
Under review as submission to TMLR

On Using Large Language Models to Generate Plans

Anonymous authors
Paper under double-blind review

Abstract

Automated planning is concerned with developing efficient algorithms to generate plans
or sequences of actions to achieve a specific goal in a given environment. Emerging Large
Language Models (LLMs) can answer questions, write high-quality programming code, and
predict protein folding, showcasing their versatility in solving various tasks beyond language-
based problems. This paper explores if and how LLMs can also be used for automated
planning given the diverse ways LLMs are modeled and trained. To do so, we seek to
answer four key questions. Firstly, we want to understand the effectiveness of different
LLM architectures for plan generation. Secondly, we aim to identify which pre-training
data (general purpose vs code specific) effectively facilitates plan generation. Thirdly, we
investigate whether fine-tuning or prompting is a more effective approach for plan generation.
Finally, we explore whether LLMs are capable of plan generalization. By answering these
questions, the study seeks to shed light on the capabilities of LLMs in solving complex
planning problems and provide insights into the most effective approaches for using LLMs in
this context.

1 Introduction

Automated Planning (Ghallab et al., 2004) focuses on generating sequences of actions, called plans, for an
agent to navigate from an initial state to a desired goal state. Automated planning is crucial for many
real-world applications, such as robotics, dialog systems, game playing, and more.

In the literature, usually planning problems are described using the Planning Domain Definition Language
(PDDL) (Aeronautiques et al., 1998), a Lisp-inspired declarative language with the specifications for the
(partial) transition model, initial & goal states and constraints (such as preconditions and effects). Automated
planners must follow these specifications to generate valid, optimal, or near-optimal plans without violating
constraints. Recently, LLMs such as GPT-4 (OpenAI, 2023) have demonstrated the ability to generate
executable pieces of code in some programming languages (Poldrack et al., 2023). PDDL and programming
languages use a similar formal syntax and share concepts such as variables, functions, and control structures.
This resemblance motivates us to investigate the capabilities of LLMs for plan generation.

LLMs are built using neural networks with millions/billions of learnable parameters, pre-trained with a large
corpus of natural language data. LLMs such as GPT-4 have been shown to generate human-like, coherent, and
diverse texts. There has been recent interest in exploring the capabilities of LLMs beyond the applications in
many natural language processing tasks (Li, 2022; Zhao et al., 2023) with more details on LLM architectures
provided in the Appendix A.2. For example, in code generation (Wang et al., 2021; Feng et al., 2020; Chen
et al., 2021) and protein folding (Unsal et al., 2022; Ferruz & Höcker, 2022). Recent literature has also
explored the application of LLMs for reasoning tasks within simulated textual environments, such as Alexa
Arena (Gao et al., 2024), AlfWorld (Shridhar et al., 2020), and Minecraft (Wang et al., 2023a). However,
these models still struggle to solve straightforward classical planning problems (Valmeekam et al., 2022;
Kambhampati, 2024).

In this paper, we comprehensively analyze LLMs capabilities for automated planning. Toward this goal,
we address the following four research questions: (1) To what extent can different LLM architectures solve
planning problems? (2) What pre-training data is effective for plan generation? (3) Does fine-tuning and
prompting improve LLMs plan generation? (4) Are LLMs capable of plan generalization?

1

Under review as submission to TMLR

Table 1: Definitions for the terms used in the paper.

Term Definition

PDDL A formal language used to describe classical planning problems. It requires
a domain and problem file.

Domain File Defines the set of actions, their preconditions and effects, objects and their
relations, and predicates that can describe a planning problem within a
specific domain.

Problem File Define the initial state of a planning problem, along with the goal state(s)
that needs to be achieved.

Planner An algorithmic tool that generates a plan of actions to achieve a desired
goal state, given the domain and problem PDDL files. An example is the
tool FastDownward (Helmert, 2006).

Plan A sequence of actions that transforms the initial state into one that respects
the goal conditions.

Satisficing plan A plan that achieves the goal state.

Optimal plan A plan that achieves the goal state with the minimum possible cost (such
as time or resources).

Plan Length A numerical value representing the number of actions or steps required to
achieve a given goal.

Degree of Correctness It is the ratio of solved goals and the total number of goals.

Plan Verification Tool Determines whether a plan achieves the specified goals while satisfying any
constraints and/or requirements.

To answer these questions, we compare different LLMs on six classical planning domains using fine-tuning
and prompting approaches. We propose a metric to measure plan generalization and introduce three new
tasks to evaluate LLMs on plan generalization. Despite the inapt claims on LLMs for automated planning
(Kambhampati, 2024), we show favorable outcomes with appropriate selection of LLM, data preparation, and
fine-tuning. We claim that LLMs pre-trained on code generation can benefit from further fine-tuning with
problems from several automated planning domains, although their generalization capabilities seem limited.
We recommend further research in LLM for better plan generalization.

Our key contributions in this paper are: (a) a diverse set of benchmark problems to evaluate LLMs for
automated planning (along with a publicly available codebase with fine-tuned model weights to drive future
research). (b) a metric to evaluate plan generalization and introduce three new tasks to measure it. (c) a
thorough empirical analysis of LLMs on planning-related metrics and insights on an appropriate use of LLMs
for automated planning.

2 Background and Related Work

2.1 Automated Planning

Automated Planning, or simply planning, is a branch of AI that focuses on creating strategies or action
sequences, typically for execution by intelligent agents, autonomous robots, and unmanned vehicles. A basic
category in planning is a Classical Planning Problem (CPP) (Russell & Norvig, 2003), which is a tuple
M = ⟨D, I, G⟩ with domain D = ⟨F, A⟩ - where F is a set of fluents that define a state s ⊆ F , and A is
a set of actions - and initial and goal states I, G ⊆ F . Action a ∈ A is a tuple (ca, pre(a), eff±(a)) where
ca is the cost, and pre(a), eff±(a) ⊆ F are the preconditions and add/delete effects, i.e., δM(s, a) |= ⊥s if
s ̸|= pre(a); else δM(s, a) |= s ∪ eff+(a) \ eff−(a) where δM(·) is the transition function. The cumulative
transition function is δM(s, (a1, a2, . . . , an)) = δM(δM(s, a1), (a2, . . . , an)). A plan for a CPP is a sequence of
actions ⟨a1, a2, . . . , an⟩ that transforms the initial state I into the goal state G using the transition function
δM. Traditionally, a CPP is encoded using a symbolic representation, where states, actions, and transitions
are explicitly enumerated. This symbolic approach, often implemented using Planning Domain Definition

2

Under review as submission to TMLR

Language or PDDL (McDermott et al., 1998), ensures precise and unambiguous descriptions of planning
problems. This formalism allows for applying search algorithms and heuristic methods by automated planners
such as FastDownward (Helmert, 2006), LAMA (Richter & Westphal, 2010), and Graphplan (Blum & Furst,
1997) to find a sequence of actions that lead to the goal state. While recognizing the existence of various
planning types, such as epistemic (Bolander & Andersen, 2011) and hierarchical (Georgievski & Aiello, 2015),
our research primarily utilizes CPP as the foundational basis for investigating the capabilities of LLMs in
planning.

For the reader’s convenience and to facilitate a clearer understanding throughout this paper, we have
summarized the planning-related terminology in Table 1 and provided an example from Blocksworld in
Appendix A.3.

2.2 LLMs for Plan Generation

LLMs for planning have constituted a focal point of extensive research in recent years (Pallagani et al.,
2024). Pallagani et al. (2024) outline eight distinct categories based on the application of LLMs in addressing
various aspects of planning problems. In this paper, we concentrate solely on the category of plan generation.
In Figure 1, we conduct a survey of contemporary literature where LLMs have been leveraged for plan
generation, stratifying them into three primary categories: (a) LLMs as Planners (b) LLMs with Planners,
and (c) Cognitive Architectures

LLMs for Plan
Generation

LLMs as
Planners

Language
Modeling

Decoder-only Sermanet et al. (2023); Silver et al. (2023); Song
et al. (2023); Capitanelli & Mastrogiovanni
(2023); Wang et al. (2023c); Huang et al.

(2022); Kim et al. (2023); Hu et al. (2023);
Raman et al. (2022); Lu et al. (2022); Wang
et al. (2023b); Gramopadhye & Szafir (2023)

Encoder-
Decoder

Pallagani et al. (2022)

Encoder-only Huang et al. (2022)

Model
Adaptation

Prompting Sermanet et al. (2023); Silver et al. (2023);
Song et al. (2023); Wang et al. (2023c); Huang

et al. (2022); Kim et al. (2023); Hu et al. (2023);
Raman et al. (2022); Lu et al. (2022); Wang
et al. (2023b); Gramopadhye & Szafir (2023)

Fine-tuning Pallagani et al. (2022); Capi-
tanelli & Mastrogiovanni (2023)

LLMs with
Planners

Chalvatzaki et al. (2023); Hao et al. (2023);
Chen et al. (2023); Dagan et al. (2023);

Zhao et al. (2024); Liu et al. (2023)

Cognitive
Architectures

Fabiano et al. (2023b;a); Lin et al. (2024);
Webb et al. (2023); Momennejad et al. (2024)

Figure 1: Taxonomy of recent research in LLMs for plan generation.

LLMs as Planners.
In this category, LLMs are tasked with generating plans for planning problems predominantly represented in
natural language. Silver et al. (2023) also employ the PDDL representation. This area of study is subdivided
based on the language modeling architecture employed and the model adaptation methods to generate plans.
Sermanet et al. (2023); Kim et al. (2023) highlight the capabilities of decoder-only models in addressing
long-horizon planning tasks in robotics, leveraging multimodal data. Silver et al. (2023) introduced an
innovative prompting mechanism that enable decoder-only models to generate programming code capable of
generating plans for planning problems expressed in PDDL. This approach is similar to the common-sense
prompting strategies described in Capitanelli & Mastrogiovanni (2023); Hu et al. (2023); Lu et al. (2022)
and Wang et al. (2023b). Further, Wang et al. (2023c); Raman et al. (2022); Wang et al. (2023a) describe
how iterative re-prompting with feedback can assist decoder-only models in solving open-ended planning
problems, for example, in the domain of Minecraft. Huang et al. (2022) demonstrate how prompting different

3

Under review as submission to TMLR

LLMs in a pre-defined sequential order can facilitate generating grounded plans, making use of a decoder-only
model for generating abstract plans and an encoder-only model for grounding the abstract plan. Pallagani
et al. (2022) explore fine-tuning of a encoder-decoder model for plan generation, which has been pre-trained
on programming code. While prompting is the predominant technique employed across most studies, a
few have adopted fine-tuning, reporting better outcomes in plan generation. It is critical to acknowledge
that irrespective of the language modeling architecture employed, LLMs have been observed to exhibit
hallucinations during plan generation (Momennejad et al., 2024) and often produce invalid plans (Valmeekam
et al., 2023a). This phenomenon has sparked significant debate regarding the actual capacity of LLMs to
engage in reasoning and planning.

LLMs with Planners.
To address the limitations inherent in employing LLMs solely as planners, recent research has explored
the integration of LLMs as natural language parsers, which are then combined with symbolic planners.
Unlike LLMs as planners, which work auto-regressively, these symbolic planners utilize search algorithms and
heuristics to generate sound and complete plans. Chalvatzaki et al. (2023) leverage LLMs at a higher level of
abstraction, effectively suggesting sub-goals formulated as PDDL problems to be solved by FastDownward,
a symbolic planner. Chen et al. (2023) adopt a similar strategy for addressing task and motion planning
problems. Hao et al. (2023) capitalize on the world knowledge acquired by LLMs to predict a set of actions
suitable for a given problem, subsequently employed the Monte Carlo Tree Search (MCTS) algorithm to
solve for the plan, a methodology similar to (Dagan et al., 2023; Zhao et al., 2024). Furthermore, Liu et al.
(2023) utilize an LLM to generate PDDL domain and problem files from natural language descriptions, using
a planner to solve for plans optimally.

