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ABSTRACT

Most existing Time Series Foundation Models (TSFMs) use channel indepen-
dent modeling and focus on capturing and generalizing temporal dependencies,
while neglecting the correlations among channels or overlooking the different as-
pects of correlations. However, these correlations play a vital role in Multivariate
time series forecasting. To address this, we propose a CoRrelation-aware Adapter
(CoRA), a lightweight plug-and-play method that requires only fine-tuning with
TSFMs and is able to capture different types of correlations, so as to improve
forecast performance. Specifically, to reduce complexity, we innovatively de-
compose the correlation matrix into low-rank Time-Varying and Time-Invariant
components. For the Time-Varying component, we further design learnable poly-
nomials to learn dynamic correlations by capturing trends or periodic patterns. To
learn positive and negative correlations that appear only among some variables,
we introduce a novel dual contrastive learning method that identifies correlations
through projection layers, regulated by a Heterogeneous-Partial contrastive loss
during training, without introducing additional complexity in the inference stage.
Extensive experiments on 10 real-world datasets demonstrate that CoRA can im-
prove the TSFMs in multivariate forecasting performance.

1 INTRODUCTION

Time Series Foundation Models (TSFMs) that show strong generalization are proposed recently.
Through pre-training on large-scale time series data (Goswami et al., 2024; Liu et al., 2024e; Ekam-
baram et al., 2024a) or the use of large language models (Zhou et al., 2023; Liu et al., 2024d;c; Jin
et al., 2023), these models maintain strong reasoning abilities when handling new or unseen data.

At the same time, multivariate time series forecasting, as a pivotal domain in data analysis, is widely
applied in various industries (Qiu et al., 2024b; Wang et al., 2024b; Zhang et al., 2024). Properly
modeling and utilizing correlations in multivariate time series can significantly improve the perfor-
mance of forecasting models (Zhang & Yan, 2022; Liu et al., 2023; Wu et al., 2020). Based on
different interaction characteristics among variables, as shown in Figure 1a, correlation can be sum-
marized into three aspects: dynamic correlation (DCorr) describes the variation of variable relation-
ships over time (Zhao et al., 2023; Cirstea et al., 2021); heterogeneous correlation (HCorr) focuses
on how variables interact with each other by considering positive and negative correlations (Huang
et al., 2023); partial correlation (PCorr) emphasizes that correlation exists only among certain vari-
ables, and modeling interactions across all variables can easily introduce noise (Chen et al., 2024;
Qiu et al., 2025c; Liu et al., 2024b). Considering more comprehensive correlations provides richer
information for the models.

However, most existing TSFMs focus on capturing and generalising temporal dependencies and ne-
glect relationships among variables (Goswami et al., 2024; Ansari et al., 2024; Liu et al., 2024e;c;
Jin et al., 2023; Shi et al., 2024). Although some models like TTM (Ekambaram et al., 2024a),
UniTS (Gao et al., 2024), and Moirai (Woo et al., 2024) employ different methods to model the
correlations among variables, they do not comprehensively consider multiple aspects of the cor-
relations. For example, TTM employs an MLP-based channel mixing approach, but the MLP
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weights remain unchanged across different time steps, thereby failing to model DCorr while in-
discriminately modelling all interactions, and thus failing to capture HCorr and PCorr explicitly.
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Figure 1: (a) Illustration of three different types of correlations,
the formal definitions are provided in Appendix A. (b) Compar-
isons of different plugins for learning correlations

While the attention mecha-
nisms used in UniTS and
Moirai assign different atten-
tion scores at different time
points, they still interact all
variables simultaneously with-
out considering HCorr and
PCorr, thus leading to subopti-
mal correlation modeling. Fur-
thermore, due to the variations
in correlations across different
datasets, it is difficult to capture
generalized correlations during
the pre-training phase (Ekam-
baram et al., 2024a).

Thus, it motivates us to de-
sign a plugin that can be
fine-tuned alongside TSFMs,
which avoids issues caused by
correlation differences across
datasets during the pre-training
phase. Meanwhile, it possesses
the ability to depict various correlations while also incorporating a lightweight design. However,
this faces a major challenge: balancing the complete modeling of various correlations with the
lightweight design. It is intrinsically difficult to model all three correlations in a unified manner.
Although some models could address DCorr (Zhao et al., 2023; Cirstea et al., 2021), HCorr (Huang
et al., 2023) and PCorr (Qiu et al., 2025c; Liu et al., 2024b) individually, they struggle to effectively
encompass various correlations simultaneously. Moreover, existing variable interaction methods of-
ten rely on MLPs (Ekambaram et al., 2023; 2024b), Transformers (Liu et al., 2023; Jiang et al.,
2023) and GNNs (Wu et al., 2020; Cai et al., 2024), etc., which have a time complexity of O(N2),
where N denotes the number of variables. Some methods (Zhang & Yan, 2022; Chen et al., 2024;
Nie et al., 2024) have made efforts in reducing the complexity. However, end-to-end models such
as Crossformer (Zhang & Yan, 2022) require modifying or redesigning the entire model structure,
and thus cannot be directly used as plugins for TSFMs. Existing plugins are primarily designed for
end-to-end forecasting models. CCM (Chen et al., 2024) requires additional pre-training together
with the end-to-end models before it can be plugged in. C-LoRA (Nie et al., 2024) is designed to
be trained with an end-to-end backbone from scratch. Overall, there is a lack of an efficient plugin
specifically designed for downstream fine-tuning of TSFMs. More importantly, considering various
correlations in these methods would lead to a higher complexity.

To address this, we propose CoRA, a lightweight plug-and-play method that only requires training
on a few samples with TSFMs during the fine-tuning phase. By considering various correlations,
CoRA utilises representations and original prediction from TSFMs to generate an enhanced predic-
tion, as shown in Figure 1b. To complete modeling the mentioned three types of correlation, we first
propose the Dynamic Correlation Estimation (DCE) module which can learn dynamic correlation
matrices. Then we design the Heterogeneous-Partial Correlation Contrastive Learning (HPCL)
that uses the correlation matrices from DCE to learn HCorr and PCorr adaptively. Specifically, to
achieve lightweight, we innovatively decompose the correlation matrices into two low-rank compo-
nents: Time-Varying and Time-Invariant in DCE module. To better understand how DCorr evolves,
we propose a learnable polynomial to capture trend or periodic patterns within the DCorr effec-
tively. Afterwards, to better distinguish of HCorr, we propose channel-aware projections to map
the representations into positive and negative correlation spaces. The projections are guided by the
novel Heterogeneous-Partial Contrastive Loss during the training process, which enables adaptive
learning of PCorr in the two HCorr spaces. As a result, we can capture the mentioned three types of
correlations with O(N) complexity during inference. Our contributions are summarized as follows:
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• We design a universal, lightweight plugin that allows the TSFMs to capture the mentioned
three types of correlations without re-pre-training the TSFMs.

• We propose a lightweight Dynamic Correlation Estimation module that can explicitly
model the dynamic patterns of correlations in a lightweight manner.

• We propose a novel Heterogeneous-Partial Correlation Contrastive Learning, which can
learn HCorr and PCorr through projection layers regulated by dual contrastive loss.

• We conducted extensive experiments on 10 real-world datasets. The results show that
CoRA effectively improves the performance of TSFMs in multivariate forecasting.

2 RELATED WORK

2.1 FOUNDATION MODELS FOR TIME SERIES FORECASTING

TSFMs for forecasting can be divided into two sections: 1) LLM-based Models: These meth-
ods leverage the strong representational capacity and sequential modeling capability of LLMs to
capture complex patterns for time series modeling. Among them, GPT4TS (Zhou et al., 2023) and
CALF (Liu et al., 2024a) selectively modify certain parameters of LLMs to enable the model to adapt
to time series data. On the other hand, UniTime(Liu et al., 2024c), S2IP-LLM (Pan et al., 2024),
LLMMixer (Kowsher et al., 2024), and Time-LLM (Jin et al., 2023) focus on creating prompts to
trigger time series knowledge within LLMs. 2) Time Series Pre-trained Models: Pre-training on
multi-domain time series equips these models with strong generalization capabilities. Among them,
ROSE (Wang et al., 2024a) and Moment (Goswami et al., 2024) restore the features of time series
data, enabling them to extract valuable information in an unsupervised manner. On the other hand,
TimesFM (Das et al., 2023) and Timer (Liu et al., 2024e), using an autoregressive approach, em-
ploy next-token prediction to learn time series representations. Generally speaking, most TSFMs
are based on channel-independent strategies, with only a few (Gao et al., 2024; Ekambaram et al.,
2024a; Woo et al., 2024) modeling relatively simple inter-variable relationships. The effects of more
complex correlations in TSFMs remain under-explored.

