arXiv:2410.11674*, 2024.

608

609 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 610 temporal patterns with deep neural networks. In *SIGIR*, pp. 95–104, 2018.

611

612 Zhe Li, Xiangfei Qiu, Peng Chen, Yihang Wang, Hanyin Cheng, Yang Shu, Jilin Hu, Chenjuan Guo,
 613 Aoying Zhou, Qingsong Wen, et al. Fm4ts-bench: A comprehensive and unified benchmark of
 614 foundation models for time series forecasting. In *SIGKDD*, 2025.

615

616 Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao
 617 Xia. Calf: Aligning llms for time series forecasting via cross-modal fine-tuning. *arXiv preprint
 618 arXiv:2403.07300*, 2024a.

619

620 Qinshuo Liu, Yanwen Fang, Pengtao Jiang, and Guodong Li. Dgcformer: Deep graph clustering
 621 transformer for multivariate time series forecasting. *arXiv preprint arXiv:2405.08440*, 2024b.

622

623 Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
 624 Unitime: A language-empowered unified model for cross-domain time series forecasting. In
 625 *Proceedings of the ACM on Web Conference*, 2024c.

626

627 Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei
 628 Chen. Multivariate time-series forecasting with temporal polynomial graph neural networks. *Ad-
 629 vances in neural information processing systems*, 35:19414–19426, 2022.

630

631 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 632 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint
 633 arXiv:2310.06625*, 2023.

634

635 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autore-
 636 gressive time series forecasters via large language models. In *Advances in Neural Information
 637 Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
 638 NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024d.

639

640 Tong Nie, Yuewen Mei, Guoyang Qin, Jian Sun, and Wei Ma. Channel-aware low-rank adaptation
 641 in time series forecasting. In *CIKM*, pp. 3959–3963, 2024.

642

643 Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.
 644 s^2 ip-llm: Semantic space informed prompt learning with llm for time series forecasting. In
 645 *Forty-first International Conference on Machine Learning*, 2024.

646

647 Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A Adams, Balázs Adorján, David Aguadé, Mar-
 648 cos PM Aidar, Scott Allen, M Susana Alvarado-Barrientos, Kristina J Anderson-Teixeira, et al.
 649 Global transpiration data from sap flow measurements: the sapfluxnet database. *Earth System
 650 Science Data Discussions*, 2020:1–57, 2020.

648 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 649 ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and
 650 fair benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377,
 651 2024a.

652 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 653 ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and
 654 fair benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377,
 655 2024b.

656 Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Jilin Hu, Chenjuan Guo, and Bin Yang. A comprehen-
 657 sive survey of deep learning for multivariate time series forecasting: A channel strategy perspec-
 658 tive, 2025a. URL <https://arxiv.org/abs/2502.10721>.

659 Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan
 660 Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, and Bin Yang. TAB: unified
 661 benchmarking of time series anomaly detection methods. *Proc. VLDB Endow.*, 18(9):2775–2789,
 662 2025b.

663 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 664 enhanced multivariate time series forecasting. In *SIGKDD*, 2025c.

665 Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
 666 series. *arXiv preprint arXiv:2101.06861*, 2021.

667 Zongjiang Shang, Ling Chen, Binqing Wu, and Dongliang Cui. Ada-mshyper: Adaptive multi-scale
 668 hypergraph transformer for time series forecasting. *CoRR*, abs/2410.23992, 2024.

669 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
 670 moe: Billion-scale time series foundation models with mixture of experts. *CoRR*, abs/2409.16040,
 671 2024.

672 Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
 673 <https://doi.org/10.24432/C58C86>.

674 Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang,
 675 and Chenjuan Guo. Rose: Register assisted general time series forecasting with decomposed
 676 frequency learning. *arXiv preprint arXiv:2405.17478*, 2024a.

677 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
 678 time series models: A comprehensive survey and benchmark. *arXiv preprint arXiv:2407.13278*,
 679 2024b.

680 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 681 Unified training of universal time series forecasting transformers. *arXiv preprint arXiv:2402.02592*, 2024.

682 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 683 formers with auto-correlation for long-term series forecasting. *Advances in Neural Information
 684 Processing Systems*, 34:22419–22430, 2021.

685 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
 686 deep spatial-temporal graph modeling. In Sarit Kraus (ed.), *Proceedings of the Twenty-Eighth
 687 International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–
 688 16, 2019*, pp. 1907–1913. ijcai.org, 2019.

689 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
 690 nnecting the dots: Multivariate time series forecasting with graph neural networks. In *SIGKDD*,
 691 pp. 753–763, 2020.

692 Jiawen Zhang, Xumeng Wen, Zhenwei Zhang, Shun Zheng, Jia Li, and Jiang Bian. ProbTS:
 693 Benchmarking point and distributional forecasting across diverse prediction horizons. In *NeurIPS
 694 Datasets and Benchmarks Track*, 2024.

702 Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary tales on
703 air-quality improvement in beijing. *Proceedings of the Royal Society A: Mathematical, Physical
704 and Engineering Sciences*, 473(2205):20170457, 2017.

705

706 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
707 for multivariate time series forecasting. In *ICLR*, 2022.

708

709 Kai Zhao, Chenjuan Guo, Yunyao Cheng, Peng Han, Miao Zhang, and Bin Yang. Multiple time
710 series forecasting with dynamic graph modeling. *Proc. VLDB Endow.*, 17(4):753–765, 2023.

711

712 Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series forecasting:
713 Learning from leading indicators. In *ICLR*, 2024.

714

715 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*, vol-
716 ume 35, pp. 11106–11115, 2021.