Cognitive Architectures.
To enhance reasoning capabilities in LLMs, researchers are exploring architectures inspired by human cognition.
Webb et al. (2023) introduces an architecture inspired by the prefrontal cortex, which demonstrates improved
plan generation compared to current prompting strategies, notably eliminating hallucinations. Momennejad
et al. (2024) employ cognitive maps to assess the planning capabilities in LLMs. Additionally, Fabiano et al.
(2023a;b); Lin et al. (2024) present cognitive architectures inspired by the dual-process theory of thinking,
often characterized as the fast and slow thinking mechanism by Daniel Kahneman, further advancing the
field.

Despite the growing body of research investigating the potential of LLMs in automated planning, there
remains a notable lack of comprehensive insights into the plan generation capabilities of LLMs. To date,
evaluations of these capabilities have predominantly focused on decoder-only models and utilized prompting
techniques. In response to this gap, the current study aims to empirically and comprehensively evaluate LLMs
plan generation capabilities. This analysis will span three distinct language modeling architectures, three
types of input representations, and four model adaptation methods, focusing on assessing their generalization
abilities.

3 Research Questions

In this study, we aim at exploring the capabilities of LLMs in solving planning problems. To do that, we
address the following four research questions (RQ):

• RQ1 - What are the effective types of language modeling architectures (decoder-only,
encoder-decoder, decoder-only) for plan generation using LLMs? Automated planning
necessitates reasoning abilities to formulate plans that satisfy predefined constraints. We aim to
assess the effectiveness of various architectures — decoder-only, encoder-decoder, decoder-only for
plan generation using LLMs. For this purpose, we conduct evaluations on two LLMs per architecture,
employing fine-tuning and prompting approaches where feasible to provide a qualitative analysis of
their performance. Additionally, we utilize a plan verification tool (VAL (Howey & Long, 2003)) to
validate LLM-generated plans, assessing them based on standard planning-related metrics such as
satisficing, optimality, identification of invalid plans, and overall correctness.

• RQ2 - What pre-training data is effective for plan generation? LLMs, regardless of
architectural nuances, undergo training using either general-purpose corpora such as textual documents

4

Under review as submission to TMLR

or domain-specific data like programming code. Given the relevance of the task at hand—plan
generation using PDDL—to code generation, particularly due to the similarities between PDDL and
Lisp, we focus on comparing the performance of LLMs pre-trained exclusively on general-purpose
corpora against those trained on code-specific datasets. We aim to provide insights to guide future
researchers in selecting the most suitable LLMs for plan generation tasks.

• RQ3 - Which approach between fine-tuning and prompting improves plan generation?
Our objective is to compare the effectiveness of fine-tuning and prompting approaches for plan
generation. Fine-tuning LLM updates the model’s parameters using a labeled dataset from the target
task. Prompting controls the input to an LLM using a template or a cue to elicit the desired output.

• RQ4 - Are LLMs capable of plan generalization? To the best of our knowledge, the current
literature provides a limited understanding of the plan generalization capabilities of LLMs (Valmeekam
et al., 2023b; Webb et al., 2023). Only a handful of studies have studied and quantitatively measured
them. To better evaluate the generalization capabilities of LLMs within the scope of automated
planning, we think that the current definition of plan generalization needs to be clarified due to its
limited scope, as it fails to account for all possible scenarios that may arise when using LLMs to
plan. Therefore, we propose three new tasks to quantify the plan generalization capabilities of LLMs
accurately.

4 Experimental Setup

This section describes our planning dataset and discusses the difficulty of the planning do-
mains. We also provide an overview of the evaluated LLMs and the experimental setup
for plan generation. In what follows, let the training dataset be Dtrain = {(xi, yi) |
xi is a planning problem and yi is the optimal plan for xi, for i = 1, . . . , n}. Let the testing dataset be
Dtest = {(xi, yi) | xi is a previously unseen planning problem and yi is the optimal plan for xi, for i =
n + 1, . . . , m}. Note that Dtrain and Dtest consist of pairs of planning problems and their correspond-
ing optimal plans, generated using FastDownward (Helmert, 2006), a classical planning system based on
heuristic search.

4.1 Planning Datasets

The International Planning Competition (IPC) (ICAPS, 2022) is a biennial event that benchmarks the
state-of-the-art automated planning and scheduling systems. In this study, we consider six classical planning
domains represented in PDDL, released as part of the IPC, to assess the planning capabilities of LLMs. We
utilize problem generators provided with these domains (Seipp et al., 2022) to generate a planning dataset
with 18,000 problems for each domain, encoded in PDDL. We use a random seed to generate the problems
and further enforce that there are no duplicate problems in the dataset. Generating ground truth optimal
plans for these problems is accomplished using the FastDownward planner, leveraging the A* search algorithm
with LM-Cut heuristics (Helmert & Domshlak, 2011).

The planning domains considered in this study are categorized into three difficulty levels — Easy, Medium,
and Hard. This classification allowed us to better abstract ‘how difficult’ is to solve domains based on the
generated and evaluated states for our baseline, i.e., FastDownward when using A* + LM-Cut heuristic, as
shown in Table 2. Generated states refer to all the possible states that can be reached from the initial state
of a planning problem by applying valid actions. These generated states may include redundant or irrelevant
states that do not contribute to finding a solution to the problem. Evaluated states refer to the subset of
generated states the search algorithm has examined to determine their suitability for inclusion in the final
solution plan. Let g be the number of generated states and e be the number of evaluated states. The total
number of states T is T = g + e. The difficulty classification C based on T is given by:

C =

Easy if T < 150,

Medium if 150 ≤ T ≤ 300,

Difficult if T > 300.

5

Under review as submission to TMLR

In addition to preparing the planning dataset in PDDL, we have translated the problems into both natural
language (NL) and a Compact representation. This tripartite approach facilitates a comprehensive evaluation
of the plan generation capabilities of LLMs. Including an NL representation is particularly significant, as it
offers a more accessible and human-readable format, aligning well with the general-purpose orientation of
LLMs. The conversion of PDDL problems into an NL representation is obtained using AutoPlanBench (Stein
& Koller, 2023).

Table 2: Our classification of planning domains by the difficulty of solving for FastDownward using A* +
LM-Cut. Reported Generated states (Gen.) and Evaluated States (Eval.) are average values for all problems
belonging to that domain.

Planning Domain Difficulty State Space Branching Factor Gen. Eval.

Ferry Easy O(2n ∗ 2 ∗ m ∗ n!), n is no. of cars,
m is no. of locations

O(n + 1) 47 21

Blocksworld Easy O(3n), n is no. of blocks O(4n/2 + 1) 51 35
Tower of Hanoi Medium O(3n), n is no. of disks O((k−1)k/2), k is no.

of pegs
141 55

Miconic Medium O(n(m+1) ∗ 2m ∗ m!), n is no. of
floors, m is no. of passengers

O(m + 1) 197 72

Grippers Hard O(2n ∗ 3nr), n is no. of balls, r is
no. of robots

O(3nr + r) 707 334

Driverlog Hard O(l(d+t+p) ∗ kp ∗ d ∗ t ∗ 2t), l is no.
of locations, d is no. of drivers, t is
no. of trucks, p is no. of packages

O(l ∗ (d + t + p + dt +
td))

33520 1347

Conversely, both the PDDL and Compact representations retain the structural syntax akin to programming
code, with the latter serving as a streamlined version of the PDDL schema. The Compact representation is a
syntactic reduction of PDDL to minimize the number of tokens while maintaining the same semantic values.
Appendix A.6 shows the token length variation between PDDL and Compact representation. Notably, the
representation of plans derived from FastDownward remains unchanged across the three formats—PDDL,
NL, and Compact.

For preliminary testing, the test dataset was configured to mirror the plan length distribution observed in
the training dataset, as illustrated in Figure 12b. Subsequent experiments also explore the performance
of LLMs with plan lengths that fall outside the training distribution. This methodological diversity is
designed to assess not only LLMs proficiency in handling traditional planning languages like PDDL but
also their adaptability to interpret and solve planning problems presented in formats that mimic natural
human discourse. The evaluation of the three representations employs four distinct methods: zero-shot
prompting, one-shot prompting, chain-of-thought (CoT) prompting, and fine-tuning. The prompts for the
planning problems are generated using AutoPlanBench Stein & Koller (2023). Examples of PDDL and
compact representation are provided in Appendix A.4, A.5 respectively, and the prompting template with NL
representation is detailed in Appendix A.7 for reference. For the fine-tuning process, we allocate 80% of the
total dataset for each representation, corresponding to 86,400 unique problems across six domains.

4.2 Large Language Models

Table 3 gives an overview of the LLMs employed in this study, including critical design parameters such as
the number of layers, heads, embedding size (head dimension), maximum context length, and the nature of
the training data source, distinguishing between general-purpose and code-specific models. Our investigation
encompasses six LLMs, divided into two models per category of language modeling—specifically, one model
tailored for general-purpose applications and another optimized for code-related tasks.

In the category of decoder-only models, we explore GPT-4 (model name on OpenAI documentation is
gpt-4-0613) and code-davinci-03. Given the non-modifiable architecture of these models, our exploration is
confined to various prompting methods, excluding the possibility of fine-tuning. The exact specifications of
these models are unknown, and we write it as "not available" (NA) in our table. For encoder-decoder models,

6

Under review as submission to TMLR

Table 3: LLM architectures used in our study.

Model-Parameters Architecture Pre-training Layers Heads Embed. Size Context Length

GPT-4 (no-vision) decoder-only General-purpose NA NA NA 8192
code-davinci-03 decoder-only Code-specific NA NA NA 8000
T5-base-220M encoder-decoder General-purpose 12 12 768 512
CodeT5-base-220M encoder-decoder Code-specific 12 12 768 512
BERT-base-110M encoder-only General-purpose 12 12 768 512
StarEncoder-125M encoder-only Code-specific 12 12 768 1024

we employ T5 and CodeT5 models. These models are subjected to a broader experimental framework that
includes zero-shot, one-shot prompting, and fine-tuning, but excludes CoT prompting, as these models lack
compatibility with this specific method. Within encoder-only, we examine BERT and StarEncoder, tested
with all methods except for CoT due to lack of compatibility. This diverse selection of models allows for
a thorough exploration of the capabilities and limitations of current LLMs in plan generation across both
general-purpose and code-specific contexts. Despite the rapid emergence of new LLMs, our study chooses
representative models from each category to investigate our research questions.

4.3 Plan Generalization

In this paper, we are interested in the ability of LLMs to generate plans that are close to optimal for unseen,
out-of-distribution problems from different planning domains. We need a metric to measure the distance
between a pair of plans. Measuring the distance between plans is based on differences in actions, states, or
causal structures (Srivastava et al., 2007). This paper uses an action-based criterion for LLM-generated plan
vs optimal plan, i.e., the Hamming distance between the order of actions in two plans, motivated by the
recent literature (Katz & Sohrabi, 2020). This metric measures how much LLMs deviate from the sequences
of actions in the optimal plan. More formally, the plan generalization error Epg is defined as:

Epg = 1
|m − n|

m∑
i=n+1

H(yi, ŷi)
|A| (1)

where ŷi is the optimal plan for xi ∈ Dtest generated by FastDownward, yi is the LLM generated plan,
H(·, ·) is the Hamming distance between two plans, which are made comparable by padding shorter plans
to match the length of the longer plan. |A| denotes the total number of actions in the planning domain,
providing a normalization factor that adjusts for domain complexity. A lower Epg means that LLM can
produce plans more similar to the optimal plans generated by a traditional planning system. To evaluate the
plan generalization capabilities of LLMs and provide insights to address RQ4, we propose the following three
tasks:

• Task 1 - Plan Length Generalization: We evaluate the ability of LLMs to generalize to plan
lengths that are out of the distribution of the training set. Given a set of planning domains in the
training set D = D1, D2, ..., Dn, we select a plan length li for each domain Di that is outside the
range of plan lengths considered in the training set. We then pose the planning problem for each
domain with the selected plan length to the LLM.

• Task 2 - Object Name Randomization: This task examines the LLMs capability to generate
plans using randomized object names not encountered in the training set. For each domain in the
dataset, we generate a set of randomized object names using the IPC problem generator. These
names replace the original object names in the test set’s planning problems across each domain,
testing the model’s ability to understand and adapt to novel identifiers.

• Task 3 - Unseen Domain Generalization: We evaluate the LLMs ability to generalize to planning
problems from new domains not included in the training set. We select a set of planning domains
D′ = D′

1, D′
2, ..., D′

m that differs from the training set’s domains. This task challenges the models to
apply their learned planning capabilities to unfamiliar contexts.