2.2 CORRELATION OF VARIABLES IN TIME SERIES FORECASTING

Channel correlation plays a crucial role in enhancing the predictions(Qiu et al., 2025a). They can
be divided into specialized models and plugins from a paradigm perspective. 1) Correlation Mod-
els: These models are typically based on foundational architectures such as MLP (Ekambaram
et al., 2024b; 2023), GNN (Shang et al., 2021; Cai et al., 2024; Wu et al., 2020), and Trans-
former (Liu et al., 2023; Zhang & Yan, 2022). For example, TSMixer(Ekambaram et al., 2023) and
TTM(Ekambaram et al., 2024b) directly mix all variables using MLP. MTGNN(Wu et al., 2020)
and Ada-MsHyper(Shang et al., 2024) treat different variables as distinct nodes, performing mes-
sage passing to facilitate variable interactions. Furthermore, iTransformer(Liu et al., 2023) and
Crossformer(Zhang & Yan, 2022) treat different variables as distinct tokens and utilize transformers
to realize channel interaction. 2) Correlation Plugins: Some plugins enhance the predictive capa-
bility of models by learning correlation. For example, LIFT (Zhao & Shen, 2024) leverages locally
stationary relationships to extract correlations. CCM (Chen et al., 2024) further performs clustering
and creates dedicated prediction heads for each cluster. However, the methods above either lack
comprehensive correlation modeling capabilities or possess substantial complexity.

3 PRELIMINARIES

Time Series Forecasting. Given a multivariate time series with length L and N channels Xt =
{xi

t−L:t}Ni=1, where each xi
t−L:t ∈ RL is a sequence of observations at time point t. The forecasting

task is to predict future F length values Ŷt = {x̂i
t:t+F }Ni=1. Yt = {xi

t:t+F }Ni=1 denotes real future
values.

Correlation-Aware Adapter for Foundation Models. Given a TSFM F , it is fine-tuned on down-
stream forecasting data Xft

t , formulated as Ŷ ft
t = F(Xft

t ). Meanwhile, the series representation
X ft

t of TSFM F is produced.

3
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Problem Definition: given Xft
t , Ŷ ft

t , X ft
t and Y ft

t , we update F into F∗, where F∗ is an updated
F with CoRA plugged in. The inference can be performed as: Ŷ test

t = F∗(Xtest
t ).

4 METHODOLOGY
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Figure 2: The framework of CoRA. (a) CoRA begins by learning DCorr in Dynamic Correlation
Estimation module. Heterogeneous Division module projects representations into positive and neg-
ative spaces for HCorr. Then CoRA conducts H-PCorr Contrastive Learning in each space to guide
projection and capture PCorr. (b) The DCorr Estimation module estimates correlations by combin-
ing Rule-based Correlations and Learnable Correlations, which are computed by Time-aware Poly-
nomial and Time-Varying and Time-Invariant (T-T) Composition. (c) H-PCorr contrastive learn-
ing minimizes distances between strongly correlated channels and maximizes separation between
weakly correlated channels in both positive and negative spaces.

In this work, we propose a Correlation-Aware Adapter (CoRA), a lightweight plugin that allows
the TSFMs to capture various correlations during the fine-tuning stage. The framework of CoRA
is visualized in Figure 2 . CoRA operates on input series, original predictions, and representations
from TSFMs to enhance the prediction accuracy. Our method consists of four processes: (i) Dy-
namic Correlation Estimation. This module utilize representations from TSFMs and input series
to learn dynamic correlations and generate correlation matrices that guide subsequent contrastive
learning. (ii) Heterogeneous Division. Some channels show dependencies on positive correlations,
whereas some others show negative correlations. To better capture HCorr, we design the this module
to process the representations from the backbone and learn representations of positive and negative
correlations separately. (iii) Heterogeneous Partial Correlation (H-PCorr) Contrastive Learn-
ing. We propose H-PCorr Contrastive Learning within each representation of HCorr to learn PCorr
by clustering only correlated channels. (iv) Heterogeneous Fusion and prediction. Finally, we
fuse the representations after contrastive learning for positive and negative correlations in Hetero-
geneous Fusion module and generate new predictions. Then, both original and new predictions are
gated and added together.

4.1 DYNAMIC CORRELATION ESTIMATION
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Figure 3: The details of DCorr Estimation

Channels exhibit both stable dependencies that
do not change across time and fluctuations that
change across time. Motivated by this, we
introduce an innovative method that decom-
poses the learnable part of correlation matrix
M corr

t ∈ RN×N at time t into two low-rank
components: Time-Varying Qt ∈ RN×M and
Time-Invariant V ∈ RM×M , which can sep-
arate distinct correlation components, as illus-
trated in Figure 3. Here, R ∈ RN×N de-
notes the rule-based correlation matrix which is
added to the learnable part to incorporate more
prior knowledge for enhancing correlation esti-
mation. M is the hyperparameter for the post-
decomposition rank, with M < N . This decomposition of the learnable part offers greater parameter
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efficiency, yet remains functionally equivalent to conventional additive decomposition (Cirstea et al.,
2021), as formally proven in Theorem 1.

We estimate the two components separately and then compose them back into the original correla-
tion. The Time-Varying component represents the fluctuations in correlations across time. As time
series data inherently have trends and periodic characteristics, the correlations that measure their
dependencies also exhibit such variations across the entire time series (Liu et al., 2022). Thus, we
propose Learnable Time-aware Polynomials to estimate the changes, as polynomials can be effec-
tive in modeling temporal patterns by sharing a common basis across different time steps. Based
on a global adaptive method, the Time-Invariant component aims to capture the stable dependencies
among channels that do not change over time. Finally, we compute the correlation matrix M corr

t by
composing learnable correlations and combining with the rule-based correlation R. This correlation
matrix is then used for H-PCorr Contrastive Learning.

4.1.1 LEARNABLE TIME-AWARE POLYNOMIALS

Most existing approaches (Shang et al., 2024; Cirstea et al., 2021; Zhao et al., 2023) struggle to
accurately express the time-varying characteristics of DCorr due to the lack of explicit modeling of
dynamic regularities.

In a stationary time series, we can use a well-behaved mathematical function to effectively approx-
imate the fluctuations of the correlation. Considering that high-order polynomials provide better
non-linear capacity than first-order ones, we use learnable polynomials to estimate Qt. The proof
of this approximation capability is detailed in Theorem 2.

We construct a K-order Time-aware Polynomials with a shared matrix basis:

Qt =

K∑
i=0

Ci,tq
i, (qi = q ⊙ q ⊙ · · · ⊙ q︸ ︷︷ ︸

i times

) , (1)

where Qt ∈ RN×M denote the Time-Varying component at time step t. Ci,t ∈ RN is the i-th
coefficient that varies over time, while q ∈ RN×M is the globally learnable basis, which represents
the pattern of changes over time. We define qi as the i-times Hadamard product of the matrix q,
where the operation ⊙ is the element-wise Hadamard product.

For convenience, we define the collection of Ci,t as the matrix Ct = (C0,t, · · ·CK,t) ∈ RN×K . It
is the dependency coefficient of each channel for pattern qi and exhibits different values at different
times, determined by specific data. Therefore, we learn the mapping f between the representations
of time series X t and coefficients Ct to estimate it :

Ct = f(X t) ∈ RN×K . (2)

Since only the polynomial coefficients need to be estimated with f , rather than the entire varying
component, we can use a simple MLP to implement it.

4.1.2 TIME-VARYING AND TIME-INVARIANT COMPOSITION

Since the time-invariant part does not change over time, it should be globally unique. Inspired by
self-learned graphs (Shang et al., 2024; Wu et al., 2020), we use global learnable vectors to capture
the implicit stable dependencies among channels:

V = Sigmoid(ReLU(E1E
T
2 )) , (3)

where V ∈ RM×M denote the Time-Invariant component of DCorr. E1,E2 ∈ RM×de are learnable
vectors, de is used to expand the dimensions, thereby enhancing the representation capacity.