717

718 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
719 by pretrained lm. *Advances in neural information processing systems*, 2023.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DEFINITIONS OF THE THREE CORRELATIONS
757758 **Definition 1 (Correlation Martix)** Given a multivariate time series $X \in \mathbb{R}^{N \times L}$, where N represents
759 the number of channels and L the temporal length, the series is partitioned into a set of $K = \lfloor L/T \rfloor$
760 non-overlapping segments using a window of length T . For the k -th segment, we define the channel-
761 wise correlation matrix as $C^{(k)} \in \mathbb{R}^{N \times N}$, where $k \in [1, K]$. The element at the i -th row and j -th
762 column of this matrix is denoted by $C_{ij}^{(k)}$ which represents the correlation between the i -th channel
763 and the j -th channel.
764765 **Definition 2 (Dynamic Correlation)** The *Dynamic Correlation* refers to the case where the correlation
766 martix $C^{(k)} (k \in [1, K])$ is not constant over the segments index k . Formally, this means there
767 exist at least two distinct segment indices $m, n \in [1, K]$ with $m \neq n$, such that their corresponding
768 correlation matrices are unequal: $C^{(m)} \neq C^{(n)}$.
769770 **Definition 3 (Heterogeneous Correlation)** The *Heterogeneous Correlation* refers to the case where
771 there exists at least one temporal segment $k \in [1, K]$ in which some channels exhibit both positive
772 and negative correlations with other channels. Formally, this means that for at least one correlation
773 matrix $C^{(k)} (k \in [1, K])$, there exist at least three distinct channel indices $a, b, c \in [1, N]$, such that
774 the corresponding correlation matrix elements $c_{ab}^{(k)}$ and $c_{ac}^{(k)}$ have opposite signs: $c_{ab}^{(k)} \cdot c_{ac}^{(k)} < 0$.
775776 **Definition 4 (Partial Correlation)** The *Partial Correlation* refers to the case where, within at least
777 one temporal segment $k \in [1, K]$, there exists some pairs of channels with a non-significant
778 relationship. Formally, given a predefined significance threshold ϵ , this means there exists at least one
779 matrix $C^{(k)} (k \in [1, K])$ and at least one pair of distinct channel indices $a, b \in [1, N]$, such that:
780781 B COMPLEXITY ANALYSES
782783
784
785 B.1 TRAINING PHASE
786787 **Dynamic Correlation Estimation** This module consists of Learnable Time-aware Polynomials
788 (LTP) and Time-Varying and Time-Invariant (T-T) Composition. The LTP have a computational
789 complexity of $\mathcal{O}(PKNM + PNd^2)$ due to the polynomial operations and the MLP used to
790 generate \mathcal{C}_t , and a space complexity of $\mathcal{O}(Kd + MN)$ because of the basis q and the MLP used to
791 generate \mathcal{C}_t . Where P is the number of patches, N denotes the number of channels, M is the second
792 dimension of Q_t , K is the degree of the polynomial and d is the dimension of representations. The
793 T-T Composition has a computational complexity of $\mathcal{O}(lN^2 + NM^2 + MN^2)$ due to the calculation
794 of the Pearson coefficient and the composition in Equation 5. Where l denotes the patch size.
795 **Heterogeneous Division** This module has a computational complexity of $\mathcal{O}(NP^2d^2)$ and a space
796 complexity of $\mathcal{O}(Pd)$ due to the channel-aware projection. **H-PCorr Contrastive Learning** The
797 time complexity of calculating loss in Equation 11 is $\mathcal{O}(PdN^2)$.
798799 Since P, K, M , and l are much smaller than N and d , they will not be considered as the primary
800 components in the complexity analysis. So the total computational complexity is $\mathcal{O}(dN^2 + Nd^2)$
801 and the total space complexity is $\mathcal{O}(d + N)$. Most models cannot avoid having a computational
802 complexity of $\mathcal{O}(d^2)$ and a space complexity of $\mathcal{O}(d)$. Therefore, if we focus only on the complexity
803 with respect to (N) in our discussion, our model has a computational complexity of $\mathcal{O}(N^2)$ and a
804 space complexity of $\mathcal{O}(N)$ during training.
805806 B.2 INFERENCE PHASE
807808 In inference Phase, CoRA only includes projectors in the Heterogeneous Division and Heteroge-
809 neous Fusion modules, based on the above discussion, our model has a computational complexity
810 of $\mathcal{O}(N)$ and a space complexity of $\mathcal{O}(1)$ during inference.
811

810 C THEORETICAL ANALYSES
811812 C.1 THE SIGNIFICANCE OF TIME-VARYING AND TIME-INVARIANT COMPOSITION
813814 The channel correlation can be expressed by combining a long-term stable state with dynamic
815 changes. We decompose the learnable correlation into two parts, Q_t and V , as shown in Figure
816 3, to fit the correlation relationship lightweightly.817 **Theorem 1** *When the time series is locally stationary, the Time-Varying and Time-Invariant De-
818 composition allows $Q_t V Q_t^T$ to contain both time-varying and time-invariant information, like con-
819 ventional additive decomposition.*820 *Specifically, $Q_t V Q_t^T$ can be expressed as the sum of a time-invariant matrix M_i and a time-varying
821 matrix M_v , as shown below:*

822
$$Q_t V Q_t^T = M_i + M_v . \quad (17)$$

823

824 *Proof.* Under the assumptions of locally stationary, Q_t can be expressed as $\bar{Q}_t + \tilde{Q}_t$, where \bar{Q}_t
825 represents the mean value and \tilde{Q}_t represents the residual. Therefore, M_t^{corr} can be expressed as:
826

827
$$\begin{aligned} Q_t V Q_t^T &= (\bar{Q}_t + \tilde{Q}_t) V (\bar{Q}_t + \tilde{Q}_t)^T \\ &= \bar{Q}_t V \bar{Q}_t^T + \bar{Q}_t V \tilde{Q}_t^T + \tilde{Q}_t V \bar{Q}_t^T + \tilde{Q}_t V \tilde{Q}_t^T \\ &= (\bar{Q}_t V \bar{Q}_t^T) + (\bar{Q}_t V \tilde{Q}_t^T + \tilde{Q}_t V \bar{Q}_t^T + \tilde{Q}_t V \tilde{Q}_t^T) \\ &= M_i + M_v , \end{aligned} \quad (18)$$