7

Under review as submission to TMLR

5 Experimental Results

This section presents the quantitative and qualitative results obtained using LLMs to generate plans for
classical planning domains of varying difficulty and generalization abilities across three tasks. All the reported
results in this paper are averaged over five independent runs. We evaluate the performance of the considered
LLMs on a test set with 3600 planning problems per domain classified into easy (E), medium (M), and hard
(H) categories. We assess the generated plans using various planning-related metrics, including satisficing
plans (Sat. Plans), optimal plans (Opt. Plans), degree of correctness (Deg. Corr.), and inference time (Inf.
Time). We can determine the number of invalid plans by subtracting the percentage of satisficing plans from
100 percent.

Table 4: Evaluation of plan generation capabilities of LLMs. For each model, we report the percentage of
satisficing plans (Sat. Plans), the percentage of optimal plans (Opt. Plans), and the degree of correctness
(Deg. Corr.). Table with all rows is present in Appendix A.8

Model Input
Representation Method Sat. Plans (%) Opt. Plans (%) Deg. Corr.

E M H E M H E M H

GPT-4
(no-vision)

Compact
Zero-shot 1.6 0 0 0 0 0 0.04 0 0
One-shot 7.21 2.66 1.78 2.52 0.07 0 0.05 0.02 0.01
CoT 21.28 16.74 11.33 10.74 8.21 4.22 0.27 0.25 0.21

NL
Zero-shot 15.72 10.41 7.78 7.29 3.84 1.25 0.21 0.19 0.07
One-shot 24.78 22.91 22.78 7.31 3.05 1.25 0.28 0.17 0.07
CoT 35.02 34.76 32.93 12.88 10.14 9.21 0.41 0.41 0.37

PDDL
Zero-shot 8.78 6.43 0 3.92 0 0 0.27 0.21 0
One-shot 10.82 6.90 3.31 7.23 2.84 1.21 0.32 0.17 0.04
CoT 22.18 18.55 18.97 9.87 5.21 3.22 0.27 0.18 0.19

code-
davinci-03

Compact
Zero-shot 4.78 0 0.97 0 0 0 0.21 0 0.04
One-shot 11.54 11.18 10.14 3.27 1.94 0.07 0.21 0.17 0.11
CoT 10.77 4.18 1.92 3.74 1.86 0 0.35 0.31 0.27

NL
One-shot 8.23 7.66 5.21 0 0 0 0.04 0.04 0.04
CoT 11.29 9.07 5.22 2.84 1.45 1.01 0.02 0.01 0.01

PDDL
Zero-shot 17.42 11.77 4.38 8.23 6.11 1.84 0.38 0.27 0.21
One-shot 43.52 37.48 31.89 17.57 15.85 14.69 0.57 0.38 0.31
CoT 27.71 19.55 19.97 20.11 14.27 11.25 0.31 0.20 0.23

T5

Compact FT 0.11 0 1.16 0.11 0 0.36 0.02 0 0.03

NL
Zero-shot 0.16 0 0 0 0 0 0.01 0 0
One-shot 1.28 1.01 0 0.17 0 0 0.01 0.01 0
FT 21.56 18.56 11.23 9.02 2.89 1.01 0.28 0.17 0.06

PDDL FT 3.78 0.72 0 0 0 0 0.21 0.06 0

CodeT5
Compact

Zero-shot 2.7 0.6 0 1.73 0.6 0 0.07 0 0
One-shot 1.02 0 0 0.03 0 0 0.01 0 0
FT 97.57 92.46 89.54 86.21 90.36 66.71 0.99 0.95 0.95

NL FT 3.82 3.01 3.03 0 0 0 0.03 0.03 0.03

PDDL FT 43.89 37.41 30.42 40.84 31.55 21.02 0.61 0.52 0.47

BERT

Compact FT 10.89 8.42 6.77 3.57 0 0 0.28 0.07 0.01

NL FT 1.78 0.91 0 0.07 0 0 0.01 0.01 0

PDDL FT 1.21 0 0 0 0 0 0.01 0 0

StarEncoder

Compact
Zero-shot 4.21 1.79 0.91 1.44 0.07 0 0.12 0.02 0.01
One-shot 11.02 5.42 1.71 2.08 0 0 0.18 0.07 0.02
FT 19.44 10.25 5.69 8.92 2.55 2.07 0.25 0.17 0.07

NL
One-shot 4.05 0 0 1.11 0 0 0.05 0 0
FT 4.11 1.97 0 0.55 0 0 0.06 0.01 0

PDDL
Zero-shot 7.91 6.22 5.97 5.01 2.11 1.94 0.18 0.08 0.07
One-shot 6.91 5.28 3.97 3.01 1.04 0.24 0.17 0.08 0.07
FT 21.01 15.66 9.89 17.61 9.78 3.88 0.37 0.21 0.18

5.1 Plan Generation

Table 4 offers a detailed evaluation of each LLM across different architectures, utilizing four distinct methods:
zero-shot, one-shot, CoT, and fine-tuning (abbreviated as FT in Table 4. Among the vanilla models tested using

8

Under review as submission to TMLR

the zero-shot method across all input representations, code-davinci-03 demonstrates better performance. We
observe limited planning capabilities overall in pre-trained models under zero-shot conditions,
aligning with the findings of (Valmeekam et al., 2022).

In our analysis of decoder-only, encoder-decoder, and encoder-only language models, distinct performance
patterns emerge across these architectures. Specifically, code-davinci-03 stands out among causal models by
achieving 43.52% satisficing plans in the easy domain, with PDDL input representation and one-shot method.
This level of performance, while notable, is modest compared to the significantly higher success rates observed
with seq2seq models like CodeT5 in subsequent analysis. The relative performance of code-davinci-03 can be
understood through architectural and training differences. With their autoregressive prediction capabilities,
decoder-only models are naturally inclined towards tasks with a sequential output structure, such as plan
generation. However, their effectiveness is contingent on receiving well-defined contextual cues, which may
partly explain their limited success rate in our study compared to more specialized or fine-tuned approaches.

The fine-tuned CodeT5 model, utilizing a compact representation, achieves 97.57% satisficing plans, with
86.21% being optimal. This performance highlights the encoder-decoder model’s capacity for adaptability
and efficiency in tasks requiring encoding and decoding, further enhanced by fine-tuning on domain-specific
datasets. The advantage of the compact representation over PDDL, in terms of performance, can be attributed
to its reduced token usage, which alleviates the context length limitations. This reduction in token usage
enables the model to maintain more relevant information within the context window, thus supporting a more
efficient planning process. Moreover, the performance of the fine-tuned CodeT5 model with PDDL input
closely matches that of code-davinci-03 under one-shot prompting. This result indicates that fine-tuning may
help to minimize performance discrepancies across different model architectures and input formats.

In contrast, encoder-only models demonstrate modest performance across all input formats and methodologies,
highlighting their challenges in producing sequential outputs such as plans. This outcome may be linked to
the architectural focus of encoder-only models on bidirectional context processing, which, despite its utility in
tasks involving text comprehension, may not be ideally suited for tasks requiring forward-sequential content
generation.

Research Question 1

What are the effective types of language modeling (Causal, Seq2Seq, Masked) for plan
generation using LLMs?

Answer

In our experiments, decoder-only and encoder-decoder models show better plan generation. Specifically,
the fine-tuned CodeT5 model using compact representation outperforms other models, achieving up
to 97.57% satisficing plans, of which 86.21% are optimal.

Not only does the architecture influence performance, but the nature of the pre-training data and the choice
of input representation are also crucial for the plan generation capabilities of LLMs. Analysis of Table 4
reveals that LLMs pre-trained on general-purpose corpora, predominantly consisting of textual data, exhibit
enhanced performance with NL representation of the planning problems. However, the best performance
achieved by general-purpose models is observed with GPT-4, which achieves 35.02% satisficing plans using
CoT prompting in easy domains. Code-specific models show improved effectiveness when using compact
or PDDL representations. This improvement is anticipated due to the structured programming code and
the semantics on which these models have been trained. Consistently, code-specific models outperform
general-purpose LLMs in plan generation tasks.

Research Question 2

What pre-training data is effective for plan generation?

9

Under review as submission to TMLR

Answer

In our experiments, LLMs pre-trained on programming code-related datasets demonstrate superior
performance in plan generation tasks compared to LLMs trained on natural language.

In this study, fine-tuning the CodeT5 model demonstrated superior performance compared to other methods.
When comparing the fine-tuned CodeT5 using compact representation with the highest performing prompting
method observed in code-davinci-03 employing one-shot prompting and PDDL input, it is evident that the
fine-tuned CodeT5 excels across various domains in terms of satisficing plans, optimal plans, and correctness.
This suggests that fine-tuning notably enhances optimal plan generation capabilities, particularly for CodeT5.
However, this comparison is not exhaustive due to the inability to fine-tune GPT-4 and code-davinci-03,
which limits a comprehensive evaluation of how causal models might perform if similarly optimized.

Research Question 3

Which approach between fine-tuning and prompting improves plan generation?

Answer

In our experiments, fine-tuning improves plan generation capabilities more than prompting (Zero-shot,
One-shot, Chain-of-Thought).

To address RQ4, we report the results for the tasks described in Section 4.3.

5.2 Plan Generalization

Task 1 - Plan Length Generalization. In the context of generalization experiments, we focus on the
most proficient models derived from fine-tuning and prompting methodologies. Specifically, we utilize the
fine-tuned CodeT5 model with a compact representation alongside the one-shot prompting (represented as
FS) of code-davinci-03 (or simply code-davinci) with a PDDL representation approach. We subject these
models to an empirical evaluation by testing them on ten problems per difficulty class. Notably, the ten
problems selected are characterized by a plan length outside the distribution of the training set. Figure 2
depicts the plan length generalization assessment outcomes across the three difficulty classes. Our findings
demonstrate that the fine-tuned CodeT5 model can generalize to plan lengths to some extent,
while the one-shot prompting of code-davinci generates only a single valid plan for a hard domain
having a short plan. While neither model produces optimal plans, we observe that the average correctness
score of the plans generated by the fine-tuned CodeT5 model is 0.46, while that of code-davinci is 0.04. With
regard to Epg, the fine-tuned CodeT5 model has an average score of 0.69, whereas code-davinci has an average
score of 1.

Task 2 - Object Name Randomization. For object name randomization, we created three versions of
randomized variables for the problems in Dtest to evaluate the plan generalization capabilities of LLMs. In
version 1, we used only single-digit numeric values as object names. In version 2, we used alphanumeric strings
of length 2 (similar to the convention followed by IPC generators), where the combinations of alphabets and
numerals used were unseen during training. Version 3 consisted of object names named after three alphabets.
For the one-shot prompting of code-davinci, we used an example from the training set and posed a problem
with randomized object names for which the plan needed to be generated. We also implemented a symbol
table that maps the randomized object names to the same vocabulary as the training set to comprehensively
evaluate the dependence of LLMs on the training data or the prompting example for plan generation. Table
5 captures the performance of the models considered for generalization, and it is observed that code-davinci’s
performance is unaffected by object name randomization and retains the same performance as seen in Table
4. However, code-davinci has a high Epg, showing poor plan generalization capabilities. Fine-tuned CodeT5
has the best performance for version 2 and better plan generalization capabilities than any other model
(without a symbol table). We observed a decrease in performance when the length of object names was
increased, as in version 3, because the model confuses action names and object names. We further noticed an

10

Under review as submission to TMLR

Table 5: Evaluating the capabilities of LLMs in handling randomized object names.