As the statistics-based Pearson coefficient can describe simple linear correlation, we use it as the
initialization for the final DCorr and build upon it to learn more complex correlations. The Pearson
coefficient is calculated as follows:

rx,y =

∑L
i=1(xi − x̄)(yi − ȳ)√∑L

i=1(xi − x̄)2
√∑L

i=1(yi − ȳ)2
, (4)
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where x, y are two variables in Xt. rx,y denotes the correlation coefficient among them, while x̄ and
ȳ indicate the mean values of x and y, respectively, L is the size of input series. We use R ∈ RN×N

to denote the collection of r. Overall, our DCorr includes rule-based correlation R, time-varying
components Qt, and time-invariant components V . The final estimated correlation is formulated as
the sum of the learnable and rule-based parts in the following equation:

M corr
t = R+QtV Qt

T . (5)

4.2 HETEROGENEOUS CORRELATION DIVISION

Positive and negative correlations affect the channels differently, and the proportion of their contri-
bution also varies among different channels. Motivated by Squeeze-and-Excitation (Hu et al., 2018)
(SE), we propose a channel-aware projector that can adjust the weights of channels based on con-
textual information during projection to better project the representations into positive and negative
spaces and learn Heterogeneous Correlation (HCorr).

To distinguish the dependency of channels on Heterogeneous Correlation, we project the representa-
tions into two spaces. Specifically, we use SE mechanism to aggregate contextual information over
time and adaptively calculate projection weights among channels. The channel-aware projection
layer P with X in

t and X out
t is shown as follows:

X proj
t = MLP1(LayerNorm(X in

t )) ∈ RP×N×d , (6)

W = SoftMax(MLP2(LayerNorm(X in
t ))) ∈ RN , (7)

X out
t = X in

t +X proj
t ⊙ expand(W ) , (8)

where LayerNorm refers to the layer normalization operation, which enhances the model’s general-
isation ability. MLP1 := Rd → Rd is used for preliminary projection. MLP2 := RP×d → R1 is
used to compute channel weights. W denotes the adaptive channel weight.

We perform two identical projection transformations on X t to obtain the representations of the
positive and negative latent spaces:

X pos
t = P1(X t) ∈ R(P×N×d), X neg

t = P2(X t) ∈ R(P×N×d) , (9)

where P1 and P2 are the same channel-aware projection operations, and they consist of N1 projec-
tion layers like P . X pos

t and X neg
t are representations projected into spaces of positive and negative

correlations, respectively. They contain channel information with adaptive adjustments and will
subsequently be used for contrastive learning.

It is noteworthy that the Heterogeneous Correlation Division module cannot directly accomplish
the disentanglement of heterogeneous correlations. Instead, this separation is achieved under the
guidance of the contrastive learning framework detailed in the next section.

4.3 HETEROGENEOUS PARTIAL CORRELATION CONTRASTIVE LEARNING

To capture Partial Correlation, we design Partial Contrastive Learning, which uses the correlation
matrix derived from Dynamic Correlation Estimation (DCE) and representations from Heteroge-
neous Correlation Division (HD) to enable adaptive cluster learning.

We leverage Contrastive Learning’s advantages for clustering to capture PCorr. Compared to exist-
ing methods (Chen et al., 2024; Qiu et al., 2025c), this approach facilitates the fine-grained interac-
tion among relevant channels. Moreover, it does not add an extra burden during inference.

First based on the estimated correlation M corr
t , we define the heterogeneous correlations as M pos

t
and M neg

t to decouple the complex interactions among variables:

M pos
t =

{
mcorr

t , if corr > ϵ

0, else
, M neg

t =

{
mcorr

t , if corr < −ϵ

0, else
, (10)

where mcorr
t is the element of M corr

t , ϵ is the learnable threshold. The following process is for the
positive correlation in the positive latent space; the same operation is performed on the negative
latent spaces.

6
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The matrix M pos
t is used to select positive and negative samples for each variable. In the designed

contrastive learning if M pos
t [i, j] = 0, it is considered a negative pair; otherwise, it is considered a

positive pair. The loss for the positive correlation can be expressed as follows:

Lpos = − 1

N

N∑
i=1

log(

∑N
j=1 M

pos
t [i, j]exp(sim(X pos

t [i],X pos
t [j])/τ)∑N

k=1 exp(sim(X pos
t [i],X pos

t [k])/τ)
), (11)

where sim(·) represents the cosine similarity, and τ is the temperature coefficient used to control the
degree of contrastive learning constraints. The following equation gives the final loss:

L = γ(Lpos + Lneg) + LForecast, (12)

where γ is the tuning coefficient, and LForecast is the forecasting loss.

4.4 HETEROGENEOUS FUSION AND PREDICTION

Finally, we project the representations of the two heterogeneous latent spaces into a shared space and
then fuse them to perform prediction. Considering that some channels may require more correlation
interaction while others may require more independence, we conduct a convex combination:

X̃ pos
t = P3(X pos

t ), X̃ neg
t = P4(X neg

t ), (13)

Ŷ ∗
t = β Linear(X̃ pos

t + X̃ neg
t ) + (1− β) Ŷt , (14)

where P3 and P4 consist of N2 projection layers like P , as given by equations (6-8). Linear repre-
sents the linear prediction head, β ∈ [0, 1]N is a learning parameter denotes the gated weight.

4.5 COMPLEXITY ANALYSIS

The computational complexities are O(N2) for the DCorr Estimation (DCE, Section 4.1) and H-
PCorr Contrastive learning (HPCL, Section 4.3), and O(N) for HCorr Division (HD, Section 4.2).
Most of the complexity arises from DCE and HPCL, which are only required during training. In the
inference phase, since CoRA only includes HD modules, the time complexity is O(N).

Figure 5 shows CoRA imposes only minimal additional time on TSFMs, during fine-tuning and
inference. The details of complexity analysis are included in Appendix B.

5 THEORETICAL ANALYSIS

5.1 THE SIGNIFICANCE OF TIME-VARYING AND TIME-INVARIANT COMPOSITION

A straightforward approach to modeling dynamic correlations is to decompose the correlation matrix
into the sum of a time-varying matrix and a time-invariant matrix (Cirstea et al., 2021; Wu et al.,
2019). However, this approach has parameter complexity. Our method can reduce the complexity
while achieving the same effect.

Theorem 1 When the time series is locally stationary, the Time-Varying and Time-Invariant De-
composition allows QtV QT

t to contain both time-varying and time-invariant information, like con-
ventional additive decomposition.

Specifically, QtV QT
t can be expressed as the sum of a time-invariant matrix Mi and a time-varying

matrix Mv , as shown below:

QtV QT
t = Mi +Mv . (15)

This indicates that our decomposition approach remains functionally equivalent to conventional ad-
ditive decomposition. Notably, the expression QtV QT

t is the learnable component of the correlation
matrix M corr

t , as defined in Equation 5.
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5.2 THE FITTING ABILITY OF TIME-AWARE POLYNOMIALS

Time-aware polynomials can model complex time-varying correlation relationships, and the error
bound decreases as the degree K of the polynomial increases.

Theorem 2 When the time series is locally stationary, we can approximate the underlying correla-
tion matrix with a high-order polynomial.

Specifically, assuming that the correlation is a smooth function of the basis q, the true correlation
component Q∗

t can be expressed as F(q). The error bound can be formalized as follows.

|Q∗
t −Qt| =

F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [−|q|, |q|] . (16)

This indicates that by selecting an appropriate K, we can strike an effective balance between model
effectiveness and computational efficiency, thereby enabling the efficient estimation of dynamic
correlations. We provide the proof of Theorems 1-2 in the Appendix C.

6 EXPERIMENT

6.1 EXPERIMENTAL DETAILS

Datasets. To conduct comprehensive and fair comparisons for different models, we conduct exper-
iments on ten well-known forecasting benchmarks as the target datasets, including ETT (4 subsets),
Electricity, Traffic, Solar, weather, AQShunyi and ZafNoo, which cover multiple domains. More
details of the benchmark datasets are included in Table 4 of Appendix D.1.

Baselines and Implementation. We choose the latest state-of-the-art models to serve as baselines,
including 3 Time Series LLM-based models (GPT4TS, AutoTimes, UniTime) and 3 Time Series
pre-trained models (Moment, Chronos, Timer). We utilize the FM4TS-Bench Li et al. (2025) code
repository for unified evaluation. More implementation details are included in D.3. To keep consis-
tent with previous works, we adopt Mean Squared Error (MSE) and Mean Absolute Error (MAE) as
evaluation metrics. We provide our code at https://anonymous.4open.science/r/CoRA-D968.