828

829 where $M_i = \bar{Q}_t V \bar{Q}_t^T$ has the same value at different times, and $M_v = \bar{Q}_t V \tilde{Q}_t^T + \tilde{Q}_t V \bar{Q}_t^T +$
830 $\tilde{Q}_t V \tilde{Q}_t^T$ has different values at different times.
831832 C.2 THE FITTING ABILITY OF TIME-AWARE POLYNOMIALS
833834 Since time series exhibit regular changes, such as trends and seasonality, the dynamic correlation
835 changes also have a certain regularity. To this end, we propose Time-aware Polynomials to fit the
836 changing correlations better.
837838 **Theorem 2** *When the time series is locally stationary, we can approximate the underlying correla-
839 tion matrix with a high-order polynomial.*840 *Specifically, assuming that the correlation is a smooth function to the basis q , the true correlation
841 component Q_t^* can be expressed as $\mathcal{F}(q)$. The fitting error of Time-aware Polynomials decreases as
842 the highest degree K of the polynomial increases. The error can be formalized as follows:*

843
$$|Q_t^* - Q_t| = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!} q^{(K+1)}, \xi \in [-|q|, |q|] . \quad (19)$$

844

845 *Proof.* Given the true correlation as $\mathcal{F}(q)$, Since \mathcal{F} is sufficiently smooth to the basis q , we can
846 perform a Maclaurin expansion of \mathcal{F} around $\mathbf{0}$:

847
$$\mathcal{F}(q) = \mathcal{F}(\mathbf{0}) + \mathcal{F}'(\mathbf{0})q + \frac{\mathcal{F}''(\mathbf{0})}{2!}q^2 + \cdots + \frac{\mathcal{F}^{(K)}(\mathbf{0})}{K!}q^K + \cdots + \frac{\mathcal{F}^{(n)}(\mathbf{0})}{n!}q^n + \cdots . \quad (20)$$

848

849 We construct auxiliary functions:
850

851
$$\mathcal{H}(t) = \mathcal{F}(q) - [\mathcal{F}(t) + \mathcal{F}'(t)(q-t) + \frac{\mathcal{F}''(t)}{2!}(q-t)^2 + \cdots + \frac{\mathcal{F}^{(K)}(t)}{K!}(q-t)^K] , \quad (21)$$

852

853
$$\mathcal{G}(t) = (q-t)^{(K+1)} . \quad (22)$$

854

855 Assume $q > 0$. Then, \mathcal{H} and \mathcal{G} are still continuously differentiable, and the following rules apply:
856

857
$$\mathcal{H}(t)' = -\frac{\mathcal{F}^{(K+1)}(t)}{K!}(q-t)^K , \quad (23)$$

858

859
$$\mathcal{G}(t)' = -(K+1)(q-t)^K \neq \mathbf{0} . \quad (24)$$

860

864 Since $\mathcal{H}(\mathbf{q}) = \mathcal{G}(\mathbf{q}) = 0$, by the Cauchy Mean Value Theorem, $\exists \xi \in (0, \mathbf{q})$, s.t.
 865

$$866 \quad 867 \quad \frac{\mathcal{H}(\mathbf{0})}{\mathcal{G}(\mathbf{0})} = \frac{\mathcal{H}(\mathbf{0}) - \mathcal{H}(\mathbf{q})}{\mathcal{G}(\mathbf{0}) - \mathcal{G}(\mathbf{q})} = \frac{\mathcal{H}(\mathbf{0}) - \mathcal{H}(\mathbf{q})}{\mathcal{G}(\mathbf{0}) - \mathcal{G}(\mathbf{q})} = \frac{\mathcal{H}'(\xi)}{\mathcal{G}'(\xi)} = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}. \quad (25)$$

870 Therefore, we can derive the following equation:
 871

$$872 \quad \mathcal{F}(\mathbf{q}) = \mathcal{F}(\mathbf{0}) + \mathcal{F}'(\mathbf{0})\mathbf{q} + \frac{\mathcal{F}''(\mathbf{0})}{2!}\mathbf{q}^2 + \cdots + \frac{\mathcal{F}^{(K)}(\mathbf{0})}{K!}\mathbf{q}^K + \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}\mathbf{q}^{(K+1)}, \xi \in [0, \mathbf{q}]. \quad (26)$$

875 Let $C_{i,t} = \frac{\mathcal{F}^{(i)}}{i!}$. Then, we have the following equation:
 876

$$877 \quad \mathcal{F}(\mathbf{q}) = C_{0,t} + C_{1,t}\mathbf{q} + C_{2,t}\mathbf{q}^2 + \cdots + C_{K,t}\mathbf{q}^K + \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}\mathbf{q}^{(K+1)}, \xi \in [0, \mathbf{q}]. \quad (27)$$

880 That is:

$$881 \quad \mathcal{F}(\mathbf{q}) - \mathbf{Q}_t = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}\mathbf{q}^{(K+1)}, \xi \in [0, \mathbf{q}]. \quad (28)$$

884 For all $\mathbf{q} > 0$ and $\mathbf{q} < 0$, we have the following equation:
 885

$$886 \quad |\mathcal{F}(\mathbf{q}) - \mathbf{Q}_t| = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}\mathbf{q}^{(K+1)}, \xi \in [-|\mathbf{q}|, |\mathbf{q}|]. \quad (29)$$

888 And that is:

$$889 \quad |\mathbf{Q}_t^* - \mathbf{Q}_t| = \frac{\mathcal{F}^{(K+1)}(\xi)}{(K+1)!}\mathbf{q}^{(K+1)}, \xi \in [-|\mathbf{q}|, |\mathbf{q}|]. \quad (30)$$

890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **D EXPERIMENTAL DETAILS**919 **D.1 DATASETS**