Object Names Model ST Sat. Plans (%) / Opt. Plan (%) Deg. Corr. Epg

E M H E M H E M H

Version 1
CodeT5(FT) ✗ 47.12% / 33.78% 42.74% / 38.68% 39.58% / 21.22% 0.57 0.51 0.51 0.82 0.84 0.84

✓ 97.57% / 86.21% 92.46% / 90.36% 89.54% / 66.71% 0.99 0.95 0.95 0.15 0.18 0.18

code-davinci(FS) ✗ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96
✓ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96

Version 2
CodeT5(FT) ✗ 66.01% / 64.72% 61.98% / 52.80% 55.17% / 37.5% 0.79 0.72 0.58 0.47 0.49 0.67

✓ 97.57% / 86.21% 92.46% / 90.36% 89.54% / 66.71% 0.99 0.95 0.95 0.15 0.18 0.18

code-davinci(FS) ✗ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96
✓ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96

Version 3
CodeT5(FT) ✗ 11.82% / 2.10% 4.92% / 1.47% 0.17% / 0% 0.24 0.04 0.01 0.87 0.95 1

✓ 97.57% / 86.21% 92.46% / 90.36% 89.54% / 66.71% 0.99 0.95 0.95 0.15 0.18 0.18

code-davinci(FS) ✗ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96
✓ 43.52% / 17.57% 37.48% / 15.85% 31.89% / 14.69% 0.57 0.38 0.31 0.77 0.83 0.96

Figure 2: Fine-tuned CodeT5 and code-davinci with one-shot prompting show poor plan length generalization
capabilities: Epg for both models is high but plans from fine-tuned CodeT5 overall have a higher degree of
correctness. The x-axis represents the plan length, and the y-axis represents the degree of correctness. The
training plan lengths are highlighted in grey.

improvement in plan generalization capabilities when a symbol table (ST) was used to map the problem
name with randomized object names to the same vocabulary as the training set.

Ground Truth Plan - π∗ (Domain: logistics)
load-airplane p2 a0 l1-0, fly-airplane a0 l1-0 l0-0, unload-airplane p2 a0 l0-0, load-airplane
p0 a0 l0-0, fly-airplane a0 l0-0 l1-0, unload-airplane p0 a0 l1-0

Fine-tuned CodeT5 (Inference Time: 1.12s)
load-airplane driver0 l0, load-truck package3 truck0 s0, fly-airplane truck0 s0 s1 driver0,
load-truck package2 truck0 s1, unload-airplane p0 a0 l1-0, drive-truck truck0 s1 s0 driver0,
unload-truck package2 truck0 s0 ✗

One-shot prompting code-davinci (Inference Time: 3.51s)
load-truck p0 t0 l0-0, load-truck p1 t1 l1-0, drive-truck t0 l0-0 l1-0 c1, unload-truck p0 t0
l1-0, drive-truck t1 l1-0 l0-0 c0, unload-truck p1 t1 l0-0, load-airplane p2 a0 l1-0 ✗

Figure 3: Example of an incorrect generation from LLMs for a problem from an unseen domain - Logistics.

Task 3 - Unseen Domain Generalization We selected three new classical planning domains, namely
childsnack, depots, and satellite, and created ten problems per domain. We randomly chose an example
prompt and its corresponding plan from the six training domains for each problem. We report the results
averaged over five random seeds. Our findings reveal that both models failed to generate valid plans in this
task, resulting in an Epg of 1. We observed that fine-tuned CodeT5 often confused the action and object
names present in the test with those seen during training, showing no capabilities to generalize to unseen

11

Under review as submission to TMLR

domains. On the other hand, code-davinci generated relevant actions but incorrect plans for all test cases.
To further illustrate our observations, we present in Figure 3 a comparison between the ground truth plan
generated by a planner for the logistics domain and the output produced by the considered LLMs. This
comparison highlights the incorrect combination of action and object names. Fine-tuned models struggle to
generate plans for unseen domains. While LLMs, such as code-davinci, show promising developments, they
fail to generate valid plans.

Research Question 4

Are LLMs capable of plan generalization?

Answer

Our experiments found limited generalization even for the best-performing LLMs with prompting
(code-davinci-03) and fine-tuning (CodeT5).

6 Conclusion and Future Work

The intersection of LLMs and Automated Planning is rapidly gaining interest in AI research, aiming to
understand the reasoning capabilities of LLMs. While some researchers have pointed out that LLMs may
not inherently possess planning abilities, suggesting their performance might merely reflect sophisticated
information retrieval (Kambhampati, 2024), the diverse architectures of LLMs and their training methodologies
have not been systematically studied in the context of enhancing their planning capabilities. This paper
addresses this gap by comprehensively analyzing LLMs for classical planning problems across architectures,
model adaptation methods, and input representations. We outline the relative merits of these approaches,
providing a foundation for future research on effectively utilizing LLMs for planning tasks, either independently
or in conjunction with other solvers (Fabiano et al., 2023b).

Our study in this paper explores the usability of LLMs in solving automated planning problems. To do this,
we defined and addressed four research questions through a comprehensive experimental analysis of several
LLMs and a diverse set of planning domains. The study finds that: (1) Off-the-shelf, pre-trained LLMs cannot
effectively solve planning problems. (2) LLMs pre-trained on natural language and programming code are
more capable of plan generation than natural language-only models. (3) Fine-tuning contributes to improved
plan generation. (4) LLMs have limited plan generalization abilities. Moreover, our research highlights that
fine-tuning aids in partial generalization to plan lengths not encountered during the training phase while
maintaining a higher level of correctness than prompting. Notably, when object names are randomized,
fine-tuned models exhibit satisfactory performance only when the randomized vocabulary aligns with the
training set. Both prompting and fine-tuning approaches prove ineffective when solving problems from
unfamiliar domains. In future work, we plan to investigate recent techniques, such as scratchpad fine-tuning
and prompting methodologies, that have been shown to enhance the length generalization capabilities of
LLMs. These methods could improve the planning capabilities of LLMs and open up new avenues for their
use in solving complex planning problems.

References
Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela

Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett, Dave Christianson, et al. PDDL – the planning
domain definition language. Technical Report, Tech. Rep., 1998.

Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis. Artificial intelligence,
90(1-2):281–300, 1997.

Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single-and multi-agent systems.
Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

12

Under review as submission to TMLR

Alessio Capitanelli and Fulvio Mastrogiovanni. A framework to generate neurosymbolic pddl-compliant
planners. arXiv preprint arXiv:2303.00438, 2023.

Georgia Chalvatzaki, Ali Younes, Daljeet Nandha, An Thai Le, Leonardo FR Ribeiro, and Iryna Gurevych.
Learning to reason over scene graphs: a case study of finetuning gpt-2 into a robot language model for
grounded task planning. Frontiers in Robotics and AI, 10, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Autotamp: Autoregressive task
and motion planning with llms as translators and checkers. arXiv preprint arXiv:2306.06531, 2023.

Gautier Dagan, Frank Keller, and Alex Lascarides. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391, 2023.

Francesco Fabiano, Vishal Pallagani, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea Loreggia,
Keerthiram Murugesan, Francesca Rossi, and Biplav Srivastava. Fast and slow planning. arXiv preprint
arXiv:2303.04283, 2023a.

Francesco Fabiano, Vishal Pallagani, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea Loreggia,
Keerthiram Murugesan, Francesca Rossi, and Biplav Srivastava. Plan-sofai: A neuro-symbolic planning
architecture. In Neuro-Symbolic Learning and Reasoning in the era of Large Language Models, 2023b.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1536–1547, 2020.

Noelia Ferruz and Birte Höcker. Controllable protein design with language models. Nature Machine
Intelligence, pp. 1–12, 2022.

Qiaozi Gao, Govind Thattai, Suhaila Shakiah, Xiaofeng Gao, Shreyas Pansare, Vasu Sharma, Gaurav
Sukhatme, Hangjie Shi, Bofei Yang, Desheng Zhang, et al. Alexa arena: A user-centric interactive platform
for embodied ai. Advances in Neural Information Processing Systems, 36, 2024.

Ilche Georgievski and Marco Aiello. Htn planning: Overview, comparison, and beyond. Artif. Intell., 222:
124–156, 2015. URL https://api.semanticscholar.org/CorpusID:42064508.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice. The Morgan
Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, Amsterdam, 2004. ISBN 978-1-55860-856-6.
URL http://www.sciencedirect.com/science/book/9781558608566.

Maitrey Gramopadhye and Daniel Szafir. Generating executable action plans with environmentally-aware
language models. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3568–3575. IEEE, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:191–246,
2006.

Malte Helmert and Carmel Domshlak. Lm-cut: Optimal planning with the landmark-cut heuristic. Seventh
international planning competition (IPC 2011), deterministic part, pp. 103–105, 2011.

R. Howey and D. Long. Val’s progress: The automatic validation tool for pddl2.1 used in the international
planning competition. In ICAPS 2003 workshop on "The Competition: Impact, Organization, Evaluation,
Benchmarks", Trento, Italy, 2003.

13

https://api.semanticscholar.org/CorpusID:42064508
http://www.sciencedirect.com/science/book/9781558608566

Under review as submission to TMLR

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Wai Lam, and Yue Zhang. Chain-of-symbol prompting elicits
planning in large langauge models. arXiv preprint arXiv:2305.10276, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on Machine Learning,
pp. 9118–9147. PMLR, 2022.

ICAPS. International planning competitions at international conference on automated planning and scheduling
(icaps). In https://www.icaps-conference.org/competitions/, 2022.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York Academy of
Sciences, 2024.

Michael Katz and Shirin Sohrabi. Reshaping diverse planning. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(06):9892–9899, Apr. 2020. doi: 10.1609/aaai.v34i06.6543. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6543.

Gyeongmin Kim, Taehyeon Kim, Shyam Sundar Kannan, Vishnunandan LN Venkatesh, Donghan Kim, and
Byung-Cheol Min. Dynacon: Dynamic robot planner with contextual awareness via llms. arXiv preprint
arXiv:2309.16031, 2023.

Hang Li. Language models: Past, present, and future. Commun. ACM, 65(7):56–63, jun 2022. ISSN 0001-0782.
doi: 10.1145/3490443. URL https://doi.org/10.1145/3490443.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and slow thinking for
complex interactive tasks. Advances in Neural Information Processing Systems, 36, 2024.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. Llm+ p:
Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric Wang, Miguel Eckstein, and William Yang Wang.
Neuro-symbolic procedural planning with commonsense prompting. arXiv preprint arXiv:2206.02928, 2022.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld,
and David Wilkins. Pddl-the planning domain definition language. 1998.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,
Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large language models with
cogeval. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. Gpt-4 technical report, 2023.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav Srivastava,
Francesco Fabiano, and Andrea Loreggia. Plansformer: Generating symbolic plans using transformers.
arXiv preprint arXiv:2212.08681, 2022.

Vishal Pallagani, Kaushik Roy, Bharath Muppasani, Francesco Fabiano, Andrea Loreggia, Keerthiram
Murugesan, Biplav Srivastava, Francesca Rossi, Lior Horesh, and Amit Sheth. On the prospects of
incorporating large language models (llms) in automated planning and scheduling (aps). arXiv preprint
arXiv:2401.02500, 2024.

Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-assisted coding: Experiments with gpt-4, 2023.

Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie Tellex. Planning
with large language models via corrective re-prompting. In NeurIPS 2022 Foundation Models for Decision
Making Workshop, 2022.

14

https://ojs.aaai.org/index.php/AAAI/article/view/6543
https://ojs.aaai.org/index.php/AAAI/article/view/6543
https://doi.org/10.1145/3490443

Under review as submission to TMLR

Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010. doi: 10.1613/jair.2972.

S. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Second Edition. 01 2003.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/10.5281/zenodo.
6382173, 2022.

Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine
Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi, et al. Robovqa: Multimodal long-horizon
reasoning for robotics. arXiv preprint arXiv:2311.00899, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. arXiv preprint
arXiv:2305.11014, 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023.

Biplav Srivastava, Tuan Anh Nguyen, Alfonso Gerevini, Subbarao Kambhampati, Minh Binh Do, and Ivan
Serina. Domain independent approaches for finding diverse plans. In Manuela M. Veloso (ed.), IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pp. 2016–2022, 2007. URL http://ijcai.org/Proceedings/07/Papers/325.pdf.

Katharina Stein and Alexander Koller. Autoplanbench:: Automatically generating benchmarks for llm
planners from pddl. arXiv preprint arXiv:2311.09830, 2023.

Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca Doğan. Learning
functional properties of proteins with language models. Nature Machine Intelligence, 4(3):227–245, 2022.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). arXiv preprint
arXiv:2206.10498, 2022.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
Planbench: An extensible benchmark for evaluating large language models on planning and reasoning about
change. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2023a. URL https://openreview.net/forum?id=YXogl4uQUO.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kambhampati.
On the planning abilities of large language models (a critical investigation with a proposed benchmark).
arXiv preprint arXiv:2302.06706, 2023b.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. Plan-and-
solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. arXiv preprint
arXiv:2305.04091, 2023b.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

15

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
http://ijcai.org/Proceedings/07/Papers/325.pdf
https://openreview.net/forum?id=YXogl4uQUO

Under review as submission to TMLR

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents. arXiv preprint
arXiv:2302.01560, 2023c.

