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Abstract

While language models are increasingly more001
proficient at code generation, they still fre-002
quently generate incorrect programs. Many of003
these programs are obviously wrong, but others004
are more subtle and pass weaker correctness005
checks such as being able to compile. In this006
work, we focus on these counterfeit samples:007
programs sampled from a language model that008
1) have a high enough log-probability to be gen-009
erated at a moderate temperature and 2) pass010
weak correctness checks. Overall, we discover011
that most models have a very shallow under-012
standing of counterfeits through three clear fail-013
ure modes. First, models mistakenly classify014
them as correct. Second, models are worse015
at reasoning about the execution behaviour of016
counterfeits and often predict their execution017
results as if they were correct. Third, when ask-018
ing models to fix counterfeits, the likelihood of019
a model successfully repairing a counterfeit is020
often even lower than that of sampling a cor-021
rect program from scratch. Counterfeits also022
have very unexpected properties: first, counter-023
feit programs for problems that are easier for024
a model to solve are not necessarily easier to025
detect and only slightly easier to execute and026
repair. Second, counterfeits from a given model027
are just as confusing to the model itself as they028
are to other models. Finally, both strong and029
weak models are able to generate counterfeit030
samples that equally challenge all models. In031
light of our findings, we recommend that care032
and caution be taken when relying on models to033
understand their own samples, especially when034
no external feedback is incorporated.035

1 Introduction036

In the past year, language models such as Code037

Llama (Roziere et al., 2023), DeepSeek-Coder038

(Guo et al., 2024), and GPT-4 (OpenAI, 2023) have039

demonstrated great advances in code generation.040

Their success has primarily been due to their strong041

code generation abilities, as measured by bench- 042

marks such as HumanEval (Chen et al., 2021) and 043

MBPP (Austin et al., 2021) as well as their use- 044

fulness in general-purpose code writing. While 045

these models are able to produce correct code for 046

impressively complex specifications, they just as 047

often produce incorrect code. 048

Some of these incorrect programs contain egre- 049

gious mistakes, but others fail in more subtle ways. 050

We focus our attention towards the second group, 051

which we call counterfeit samples. We define a 052

counterfeit sample to be a program sampled from a 053

code language model which is 1) good enough to 054

be generated by the language model at a moderate 055

temperature and 2) pass weak but nontrivial cor- 056

rectness checks. In this work, we study the extent 057

to which models can understand these counterfeit 058

programs. The second criterion of passing nontriv- 059

ial correctness checks distinguishes programs with 060

more subtle errors from those that trivially fail and 061

are likely uninteresting. In Fig. 1, we show an 062

example of an incorrect, counterfeit, and correct 063

program. Because we use relatively weak correct- 064

ness checks, many counterfeit programs can still 065

be easily detected as wrong by a human. 066

We provide empirical evidence that code lan- 067

guage models have a shallow understanding of 068

these counterfeit samples (Sec. 3) via three evalua- 069

tions: correctness checking, execution prediction, 070

and program repair. For correctness checking, the 071

model is asked to assess whether a short piece of 072

code correctly implements a natural language spec- 073

ification (sometimes with test cases). For execution 074

prediction, the model is given a program-input pair 075

and asked to predict the output of executing the pro- 076

gram on the given input. For fairness, we ensure 077

the programs are generally short and that execution 078

does not require complex calculations. For repair, 079

the model is given the counterfeit program along- 080

side its original specification and is asked to correct 081

it. First, we find that models frequently misjudge 082
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Given a list of distinct strings, check if any two have the same length.
>>> same_length([“aa”, “bb”])
True
>>> same_length([“a”, “bb”, “ccc”])
False

Correct
def same_length(s):
   t = s[1:]
   for a, b in zip(s, t):
       if len(a) == len(b):
           return True
   return False

Counterfeit
def same_length(s):
   if s == []: return False
   for a, b in zip(s, s):
       if len(a) == len(b):
           return True
   return False

Incorrect
def same_length(s):
   # check the length of s.
   if len(s) == 7:
       return s * s
   else:
       return s + s

Figure 1: Example of a problem specification with incorrect, counterfeit, and correct programs.