920 To conduct comprehensive and fair comparisons for different models, we conduct experiments on
 921 ten well-known forecasting benchmarks as the target datasets, including: (I) **ETT** (Zhou et al., 2021)
 922 datasets contain 7 variates collected from two different electric transformers from July 2016 to July
 923 2018. It consists of four subsets, of which ETTh1/ETTh2 are recorded hourly, and ETTm1/ETTm2
 924 are recorded every 15 minutes. (II) **Electricity** (Trindade, 2015) contains the electricity consump-
 925 tion of 321 customers from July 2016 to July 2019, recorded hourly. (III) **Traffic** (Wu et al., 2021)
 926 contains road occupancy rates measured by 862 sensors on freeways in the San Francisco Bay Area
 927 from 2015 to 2016, recorded hourly. (IV) **Solar** (Lai et al., 2018) records solar power generation
 928 from 137 PV plants in 2006, every 10 minutes. (V) **Weather** (Wu et al., 2021) collects 21 meteo-
 929 rological indicators, including temperature and barometric pressure, for Germany in 2020, recorded
 930 every 10 minutes. (VI) **AQShunyi** (Zhang et al., 2017) is an air quality dataset from a measurement
 931 station, for 4 years. (VII) **ZafNoo** (Poyatos et al., 2020) is collected from the Sapflux data project
 932 and includes sap flow measurements and environmental variables. The details of the benchmark
 933 datasets are included in Table 4

934 **Table 4: Statistics of datasets.**

Dataset	Domain	Frequency	Lengths	Dim	Split	Description
ETTh1	Electricity	1 hour	14,400	7	6:2:2	Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2	Electricity	1 hour	14,400	7	6:2:2	Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1	Electricity	15 mins	57,600	7	6:2:2	Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2	Electricity	15 mins	57,600	7	6:2:2	Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather	Environment	10 mins	52,696	21	7:1:2	Recorded every for the whole year 2020, which contains 21 meteorological indicators
Electricity	Electricity	1 hour	26,304	321	7:1:2	Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Solar	Energy	10 mins	52,560	137	6:2:2	Solar production records collected from 137 PV plants in Alabama
Traffic	Traffic	1 hour	17,544	862	7:1:2	Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
AQShunyi	Environment	1 hour	35,064	11	7:1:2	Air quality dataset from a measurement station, for 4 years
ZafNoo	Nature	30 mins	19,225	11	7:1:2	Sap flow measurements and environmental variables from the Sapflux data project.

945 **D.2 BASELINES**

946 In the realm of time series forecasting, numerous models have surfaced in recent years. We choose
 947 models with superior predictive performance in our benchmark, including the pre-trained time se-
 948 ries models: Timer (Liu et al., 2024e), TTM (Ekambaram et al., 2024a) and Moment (Goswami
 949 et al., 2024); The LLM-based models: CALF (Liu et al., 2024a), GPT4TS (Zhou et al., 2023),
 950 UniTime (Liu et al., 2024c); The specific descriptions for each of these models—see Table 5.

951 **Table 5: Descriptions of time series forecasting models in experiment.**

Models	Descriptions
Moment (Goswami et al., 2024)	Moment is a transformer system pre-trained on a masked time series task. It reconstructs masked portions of time series for tasks like forecasting, classification, anomaly detection, and imputation.
TTM (Ekambaram et al., 2024a)	It is based on MLP-Mixer blocks with gated attention and multi-resolution sampling. It captures temporal patterns and cross-channel correlations for time-series forecasting, optimized for zero/few-shot learning with low computational cost.
Timer (Liu et al., 2024e)	Timer is a GPT-style autoregressive model for time series analysis, predicting the next token in single-series sequences. It supports tasks like forecasting, imputation, and anomaly detection across different time series.
CALF (Liu et al., 2024a)	CALF is a cross-modal knowledge distillation framework that aligns time series data with pre-trained LLMs by leveraging both static and dynamic knowledge, achieving state-of-the-art performance in both long- and short-term forecasting tasks with strong generalization abilities.
GPT4TS (Zhou et al., 2023)	GPT4TS fine-tunes the limited parameters of LLM, which demonstrates competitive performance by transferring knowledge from large-scale pre-training text data.
UniTime (Liu et al., 2024c)	UniTime designs domain instructions to align time series and text modalities.

952 **D.3 IMPLEMENTATION DETAILS**

953 We utilize the FM4TS-Bench (Li et al., 2025) code repository for unified evaluation. Following
 954 the settings in TFB (Qiu et al., 2024b) and FM4TS-Bench, we do not apply the Drop Last trick to
 955 ensure a fair comparison. All experiments of CoRA are conducted using PyTorch in Python 3.10
 956 and executed on an NVIDIA Tesla-A800 GPU. The MSE loss function guides the training process
 957 and employs the ADAM optimizer.

972 E FULL RESULTS
973974
975 Table 6: The table reports MSE and MAE of LLM-based models for different forecasting horizons
976 $F \in \{96, 192, 336, 720\}$. The better results are highlighted in **bold**.
977