Taylor Webb, Shanka Subhra Mondal, Chi Wang, Brian Krabach, and Ida Momennejad. A prefrontal
cortex-inspired architecture for planning in large language models. arXiv preprint arXiv:2310.00194, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of
large language models, 2023.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for large-scale
task planning. Advances in Neural Information Processing Systems, 36, 2024.

16

Under review as submission to TMLR

A Appendix

A.1 Frequently Asked Questions

A.1.1 Will the codebase be made publicly available?

Yes, the codebase along with all the fine-tuning, prompting, and inference scripts along with the fine-tuned
model weights for all applicable models will be released for public access after the review period in accordance
with the Findability, Accessibility, Interoperability, and Reuse (FAIR) of digital assets principles. The
codebase will be made available via Github and the datasets as well as model weights will be released on
Zenodo.

A.1.2 What is the reason for taking 18,000 problems per domain for fine-tuning?

In our experiment, we examined different numbers of planning problems, starting from 3000 per planning
domain and increasing them by multiples of 3. We employed an 80%-20% train-test split to evaluate the models.
Upon reaching 18,000 problems, we observed the best performance across all the models. Subsequently, we
conducted fixed point iteration to assess model performance up to 24,000 problems. However, no significant
changes in model performance were observed beyond 18,000 problems. Therefore, we chose 18,000 problems
per domain as the de facto standard. In Table 6, we show the variation in satisficing plans generated by
fine-tuned CodeT5 with respect to the dataset size. We only show the results of fine-tuned CodeT5 for
brevity, but similar results are observed across all models considered for fine-tuning.

Table 6: Variations in the performance of satisficing plans generated by fine-tuned CodeT5 using different
dataset sizes per domain. After reaching 18,000 datapoints per domain, i.e., a total of 108,000 total problems
belonging to six domains, we see a saturation in the performance of plan generation with increase in data
points. The values in the brackets show the increase/decrease in performance in comparison with the values
in bold to showcase fixed point iteration.

Model Dataset size
(per domain)

Satisficing Plans (%)
Easy Medium Hard

Fine-tuned CodeT5

3000 0.20% 0% 0%
6000 19.72% 12.11% 6.57%
9000 47.78% 32.65% 27.92%
12000 69.82% 41.17% 32.67%
15000 86.91% 73.88% 68.71%
18000 97.57% 92.46% 89.54%
21000 97.57% (↑ 0%) 92.46% (↑ 0%) 89.51% (↓ 0.03%)
24000 97.77% (↑ 0.02%) 92.46% (↑ 0%) 89.32% (↓ 0.19%)

A.1.3 What is the significance of using FastDownward planner to generate the dataset?

FastDownward is a traditional planning system that searches the space of world states associated with a
planning task in the forward direction using heuristics. In the 4th International Planning Competition at
ICAPS 2004, FastDownward secured first place in the "traditional (i.e. propositional, non-optimizing) track".
FastDownward comes equipped with a variety of search algorithms by default. We utilize the A* + LM-Cut
heuristic since it can produce the optimal plans. Thus, we use FastDownward to generate a planning dataset
consisting of optimal plans.

A.2 Language Modeling Architectures

Large language models are neural network models with upwards of a million parameters trained on extremely
large corpora of natural language data. These models are proficient in interpreting, generating, and
contextualizing human language, leading to applications ranging from text generation to language-driven

17

Under review as submission to TMLR

reasoning tasks. The evolution of LLMs in NLP began with rule-based models, progressed through statistical
models, and achieved a significant breakthrough with the introduction of neural network-based models. The
shift to sequence-based neural networks, with Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks, marked a notable advancement due to their capability to process information
and context over long sequences.

However, shortcomings in RNNs and LSTMs due to vanishing gradients and, consequently, loss of very long
sequence contexts led to the development of the transformer model, which leverages a novel architecture
without the need for recurrence. The transformer consists of an encoder and decoder, each comprising a stack
of layers that use self-attention and position-wise feed-forward networks. This design allows each position
in the encoder to attend overall positions in the previous layer of the encoder, enabling parallelization and
handling of longer contexts. Similarly, in the decoder, the self-attention (SA) layers provide attention to
positions up to and including the current position. This architecture has substantially improved speed and
performance on long-sequence tasks.

The SA mechanism at the heart of the transformer enables it to focus on different parts of a long input
sequence in parallel, which enhances the understanding of contextual nuances in language patterns over
extremely long sequences. This mechanism is also complemented with positional encodings in transformers to
enable the model to maintain an awareness of word/token order, which is required to understand accurate
grammar and syntax. The self-attention mechanism, central to transformers, uses a query, key, and value
system to contextualize dependencies in the input sequence. Informally, the SA concept is inspired by classical
information retrieval systems where the query is the input sequence context, the key refers to a “database”
contained within the parametric memory, and the value is the actual value present at that reference. The SA
operation is mathematically expressed in Equation 2.

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V (2)

In this equation, Q, K, and V denote the query, key, and value matrices. The scaling factor
√

dk, where dk is
the dimension of the keys, is employed to standardize the vectors to unit variance for ensuring stable softmax
gradients during training. Since the introduction of LLMs with self-attention, several architectural variants
have depended on the downstream tasks.

Causal Language Modeling (CLMs): CLMs, such as GPT-4, are decoder-only models designed for tasks
where text generation is sequential and dependent on the preceding context. They predict each subsequent
word based on the preceding words, modeling the probability of a word sequence in a forward direction. This
process is mathematically formulated as shown in Equation 3.

P (T) =
n∏

i=1
P (ti|t<i) (3)

In this formulation, P (ti|t<i) represents the probability of the i-th token given all preceding tokens, t<i. This
characteristic makes CLMs particularly suitable for applications like content generation, where the flow and
coherence of the text in the forward direction are crucial.

Masked Language Modeling (MLMs): Unlike CLMs, MLMs like BERT are trained to understand the
bidirectional context by predicting words randomly masked in a sentence. This approach allows the model to
learn both forward and backward dependencies in language structure. MLMs are encoder-only models. The
MLM prediction process can be represented as Equation 4.

P (Tmasked|Tcontext) =
∏
i∈M

P (ti|Tcontext) (4)

18

Under review as submission to TMLR

Here, Tmasked is the set of masked tokens in the sentence, Tcontext represents the unmasked part of the
sentence, and M is the set of masked positions. MLMs have proven effective in NLP tasks such as sentiment
analysis or question answering.

Sequence-to-Sequence (Seq2Seq) Modeling: Seq2Seq models, like T5, are encoder-decoder models
designed to transform an input sequence into a related output sequence. They are often employed in tasks
that require a mapping between different types of sequences, such as language translation or summarization.
The Seq2Seq process is formulated as Equation 5.

P (Toutput|Tinput) =
m∏

i=1
P (toutputi

|Tinput, toutput<i
) (5)

In Equation 5, Tinput is the input sequence, Toutput is the output sequence, and P (toutputi
|Tinput, toutput<i

)
calculates the probability of generating each token in the output sequence, considering both the input sequence
and the preceding tokens in the output sequence.

In addition to their architectural variants, the utility of LLMs is further enhanced by specific model utilization
strategies, enabling their effective adaptation to various domains at scale. One key strategy is fine-tuning,
which applies to pre-trained LLMs. Pre-trained LLMs are models already trained on large datasets to
understand and generate language, acquiring a broad linguistic knowledge base. Fine-tuning involves further
training pre-trained LLMs on a smaller, task-specific dataset, thereby adjusting the neural network weights
for particular applications. This process is mathematically represented in Equation 6.

θfine-tuned = θpre-trained − η · ∇θL(θ, Dtask) (6)

Here, θfine-tuned are the model parameters after fine-tuning, θpre-trained are the parameters obtained from
pre-training, η is the learning rate, and ∇θL(θ, Dtask) denotes the gradient of the loss function L with respect
to the parameters θ on the task-specific dataset Dtask.

P (T |C) =
n∏

i=1
P (ti|t<i, C) (7)

Complementing the fine-tuning approach is in-context learning, an alternative strategy particularly character-
istic of models like the GPT series. This method diverges from fine-tuning by enabling the model to adapt
its responses based on immediate context or prompts without necessitating further training. The efficacy
of in-context learning is a direct consequence of the comprehensive pre-training phase, where models are
exposed to diverse textual datasets, thereby acquiring a nuanced understanding of language and context.
Given a context C, the model generates text T that is contextually relevant, as shown in Equation 7. Here,
P (T |C) is the probability of generating text T given the context C, and P (ti|t<i, C) is the probability of
generating the i-th token ti given the preceding tokens t<i and the context C.

A.3 Example of a Planning Problem

To illustrate the application of CPP in a more tangible context, let’s consider the well-known Blocksworld
domain. This example is a practical demonstration of how the formal elements of CPP are instantiated in a
specific scenario. In the Blocksworld domain, the set of fluents F is defined by the predicates describing the
locations of blocks, their clear status, and the state of the agent’s hand. Specifically,

F = {on(x, y), onTable(x), clear(x), handempty},

where x and y are variables representing blocks. The actions set A includes pick-up, put-down, stack, and
unstack, with specific preconditions and effects as follows:

• pick-up(b) where b is a block:

19

Under review as submission to TMLR

Figure 4: An illustrative example of the Blocksworld planning problem. The left side of the figure shows
the initial state with blocks b1, b2, and b3. The right side of the figure shows the goal state after applying a
sequence of actions.

– Preconditions: clear(b), onTable(b), handempty
– Effects: ¬onTable(b), ¬handempty, holding(b)

• put-down(b):

– Preconditions: holding(b)
– Effects: onTable(b), handempty, ¬holding(b)

• stack(b, t) where t is the target block:

– Preconditions: holding(b), clear(t)
– Effects: on(b, t), handempty, ¬clear(t), ¬holding(b)

• unstack(b, t):

– Preconditions: on(b, t), clear(b), handempty
– Effects: holding(b), clear(t), ¬on(b, t), ¬handempty

The initial state I is defined by the fluents {onTable(b1), on(b2, b1), onTable(b3), clear(b2), clear(b3)}. The
goal state G is defined by the fluents {onTable(b1), on(b3, b1), on(b2, b3), clear(b2)}, which describes the
desired end configuration where b1 is on the table, b3 is on b1, and b2 is on b3, with b2 being clear.

Figure 4 illustrates the transition from the initial state I to the goal state G through a sequence of actions
that modify the state according to the planning domain’s transition function δM, which is explained in detail
below -

1. unstack(b2, b1): The state changes according to δM(s, unstack(b2, b1)), resulting in s = s ∪
{clear(b1), holding(b2)} \ {on(b2, b1), clear(b2)}.

2. put-down(b2): Applying δM(s, put-down(b2)) modifies the state to s = s ∪
{onTable(b2), clear(b2)} \ {holding(b2)}.

3. pick-up(b3): The state transition function δM(s, pick-up(b3)) yields s = s ∪ {holding(b3)} \
{onTable(b3), clear(b3)}.

4. stack(b3, b1): By δM(s, stack(b3, b1)), the state is updated to s = s ∪ {on(b3, b1)} \
{holding(b3), clear(b1)}.

5. pick-up(b2): The action δM(s, pick-up(b2)) alters the state to s = s ∪ {holding(b2)} \
{onTable(b2), clear(b2)}.

6. stack(b2, b3): The final action δM(s, stack(b2, b3)) leads to the goal state with s = s ∪ {on(b2, b3)} \
{holding(b2), clear(b3)}.

20

Under review as submission to TMLR

A.4 Planning Dataset

This section provides a brief overview of the domains used in our study, accompanied by visualizations of
their corresponding PDDL domain and problem files.