6.2 MAIN RESULTS

Comprehensive forecasting results of TSFMs with and without using CoRA are listed in Table 1. We
have the following observations: i) Compared to fine-tuning without CoRA, fine-tuning with CoRA
achieves better results in average results and results of different forecasting horizons (Table 6 and
Table 7, in Appendix E) for both LLM-based models and time series pre-trained models, even in 5%
few-shot settings. ii) Sharing the same pre-trained parameters, TTM’s Channel-Dependent (CD) and
Channel-Independent (CI) versions differ only in their module configurations during downstream
fine-tuning. We implement a CI version of TTM, fine-tuned with CoRA and compare it with a
CD version which is fine-tuned without CoRA. The better performance of the former demonstrates
that considering the mentioned three types of correlations allows the model to better understand the
inter-channels interaction.

6.3 COMPARISON WITH OTHER CORRELATION PLUGINS

To better validate the effectiveness of CoRA, we compare it with LIFT Zhao & Shen (2024) and
C-LoRA Nie et al. (2024). We select GPT4TS, UniTime and Timer as the backbone and set H to 96.
As shown in Figure 4, since LIFT and C-LoRA are not specifically designed for TSFMs, the limited
training samples in the few-shot setting lead to a degradation in their performance, negatively im-
pacting the effectiveness of the TSFMs. In contrast, CoRA, designed specifically for TSFMs, learns
multiple correlations from the TSFMs’ representations, allowing it to fully leverage their predictive
capabilities. More comparisons with other fine-tuning setting are included in the Appendix F.1.
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Table 1: Multivariate forecasting results in the 5% few-shot setting with MSE are averaged across
four different forecasting horizons H ∈ {96, 192, 336, 720}.The better results are highlighted in
bold. Full and MAE results are available in Appendix E.

Model LLM-Based Pre-trained
Confidence

IntervalGPT4TS (2023) CALF (2025) UniTime (2024) Moment (2024) Timer (2024) TTM (2024)

Plugin 7 ✓ 7 ✓ 7 ✓ 7 ✓ 7 ✓ 7 ✓

ETTh1 0.468
±0.002

0.456
±0.001

0.444
±0.003

0.433
±0.001

0.739
±0.002

0.712
±0.001

0.551
±0.003

0.537
±0.002

0.446
±0.003

0.432
±0.001

0.406
±0.002

0.393
±0.001

99%

ETTh2 0.377
±0.003

0.361
±0.002

0.376
±0.003

0.365
±0.001

0.399
±0.003

0.385
±0.001

0.369
±0.003

0.356
±0.002

0.357
±0.003

0.343
±0.001

0.345
±0.002

0.331
±0.002

99%

ETTm1 0.390
±0.003

0.378
±0.002

0.375
±0.003

0.363
±0.001

0.407
±0.002

0.392
±0.002

0.455
±0.003

0.439
±0.001

0.359
±0.003

0.346
±0.001

0.358
±0.002

0.344
±0.001

95%

ETTm2 0.279
±0.002

0.267
±0.001

0.274
±0.003

0.263
±0.002

0.293
±0.003

0.278
±0.002

0.277
±0.002

0.270
±0.002

0.262
±0.003

0.250
±0.001

0.259
±0.003

0.249
±0.002

99%

Electricity 0.207
±0.003

0.201
±0.001

0.175
±0.003

0.166
±0.001

0.202
±0.003

0.191
±0.001

0.200
±0.003

0.196
±0.001

0.242
±0.002

0.229
±0.002

0.181
±0.002

0.173
±0.001

99%

Traffic 0.441
±0.001

0.430
±0.001

0.435
±0.002

0.424
±0.001

0.456
±0.002

0.444
±0.001

0.453
±0.003

0.437
±0.002

0.458
±0.003

0.439
±0.001

0.486
±0.004

0.468
±0.001

95%

Solar 0.254
±0.003

0.244
±0.001

0.229
±0.004

0.223
±0.001

0.252
±0.005

0.245
±0.002

0.226
±0.003

0.218
±0.002

0.217
±0.003

0.207
±0.002

0.269
±0.004

0.259
±0.001

99%

Weather 0.254
±0.003

0.243
±0.001

0.238
±0.002

0.229
±0.002

0.255
±0.002

0.240
±0.002

0.251
±0.003

0.243
±0.001

0.247
±0.004

0.238
±0.002

0.226
±0.002

0.214
±0.002

99%

AQShunyi 0.849
±0.002

0.830
±0.002

0.732
±0.003

0.714
±0.001

0.743
±0.003

0.715
±0.001

0.693
±0.003

0.670
±0.002

0.736
±0.004

0.708
±0.001

0.701
±0.003

0.678
±0.002

99%

ZafNoo 0.564
±0.003

0.552
±0.002

0.549
±0.002

0.532
±0.002

0.563
±0.003

0.540
±0.001

0.533
±0.003

0.516
±0.002

0.539
±0.002

0.517
±0.002

0.505
±0.003

0.483
±0.001

99%
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Figure 4: Correlation Plugins comparison in 5% few-shot fine-tuning setting.

6.4 ABLATION STUDY

To investigate the effectiveness of CoRA, we conduct comprehensive experiments. In our work,
the DCorr Estimation (DCE) is used to learn DCorr and generate the labels required for H-PCorr
Contrastive Learning (HPCL), while HPCL utilizes these labels to guide the projectors in the Het-
erogeneous Division (HD) module. Therefore, they cannot operate independently. We utilize naive
implementations in place of the original modules within certain variants.

Table 2: The MSE results of various variants.

Dataset ETTm2 Electricity Confidence
IntervalDCE HD HPCL GPT4TS UniTime Timer GPT4TS UniTime Timer

1 7 7 7 0.279±0.002 0.293±0.003 0.262±0.003 0.207±0.003 0.202±0.003 0.242±0.002 99%

2 ✓ 0.277±0.002 0.287±0.002 0.259±0.002 0.206±0.001 0.197±0.002 0.237±0.002 99%

3 ✓ ✓ 0.274±0.002 0.284±0.003 0.256±0.002 0.204±0.001 0.195±0.001 0.235±0.002 95%

4 ✓ ✓ 0.271±0.001 0.282±0.002 0.254±0.002 0.203±0.001 0.196±0.002 0.234±0.002 99%

5 ✓ ✓ ✓ 0.267±0.001 0.278±0.002 0.250±0.001 0.201±0.001 0.191±0.001 0.229±0.002 99%

7 denotes a module removed, ✓ denotes a module added, denotes replace a module with a naive implementation.

Specifically, we replace the DCE module with a series-level Pearson correlation coefficient, which
cannot model DCorr, and the HD module with a single-branch projection layer, which is unable to
capture PCorr. The comparison between Row 1-2 demonstrates the effectiveness of HPCL; however,
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its performance is limited due to its inability to capture multiple types of correlations. In Rows 2-
4, the addition of either the DCE or HD module to HPCL further enhances performance, which
confirms the efficacy of both modules. In Row 5, the combination of all three modules achieves the
best performance.

6.5 MODEL ANALYSIS

Efficiency Analysis Our proposed CoRA, as a lightweight plugin for TSFMs, shows strong effi-
ciency, particularly during the inference phase. Figure 5 shows a comparative analysis of the effi-
ciency of TSFMs with and without the application of CoRA. We selected three datasets in ascending
order of the number of channels: ETTm2 (N = 7), Weather (N = 21), and Electricity (N = 321).
For the experiments, both the look-back window L and the forecasting horizon H were set to 96.
Train time and Inference time refer to the duration of a single training epoch and the total time re-
quired to process all samples during inference, respectively. The results show that, compared to the
backbone itself, the use of CoRA does not introduce significant additional time or parameter num-
bers. Moreover, as the number of channels (N ) increases, CoRA maintains its efficiency without
noticeable degradation compared to the backbone, particularly during inference.
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Figure 5: Efficiency Analysis of TSFMs with and without the application of CoRA.

Table 3: MSE results for different data percentage.