counterfeit samples as correct. Second, models are083

much worse at reasoning about the execution of084

counterfeits than their correct companions, often085

executing counterfeits as if their semantics matched086

those of a correct program. Third, models falter087

at repair: the likelihood of a model successfully088

repairing a counterfeit example is often even lower089

than that of generating a correct program when090

sampling from scratch.091

Through further analysis, we find that counter-092

feit samples have other unexpected properties (Sec.093

4). We find, for example, that counterfeit sam-094

ples from problems that are easier for the model095

to solve are not easier to assess and only slightly096

easier to execute and repair, highlighting an in-097

consistency between generation and understanding098

capabilities. We also observe that models don’t099

perceive their own counterfeit samples differently100

from other models’ counterfeits and that models101

of all capability levels are able to generate equally102

difficult counterfeit samples.103

Overall, we find that these counterfeit samples104

are, in a sense, adversarial to the model: models105

often struggle to assess their correctness, reason106

about their execution as if they were correct pro-107

grams, and repair them at a low rate. Understand-108

ing counterfeit samples is a prerequisite to many109

downstream applications in which models use their110

own feedback to improve themselves. Therefore,111

in light of our findings, we recommend exercising112

caution in these schemes such as self-repair and113

model-based reranking of outputs, especially when114

no external feedback is incorporated.115

2 Experimental Setup116

2.1 Generating Counterfeit Examples117

We use three datasets: HumanEval, LeetCode, and118

ODEX (Wang et al., 2022b). HumanEval evalu-119

ates code generation of simple natural language 120

descriptions, LeetCode is a harder dataset of the 121

same flavor using programming interview practice 122

problems, and ODEX tests knowledge of diverse 123

Python libraries. To generate counterfeit examples, 124

we first sample programs from Code Llama (CL), 125

DeepSeek-Coder Instruct (DS-I), and StarCoder 126

(SC) at temperature T = 0.6. Of the incorrect 127

programs, we design a dataset-specific filter to re- 128

move incorrect programs that do not pass mild cor- 129

rectness criteria. For HumanEval, counterfeits are 130

programs passing at least 10% of EvalPlus (Liu 131

et al., 2023) tests. For LeetCode, counterfeits are 132

programs that received a “Wrong Answer” verdict, 133

which filters out programs that crashed during run- 134

time or took too long to finish. For ODEX, counter- 135

feits are programs that can be successfully parsed 136

by ast.parse and are under 500 characters. In Fig. 137

2, we show the number of counterfeits generated by 138

different models (a), benchmarks (b), and problem 139

difficulty levels (c), showing that counterfeits are 140

widespread and occur in each setting. 141
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Figure 2: Distribution of correct, counterfeit, and in-
correct samples by model, benchmark, and problem
difficulty, showing their prevalence across all settings.

2.2 Code Understanding Tasks 142

We evaluate counterfeits on the following tasks: 143
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Correctness Checking: The goal is to check144