A.4.1 Description of the domains

A.4.2 Ferry

Ferry is a classical planning domain involving a ferry crossing a river to transport passengers and their
vehicles from one side of the river. The ferry can carry a limited number of vehicles at a time and must return
to the starting point to pick up more cars if passengers are still waiting. The domain includes constraints such
as vehicle capacity, safety conditions, and scheduling. The goal of the domain is to transport all passengers
and their vehicles to the other side of the river safely and efficiently. The Ferry domain is a benchmark
problem for classical planners and has been used in various planning competitions. Based on the domain
definition of Ferry, the state space and branching factor can be calculated as follows:

• The state space is O(2n ∗ 2 ∗ m ∗ n!), where n is the number of cars and m is the number of locations.
This is because each car can be either on the ferry or at a location (2n possibilities), the ferry can be
at any location (m possibilities), the order of the cars on the ferry matters (n! possibilities), and the
ferry can be either empty or full (2 possibilities).

• The branching factor is O(n + 1), where n is the number of cars. This is because there are only
two operators (board and debark) with one parameter each (car) and one operator (sail) with no
parameters. For each car, there are two possible operators that can be applied to it (board or debark),
but only one of them is applicable at any given state. Additionally, there is one operator that can be
applied to any state (sail), which moves the ferry from one location to another.

Figure 5 shows the domain and a sample problem file in PDDL for Ferry.

A.4.3 Blocksworld

Blocksworld is a classical planning domain that involves a world of blocks arranged on a table. The domain
includes various actions such as picking up, putting down, and stacking or unstacking blocks. The goal of the
domain is to reach a specific arrangement of blocks on the table from an initial configuration, which may
involve stacking blocks on top of each other or moving blocks to different positions. It is commonly used as a
benchmark problem for classical planners and has been used in various planning competitions. The domain is
simple and abstract yet complex enough to demonstrate different planning challenges, such as state explosion
and search complexity. The state space and branching factor can be calculated as follows:

• The state space of the four action Blocksworld is O(3n) because each block can be in one of three
possible locations: on the table, on another block, or in hand. Therefore, the number of possible
states is 3n, where n is the number of blocks.

• The branching factor of the four action Blocksworld is O(4n/2 + 1) because, at each state, four
types of actions can be applied to any block: pick up, put down, stack, and unstack. However, not
all moves apply to all blocks at all times. For example, a block cannot be picked up if it is unclear,
and a block cannot be stacked if the hand is empty. Therefore, the number of applicable actions is at
most 4n/2 + 1, where n is the number of blocks.

Figure 6 shows the Blocksworld domain and a sample problem file in PDDL.

A.4.4 Miconic

Miconic planning domain is a model of an elevator system that transports passengers between building floors.
The elevator can move up or down one floor at a time and can board or depart passengers on each floor.

21

Under review as submission to TMLR

Listing 1: Domain description of Ferry

(define (domain ferry)
(: predicates (not-eq ?x ?y)

(car ?c)
(location ?l)
(at-ferry ?l)
(at ?c ?l)
(empty-ferry)
(on ?c))

(: action sail
:parameters (?from ?to)
:precondition (and (not-eq ?from ?to)

(location ?from) (location ?to) (at-ferry ?from))
:effect (and (at-ferry ?to)

(not (at-ferry ?from))))

(: action board
:parameters (?car ?loc)
:precondition (and (car ?car) (location ?loc)

(at ?car ?loc) (at-ferry ?loc) (empty-ferry))
:effect (and (on ?car)

(not (at ?car ?loc))
(not (empty-ferry))))

(: action debark
:parameters (?car ?loc)
:precondition (and (car ?car) (location ?loc)

(on ?car) (at-ferry ?loc))
:effect (and (at ?car ?loc)

(empty-ferry)
(not (on ?car)))))

Listing 2: Problem description of Ferry

(define (problem ferry-1)
(: domain ferry)
(: objects

location-1 location-2 location-3 car-1 car-2)
(:init

(location location-1)
(location location-2)
(location location-3)
(car car-1)
(car car-2)
(at car-1 location-1)
(at car-2 location-1)
(at-ferry location-2)
(empty-ferry)
(not-eq location-1 location-2)
(not-eq location-1 location-3)
(not-eq location-2 location-3))

(:goal
(and (at car-1 location-2)

(at car-2 location-2))))

Figure 5: Domain and problem descriptions of Ferry

22

Under review as submission to TMLR

Listing 3: Domain description of Blocksworld

(define (domain blocksworld)
(: requirements :strips)
(: predicates
(on ?x ?y)
(ontable ?x)
(clear ?x)
(handempty)
(holding ?x))

(: action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(: action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))

(: action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(: action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y)))))

Listing 4: Problem description of Blocksworld

(define (problem blocksworld-1)
(: domain blocksworld)
(: objects a b c d e f)
(:init
(clear a) (clear b) (clear c)
(ontable d) (ontable e) (ontable f)
(handempty)
(on a b) (on b c)
(on d e) (on e f)
)
(:goal (and (on a c) (on d b) (on e f)))))

Figure 6: Domain and problem descriptions of Blocksworld
23

Under review as submission to TMLR

The goal is to deliver all the passengers to their desired floors. The state space and branching factor can be
calculated as follows:

• The state space of the Miconic domain is O(n(m+1) ∗ 2m ∗ m!) because each state is determined by
the following factors:

– The floor of the elevator (n possibilities, where n is the number of floors)
– The destination floor of each passenger (n possibilities for each of the m passengers, where m is

the number of passengers)
– The location of each passenger (2 possibilities for each passenger: inside or outside the elevator)
– The permutation of passengers inside the elevator (m! possibilities, assuming the order matters)

• The branching factor of the Miconic domain is O(m + 1) because, at each state, there are m + 1
possible actions: move up, move down, or board/depart a passenger. However, not all actions are
applicable at all times. For example, the elevator cannot move up if it is on the top floor and cannot
load a passenger if it is full. Therefore, the number of applicable actions is at most m + 1.

Figure 7 shows the Miconic domain and a sample problem file in PDDL.

A.4.5 Tower of Hanoi

The Tower of Hanoi planning domain is a puzzle model involving moving disks of different sizes between
pegs. The puzzle starts with all the disks stacked on one peg in decreasing order of size, and the goal is to
move all the disks to another peg, following two rules: only one disk can be moved at a time, and a larger
disk cannot be placed on top of a smaller disk. The state space and branching factor of this domain can be
calculated as follows:

• The state space of the Tower of Hanoi is O(3n) because each disk can be on one of three possible
pegs. Therefore, the number of possible states is 3n, where n is the number of disks.

• The branching factor of the Tower of Hanoi is O((k − 1)k/2) because, at each state, there are k
possible pegs to move a disk from and k − 1 possible pegs to move a disk to. Therefore, the number
of valid moves is at most (k − 1)k/2, where k is the number of pegs. However, not all moves are
valid, as some may violate the puzzle’s rules.

Figure 8 shows the Tower of Hanoi domain and a sample problem file in PDDL.

A.4.6 Grippers

The Grippers planning domain is a robot model that can move between rooms and pick up or drop balls
using its grippers. The robot has two left and right grippers and can hold at most one ball in each gripper.
The goal is to move all the balls from one room to another. The state space and branching factor of this
domain can be calculated as follows:

• The state space of the Grippers domain is O(2n ∗ 3(nr)) because the following factors determine
each state:

– The presence of a robot in the room (2 possibilities).
– The room of each ball (2 possibilities for each of the n balls, where n is the number of balls)
– The gripper of each ball (3 possibilities for each of the n balls: left, right, or none)
– The ball in each gripper (n possibilities for each of the r grippers, where r is the number of

robots)

• The branching factor of the Grippers domain is O(3nr + r) because, at each state, three types of
actions can be applied to any ball: pick up, drop, or do nothing. Additionally, there are r possible
actions for moving the robot to another room. Therefore, the number of possible actions is at most
3nr + r.

24

Under review as submission to TMLR

Listing 5: Domain description of Miconic

(define (domain miconic)
(: requirements :strips)
(: types passenger - object

floor - object
)

(: predicates
(origin ?person - passenger ?floor - floor)
(destin ?person - passenger ?floor - floor)
(above ?floor1 - floor ?floor2 - floor)
(boarded ?person - passenger)
(not-boarded ?person - passenger)
(served ?person - passenger)
(not-served ?person - passenger)
(lift-at ?floor - floor)
)

(: action board
:parameters (?f - floor ?p - passenger)
:precondition (and (lift-at ?f) (origin ?p ?f))
:effect (boarded ?p))

(: action depart
:parameters (?f - floor ?p - passenger)
:precondition (and (lift-at ?f) (destin ?p ?f)

(boarded ?p))
:effect (and (not (boarded ?p))

(served ?p)))

(: action up
:parameters (?f1 - floor ?f2 - floor)
:precondition (and (lift-at ?f1) (above ?f1 ?f2))
:effect (and (lift-at ?f2) (not (lift-at ?f1))))

(: action down
:parameters (?f1 - floor ?f2 - floor)
:precondition (and (lift-at ?f1) (above ?f2 ?f1))
:effect (and (lift-at ?f2) (not (lift-at ?f1))))

)

Listing 6: Problem description of Miconic

(define (problem miconic-1)
(: domain miconic)
(: objects
p1 - passenger p2 - passenger f1 - floor f2 - floor f3 - floor
)
(:init
(lift-at f1)(above f1 f2)(above f2 f3)
(origin p1 f1)(origin p2 f2)(destin p1 f3)
(destin p2 f3)(not-boarded p1)(not-boarded p2)
(not-served p1)(not-served p2)
)
(:goal
(and (served p1) (served p2))
)
)

Figure 7: Domain and problem descriptions of Miconic25

Under review as submission to TMLR

Listing 7: Domain description of Tower of Hanoi

(define (domain hanoi)
(: requirements :strips)
(: predicates (clear ?x)

(on ?x ?y)
(smaller ?x ?y))

(: action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc)

(on ?disc ?from)
(clear ?disc)
(clear ?to))

:effect (and (clear ?from)
(on ?disc ?to)
(not (on ?disc ?from))
(not (clear ?to)))

))

Listing 8: Problem description of Tower of Hanoi

(define (problem hanoi-1)
(: domain hanoi)
(: objects
d1 d2 d3 - disc
p1 p2 p3 - peg
)
(:init
(smaller d1 d2)(smaller d1 d3)(smaller d2 d3)
(on d1 p1)(on d2 p1)(on d3 p1)
(clear p2)(clear p3)(clear d1)
)
(:goal
(and (on d1 p3) (on d2 p3) (on d3 p3))
)
)

Figure 8: Domain and problem descriptions of Tower of Hanoi

26

Under review as submission to TMLR

Figure 9 shows the Grippers domain and a sample problem file in PDDL.