Model	GPT4TS (2023)				Calf (2025)				UniTime (2024)				
	Plugin	✗		✓		✗		✓		✗		✓	
		Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MSE	MAE
ETTh1	96	0.438	0.445	0.427	0.435	0.405	0.426	0.394	0.417	0.717	0.575	0.690	0.556
	192	0.460	0.458	0.449	0.448	0.428	0.442	0.418	0.433	0.750	0.591	0.723	0.572
	336	0.462	0.467	0.451	0.458	0.443	0.454	0.433	0.445	0.723	0.592	0.700	0.580
	720	0.509	0.511	0.497	0.496	0.495	0.494	0.486	0.483	0.765	0.622	0.739	0.606
ETTh2	96	0.329	0.380	0.318	0.368	0.302	0.362	0.295	0.354	0.359	0.391	0.349	0.382
	192	0.368	0.406	0.356	0.393	0.385	0.400	0.377	0.391	0.388	0.428	0.376	0.416
	336	0.378	0.421	0.368	0.412	0.387	0.418	0.380	0.408	0.392	0.436	0.380	0.427
	720	0.418	0.450	0.404	0.440	0.416	0.449	0.409	0.456	0.454	0.472	0.435	0.457
ETTm1	96	0.343	0.379	0.333	0.371	0.317	0.366	0.308	0.359	0.357	0.384	0.343	0.376
	192	0.375	0.398	0.366	0.389	0.346	0.380	0.337	0.371	0.386	0.401	0.370	0.390
	336	0.394	0.406	0.385	0.398	0.385	0.405	0.377	0.396	0.420	0.420	0.402	0.406
	720	0.440	0.434	0.432	0.425	0.439	0.433	0.432	0.423	0.468	0.446	0.458	0.435
ETTm2	96	0.190	0.279	0.183	0.273	0.180	0.272	0.176	0.265	0.190	0.277	0.183	0.267
	192	0.241	0.312	0.232	0.305	0.236	0.310	0.228	0.302	0.248	0.315	0.238	0.305
	336	0.296	0.349	0.288	0.340	0.295	0.348	0.286	0.339	0.345	0.374	0.333	0.365
	720	0.385	0.401	0.371	0.389	0.372	0.397	0.363	0.390	0.380	0.392	0.367	0.381
Electricity	96	0.178	0.294	0.176	0.288	0.141	0.240	0.138	0.234	0.174	0.282	0.170	0.275
	192	0.192	0.306	0.186	0.302	0.156	0.254	0.151	0.247	0.185	0.291	0.180	0.284
	336	0.208	0.318	0.204	0.313	0.174	0.271	0.168	0.262	0.201	0.305	0.194	0.298
	720	0.248	0.348	0.241	0.339	0.216	0.306	0.212	0.299	0.240	0.335	0.232	0.325
Traffic	96	0.439	0.322	0.429	0.314	0.406	0.298	0.394	0.290	0.423	0.309	0.414	0.301
	192	0.422	0.304	0.413	0.298	0.423	0.309	0.412	0.300	0.435	0.319	0.425	0.309
	336	0.432	0.308	0.424	0.301	0.436	0.317	0.424	0.307	0.474	0.331	0.464	0.325
	720	0.468	0.325	0.454	0.315	0.477	0.340	0.467	0.332	0.485	0.362	0.476	0.353
Solar	96	0.242	0.261	0.233	0.251	0.203	0.274	0.198	0.269	0.249	0.284	0.244	0.278
	192	0.258	0.294	0.249	0.282	0.224	0.290	0.219	0.284	0.250	0.320	0.245	0.313
	336	0.258	0.278	0.249	0.267	0.243	0.308	0.238	0.301	0.253	0.322	0.246	0.315
	720	0.259	0.279	0.247	0.274	0.247	0.314	0.239	0.307	0.255	0.325	0.251	0.318
Weather	96	0.187	0.244	0.180	0.236	0.163	0.217	0.159	0.211	0.184	0.239	0.174	0.229
	192	0.225	0.274	0.217	0.264	0.206	0.253	0.200	0.247	0.227	0.274	0.216	0.265
	336	0.268	0.304	0.259	0.294	0.258	0.292	0.252	0.283	0.271	0.305	0.258	0.292
	720	0.330	0.348	0.320	0.335	0.322	0.339	0.312	0.330	0.334	0.350	0.321	0.334
AQShunyi	96	0.799	0.535	0.785	0.526	0.689	0.508	0.674	0.500	0.689	0.513	0.666	0.495
	192	0.846	0.549	0.823	0.538	0.720	0.515	0.699	0.502	0.737	0.521	0.711	0.509
	336	0.854	0.555	0.831	0.545	0.734	0.525	0.718	0.516	0.747	0.541	0.720	0.527
	720	0.897	0.573	0.883	0.558	0.784	0.551	0.769	0.537	0.796	0.564	0.766	0.544
ZafNoo	96	0.515	0.486	0.505	0.478	0.469	0.434	0.456	0.424	0.472	0.447	0.457	0.434
	192	0.552	0.505	0.541	0.494	0.532	0.475	0.516	0.462	0.547	0.482	0.525	0.464
	336	0.582	0.515	0.574	0.507	0.567	0.493	0.553	0.482	0.571	0.496	0.551	0.483
	720	0.610	0.532	0.593	0.516	0.628	0.521	0.610	0.507	0.658	0.538	0.633	0.521

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 Table 7: The table reports MSE and MAE of pre-trained models for different forecasting horizons
 1027 $F \in \{96, 192, 336, 720\}$. The better results are highlighted in **bold**.