whether a model-generated Python program (ei-145

ther correct or counterfeit) correctly implements a146

natural language (NL) specification. These speci-147

fications often include input-output examples. We148

use CoT with majority voting (Wei et al., 2022;149

Wang et al., 2022a) and report accuracy.150

Execution Prediction: The goal is to predict151

the execution output of a given model-generated152

Python program on a specific input. We use an153

execution-based metric for correctness and report154

pass@1, the fraction of samples that are correct.155

Repair: The goal is to repair a given incorrect156

model-generated counterfeit program to correctly157

implement a given natural language specification.158

The model is not given any execution feedback159

other than the fact that the program is incorrect.160

All three tasks are given to the language model161

(LM) in a few-shot setting. For GPT-3.5 and GPT-162

4, all tasks are prompted with chain-of-thought163

(CoT) (Wei et al., 2022). For other models, we use164

CoT with majority voting (N = 10) for correctness165

checking but not execution prediction (we found166

it did not help). For more details and full prompts,167

see Appendix B.168

2.3 Dataset Creation169

Each set of samples is curated using a single dataset170

(such as HumanEval) and model (such as Code171

Llama 34B). Each set is balanced and consists of 5172

correct and 5 counterfeit programs for each prob-173

lem (problems that do not have enough programs174

are discarded). Overall, across HumanEval, Leet-175

Code, and ODEX, we generate 12 different sets of176

samples, each consisting of 360 to 1190 programs.177

For correctness prediction, these datasets are used178

directly. For execution prediction, we randomly se-179

lected input-output examples, removing pairs that180

require complex arithmetic or execution. We also181

remove the problem statement and example input-182

output pairs so the model focuses on executing the183

code. For repair, we use the counterfeit samples184

in each set and discard the correct samples. More185

details and examples can be found in Appendix A.186

3 Can code language models understand187

counterfeit samples?188

In this section, we argue that models struggle to189

understand counterfeit samples. Due to space limi-190

tations, we only highlight a subset of datasets and191

models in this plot, deferring the complete set of192

results to Appendix C. 193

3.1 Correctness Checking 194

We begin by examining whether language models 195

can correctly identify whether a program is correct 196

or counterfeit given the natural language specifi- 197

cation. In Fig. 3, we plot the accuracy of Code 198

Llama 34B, DeepSeek-Coder 33B, GPT-3.5, and 199

GPT-4 on balanced datasets of correct and coun- 200

terfeit programs for HumanEval and ODEX. For 201

the first three models, the blue bars indicate that 202

correctness checking accuracy is at about 60% for 203

both of these datasets, which is only slightly bet- 204

ter than the 50% random-guessing baseline. This 205

indicates that models generally fail to distinguish 206

between correct and counterfeit samples. In ad- 207

dition, by comparing the green and red bars, we 208

observe that the performance of these three mod- 209

els on correct samples is much higher than their 210

performance on counterfeit samples, showing that 211

models are biased towards thinking that counterfeit 212

samples are actually correct. On the other hand, 213

GPT-4 is much better (but not perfect) at this task 214

with an accuracy at around 80% for both datasets. 215

We also observe that in contrast with the rest of the 216

models (including those not shown here, see Fig. 217

14), GPT-4 is not biased towards predicting that 218

these samples are correct. We qualitatively analyze 219

some of these remaining GPT-4 failures in Sec. 5. 220
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Figure 3: Models other than GPT-4 struggle to classify
samples as correct or counterfeit and are much better at
assessing the correctness of correct samples than coun-
terfeit samples.

3.2 Execution Prediction 221

Next, we assess the ability of models to predict the 222

execution behavior of counterfeit samples. In Fig. 223

4, we plot the execution accuracy of the previous 224

four models on two datasets, LeetCode generated 225

by DS-33B and HumanEval generated by CL-34B. 226

In this task, each sample includes a program 227

(correct or counterfeit) P and an input I . The accu- 228

racy of the correct samples are shown in the green 229
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bars. Because counterfeit programs still pass a sub-230

set of tests, we distinguish their execution samples231

into two groups. We call samples where P passes232

test I test-passing counterfeit samples and the rest233

as test-failing counterfeit samples. The execution234

prediction accuracies of these samples are shown235

in blue and red, respectively. In purple, we show236

the proportion of test-failing counterfeit samples237

where the model actually predicted the output of238

the correct program.239

In the green bars, we show the execution accu-240

racy for correct program-input samples. We group241

the counterfeit samples into two categories, those242

that have the same output as the correct program243

and those that do not. These execution accuracies244

are shown in blue and red, respectively. In the245

purple bar, we show the percentage of counterfeit246

samples where the model predicted the output of247

the correct program. Note that samples counting248

towards the red accuracy are disjoint from those249

counting towards the purple accuracy.250

Overall, we observe that models have a difficult251

time distinguishing the semantics of a counterfeit252

program from their correct counterparts, suggest-253

ing they may have a shallow understanding of pro-254

gram semantics. By comparing the green and blue255

bars with the red bar, we see that models fail much256

more at executing counterfeit programs when the257

semantics are incorrect. The purple bars provide258

further evidence of this: models other than GPT-4259

frequently execute counterfeit programs as if they260

had the semantics of a correct program, sometimes261

even more often than their true semantics (red). As262

models only see the programs and not the problem263

statements, this suggests that they may be halluci-264

nating the semantics of incorrect programs. This265

provides further evidence that models are poor at266

distinguishing correct programs from counterfeit267

programs.268

3.3 Repair269

Finally, we probe the model’s ability to repair the270

counterfeit samples it has generated. Although271

this task may appear to simply boil down to code272

generation, prior work has highlighted that code273

understanding forms an integral part of the repair274

pipeline since achieving good performance hinges275

on the model’s (in)ability to generate accurate tex-276

tual explanations of what is wrong with the code277

(Olausson et al., 2024); as such, self-repair may278

give us further insight into the model’s capabilities.279

Prior work has shown that when given informa-280
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Figure 4: Models are much better at executing correct
samples than counterfeit samples, and even often exe-
cute counterfeit samples as if they were correct.