Dataset ETTm2 Weather

Data 3% 5% 10% 20% 3% 5% 10% 20%

TTM 0.263
±.005

0.259
±.003

0.256
±.003

0.250
±.002

0.237
±.003

0.226
±.002

0.224
±.002

0.216
±.001

+ CorA 0.261
±.004

0.249
±.002

0.248
±.001

0.245
±.001

0.234
±.003

0.214
±.002

0.212
±.001

0.210
±.001

CALF 0.285
±.005

0.274
±.003

0.268
±.004

0.261
±.003

0.251
±.004

0.238
±.002

0.230
±.003

0.224
±.002

+ CorA 0.283
±.003

0.263
±.002

0.260
±.002

0.254
±.002

0.248
±.003

0.229
±.002

0.223
±.002

0.219
±.002

Data Analysis While the pre-
vious results focused on the
5% fine-tuning setting, we ex-
pand the analysis to provide a
more comprehensive view and
to explicitly explore the impact
of fine-tuning data volume on
performance. Specifically, we
fine-tune the TTM and CALF
backbones on the ETTm2 and
Weather datasets, using 3%, 5%,
10%, and 20% of the available
training data. The MSE results
are summarized in the Table 12. As the results indicate, CorA still yields a modest performance
improvement even in a low-data regime using only 3% of the data.

Sensitivity Analysis and Visualization The Data Sensitivity of CoRA in different few-shot setting
are presented in Appendix F.1. The Prarmeter Sensitivity analyses for the polynomial’s degree K,
the decomposition size M , and the number of projection layers N1, N2 are presented in Appendix
F.2. The Visualization of heterogeneous spaces are presented in Appendix F.3.

7 CONCLUSION

In this paper, we propose a lightweight Correlation-Aware Adapter (CoRA) that enhances the predic-
tive performance of Time Series Foundation Models (TSFMs) by considering the mentioned three
types of correlation relationships. Comprehensive experiments on real-world datasets demonstrate
that CoRA can improve the forecast performance of TSFMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
fiable information. The proposed adapter for Time Series Foundation Models in Multivariate Time
Series Forecasting is designed for beneficial applications in system reliability and safety monitoring.
No human subjects were involved in this research.

REPRODUCIBILITY STATEMENT

The performance of CoRA and the datasets used in our work are real, and all experimen-
tal results can be reproduced. We have released our model code in an anonymous repository:
https://anonymous.4open.science/r/CoRA-D968. Once the paper is accepted, we will release the
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A DEFINITIONS OF THE THREE CORRELATIONS

Definition 1 (Correlation Martix) Given a multivariate time series X ∈ RN×L, where N represents
the number of channels and L the temporal length, the series is partitioned into a set of K = ⌊L/T ⌋
non-overlapping segments using a window of length T . For the k-th segment, we define the channel-
wise correlation matrix as C(k) ∈ RN×N , where k ∈ [1,K]. The element at the i-th row and j-th
column of this matrix is denoted by C

(k)
ij which represents the correlation between the i-th channel

and the j-th channel.

Definition 2 (Dynamic Correlation) The Dynamic Correlation refers to the case where the correla-
tion martix C(k)(k ∈ [1,K]) is not constant over the segments index k. Formally, this means there
exist at least two distinct segment indices m,n ∈ [1,K] with m ̸= n, such that their corresponding
correlation matrices are unequal: C(m) ̸= C(n).

Definition 3 (Heterogeneous Correlation) The Heterogeneous Correlation refers to the case where
there exists at least one temporal segment k ∈ [1,K] in which some channels exhibit both positive
and negative correlations with other channels. Formally, this means that for at least one correlation
matrix C(k)(k ∈ [1,K]), there exist at least three distinct channel indices a, b, c ∈ [1, N ], such that
the corresponding correlation matrix elements c(k)ab and c

(k)
ac have opposite signs: c(k)ab · c(k)ac < 0.

Definition 4 (Partial Correlation) The Partial Correlation refers to the case where, within at least
one temporal segment k ∈ [1,K], there exists some pairs of channels with a non-significant rela-
tionship. Formally, given a predefined significance threshold ϵ, this means there exists at least one
matrix C(k)(k ∈ [1,K]) and at least one pair of distinct channel indices a, b ∈ [1, N ], such that:
|c(k)ab | < ϵ.

B COMPLEXITY ANALYSES

B.1 TRAINING PHASE

Dynamic Correlation Estimation This module consits of Learnable Time-aware Polynomials
(LTP) and Time-Varying and Time-Invariant (T-T) Composition. The LTP have a computational
complexity of O(PKNM + PNd2) due to the polynomial operations and the MLP used to gen-
erate Ct, and a space complexity of O(Kd + MN) because of the basis q and the MLP used to
generate Ct. Where P is the number of patches, N denotes the number of channels, M is the second
dimension of Qt ,K is the degree of the polynomial and d is the dimension of representations. The
T-T Composition has a computational complexity of O(lN2 +NM2 +MN2) due to the calcula-
tion of the Pearson coefficient and the composition in Equation 5. Where l denotes the patch size.
Heterogeneous Division This module has a computational complexity of O(NP 2d2) and a space
complexity of O(Pd) due to the channel-aware projection. H-PCorr Contrastive Learning The
time complexity of calculating loss in Equation 11 is O(PdN2).

Since P , K, M , and l are much smaller than N and d, they will not be considered as the primary
components in the complexity analysis. So the total computational complexity is O(dN2 + Nd2)
and the total space complexity is O(d + N). Most models cannot avoid having a computational
complexity of O(d2) and a space complexity of O(d). Therefore, if we focus only on the complexity
with respect to (N) in our discussion, our model has a computational complexity of O(N2) and a
space complexity of O(N) during training.

B.2 INFERENCE PHASE

In inference Phase, CoRA only includes projectors in the Heterogeneous Division and Heteroge-
neous Fusion modules, based on the above discussion, our model has a computational complexity
of O(N) and a space complexity of O(1) during inference.
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C THEORETICAL ANALYSES

C.1 THE SIGNIFICANCE OF TIME-VARYING AND TIME-INVARIANT COMPOSITION

The channel correlation can be expressed by combining a long-term stable state with dynamic
changes. We decompose the learnable correlation into two parts, Qt and V , as shown in Figure
3, to fit the correlation relationship lightweightly.

Theorem 1 When the time series is locally stationary, the Time-Varying and Time-Invariant De-
composition allows QtV QT

t to contain both time-varying and time-invariant information, like con-
ventional additive decomposition.

Specifically, QtV QT
t can be expressed as the sum of a time-invariant matrix Mi and a time-varying

matrix Mv , as shown below:

QtV QT
t = Mi +Mv . (17)

Proof. Under the assumptions of locally stationary, Qt can be expressed as Q̄t + Q̃t, where Q̄t

represents the mean value and Q̃trepresents the residual. Therefore,M corr
t can be expressed as:

QtV QT
t = (Q̄t + Q̃t)V (Q̄t + Q̃t)

T

= Q̄tV Q̄T
t + Q̄tV Q̃T

t + Q̃tV Q̄T
t + Q̃tV Q̃T

t

= (Q̄tV Q̄T
t ) + (Q̄tV Q̃T

t + Q̃tV Q̄T
t + Q̃tV Q̃T

t )

= Mi +Mv ,

(18)

where Mi = Q̄tV Q̄T
t has the same value at different times, and Mv = Q̄tV Q̃T

t + Q̃tV Q̄T
t +

Q̃tV Q̃T
t has different values at different times.

C.2 THE FITTING ABILITY OF TIME-AWARE POLYNOMIALS

Since time series exhibit regular changes, such as trends and seasonality, the dynamic correlation
changes also have a certain regularity. To this end, we propose Time-aware Polynomials to fit the
changing correlations better.

Theorem 2 When the time series is locally stationary, we can approximate the underlying correla-
tion matrix with a high-order polynomial.

Specifically, assuming that the correlation is a smooth function to the basis q, the true correlation
component Q∗

t can be expressed as F(q). The fitting error of Time-aware Polynomials decreases as
the highest degree K of the polynomial increases. The error can be formalized as follows:

|Q∗
t −Qt| =

F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [−|q|, |q|] . (19)

Proof. Given the true correlation as F(q), Since F is sufficiently smooth to the basis q, we can
perform a Maclaurin expansion of F around 0:

F(q) = F(0) + F ′(0)q +
F ′′(0)
2!

q2 + · · ·+ F (K)(0)
K!

qK + · · ·+ F (n)(0)
n!

qn + · · · . (20)

We construct auxiliary functions:

H(t) = F(q)− [F(t) + F ′(t)(q − t) +
F ′′(t)

2!
(q − t)2 + · · ·+ F (K)(t)

K!
(q − t)K ] , (21)

G(t) = (q − t)(K+1) . (22)

Assume q > 0. Then, H and G are still continuously differentiable, and the following rules apply:

H(t)′ = −F (K+1)(t)

K!
(q − t)K , (23)

G(t)′ = −(K + 1)(q − t)K ̸= 0 . (24)
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Since H(q) = G(q) = 0, by the Cauchy Mean Value Theorem, ∃ ξ ∈ (0, q), s.t.