Model	Timer (2024)				Moment (2024)				TTM (2024)				
	Plugin	✗		✓		✗		✓		✗		✓	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96	0.394	0.408	0.384	0.401	0.408	0.422	0.398	0.413	0.363	0.392	0.355	0.380
	192	0.456	0.458	0.446	0.450	0.428	0.436	0.418	0.425	0.391	0.409	0.379	0.401
	336	0.495	0.487	0.483	0.480	0.456	0.450	0.445	0.439	0.411	0.429	0.398	0.420
	720	0.849	0.651	0.835	0.633	0.482	0.482	0.468	0.465	0.453	0.471	0.439	0.458
ETTh2	96	0.291	0.342	0.282	0.335	0.310	0.360	0.299	0.346	0.271	0.329	0.264	0.323
	192	0.371	0.395	0.358	0.388	0.347	0.387	0.337	0.374	0.339	0.373	0.329	0.365
	336	0.371	0.413	0.360	0.403	0.365	0.406	0.351	0.391	0.372	0.401	0.362	0.394
	720	0.441	0.465	0.429	0.454	0.401	0.436	0.384	0.423	0.385	0.428	0.376	0.415
ETTm1	96	0.302	0.349	0.292	0.341	0.311	0.356	0.303	0.346	0.299	0.343	0.291	0.333
	192	0.363	0.389	0.351	0.382	0.341	0.374	0.329	0.363	0.341	0.367	0.329	0.355
	336	0.405	0.412	0.394	0.405	0.367	0.389	0.355	0.379	0.365	0.381	0.355	0.369
	720	0.749	0.560	0.723	0.542	0.415	0.416	0.401	0.412	0.420	0.412	0.405	0.405
ETTm2	96	0.168	0.248	0.163	0.243	0.175	0.263	0.169	0.255	0.164	0.250	0.160	0.244
	192	0.237	0.301	0.230	0.293	0.226	0.297	0.218	0.288	0.222	0.290	0.214	0.283
	336	0.321	0.362	0.310	0.353	0.278	0.332	0.267	0.324	0.282	0.330	0.271	0.320
	720	0.385	0.413	0.375	0.404	0.362	0.387	0.350	0.378	0.364	0.381	0.354	0.369
Electricity	96	0.139	0.235	0.136	0.230	0.158	0.242	0.151	0.233	0.146	0.246	0.143	0.239
	192	0.162	0.255	0.159	0.249	0.186	0.264	0.178	0.254	0.165	0.264	0.159	0.256
	336	0.183	0.280	0.180	0.274	0.256	0.286	0.247	0.277	0.181	0.281	0.174	0.272
	720	0.319	0.366	0.312	0.358	0.359	0.372	0.348	0.358	0.223	0.315	0.216	0.305
Traffic	96	0.381	0.272	0.372	0.266	0.391	0.278	0.380	0.268	0.448	0.324	0.433	0.313
	192	0.413	0.286	0.402	0.279	0.443	0.296	0.431	0.285	0.466	0.330	0.450	0.319
	336	0.434	0.298	0.422	0.292	0.436	0.302	0.422	0.290	0.491	0.345	0.473	0.336
	720	0.570	0.484	0.554	0.473	0.550	0.493	0.529	0.478	0.533	0.365	0.518	0.351
Solar	96	0.170	0.218	0.165	0.212	0.203	0.269	0.196	0.260	0.254	0.207	0.246	0.200
	192	0.197	0.247	0.191	0.239	0.215	0.275	0.208	0.266	0.270	0.240	0.262	0.232
	336	0.203	0.253	0.195	0.246	0.223	0.281	0.215	0.273	0.274	0.239	0.266	0.231
	720	0.336	0.335	0.325	0.326	0.225	0.281	0.216	0.272	0.277	0.237	0.266	0.231
Weather	96	0.150	0.199	0.146	0.194	0.168	0.225	0.144	0.193	0.147	0.195	0.145	0.189
	192	0.214	0.264	0.207	0.257	0.210	0.259	0.208	0.256	0.194	0.238	0.187	0.230
	336	0.282	0.316	0.274	0.309	0.255	0.292	0.274	0.308	0.244	0.277	0.236	0.268
	720	0.360	0.374	0.349	0.362	0.326	0.342	0.350	0.365	0.314	0.329	0.295	0.316
AQShunyi	96	0.534	0.434	0.520	0.421	0.728	0.490	0.701	0.477	0.638	0.479	0.615	0.464
	192	0.712	0.520	0.690	0.503	0.706	0.509	0.683	0.495	0.687	0.501	0.666	0.488
	336	0.734	0.525	0.713	0.511	0.723	0.519	0.698	0.504	0.708	0.515	0.681	0.502
	720	0.791	0.541	0.763	0.527	0.776	0.543	0.755	0.532	0.765	0.543	0.742	0.524
ZaNoo	96	0.436	0.399	0.426	0.391	0.475	0.441	0.461	0.427	0.424	0.403	0.409	0.387
	192	0.522	0.452	0.511	0.439	0.521	0.464	0.505	0.445	0.484	0.441	0.467	0.426
	336	0.547	0.479	0.532	0.467	0.558	0.482	0.539	0.465	0.535	0.467	0.512	0.452
	720	0.615	0.513	0.603	0.500	0.593	0.500	0.568	0.484	0.569	0.492	0.547	0.475

1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 F MORE ANALYSIS ON CORA
10811082 F.1 COMPARISON IN DIFFERENT SAMPLING RATE
1083

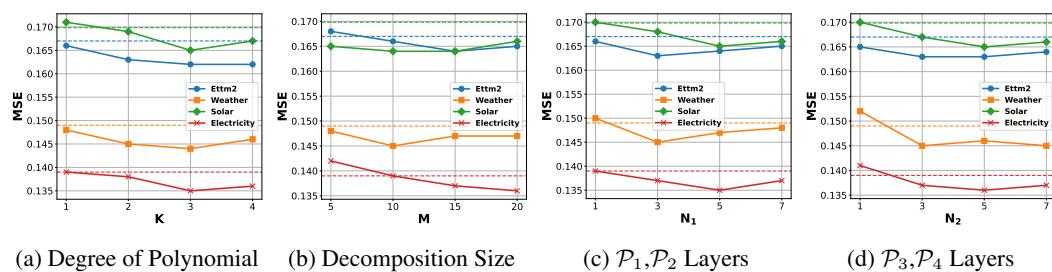
1084 To further demonstrate the advantages of CoRA, we compared its performance with LIFT (Zhao
1085 & Shen, 2024) and C-LoRA (Nie et al., 2024) using TTM as the backbone and setting H to 96,
1086 under different sampling rates in the few-shot setting. As shown in Table 8, CoRA consistently
1087 outperforms LIFT and C-LoRA, especially at lower sampling rates where LIFT and C-LoRA suffer
1088 from insufficient training data, leading to degraded performance. CoRA’s superior performance is
1089 attributed to its comprehensive modeling of correlations and efficient utilization of TSFMs. As
1090 the sampling rate increases, LIFT and C-LoRA also improve TSFMs’ performance, but at a higher
1091 sampling rate will be a higher training cost.