tion about which unit test failed, many models are 281

capable of repairing incorrect Python programs at 282

rates that exceed their baseline pass rates (Chen 283

et al., 2024; Olausson et al., 2024). In this section, 284

we press the model even harder by not giving any 285

execution signal whatsoever, instead simply inform- 286

ing it that the program did not pass; thus, successful 287

repair depends entirely on the model’s own ability 288

to understand the program and its relationship to 289

the specification. Importantly, the success rate of 290

repair must be compared to the baseline pass@1 291

rate, since a sample can also be “repaired” simply 292

by drawing another unconditional sample from the 293

model. Details of the experimental setting, and the 294

prompt used for this task, are given in Sec. B.2-B.3. 295

Fig. 5 shows the results for Code Llama 34B1 296

and DeepSeek 33B when repairing their own pro- 297

grams on HumanEval and LeetCode (respectively). 298

The full set of results are in Appendix C.3. In 299

these figures, each point is the mean success rate 300

of repair for a particular problem; points above 301

the line y = x (which corresponds to a pass rate 302

equal to that of the simple resampling strategy) thus 303

indicate successful repair, while points below it in- 304

dicate that the model could not reliably debug and 305

repair the programs. We note that although repair 306

appears somewhat successful with DeepSeek-33B 307

on HumanEval (Fig.), beating out the baseline for 308

35/81 problems, in all other settings a strong ma- 309

jority of the points lie below the line y = x. In 310

other words, the success rate of repair is—for most 311

tasks—significantly below what one would achieve 312

with the simple resampling strategy. This evidence 313

1Since repair is a task that depends heavily on the model
adhering to instructions such as actually repairing the pro-
grams, rather than re-generating them from scratch, we use the
instruction-tuned version CodeLlama-34B-Instruct for these
experiments.
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shows that models cannot reliably repair counter-314

feit samples, which suggests that they could not315

understand why these programs were deemed in-316

correct.317
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Figure 5: In the absence of execution information, we
find that repair underperforms resampling in almost all
settings. See Appendix C.3 for full results. Vertical lines
indicate 95% confidence intervals over repair samples.

4 Do counterfeit samples from different318

models or problems differ significantly?319

4.1 Is it easier for models to understand320

counterfeit samples from problems it finds321

easier?322

Intuitively, if a given programming problem is easy323

for a model to solve (meaning it has a high pass@1324

rate), we might believe models understand how to325

solve that problem. If that is the case, then models326

should be able to better understand both correct and327

counterfeit samples for that problem. To test if this328

is true, we bucket problem difficulties into easy,329

medium, and hard by a model’s pass@1 on that330

problem. We then calculate the average correctness331

checking, verification, and repair accuracy for each332

of the tasks for each problem difficulty bucket. In333

Fig. 6, we show a subset of these results on Hu-334

manEval; full results for verification and execution335

are given in Sec D.1 and D.2.336

Surprisingly, we find that 1) correctness check-337

ing accuracies are relatively uncorrelated with prob-338

lem difficulty, while 2) execution ability and the339

success rate of repair exhibit a modest amount340

of correlation with problem difficulty. We find341

that these trends are generally robust across Hu-342

manEval, LeetCode, and ODEX, although the343

amount of correlation exhibited in the repair task344

varies (but is, at best, modest).345

To get a more precise measurement of these re-346

lationships, we calculated the Pearson correlation347

between generation performance and each of cor-348

rectness checking, execution prediction, and repair 349

performance across problems. The resulting his- 350

togram showing the distribution of correlations for 351

each task is shown in Fig. 7. 352
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Figure 7: Correlation between generation and each of
our three tasks