H(0)

G(0)
=

H(0)−H(q)

G(0)− G(q)
=

H(0)−H(q)

G(0)− G(q)
=

H′(ξ)

G′(ξ)
=

F (K+1)(ξ)

(K + 1)!
. (25)

Therefore, we can derive the following equation:

F(q) = F(0) + F ′(0)q +
F ′′(0)
2!

q2 + · · ·+ F (K)(0)
K!

qK +
F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [0, q] .

(26)

Let Ci,t =
F(i)

i! . Then, we have the following equation:

F(q) = C0,t + C1,tq + C2,tq
2 + · · ·+ CK,tq

K +
F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [0, q] . (27)

That is:

F(q)−Qt =
F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [0, q] . (28)

For all q > 0 and q < 0, we have the following equation:

|F(q)−Qt| =
F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [−|q|, |q|] . (29)

And that is:

|Q∗
t −Qt| =

F (K+1)(ξ)

(K + 1)!
q(K+1), ξ ∈ [−|q|, |q|] . (30)
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D EXPERIMENTAL DETAILS

D.1 DATASETS

To conduct comprehensive and fair comparisons for different models, we conduct experiments on
ten well-known forecasting benchmarks as the target datasets, including: (I) ETT (Zhou et al., 2021)
datasets contain 7 variates collected from two different electric transformers from July 2016 to July
2018. It consists of four subsets, of which ETTh1/ETTh2 are recorded hourly, and ETTm1/ETTm2
are recorded every 15 minutes. (II) Electricity (Trindade, 2015) contains the electricity consump-
tion of 321 customers from July 2016 to July 2019, recorded hourly. (III) Traffic (Wu et al., 2021)
contains road occupancy rates measured by 862 sensors on freeways in the San Francisco Bay Area
from 2015 to 2016, recorded hourly. (IV) Solar (Lai et al., 2018) records solar power generation
from 137 PV plants in 2006, every 10 minutes. (V) Weather (Wu et al., 2021) collects 21 meteo-
rological indicators, including temperature and barometric pressure, for Germany in 2020, recorded
every 10 minutes. (VI) AQShunyi (Zhang et al., 2017) is an air quality dataset from a measurement
station, for 4 years. (VII) ZafNoo (Poyatos et al., 2020) is collected from the Sapflux data project
and includes sap flow measurements and environmental variables. The details of the benchmark
datasets are included in Table 4

Table 4: Statistics of datasets.

Dataset Domain Frequency Lengths Dim Split Description

ETTh1 Electricity 1 hour 14,400 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Electricity Electricity 1 hour 26,304 321 7:1:2 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Solar Energy 10 mins 52,560 137 6:2:2 Solar production records collected from 137 PV plants in Alabama
Traffic Traffic 1 hour 17,544 862 7:1:2 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
AQShunyi Environment 1 hour 35,064 11 7:1:2 Air quality dataset from a measurement station, for 4 years
ZafNoo Nature 30 mins 19,225 11 7:1:2 Sap flow measurements and environmental variables from the Sapflux data project.

D.2 BASELINES

In the realm of time series forecasting, numerous models have surfaced in recent years. We choose
models with superior predictive performance in our benchmark, including the pre-trained time se-
ries models: Timer (Liu et al., 2024e), TTM (Ekambaram et al., 2024a) and Moment (Goswami
et al., 2024); The LLM-based models: CALF (Liu et al., 2024a), GPT4TS (Zhou et al., 2023),
UniTime (Liu et al., 2024c); The specific descriptions for each of these models—see Table 5.

Table 5: Descriptions of time series forecasting models in experiment.

Models Descriptions

Moment (Goswami et al., 2024) Moment is a transformer system pre-trained on a masked time series task. It reconstructs masked portions of time series
for tasks like forecasting, classification, anomaly detection, and imputation.

TTM (Ekambaram et al., 2024a) It is based on MLP-Mixer blocks with gated attention and multi-resolution sampling. It captures temporal patterns and
cross-channel correlations for time-series forecasting, optimized for zero/few-shot learning with low computational cost.

Timer (Liu et al., 2024e) Timer is a GPT-style autoregressive model for time series analysis, predicting the next token in single-series sequences.
It supports tasks like forecasting, imputation, and anomaly detection across different time series.

CALF (Liu et al., 2024a)
CALF is a cross-modal knowledge distillation framework that aligns time series data with pre-trained LLMs by
leveraging both static and dynamic knowledge, achieving state-of-the-art performance in both long- and
short-term forecasting tasks with strong generalization abilities.

GPT4TS (Zhou et al., 2023) GPT4TS fine-tunes the limited parameters of LLM, which demonstrates competitive performance by transferring
knowledge from large-scale pre-training text data.

UniTime (Liu et al., 2024c) UniTime designs domain instructions to align time series and text modalities.

D.3 IMPLEMENTATION DETAILS

We utilize the FM4TS-Bench (Li et al., 2025) code repository for unified evaluation. Following
the settings in TFB (Qiu et al., 2024b) and FM4TS-Bench, we do not apply the Drop Last trick to
ensure a fair comparison. All experiments of CoRA are conducted using PyTorch in Python 3.10
and executed on an NVIDIA Tesla-A800 GPU. The MSE loss function guides the training process
and employs the ADAM optimizer.
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E FULL RESULTS

Table 6: The table reports MSE and MAE of LLM-based models for different forecasting horizons
F ∈ {96, 192, 336, 720}. The better results are highlighted in bold.

Model GPT4TS (2023) CALF (2025) UniTime (2024)

Plugin 7 ✓ 7 ✓ 7 ✓
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.438 0.445 0.427 0.435 0.405 0.426 0.394 0.417 0.717 0.575 0.690 0.556
192 0.460 0.458 0.449 0.448 0.428 0.442 0.418 0.433 0.750 0.591 0.723 0.572
336 0.462 0.467 0.451 0.458 0.443 0.454 0.433 0.445 0.723 0.592 0.700 0.580
720 0.509 0.511 0.497 0.496 0.495 0.494 0.486 0.483 0.765 0.622 0.739 0.606

E
T

T
h2

96 0.329 0.380 0.318 0.368 0.302 0.362 0.295 0.354 0.359 0.391 0.349 0.382
192 0.368 0.406 0.356 0.393 0.385 0.400 0.377 0.391 0.388 0.428 0.376 0.416
336 0.378 0.421 0.368 0.412 0.387 0.418 0.380 0.408 0.392 0.436 0.380 0.427
720 0.418 0.450 0.404 0.440 0.416 0.449 0.409 0.456 0.454 0.472 0.435 0.457

E
T

T
m

1 96 0.343 0.379 0.333 0.371 0.317 0.366 0.308 0.359 0.357 0.384 0.343 0.376
192 0.375 0.398 0.366 0.389 0.346 0.380 0.337 0.371 0.386 0.401 0.370 0.390
336 0.394 0.406 0.385 0.398 0.385 0.405 0.377 0.396 0.420 0.420 0.402 0.406
720 0.440 0.434 0.432 0.425 0.439 0.433 0.432 0.423 0.468 0.446 0.458 0.435

E
T

T
m

2 96 0.190 0.279 0.183 0.273 0.180 0.272 0.176 0.265 0.190 0.277 0.183 0.267
192 0.241 0.312 0.232 0.305 0.236 0.310 0.228 0.302 0.248 0.315 0.238 0.305
336 0.296 0.349 0.288 0.340 0.295 0.348 0.286 0.339 0.345 0.374 0.333 0.365
720 0.385 0.401 0.371 0.389 0.372 0.397 0.363 0.390 0.380 0.392 0.367 0.381

E
le

ct
ri

ci
ty 96 0.178 0.294 0.176 0.288 0.141 0.240 0.138 0.234 0.174 0.282 0.170 0.275

192 0.192 0.306 0.186 0.302 0.156 0.254 0.151 0.247 0.185 0.291 0.180 0.284
336 0.208 0.318 0.204 0.313 0.174 0.271 0.168 0.262 0.201 0.305 0.194 0.298
720 0.248 0.348 0.241 0.339 0.216 0.306 0.212 0.299 0.240 0.335 0.232 0.325