1092 Table 8: The sampling rate set to {5%, 10%, 15%, 20%, 25%}. **Black**: the best, Underline: the 2nd
1093 best.
1094

Dataset	ETTm2						Electricity					
	5%	10%	15%	20%	25%	5%	10%	15%	20%	25%		
Rate	5%	10%	15%	20%	25%	5%	10%	15%	20%	25%		
TTM	0.164	<u>0.162</u>	0.163	0.160	0.157	<u>0.146</u>	<u>0.143</u>	0.145	0.141	0.142		
+ LIFT	<u>0.162</u>	0.163	<u>0.161</u>	<u>0.158</u>	0.156	0.149	0.145	<u>0.144</u>	<u>0.139</u>	0.139		
+ C-LoRA	0.166	0.163	0.162	0.159	<u>0.155</u>	0.148	0.146	0.147	0.140	0.141		
+ CoRA	0.160 ±0.003	0.158 ±0.002	0.159 ±0.003	0.157 ±0.001	0.153 ±0.002	0.143 ±0.003	0.141 ±0.003	0.142 ±0.002	0.138 ±0.002	0.135 ±0.001		

1107 F.2 HYPERPARAMETER SENSITIVITY
1108

1109 With TTM as the backbone and H set to 96, we study the hyperparameter sensitivity of CoRA,
1110 including the Degree of Polynomial (K), the size of decomposition (M), the layers’ number of
1111 projectors before and after HPCL (N_1 and N_2). Figure 6a show that K is a robust hyperparameter,
1112 and we often choose 3 or 4 as common configurations. Figure 6b illustrates that the selection of M
1113 does not need to increase rapidly with the number of channels. Figure 6c and Figure 6d show that
1114 too few layers may lead to insufficient fitting capacity, while too many can diminish generalization
1115 ability. We often choose 3 or 5 as common configurations.



1125 Figure 6: Parameter sensitivity of main hyper-parameters in CoRA.
1126

1128 F.3 VISUALIZATION OF HETEROGENEOUS SPACES.
1129

1130 To further demonstrate the effectiveness of CoRA in modeling the DCorr, HCorr and PCorr, we
1131 conduct a visualization experiment. Specifically, by examining samples at 3 time steps and 4 channels
1132 in the Weather dataset, we compare the similarities between representations in the heterogeneous
1133 space. The result is shown in Figure 7. Among them, Figure 7a illustrates the visualization of
samples from the Weather dataset, with each time step comprising 64 time points. Figure 7b shows

1134 the cosine similarity between the channel representations in positive and negative spaces. Based
 1135 on observations, it can be concluded that within the 0-64 time points, Channel 1 and Channel 3 as
 1136 well as Channel 2 and Channel 4 exhibit significant positive correlations. Within the 64-128 time
 1137 points, Channel 2, Channel 3 and Channel 4 show significant positive correlations, while Channel 3
 1138 demonstrates channel independence. Within the 128-192 time points, Channel 1 and Channel 3 ex-
 1139 hibit significant positive correlations, while they show significant negative correlations with Channel
 1140 2 and Channel 4. These findings align with the actual data, demonstrating that CoRA is capable of
 1141 simultaneously capturing DCorr HCorr and PCorr.

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

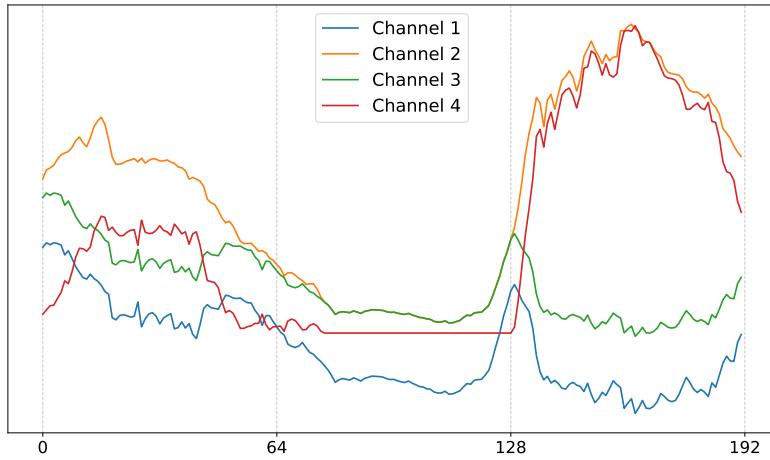
1153

1154

1155

1156

1157



(a) Samples at 3 time steps and 4 channels in Weather dataset.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

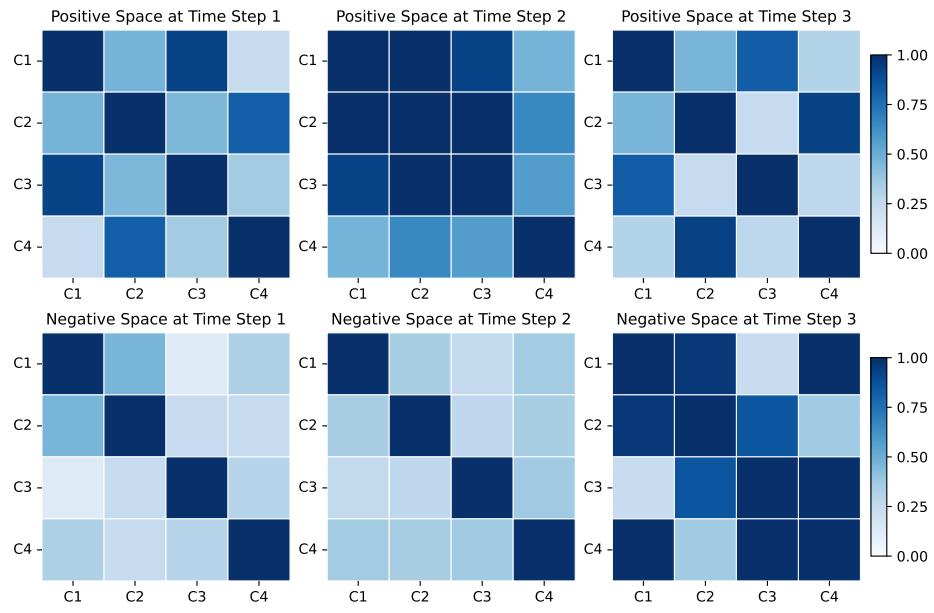
1183

1184

1185

1186

1187



(b) The similarity of representations in positive and negative spaces at 3 time steps.