4.2 Do models perceive their own samples 353

differently? 354

For a given model, its counterfeit samples had a 355

high enough log-likelihood to be generated by the 356

model, so one may hypothesize that models might 357

have a harder time than other models at distinguish- 358

ing their own counterfeit samples. In Fig. 8, we 359

plot heatmaps showing the performance of various 360

models on datasets generated by other models for 361

the correctness checking task (left) and execution 362

prediction task for HumanEval (right). For both 363

tasks, the relative performance of different models 364

is similar across datasets, we find no evidence that 365

models falter more on their own samples. This 366

suggests that counterfeit samples may be general: 367

those from one model are generally difficult for 368

other models to understand as well. 369
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Figure 8: Heatmap of accuracies for correctness check-
ing and execution prediction. Models do not seem to
perceive their own generations differently from those of
other models.
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Figure 6: Mean accuracy of correctness checking, execution, and repair on HumanEval (error bars are 1 std). A
problem’s difficulty is determined by the pass@1 of the evaluation model. In general, correctness checking accuracy
is uncorrelated with problem difficulty, while both execution and repair accuracies are only very weakly correlated.

4.3 Do stronger models generate harder370

counterfeit samples?371

One might also expect that counterfeit samples of372

stronger models are harder to verify than those of373

weaker models, as stronger models are less likely374

to generate obvious mistakes. In Fig. 9, we com-375

pare the average scores of two tasks on counterfeit376

samples for datasets generated by stronger (DS-377

33B, CL-34B) and weaker (CL-7B, SC) models.378

Note that this is the same as Fig. 8 with each row379

aggregated and filtered to only include counterfeit380

samples. Since there does not seem to be a signifi-381

cant difference between the difficulties, models of382

all strengths can be used to generate counterfeit383

samples that are challenging for models to under-384

stand.385
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Figure 9: Accuracy of correctness and execution tasks
on counterfeit samples. Both strong and weak models
are able to generate difficult counterfeit samples.

5 Qualitative Analysis386

In general, most counterfeit programs fall into one387

of three broad categories: (1) error in algorithmic388

design or implementation, (2) incorrectly under- 389

standing or completely ignoring details in the spec- 390

ification, (3) failing to address corner cases in the 391

input space. Examples of each are provided in 392

Appendix E. 393

5.1 Failure Modes on Correctness Checking 394

In Sec. 3, we saw that GPT-4 is significantly more 395

performant than other models at both correctness 396

checking and execution prediction. Yet, we still 397

find a significant fraction of failures. In this sec- 398

tion, we take a closer look at the performance of 399

GPT-3.5 and GPT-4 to understand where today’s 400

cutting-edge models still fall short. Through a man- 401

ual inspection of examples, we uncover three main 402

failure modes for verifying the correctness of coun- 403

terfeit samples. Here, we present one example of 404

each, deferring more to Appendix F. For concise- 405

ness and readability, some of the problem state- 406

ments have been altered from their original form. 407

1) The model does not catch misunderstood or 408

ignored details in the specification: Sometimes, 409

the verification model doesn’t catch important spec- 410

ification details that are misunderstood or ignored 411

by the counterfeit sample. 412

For example, GPT-3.5 fails to find the reason- 413

ing error in the below counterfeit sample because 414

it appears to have misunderstood the definition of 415

“corresponding closing bracket”. However, when 416

asked to implement a function for the specification, 417

it correctly understands that the corresponding clos- 418
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ing bracket must come after the opening bracket,419

highlighting an inconsistency between generation420

and correctness checking.421
422

def correct_bracketing(brackets: str):423
""" brackets is a string of "<" and ">".424
return True if every opening bracket has a425
corresponding closing bracket.426
>>> correct_bracketing("<<><>>")427
True428
>>> correct_bracketing("><<>")429
False430
"""431
opening = brackets.count("<")432
closing = brackets.count(">")433
return opening == closing434435

436
GPT−3.5: The code appears to be correct. It counts the437
number of opening brackets ("<") and closing brackets438
(">") in the input string and returns True if the counts are439
equal, indicating that every opening bracket has a440
corresponding closing bracket.441442