Tr
af

fic

96 0.439 0.322 0.429 0.314 0.406 0.298 0.394 0.290 0.423 0.309 0.414 0.301
192 0.422 0.304 0.413 0.298 0.423 0.309 0.412 0.300 0.435 0.319 0.425 0.309
336 0.432 0.308 0.424 0.301 0.436 0.317 0.424 0.307 0.474 0.331 0.464 0.325
720 0.468 0.325 0.454 0.315 0.477 0.340 0.467 0.332 0.485 0.362 0.476 0.353

So
la

r 96 0.242 0.261 0.233 0.251 0.203 0.274 0.198 0.269 0.249 0.284 0.244 0.278
192 0.258 0.294 0.249 0.282 0.224 0.290 0.219 0.284 0.250 0.320 0.245 0.313
336 0.258 0.278 0.249 0.267 0.243 0.308 0.238 0.301 0.253 0.322 0.246 0.315
720 0.259 0.279 0.247 0.274 0.247 0.314 0.239 0.307 0.255 0.325 0.251 0.318

W
ea

th
er 96 0.187 0.244 0.180 0.236 0.163 0.217 0.159 0.211 0.184 0.239 0.174 0.229

192 0.225 0.274 0.217 0.264 0.206 0.253 0.200 0.247 0.227 0.274 0.216 0.265
336 0.268 0.304 0.259 0.294 0.258 0.292 0.252 0.283 0.271 0.305 0.258 0.292
720 0.330 0.348 0.320 0.335 0.322 0.339 0.312 0.330 0.334 0.350 0.321 0.334

A
Q

Sh
un

yi 96 0.799 0.535 0.785 0.526 0.689 0.508 0.674 0.500 0.689 0.513 0.666 0.495
192 0.846 0.549 0.823 0.538 0.720 0.515 0.699 0.502 0.737 0.521 0.711 0.509
336 0.854 0.555 0.831 0.545 0.734 0.525 0.718 0.516 0.747 0.541 0.720 0.527
720 0.897 0.573 0.883 0.558 0.784 0.551 0.769 0.537 0.796 0.564 0.766 0.544

Z
af

N
oo

96 0.515 0.486 0.505 0.478 0.469 0.434 0.456 0.424 0.472 0.447 0.457 0.434
192 0.552 0.505 0.541 0.494 0.532 0.475 0.516 0.462 0.547 0.482 0.525 0.464
336 0.582 0.515 0.574 0.507 0.567 0.493 0.553 0.482 0.571 0.496 0.551 0.483
720 0.610 0.532 0.593 0.516 0.628 0.521 0.610 0.507 0.658 0.538 0.633 0.521
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Table 7: The table reports MSE and MAE of pre-trained models for different forecasting horizons
F ∈ {96, 192, 336, 720}. The better results are highlighted in bold.

Model Timer (2024) Moment (2024) TTM (2024)

Plugin 7 ✓ 7 ✓ 7 ✓
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.394 0.408 0.384 0.401 0.408 0.422 0.398 0.413 0.363 0.392 0.355 0.380
192 0.456 0.458 0.446 0.450 0.428 0.436 0.418 0.425 0.391 0.409 0.379 0.401
336 0.495 0.487 0.483 0.480 0.456 0.450 0.445 0.439 0.411 0.429 0.398 0.420
720 0.849 0.651 0.835 0.633 0.482 0.482 0.468 0.465 0.453 0.471 0.439 0.458

E
T

T
h2

96 0.291 0.342 0.282 0.335 0.310 0.360 0.299 0.346 0.271 0.329 0.264 0.323
192 0.371 0.395 0.358 0.388 0.347 0.387 0.337 0.374 0.339 0.373 0.329 0.365
336 0.371 0.413 0.360 0.403 0.365 0.406 0.351 0.391 0.372 0.401 0.362 0.394
720 0.441 0.465 0.429 0.454 0.401 0.436 0.384 0.423 0.385 0.428 0.376 0.415

E
T

T
m

1 96 0.302 0.349 0.292 0.341 0.311 0.356 0.303 0.346 0.299 0.343 0.291 0.333
192 0.363 0.389 0.351 0.382 0.341 0.374 0.329 0.363 0.341 0.367 0.329 0.355
336 0.405 0.412 0.394 0.405 0.367 0.389 0.355 0.379 0.365 0.381 0.355 0.369
720 0.749 0.560 0.723 0.542 0.415 0.416 0.401 0.412 0.420 0.412 0.405 0.405

E
T

T
m

2 96 0.168 0.248 0.163 0.243 0.175 0.263 0.169 0.255 0.164 0.250 0.160 0.244
192 0.237 0.301 0.230 0.293 0.226 0.297 0.218 0.288 0.222 0.290 0.214 0.283
336 0.321 0.362 0.310 0.353 0.278 0.332 0.267 0.324 0.282 0.330 0.271 0.320
720 0.385 0.413 0.375 0.404 0.362 0.387 0.350 0.378 0.364 0.381 0.354 0.369

E
le

ct
ri

ci
ty 96 0.139 0.235 0.136 0.230 0.158 0.242 0.151 0.233 0.146 0.246 0.143 0.239

192 0.162 0.255 0.159 0.249 0.186 0.264 0.178 0.254 0.165 0.264 0.159 0.256
336 0.183 0.280 0.180 0.274 0.256 0.286 0.247 0.277 0.181 0.281 0.174 0.272
720 0.319 0.366 0.312 0.358 0.359 0.372 0.348 0.358 0.223 0.315 0.216 0.305

Tr
af

fic

96 0.381 0.272 0.372 0.266 0.391 0.278 0.380 0.268 0.448 0.324 0.433 0.313
192 0.413 0.286 0.402 0.279 0.443 0.296 0.431 0.285 0.466 0.330 0.450 0.319
336 0.434 0.298 0.422 0.292 0.436 0.302 0.422 0.290 0.491 0.345 0.473 0.336
720 0.570 0.484 0.554 0.473 0.550 0.493 0.529 0.478 0.533 0.365 0.518 0.351

So
la

r 96 0.170 0.218 0.165 0.212 0.203 0.269 0.196 0.260 0.254 0.207 0.246 0.200
192 0.197 0.247 0.191 0.239 0.215 0.275 0.208 0.266 0.270 0.240 0.262 0.232
336 0.203 0.253 0.195 0.246 0.223 0.281 0.215 0.273 0.274 0.239 0.266 0.231
720 0.336 0.335 0.325 0.326 0.225 0.281 0.216 0.272 0.277 0.237 0.266 0.231

W
ea

th
er 96 0.150 0.199 0.146 0.194 0.168 0.225 0.144 0.193 0.147 0.195 0.145 0.189

192 0.214 0.264 0.207 0.257 0.210 0.259 0.208 0.256 0.194 0.238 0.187 0.230
336 0.282 0.316 0.274 0.309 0.255 0.292 0.274 0.308 0.244 0.277 0.236 0.268
720 0.360 0.374 0.349 0.362 0.326 0.342 0.350 0.365 0.314 0.329 0.295 0.316

A
Q

Sh
un

yi 96 0.534 0.434 0.520 0.421 0.728 0.490 0.701 0.477 0.638 0.479 0.615 0.464
192 0.712 0.520 0.690 0.503 0.706 0.509 0.683 0.495 0.687 0.501 0.666 0.488
336 0.734 0.525 0.713 0.511 0.723 0.519 0.698 0.504 0.708 0.515 0.681 0.502
720 0.791 0.541 0.763 0.527 0.776 0.543 0.755 0.532 0.765 0.543 0.742 0.524

Z
af

N
oo

96 0.436 0.399 0.426 0.391 0.475 0.441 0.461 0.427 0.424 0.403 0.409 0.387
192 0.522 0.452 0.511 0.439 0.521 0.464 0.505 0.445 0.484 0.441 0.467 0.426
336 0.547 0.479 0.532 0.467 0.558 0.482 0.539 0.465 0.535 0.467 0.512 0.452
720 0.615 0.513 0.603 0.500 0.593 0.500 0.568 0.484 0.569 0.492 0.547 0.475
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F MORE ANALYSIS ON CORA

F.1 COMPARISON IN DIFFERENT SAMPLING RATE

To further demonstrate the advantages of CoRA, we compared its performance with LIFT (Zhao
& Shen, 2024) and C-LoRA (Nie et al., 2024) using TTM as the backbone and setting H to 96,
under different sampling rates in the few-shot setting. As shown in Table 8, CoRA consistently
outperforms LIFT and C-LoRA, especially at lower sampling rates where LIFT and C-LoRA suffer
from insufficient training data, leading to degraded performance. CoRA’s superior performance is
attributed to its comprehensive modeling of correlations and efficient utilization of TSFMs. As
the sampling rate increases, LIFT and C-LoRA also improve TSFMs’ performance, but at a higher
sampling rate will be a higher training cost.