1183

1184

1185

1186

1187

Figure 7: Visualization of Heterogeneous Spaces

1188 F.4 COMPARISON WITH CHANNEL-DEPENDENCY TSFMS
11891190 To provide a more comprehensive comparison, we have conducted additional experiments with more
1191 channel-dependent TSFMs. The MSE results are summarized in the table below.
11921193 Table 9: The MSE results with channel-dependency TSFMs.
1194

Method	Moirai	Moirai+CoRA	UniTS	UniTS+CoRA	TTM	TTM+CoRA
ETT(Avg.)	0.353 \pm 0.004	0.344 \pm 0.002	0.347 \pm 0.003	0.339 \pm 0.001	0.342 \pm 0.003	0.329 \pm 0.002
Weather	0.257 \pm 0.003	0.241 \pm 0.003	0.235 \pm 0.002	0.220 \pm 0.002	0.226 \pm 0.003	0.214 \pm 0.002
AQShunyi	0.690 \pm 0.003	0.672 \pm 0.002	0.717 \pm 0.002	0.685 \pm 0.002	0.701 \pm 0.003	0.678 \pm 0.002
ZafNoo	0.519 \pm 0.003	0.497 \pm 0.001	0.508 \pm 0.004	0.491 \pm 0.002	0.505 \pm 0.003	0.483 \pm 0.001

1201 1202 F.5 COMPARISON WITH OTHER PLUGINS
12031204 Table 10: The MSE results of comparison.
1205

Dataset	ETTm2			Weather			Electricity		
	GPT4TS	Timer	UniTime	GPT4TS	Timer	UniTime	GPT4TS	Timer	UniTime
Backbone	0.190	0.168	0.190	0.187	0.150	0.184	0.178	0.139	0.174
w/o Plugin	0.183	0.164	0.183	0.180	0.146	0.174	0.176	0.136	0.170
LIFT	0.192	0.167	0.191	0.186	0.151	0.185	0.181	0.141	0.173
C-LoRA	0.199	0.171	0.199	0.190	0.155	0.182	0.182	0.142	0.178

1214 1215 F.6 EVALUATION ON NON-STATIONARY DATASETS
12161217 To offer a dedicated analysis
1218 to investigate the model’s be-
1219 haviour in edge cases, we se-
1220 lect four datasets with differ-
1221 ent Non-Stationary Rates (Qiu
1222 et al., 2024a) for evaluation. Our
1223 method combines both a rule-
1224 based and a learnable corre-
1225 lation matrix, which enhances its
1226 robustness. As shown in this re-
1227 sult, our method still achieves a
1228 modest improvement even when
1229 the Non-Stationary Rate is as
1230 high as 0.360.1231 Table 11: MSE results for evaluation on non-stationary datasets.
1232

Dataset	ETTh2	Weather	NASDAQ	Covid-19
Non-Stationary Rate	0.02	0.07	0.169	0.360
GPT4TS	0.377	0.254	1.411	1.972
+CoRA	0.361	0.243	1.387	1.924
Moment	0.369	0.251	1.208	2.356
+CoRA	0.356	0.243	1.174	2.307

1233 1234 F.7 EVALUATION ON HIGH-DIMENSIONAL DATASETS
12351236 We selected three high-
1237 dimensional datasets with
1238 more than 500 variables
($N > 500$). The MSE
1239 and maximum GPU mem-
1240 ory usage for these datasets
1241 are reported in the table
1242 below. The results above
1243 show that even for a dataset
1244 with 2,000 variables, our1245 Table 12: MSE results for evaluation on high-dimensional datasets.
1246

Dataset	Traffic $N = 862$	Covid-19 $N = 948$		Wike2000 $N = 2000$		
Metric	MSE	Max-GPU Memroy	MSE	Max-GPU Memroy	MSE	Max-GPU Memroy
GPT4TS	0.441	7.73G	1.972	12.53G	547.024	23.96G
+CoRA	0.430	8.95G	1.924	14.24G	535.811	28.44G
Moment	0.453	5.37G	2.356	6.21G	525.352	11.12G
+CoRA	0.437	7.02G	2.307	7.89G	517.165	17.41G

1242 method avoids introducing memory or numerical bottlenecks. Moreover, it is still capable of learning
 1243 correlations to a certain degree, leading to performance enhancements for the TSFM.
 1244

1245 **F.8 EVALUATION ON DIFFERENT TASKS FOR TIME SERIES**
 1246

1247 To explore the capabilities of CoRA on tasks beyond forecasting, we conducted relevant experiments.
 1248 For anomaly detection, we use the **MSL** and **SMAP** as evaluation datasets (Qiu et al.,
 1249 2025b). For classification, we select the **FaceDetection**, **Heartbeat**, and **PEMS-SF** as evaluation
 1250 datasets (Goswami et al., 2024). For the anomaly detection task, we evaluate performance using the
 1251 **VUS_ROC** and **VUS_PR** metrics. For the classification task, we use **Accuracy**. The results of all
 1252 experiments are summarized in the Table 13.
 1253

1254 Table 13: Evaluation on different tasks for time series.

Task	Anomaly detection				Classification		
	Dataset		MSL	SMAP	FaceDetection	Heartbeat	PEMS-SF
Metric	VUS-ROC	VUS-PR	VUS-ROC	VUS-PR	Accuracy	Accuracy	Accuracy
GPT4TS	0.624	0.195	0.504	0.147	0.683	0.776	0.874
+CoRA	0.628	0.200	0.510	0.149	0.688	0.791	0.876
Moment	0.663	0.212	0.474	0.127	0.675	0.786	0.866
+CoRA	0.667	0.214	0.483	0.130	0.681	0.789	0.873

1264 The results indicate that although CoRA was not specifically designed for these tasks, its direct
 1265 application still yields performance improvements. This demonstrates CoRA’s effectiveness in en-
 1266 hancing TSFMs by capturing correlation.
 1267

1296 **G THE USE OF LARGE LANGUAGE MODELS**
12971298 The use of open-source Large Language Models (LLMs) in this work was strictly limited to as-
1299 sisting with the translation of certain terms and polishing a small portion of the text. LLMs did
1300 not contribute to the conceptual aspects of the research, including information retrieval, knowledge
1301 discovery, or the ideation process.
1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349