Listing 9: Domain description of Grippers

(define (domain grippers)
(: requirements :strips :typing)
(:types room object robot gripper)
(: predicates (at-robby ?r - robot ?x - room)

(at ?o - object ?x - room)
(free ?r - robot ?g - gripper)
(carry ?r - robot ?o - object ?g - gripper))

(: action move
:parameters (?r - robot ?from ?to - room)
:precondition (and (at-robby ?r ?from))
:effect (and (at-robby ?r ?to)

(not (at-robby ?r ?from))))

(: action pick
:parameters (?r - robot ?obj - object ?room - room ?g - gripper)
:precondition (and (at ?obj ?room) (at-robby ?r ?room) (free ?r ?g))
:effect (and (carry ?r ?obj ?g)

(not (at ?obj ?room))
(not (free ?r ?g))))

(: action drop
:parameters (?r - robot ?obj - object ?room - room ?g - gripper)
:precondition (and (carry ?r ?obj ?g) (at-robby ?r ?room))
:effect (and (at ?obj ?room)

(free ?r ?g)
(not (carry ?r ?obj ?g)))))

Listing 10: Problem description of Grippers

(define (problem grippers-1)
(: domain grippers)
(: objects
robby - robot
ball cube - object
room-a room-b - room
grip-1 grip-2 - gripper
)
(:init
(at-robby robby room-a)(at ball room-a)(at cube room-b)
(free robby grip-1)(free robby grip-2)
)
(:goal
(and (at ball room-b) (at cube room-a))
)
)

Figure 9: Domain and problem descriptions of Grippers

A.4.7 Driverlog

The Driverlog planning domain is a transportation system model involving drivers, trucks, and packages.
The drivers can drive trucks between locations, load and unload packages from trucks, or walk between

27

Under review as submission to TMLR

Listing 11: Domain description of Driverlog
(define (domain driverlog)

(: requirements : typing)
(: types location locatable - object

driver truck obj - locatable)
(: predicates

(at ?obj - locatable ?loc - location) (in ?obj1 - obj ?obj - truck)
(driving ?d - driver ?v - truck) (link ?x ?y - location)

(path ?x ?y - location) (empty ?v - truck)
)
(: action load-truck

: parameters
(? obj - obj ? truck - truck ?loc - location)

: precondition
(and (at ? truck ?loc) (at ?obj ?loc))

: effect
(and (not (at ?obj ?loc)) (in ?obj ? truck)))

(: action unload-truck
: parameters

(? obj - obj ? truck - truck ?loc - location)
: precondition

(and (at ? truck ?loc) (in ?obj ? truck))
: effect

(and (not (in ?obj ? truck)) (at ?obj ?loc)))

(: action board-truck
: parameters

(? driver - driver ? truck - truck ?loc - location)
: precondition

(and (at ? truck ?loc) (at ? driver ?loc) (empty ? truck))
: effect

(and (not (at ? driver ?loc)) (driving ? driver ? truck) (not (empty ? truck))))

(: action disembark-truck
: parameters

(? driver - driver ? truck - truck ?loc - location)
: precondition

(and (at ? truck ?loc) (driving ? driver ? truck))
: effect

(and (not (driving ? driver ? truck)) (at ? driver ?loc) (empty ? truck)))

(: action drive-truck
: parameters

(? truck - truck ? loc-from - location ? loc-to - location ? driver - driver)
: precondition

(and (at ? truck ? loc-from)
(driving ? driver ? truck) (link ? loc-from ? loc-to))

: effect
(and (not (at ? truck ? loc-from)) (at ? truck ? loc-to)))

(: action walk
: parameters

(? driver - driver ? loc-from - location ? loc-to - location)
: precondition

(and (at ? driver ? loc-from) (path ? loc-from ? loc-to))
: effect

(and (not (at ? driver ? loc-from)) (at ? driver ? loc-to)))
)

Listing 12: Problem description of Driverlog
(define (problem driverlog-1)

(: domain driverlog)
(: objects

driver-1 - driver truck-1 - truck obj-1 - obj loc-1 loc-2 loc-3 - location
)
(: init

(at truck-1 loc-1)(at obj-1 loc-2)(at driver-1 loc-3)(link loc-1 loc-2)(link loc-2 loc-3)(path loc-1
↪→ loc-2)(path loc-2 loc-1)(path loc-2 loc-3)(path loc-3 loc-2)(empty truck-1)

)
(: goal

(and
(at obj-1 loc-1)(at driver-1 loc-1)(empty truck-1)

)))

Figure 10: Domain and problem descriptions of Driverlog

28

Under review as submission to TMLR

adjacent locations. The trucks can move between locations if they have a driver. The packages can be loaded
or unloaded from trucks at any location. The goal is to deliver all the packages to their destinations. The
state space and branching factor of this domain can be calculated as follows:

• The state space of the Driverlog domain is O(L(D+T +P) ∗ KP ∗ D ∗ T ∗ 2T) because the following
factors determine each state:

– The location of each driver, truck, and package (L possibilities for each of the D + T + P entities,
where L is the number of locations)

– The destination of each package (K possibilities for each of the P packages, where K is the
number of possible destinations)

– The driver of each truck (D possibilities for each of the T trucks, where D is the number of
drivers)

– The truck of each driver (T possibilities for each of the D drivers, where T is the number of
trucks)

– The subset of trucks that are loaded with packages (2T possibilities, where T is the number of
trucks)

• The branching factor of the Driverlog domain is O(L ∗ (D + T + P + DT + TD)) because, at each
state, five types of actions can be applied to any entity: drive, walk, load, unload, or do nothing.
However, not all actions are applicable at all times. For example, a driver can only drive a truck
at the exact location, and a package can only be loaded if it is clear. Therefore, the number of
applicable actions is at most L ∗ (D + T + P + DT + TD), where L is the number of locations.

Figure 10 shows the Driverlog domain and a sample problem file in PDDL.

A.5 Visualization of compact form

For fine-tuning LLMs, we make use of the compact form. Figure 11 shows the compact form representation
of the PDDL problems for blocksworld domain from the training dataset as an example. The implemented
python code to perform the conversion of PDDL domain and problem files to compact form is given in Listing
13.

Compact form for Blocksworld
<GOAL>on b1 b3, on b2 b4, ontable b3, on b4 b1, on b5 b2, clear b5<INIT>handempty, on b1 b3, on b2
b1, on b3 b5, on b4 b2, clear b4, ontable b5<ACTION> pick-up <PRE> clear x, ontable x, handempty
<EFFECT> not ontable x, not clear x, not handempty, holding x <ACTION> put-down <PRE> holding
x <EFFECT> not holding x, clear x, handempty, ontable x <ACTION> stack <PRE> holding x, clear y
<EFFECT> not holding x, not clear y, clear x, handempty, on x y <ACTION> unstack <PRE> on x y,
clear x, handempty <EFFECT> holding x, clear y, not clear x, not handempty, not on x y

Figure 11: Example of compact form representation obtained from PDDL domain and problem files for the
blocksworld domain considered in the planning dataset. This example is from the training set.

Listing 13: Python code for converting PDDL domain and problem files to compact form
import re
import sys

def find_parens(s):
""" Finds all parentheses in the string ‘s‘ and returns a dictionary mapping
the start index of each parenthesis to its end index.

Args:
s: A string.

29

Under review as submission to TMLR

Returns:
A dictionary mapping the start index of each parenthesis to its end index.

"""

toret = {}
pstack = []
flag = 0
for i, c in enumerate(s):

if flag == 1 and len(pstack) == 0:
return toret

if c == ’(’:
pstack.append(i)
flag = 1

elif c == ’)’:
toret[pstack.pop()] = i

return toret

def prompt_action(data):
""" Generates a string representation of the action in the given data.

Args:
data: A string containing the definition of an action.

Returns:
A string representation of the action.

"""

Get the name of the action.

action_name = data.split(’\n’)[0]. split(’␣’)[1]. lower ()

Get the precondition of the action.

precondition = data[data.find(’:precondition ’) + 14: data.find(’:effect ’)]
precondition_parens = find_parens(precondition)
precondition_strings = []
for start , end in precondition_parens.items():

precondition_strings.append(precondition[start:end + 1]. strip(’()?’))

Get the effect of the action.

effect = data[data.find(’:effect ’) + 10:]
effect_parens = find_parens(effect)
effect_strings = []
for start , end in effect_parens.items():

effect_strings.append(effect[start:end + 1]. strip(’()?’))

Return a string representation of the action.

return f’<ACTION >␣{action_name}␣{",␣".join(precondition_strings)}␣{",␣".join(
↪→ effect_strings)}␣</ACTION >’

def prompt_problem(data):
""" Generates a string representation of the problem in the given data.

30

Under review as submission to TMLR

Args:
data: A string containing the definition of a problem.

Returns:
A string representation of the problem.

"""

Get the initial state of the problem.

init = data[data.find(’(:init’) + 8:data.find(’(:goal’)]
init_parens = find_parens(init)
init_strings = []
for start , end in init_parens.items():

init_strings.append(init[start:end + 1]. strip(’()?’))

Get the goal state of the problem.

goal = data[data.find(’(:goal’) + 7:]
goal_parens = find_parens(goal)
goal_strings = []
for start , end in goal_parens.items():

goal_strings.append(goal[start:end + 1]. strip(’()?’))

Return a string representation of the problem.

return f’<INIT >␣{",␣".join(init_strings)}␣</INIT >␣<GOAL >␣{",␣".join(goal_strings
↪→)}␣ </GOAL >’

def get_prompt(domain_file , problem_file):
""" Generates a string representation of the domain and problem files.

Args:
domain_file: The name of the domain file.
problem_file: The name of the problem file.

Returns:
A string representation of the domain and problem files.

"""

Read the domain file.

with open(domain_file , ’r’) as f:
domain_data = f.read()

Get the name of the domain.

domain_name = re.findall(r’(?<= domain␣)\w+’, domain_data)[0]

A.6 Token lengths for PDDL and Compact representation

Figure 12a exemplifies the variance in token lengths when utilizing PDDL versus the Compact representation
for the Ferry domain

A.7 Visualization of prompting techniques

We prompt the LLMs using zero-shot, one-shot, and Chain of Thought (CoT) prompting strategies. The
prompts for the planning problems in our dataset, which spans six domains, are obtained using AutoPlanBench

31

Under review as submission to TMLR

(a) Token lengths for PDDL vs Compact Form (b) Plan length distribution of train and test sets

Figure 12: (a) Token length for the Ferry domain. Using the compact form achieves an average 40% reduction
in token length compared to PDDL. (b) Plan length distribution of both train and test sets are carefully
chosen to be similar and within the contextual limitation of the LLMs considered in this paper. Token lengths
are in the x-axis and number of problems/plans per token length are in y-axis.

(Stein & Koller, 2023). An example of the natural language representation for a planning problem from the
blocksworld domain, utilizing zero-shot, one-shot, and CoT prompting, is depicted in Figure 14, 13, 15, 16.
AutoPlanBench also facilitates the parsing of output generated by the LLMs, particularly for CoT prompting,
into a list of action sequences. These sequences are comparable to those generated by a symbolic planner
(e.g., FastDownward) and can be evaluated using the VAL tool.

A.8 Experimental Results

Table 4 in the main paper is presented with non-contributory rows removed. In contrast, Table 7 includes all
rows.
Table 7: Evaluation of plan generation capabilities of Causal , Seq2Seq , and Masked LLMs. For each model,
we report the percentage of satisficing plans (Sat. Plans), the percentage of optimal plans (Opt. Plans), and
the degree of correctness (Deg. Corr.)

Model Input
Representation Method Sat. Plans (%) Opt. Plans (%) Deg. Corr.

E M H E M H E M H

GPT-4
(no-vision)

Causal

Compact
Zero-shot 1.6 0 0 0 0 0 0.04 0 0
One-shot 7.21 2.66 1.78 2.52 0.07 0 0.05 0.02 0.01
CoT 21.28 16.74 11.33 10.74 8.21 4.22 0.27 0.25 0.21
FT - - - - - - - - -

NL
Zero-shot 15.72 10.41 7.78 7.29 3.84 1.25 0.21 0.19 0.07
One-shot 24.78 22.91 22.78 7.31 3.05 1.25 0.28 0.17 0.07
CoT 35.02 34.76 32.93 12.88 10.14 9.21 0.41 0.41 0.37
FT - - - - - - - - -

PDDL
Zero-shot 8.78 6.43 0 3.92 0 0 0.27 0.21 0
One-shot 10.82 6.90 3.31 7.23 2.84 1.21 0.32 0.17 0.04
CoT 22.18 18.55 18.97 9.87 5.21 3.22 0.27 0.18 0.19
FT - - - - - - - - -

code-
davinci-03

Causal

Compact
Zero-shot 4.78 0 0.97 0 0 0 0.21 0 0.04
One-shot 11.54 11.18 10.14 3.27 1.94 0.07 0.21 0.17 0.11
CoT 10.77 4.18 1.92 3.74 1.86 0 0.35 0.31 0.27
FT - - - - - - - - -

NL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 8.23 7.66 5.21 0 0 0 0.04 0.04 0.04
CoT 11.29 9.07 5.22 2.84 1.45 1.01 0.02 0.01 0.01
FT - - - - - - - - -

PDDL
Zero-shot 17.42 11.77 4.38 8.23 6.11 1.84 0.38 0.27 0.21
One-shot 43.52 37.48 31.89 17.57 15.85 14.69 0.57 0.38 0.31
CoT 27.71 19.55 19.97 20.11 14.27 11.25 0.31 0.20 0.23
FT - - - - - - - - -

Continued on next page

32

Under review as submission to TMLR

Table 7: Evaluation of plan generation capabilities of LLMs. (continued)

Model Input
Representation Method Sat. Plans (%) Opt. Plans (%) Deg. Corr.