Table 8: The sampling rate set to {5%, 10%, 15%, 20%, 25%}. Black: the best, Underline: the 2nd
best.

Dataset ETTm2 Electricity

Rate 5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

TTM 0.164 0.162 0.163 0.160 0.157 0.146 0.143 0.145 0.141 0.142

+ LIFT 0.162 0.163 0.161 0.158 0.156 0.149 0.145 0.144 0.139 0.139

+ C-LoRA 0.166 0.163 0.162 0.159 0.155 0.148 0.146 0.147 0.140 0.141

+ CoRA 0.160
±0.003

0.158
±0.002

0.159
±0.003

0.157
±0.001

0.153
±0.002

0.143
±0.003

0.141
±0.003

0.142
±0.002

0.138
±0.002

0.135
±0.001

F.2 HYPERPARAMETER SENSITIVITY

With TTM as the backbone and H set to 96, we study the hyperparameter sensitivity of CoRA,
including the Degree of Polynomial (K), the size of decomposition (M ), the layers’ number of
projectors before and after HPCL (N1 and N2). Figure 6a show that K is a robust hyperparameter,
and we often choose 3 or 4 as common configurations. Figure 6b illustrates that the selection of M
does not need to increase rapidly with the number of channels. Figure 6c and Figure 6d show that
too few layers may lead to insufficient fitting capacity, while too many can diminish generalization
ability. We often choose 3 or 5 as common configurations.
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(a) Degree of Polynomial
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(b) Decomposition Size

1 3 5 7
N1

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

M
SE

Ettm2
Weather
Solar
Electricity

(c) P1,P2 Layers
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(d) P3,P4 Layers

Figure 6: Parameter sensitivity of main hyper-parameters in CoRA.

F.3 VISUALIZATION OF HETEROGENEOUS SPACES.

To further demonstrate the effectiveness of CoRA in modeling the DCorr, HCorr and PCorr, we con-
duct a visualization experiment. Specifically, by examining samples at 3 time steps and 4 channels
in the Weather dataset, we compare the similarities between representations in the heterogeneous
space. The result is shown in Figure 7. Among them, Figure 7a illustrates the visualization of
samples from the Weather dataset, with each time step comprising 64 time points. Figure 7b shows
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the cosine similarity between the channel representations in positive and negative spaces. Based
on observations, it can be concluded that within the 0-64 time points, Channel 1 and Channel 3 as
well as Channel 2 and Channel 4 exhibit significant positive correlations. Within the 64-128 time
points,Channel 2 Channel 3 and Channel 4 show significant positive correlations, while Channel 3
demonstrates channel independence. Within the 128-192 time points,Channel 1 and Channel 3 ex-
hibit significant positive correlations, while they show significant negative correlations with Channel
2 and Channel 4. These findings align with the actual data, demonstrating that CoRA is capable of
simultaneously capturing DCorr HCorr and PCorr.

0 64 128 192

Channel 1
Channel 2
Channel 3
Channel 4

(a) Samples at 3 time steps and 4 channels in Weather dataset.
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(b) The similarity of representations in positive and negative spaces at 3 time steps.

Figure 7: Visualization of Heterogeneous Spaces
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F.4 COMPARISON WITH CHANNEL-DEPENDENCY TSFMS

To provide a more comprehensive comparison, we have conducted additional experiments with more
channel-dependent TSFMs. The MSE results are summarized in the table below.

Table 9: The MSE results with channel-dependency TSFMs.

Method Moirai Moirai+CoRA UniTS UniTS+CoRA TTM TTM+CoRA

ETT(Avg.) 0.353±0.004 0.344±0.002 0.347±0.003 0.339±0.001 0.342±0.003 0.329±0.002

Weather 0.257±0.003 0.241±0.003 0.235±0.002 0.220±0.002 0.226±0.003 0.214±0.002

AQShunyi 0.690±0.003 0.672±0.002 0.717±0.002 0.685±0.002 0.701±0.003 0.678±0.002

ZafNoo 0.519±0.003 0.497±0.001 0.508±0.004 0.491±0.002 0.505±0.003 0.483±0.001

F.5 COMPARISON WITH OTHER PLUGINS

Table 10: The MSE results of comparison.

Dataset ETTm2 Weather Electricity

Backbone GPT4TS Timer UniTime GPT4TS Timer UniTime GPT4TS Timer UniTime

w/o Plugin 0.190 0.168 0.190 0.187 0.150 0.184 0.178 0.139 0.174

CoRA 0.183 0.164 0.183 0.180 0.146 0.174 0.176 0.136 0.170

LIFT 0.192 0.167 0.191 0.186 0.151 0.185 0.181 0.141 0.173

C-LoRA 0.199 0.171 0.199 0.190 0.155 0.182 0.182 0.142 0.178

F.6 EVALUATION ON NON-STATIONARY DATASETS

Table 11: MSE results for evaluation on non-stationary datasets.

Dataset ETTh2 Weather NASDAQ Covid-19

Non-Stationary
Rate 0.02 0.07 0.169 0.360

GPT4TS 0.377 0.254 1.411 1.972

+CoRA 0.361 0.243 1.387 1.924

Moment 0.369 0.251 1.208 2.356

+CoRA 0.356 0.243 1.174 2.307

To offer a dedicated analysis
to investigate the model’s be-
haviour in edge cases, we se-
lect four datasets with differ-
ent Non-Stationary Rates (Qiu
et al., 2024a) for evaluation. Our
method combines both a rule-
based and a learnable correla-
tion matrix, which enhances its
robustness. As shown in this re-
sult, our method still achieves a
modest improvement even when
the Non-Stationary Rate is as
high as 0.360.

F.7 EVALUATION ON HIGH-DIMENSIONAL DATASETS

Table 12: MSE results for evaluation on high-dimensional datasets.

Dataset Traffic N = 862 Covid-19 N = 948 Wike2000 N = 2000

Metric MSE Max-GPU
Memroy MSE Max-GPU

Memroy MSE Max-GPU
Memroy

GPT4TS 0.441 7.73G 1.972 12.53G 547.024 23.96G
+CoRA 0.430 8.95G 1.924 14.24G 535.811 28.44G
Moment 0.453 5.37G 2.356 6.21G 525.352 11.12G
+CoRA 0.437 7.02G 2.307 7.89G 517.165 17.41G

We selected three high-
dimensional datasets with
more than 500 variables
(N > 500). The MSE
and maximum GPU mem-
ory usage for these datasets
are reported in the table
below. The results above
show that even for a dataset
with 2,000 variables, our
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method avoids introducing memory or numerical bottlenecks. Moreover, it is still capable of learn-
ing correlations to a certain degree, leading to performance enhancements for the TSFM.

F.8 EVALUATION ON DIFFERENT TASKS FOR TIME SERIES

To explore the capabilities of CoRA on tasks beyond forecasting, we conducted relevant exper-
iments. For anomaly detection, we use the MSL and SMAP as evaluation datasets (Qiu et al.,
2025b). For classification, we select the FaceDetection, Heartbeat, and PEMS-SF as evaluation
datasets (Goswami et al., 2024). For the anomaly detection task, we evaluate performance using the
VUS_ROC and VUS_PR metrics. For the classification task, we use Accuracy. The results of all
experiments are summarized in the Table 13.

Table 13: Evaluation on different tasks for time series.

Task Anomaly detection Classification

Dataset MSL SMAP FaceDetection Heartbeat PEMS-SF

Metric VUS-ROC VUS-PR VUS-ROC VUS-PR Accuracy Accuracy Accuracy

GPT4TS 0.624 0.195 0.504 0.147 0.683 0.776 0.874

+CoRA 0.628 0.200 0.510 0.149 0.688 0.791 0.876

Moment 0.663 0.212 0.474 0.127 0.675 0.786 0.866

+CoRA 0.667 0.214 0.483 0.130 0.681 0.789 0.873

The results indicate that although CoRA was not specifically designed for these tasks, its direct
application still yields performance improvements. This demonstrates CoRA’s effectiveness in en-
hancing TSFMs by capturing correlation.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G THE USE OF LARGE LANGUAGE MODELS

The use of open-source Large Language Models (LLMs) in this work was strictly limited to as-
sisting with the translation of certain terms and polishing a small portion of the text. LLMs did
not contribute to the conceptual aspects of the research, including information retrieval, knowledge
discovery, or the ideation process.
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