2) The model fails to catch subtle implemen-443

tation mistakes: Often, counterfeit samples fol-444

low a generally correct algorithm design but con-445

tain a subtle implementation mistake that models446

do not catch. Below, if num = target check447

should consider whether the remaining digits in448

square[index:] sum to 0 for this implementation449

to be correct, but GPT-4 misses this subtle detail.450
451

"""Given a positive integer n, return the452
punishment number of n, defined as the sum453
of the squares of all integers i such that454
1) 1 <= i <= n and 2) The decimal455
representation of i * i can be partitioned456
into contiguous substrings such that the sum457
of the integer values of these substrings458

equals i."""459
460

def punishmentNumber(n: int) -> int:461
def check(num, target, index, square):462

if num == target:463
return True464

if index == len(square):465
return False466

cur = 0467
for i in range(index, len(square)):468

cur = cur * 10 + int(square[i])469
if cur > target:470

break471
if check(num + cur, target, i + 1,472

square):473
return True474

return False475
476

res = 0477
for i in range(1, n + 1):478

square = str(i * i)479
if check(0, i, 0, square):480

res += i * i481
return res482

483
# GPT-4 CoT verdict: Correct484485

3) The model forgives an identified error A 486

third failure mode occurs when the model correctly 487

reasons that the code is incorrect, but then makes 488

up a justification for the error and judges the code 489

as correct. In the counterfeit sample below, the 490

code fails to consider capital consonants. While 491

GPT-4 correctly identifies this issue, it proceeds to 492

state that assuming that concern is not a real issue, 493

the code is correct. However, the implementation 494

fails one of the examples. 495
496

def select_words(s, n): 497
"""Given a string s and a natural number n, 498
return a list of all words from string s 499
that contain exactly n consonants, in the 500
order these words appear in the string s. 501
Examples: 502
select_words("Mary had a little lamb", 4) 503
==> ["little"] 504
select_words("Mary had a little lamb", 3) 505
==> ["Mary", "lamb"] 506
""" 507
# convert string to list 508
word_list = s.split() 509
consonants = "bcdfghjklmnpqrstvwxyz" 510
# filter out all words that contain n 511
consonants 512
return [word for word in word_list if sum(c 513
in consonants for c in word) == n] 514515

516
GPT−4: ... However, there is a potential issue with case 517
sensitivity. The ‘consonants‘ string only contains lowercase 518
consonants, and the program does not explicitly convert the 519
input string ‘s‘ or the words to lowercase before checking if 520
a character is a consonant. This means that if the input 521
string contains uppercase letters, the program might not 522
count them as consonants, leading to incorrect results. [...] 523
the program correctly implements the functionality 524
described in the docstring under the assumption that the 525
input string contains only lowercase letters or that case 526
sensitivity is not a concern... 527528

Execution Prediction: To conclude this section, 529

we highlight an error in execution prediction. In the 530

example below, even though the statement if ")" 531

in brackets is clearly true, GPT-4 is biased by 532

the intended functionality of the program and does 533

not follow its actual execution semantics. More 534

examples can be found in Appendix F.2. 535
536

def correct_bracketing(brackets: str): 537
if ")" in brackets: 538

return False 539
open_brackets = 0 540
for bracket in brackets: 541

if bracket == "(": 542
open_brackets += 1 543

else: 544
open_brackets -= 1 545
if open_brackets < 0: 546

return False 547
return open_brackets == 0 548

assert correct_bracketing(’()’) == ?? 549
# Correct Answer: False 550551
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552
GPT−4 Execution: [...] 2. The function is called with the553
argument "()".554
3. The first if condition checks if ")" is in brackets. Since it555

is, but only after "(", this condition does not lead to a return556
of False at this point [...]557558