E M H E M H E M H

T5

Seq2Seq

Compact
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 0.11 0 1.16 0.11 0 0.36 0.02 0 0.03

NL
Zero-shot 0.16 0 0 0 0 0 0.01 0 0
One-shot 1.28 1.01 0 0.17 0 0 0.01 0.01 0
CoT - - - - - - - - -
FT 21.56 18.56 11.23 9.02 2.89 1.01 0.28 0.17 0.06

PDDL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 3.78 0.72 0 0 0 0 0.21 0.06 0

CodeT5

Seq2Seq

Compact
Zero-shot 2.7 0.6 0 1.73 0.6 0 0.07 0 0
One-shot 1.02 0 0 0.03 0 0 0.01 0 0
CoT - - - - - - - - -
FT 97.57 92.46 89.54 86.21 90.36 66.71 0.99 0.95 0.95

NL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 3.82 3.01 3.03 0 0 0 0.03 0.03 0.03

PDDL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 43.89 37.41 30.42 40.84 31.55 21.02 0.61 0.52 0.47

BERT

Masked

Compact
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 10.89 8.42 6.77 3.57 0 0 0.28 0.07 0.01

NL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 1.78 0.91 0 0.07 0 0 0.01 0.01 0

PDDL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 0 0 0 0 0 0 0 0 0
CoT - - - - - - - - -
FT 1.21 0 0 0 0 0 0.01 0 0

StarEncoder

Masked

Compact
Zero-shot 4.21 1.79 0.91 1.44 0.07 0 0.12 0.02 0.01
One-shot 11.02 5.42 1.71 2.08 0 0 0.18 0.07 0.02
CoT - - - - - - - - -
FT 19.44 10.25 5.69 8.92 2.55 2.07 0.25 0.17 0.07

NL
Zero-shot 0 0 0 0 0 0 0 0 0
One-shot 4.05 0 0 1.11 0 0 0.05 0 0
CoT - - - - - - - - -
FT 4.11 1.97 0 0.55 0 0 0.06 0.01 0

PDDL
Zero-shot 7.91 6.22 5.97 5.01 2.11 1.94 0.18 0.08 0.07
One-shot 6.91 5.28 3.97 3.01 1.04 0.24 0.17 0.08 0.07
CoT - - - - - - - - -
FT 21.01 15.66 9.89 17.61 9.78 3.88 0.37 0.21 0.18

33

Under review as submission to TMLR

Zero-shot Prompt

You are an assistant for giving instructions to successfully complete small tasks.
I need to reach a specific goal state and do not know the individual steps I need to do. Please instruct
me how to complete my task.
I can only use objects that are observable in the situation.

My current situation is as follows: There are 4 objects: object_0, object_1, object_2, object_3
Currently, object_0 is on the table, object_1 is clear, object_1 is on object_2, object_2 is on
object_3, object_3 is on object_0, the hand is empty

My task is to execute actions until reaching my goal. My goal is that in the end object_1
is on object_2, object_3 is on object_0, object_2 is on table, object_0 is on table.

I can carry out the following actions:
pick up an object A from the table
put down an object A
stack an object A on top of an object B
unstack an object A from an object B

I have the following restrictions on my actions:
I can only pick up an object A from the table if it is the case that A is clear and A is on the table and
the hand is empty
I can only put down an object A if it is the case that A is being held
I can only stack an object A on top of an object B if it is the case that B is clear and A is being held
I can only unstack an object A from an object B if it is the case that A is on B and A is clear and the
hand is empty

The actions have the following effects on the state:
Once I pick up an object A from the table, it is the case that A is being held
Once I pick up an object A from the table, it is not the case anymore that A is clear and it is not the
case anymore that A is on the table and it is not the case anymore that the hand is empty
Once I put down an object A, it is the case that A is clear and the hand is empty and A is on the table
Once I put down an object A, it is not the case anymore that A is being held
Once I stack an object A on top of an object B, it is the case that the hand is empty and A is clear
and A is on B
Once I stack an object A on top of an object B, it is not the case anymore that B is clear and it is not
the case anymore that A is being held
Once I unstack an object A from an object B, it is the case that A is being held and B is clear
Once I unstack an object A from an object B, it is not the case anymore that A is on B and it is not
the case anymore that A is clear and it is not the case anymore that the hand is empty

Remember: My goal is that in the end object_1 is on object_2, object_3 is on object_0.
As output, only provide the plan which is a list of actions and their associated objects having the
following structure ["action_name object_name", "action_name object_name"]. DO NOT OUT ANY
OTHER INFORMATION.

GPT-4

["unstack object_1 from object_2", "put down object_1", "unstack object_2 from object_3", "put down
object_2", "unstack object_3 from object_0", "put down object_3", "stack object_3 on object_0",
"pick up object_1 from the table", "stack object_1 on object_2"]

Figure 13: An example of zero-shot prompting approach for Blocksworld domain and the output obtained
from GPT-4

34

Under review as submission to TMLR

One-shot Prompt

You are an assistant for giving instructions to successfully complete small tasks.
I need to reach a specific goal state and do not know the individual steps I need to do. Please instruct me how
to complete my task.
I can only use objects that are observable in the situation.

Exemplar:
My current situation is as follows: There are 2 objects: object_0, object_1
Currently, object_0 is clear, object_1 is clear, the hand is empty.
My goal is that in the end object_0 is on object_1
Plan: ["stack object_0 on object_1"]

My current situation is as follows: There are 4 objects: object_0, object_1, object_2, object_3 Currently,
object_0 is on the table, object_1 is clear, object_1 is on object_2, object_2 is on object_3, object_3 is on
object_0, the hand is empty

My task is to execute actions until reaching my goal. My goal is that in the end object_1 is on
object_2, object_3 is on object_0, object_2 is on table, object_0 is on table.

I can carry out the following actions:
pick up an object A from the table
put down an object A
stack an object A on top of an object B
unstack an object A from an object B

I have the following restrictions on my actions:
I can only pick up an object A from the table if it is the case that A is clear and A is on the table and the
hand is empty
I can only put down an object A if it is the case that A is being held
I can only stack an object A on top of an object B if it is the case that B is clear and A is being held
I can only unstack an object A from an object B if it is the case that A is on B and A is clear and the hand is
empty

The actions have the following effects on the state:
Once I pick up an object A from the table, it is the case that A is being held
Once I pick up an object A from the table, it is not the case anymore that A is clear and it is not the case
anymore that A is on the table and it is not the case anymore that the hand is empty
Once I put down an object A, it is the case that A is clear and the hand is empty and A is on the table
Once I put down an object A, it is not the case anymore that A is being held
Once I stack an object A on top of an object B, it is the case that the hand is empty and A is clear and A is
on B
Once I stack an object A on top of an object B, it is not the case anymore that B is clear and it is not the
case anymore that A is being held
Once I unstack an object A from an object B, it is the case that A is being held and B is clear
Once I unstack an object A from an object B, it is not the case anymore that A is on B and it is not the case
anymore that A is clear and it is not the case anymore that the hand is empty

Remember: My goal is that in the end object_1 is on object_2, object_3 is on object_0.
As output, only provide the plan which is a list of actions and their associated objects having the following
structure ["action_name object_name", "action_name object_name"]. DO NOT OUT ANY OTHER
INFORMATION.

GPT-4

["unstack object_3 from object_0", "put down object_3", "unstack object_2 from object_1", "put down
object_2", "unstack object_1 from object_2", "put down object_1", "pick up object_1 from the table", "stack
object_1 on object_2", "pick up object_3 from the table", "stack object_3 on object_0"]

Figure 14: An example of one-shot prompting approach for Blocksworld domain and the output obtained
from GPT-4

35

Under review as submission to TMLR

Chain-of-Thought Prompt

You are an assistant for giving instructions to successfully complete small tasks.
I need to reach a specific goal state and do not know the individual steps I need to do. Please instruct me how to complete my
task.
I can only use objects that are observable in the situation.

My current situation is as follows: There are 4 objects: object_0, object_1, object_2, object_3 Currently, object_0 is on the
table, object_1 is clear, object_1 is on object_2, object_2 is on object_3, object_3 is on object_0, the hand is empty

My task is to execute actions until reaching my goal. My goal is that in the end object_1 is on object_2, ob-
ject_3 is on object_0, object_2 is on table, object_0 is on table.

I can carry out the following actions:
pick up an object A from the table
put down an object A
stack an object A on top of an object B
unstack an object A from an object B

I have the following restrictions on my actions:
I can only pick up an object A from the table if it is the case that A is clear and A is on the table and the hand is empty
I can only put down an object A if it is the case that A is being held
I can only stack an object A on top of an object B if it is the case that B is clear and A is being held
I can only unstack an object A from an object B if it is the case that A is on B and A is clear and the hand is empty

The actions have the following effects on the state:
Once I pick up an object A from the table, it is the case that A is being held
Once I pick up an object A from the table, it is not the case anymore that A is clear and it is not the case anymore that A is
on the table and it is not the case anymore that the hand is empty
Once I put down an object A, it is the case that A is clear and the hand is empty and A is on the table
Once I put down an object A, it is not the case anymore that A is being held
Once I stack an object A on top of an object B, it is the case that the hand is empty and A is clear and A is on B
Once I stack an object A on top of an object B, it is not the case anymore that B is clear and it is not the case anymore that A
is being held
Once I unstack an object A from an object B, it is the case that A is being held and B is clear
Once I unstack an object A from an object B, it is not the case anymore that A is on B and it is not the case anymore that A
is clear and it is not the case anymore that the hand is empty

Here are some examples
My goal is that in the end object_2 is on object_1
I: My current initial situation is as follows:
There are 4 objects: object_0, object_1, object_2, object_3
Currently, object_0 is clear, object_0 is on the table, object_1 is being held, object_2 is clear, object_2 is on the table,
object_3 is clear, object_3 is on the table
You:
Think: [TODO: ADD REASONING THOUGHT]
Instruction: put down object object_1
I: I put down object object_1.
You:
Think: [TODO: ADD REASONING THOUGHT]
Instruction: pick up object object_2 from the table
I: I pick up object object_2 from the table.
You:
Think: [TODO: ADD REASONING THOUGHT]
Instruction: stack object object_2 on top of object object_1
I: I stack object object_2 on top of object object_1.
You:
Think: object_2 is on object_1
Instruction: You are finished.
I: Great!

Please provide me a step-by-step instruction for how to complete my task. Remember: My goal is that in the end object_1 is
on object_2, object_3 is on object_0.
Please provide each step in a new line.

Figure 15: An example of chain-of-thought prompting approach for Blocksworld domain, Part 1

36

Under review as submission to TMLR

GPT-4

Think: First, I need to clear object_0 so that it can be moved. To do this, I need to unstack object_3
from object_0.
Instruction: unstack object_3 from object_0

Think: Now that object_0 is clear, I can pick it up.
Instruction: pick up object_0 from the table

Think: Now that I’m holding object_0, I need to place it on object_2. But first, I need to clear
object_2. To do this, I need to unstack object_1 from object_2.
Instruction: unstack object_1 from object_2

Think: Now that object_2 is clear, I can stack object_0 on it.
Instruction: stack object_0 on top of object_2

Think: Now that object_0 is on object_2, I need to place object_3 on object_0. But first, I need to
pick up object_3.
Instruction: pick up object_3 from the table

Think: Now that I’m holding object_3, I can stack it on object_0.
Instruction: stack object_3 on top of object_0

Think: Now object_0 is on object_2 and object_3 is on object_0, which is the final goal.
Instruction: You are finished.

Figure 16: An example of chain-of-thought prompting approach for Blocksworld domain, Part 2

37

	Introduction
	Background and Related Work
	Automated Planning
	LLMs for Plan Generation

	Research Questions
	Experimental Setup
	Planning Datasets
	Large Language Models
	Plan Generalization

	Experimental Results
	Plan Generation
	Plan Generalization

	Conclusion and Future Work
	Appendix
	Frequently Asked Questions
	Will the codebase be made publicly available?
	What is the reason for taking 18,000 problems per domain for fine-tuning?
	What is the significance of using FastDownward planner to generate the dataset?

	Language Modeling Architectures
	Example of a Planning Problem
	Planning Dataset
	Description of the domains
	Ferry
	Blocksworld
	Miconic
	Tower of Hanoi
	Grippers
	Driverlog

	Visualization of compact form
	Token lengths for PDDL and Compact representation
	Visualization of prompting techniques
	Experimental Results