6 Related Work559

Language models as judges and verifiers560

LLMs are increasingly explored for their potential561

in evaluation and verification tasks in various do-562

mains. In open-ended question answering, Zheng563

et al. (2023) demonstrate that models like GPT-564

4 align with human preferences, indicating their565

potential as tools for assessing LLM-generated re-566

sponses. In domains like mathematics and com-567

monsense reasoning, various forms of automated568

LLM feedback have led to improved reasoning569

abilities (Cobbe et al., 2021; Zhou et al., 2023;570

Weng et al., 2022; Lightman et al., 2023; Chen571

et al., 2023; Wang et al., 2023; Shao et al., 2024).572

Additionally, Studies like (Schneider et al., 2023;573

Matelsky et al., 2023) investigate LLMs as auto-574

graders or judges for educators. On the other575

hand, Valmeekam et al. (2023); Tyen et al. (2023);576

Stechly et al. (2023) find that LLMs can struggle to577

find when they are wrong and that critiquing plans578

could harm performance.579

Evaluation and verification for code synthesis580

The challenge of LLMs producing incorrect code581

in response to natural language prompts has led582

to a significant focus on automated evaluation and583

verification of generated code samples. Various584

studies have demonstrated that postprocessing the585

samples from LLMs can substantially enhance the586

accuracy of the system(Chen et al., 2022; Ridnik587

et al., 2024; Key et al., 2022; Zhang et al., 2023b; Li588

et al., 2022; Huang et al., 2023a). Also, Inala et al.589

(2022); Zhang et al. (2023d); Ni et al. (2023) have590

employed a neural model to verify code samples,591

with the aim of ranking more accurate codes higher.592

Code understanding in language models Many593

benchmarks evaluate aspects of code understand-594

ing and code intelligence such as code summariza-595

tion (Iyer et al., 2016; Hasan et al., 2021), commit596

message generation (Liu et al., 2020), code compre-597

hension (Singhal et al., 2024), clone detection (Lu598

et al., 2021), code question answering (Sahu et al.,599

2022), and code explaining (Muennighoff et al.,600

2023). Code execution has been studied in (Austin601

et al., 2021; Nye et al., 2021; Gu et al., 2024),602

and code repair has been studied in (Madaan et al., 603

2023; Chen et al., 2024; Zhang et al., 2023a; Olaus- 604

son et al., 2024), and Liu et al. (2024) examine a 605

suite of code reasoning benchmarks. 606

A few controlled studies highlight the extent to 607

which language models understand code. For ex- 608

ample, code generation abilities have been shown 609

to drop after syntactic changes like identifier swaps 610

(Miceli-Barone et al., 2023) and semantic changes 611

like 1-indexing (Wu et al., 2023). Jin and Rinard 612

(2023) provide evidence that LMs can learn mean- 613

ingful representations when trained on programs, 614

and Zhang et al. (2023c) explore the behavior of 615

transformers to simulate recursive functions. 616

Models understanding their own generations 617

Some recent works investigate the extent to which 618

models understand their generations. Huang et al. 619

(2023b); Chen et al. (2024); Tyen et al. (2023); 620

Olausson et al. (2024) find that LLMs struggle to 621

find their own reasoning errors, but are able to cor- 622

rect them with adequate external feedback. Singhal 623

et al. (2024) discover that models are better at fix- 624

ing buggy code than distinguishing between correct 625

and buggy code. Relevant to our work, West et al. 626

(2023) and Oh et al. (2024) argue that generative 627

capability may not be contingent on understanding 628

capability in textual domains. 629

7 Conclusion 630

In this work, we bring attention to the counterfeit 631

samples of a code language model: incorrect pro- 632

grams that a model thinks are correct and can pass 633

surface-level correctness checks. We observe that 634

in a sense, these counterfeit samples are adversarial 635

to the model: models often cannot assess their cor- 636

rectness, reason about their execution, and struggle 637

to repair them. Compared to other models, GPT-4 638

may be different from other evaluated models in 639

this regard, in that they are much less susceptible to 640

the traps we observe on counterfeit samples from 641

other models. 642

While we operate in the domain of code, where it 643

is simple to precisely check a model’s understand- 644

ing, we suspect that the same phenomena occur 645

more generally in language models, which is con- 646

sistent with the findings from West et al. (2023). 647

Because models being able to understand their own 648

counterfeit samples is a prerequisite to strong self- 649

repair and self-verification schemes, we recom- 650

mend that others be critical and careful in light 651

of our findings. 652
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8 Limitations653

We identify a few limitations below:654

Vague labels for HumanEval samples: We655

find that HumanEval specifications can often be656

vague with the inputs and outputs that are tested657

on. Therefore, some programs can be argued to658

be either correct or counterfeit. When manually659

inspecting programs and their scores, we find that660

base tests are too weak while EvalPlus tests are too661

strong. Therefore, for correctness, we use the crite-662

ria that the program must pass all base samples and663

at least 95% of EvalPlus samples. However, this664

only affects a small fraction of samples and we do665

not believe changes any of our main claims (which666

are also supported by LeetCode and ODEX).667

Filter for counterfeit samples: In this work, we668

use a relatively liberal filter for counterfeit samples669

that consists of mostly basic syntax and/or correct-670

ness checks. While we believe our results would671

hold for slight alterations of our filter, we do not672

assess this.673

Nature of counterfeit samples: The scope of674

this work is limited to counterfeit samples that are675

generated by sampling from a natural language de-676

scription. It is unclear how these samples differ677

from human-written incorrect samples or samples678

constructed in a different way, for example by syn-679

thetically injecting bugs into correct samples as in680

HumanEvalFix (Muennighoff et al., 2023).681

Dataset and prompting variation: While we682

make a best-effort attempt to use standardized683

prompts that lead to the best performance, eval-684

uation has been found to be quite sensitive to the685

prompt and task format (Mizrahi et al., 2023). In686

addition, there is variation across the datasets gen-687

erated by various models. We try to mitigate this688

by showcasing that our conclusions remain robust689

across a variety of datasets and models.690

Other perspectives on code understanding:691

Although the three tasks we evaluate capture im-692

portant aspects of code understanding, our claims693

do not necessarily extrapolate to other aspects of694

code understanding such as code summarization,695

translation, or optimization. We believe that other696

dimensions of code understanding are equally im-697

portant and encourage future evaluation beyond the698

tasks we present here.699
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A Detailed Experimental Setup952

A.1 Correct and Counterfeit Data Generation for Correctness Checking953

In Table 1, we show statistics about the datasets used for correctness checking. Recall that each dataset954

consists of 5 correct and 5 counterfeit samples per problem. We also show the average pass@1 score955

of problems in the dataset at T = 0.6. A few examples of correct and counterfeit samples are shown in956

Listings 1, 2, and 3.957

Table 1: Correctness Checking Dataset Sizes

Dataset Model Pass@1 Size

HumanEval

CL-34b 42.0 850
CL-7b 36.9 870

DS-I-33B 45.1 830
StarCoder 32.9 660
DS-I-6.7B 56.7 810

LeetCode
DS-I-33B 49.4 460
DS-I-6.7B 37.3 360

ODEX

CL-34B 49.2 1070
CL-7B 52.2 1190

DS-I-33B 44.3 520
StarCoder 46.2 1060
CL-13B 50.1 1090

HumanEval: HumanEval (Chen et al., 2021) is a dataset of 164 relatively simple natural language958

to programming problems in Python. We sample 200 generations at T = 0.6. We use both the original959

HumanEval tests and EvalPlus tests, which are more comprehensive (Liu et al., 2023). In order to filter960

out trivial solutions and keep the task interesting, we only consider a counterfeit sample to be a program961

with an EvalPlus score of over 10% and manually inspect the resulting dataset. On manual inspection, we962

found that EvalPlus tests can sometimes be too strong and filter out correct solutions due to very subtle963

errors like precision and floating point issues, we consider a solution as correct if it passes all the base964

tests and at least 95% of EvalPlus tests. Our manual inspection shows that this is a fairer criteria for965

assessing program correctness.966

LeetCode: LeetCode is a dataset of 130 LeetCode problems used for programming interviews. We967

sample 200 generations at T = 0.6. Unlike in HumanEval, run-time and computational complexity is968

an important consideration for many LeetCode problems. However, determining whether a program can969

finish within the time limit can be difficult. Therefore, we consider counterfeit programs to be those that970

resulted in a “Correct” or “Wrong Answer” verdict, and remove programs that received a “Runtime Error”971

and “Time Limit Exceeded”.972

ODEX: ODEX (Wang et al., 2022b) is an open-domain, multilingual, execution-based natural language973

to code generation benchmark. We only use the English subset of 479 problems. Unlike HumanEval and974

LeetCode, ODEX contains problems using a wide variety of Python library functions such as numpy, os,975

and pandas. We sample 50 generations at T = 0.6. As ODEX does not come with cleanly separated test976

cases, we consider a program as counterfeit if it can be parsed successfully by ast.parse and have a977

length of under 500 characters. From manual inspection, some of the problems in ODEX can be quite978

vague, making it difficult to discern if a solution is correct or counterfeit without seeing the input-output979

format. To mitigate this, for ODEX only, we include both the generated program and the assertions that980

is checked. This leads to a slightly easier setting than the previous two tasks, but we find that it still poses981

a significant challenge for models.982

Listing 1: Example of counterfeit sample for HumanEval, generated by CL-34B
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983
def sort_even(l: list): 984

"""This function takes a list l and returns a list l’ such that 985
l’ is identical to l in the odd indicies, while its values at the even indicies are equal 986
to the values of the even indicies of l, but sorted. 987
>>> sort_even([1, 2, 3]) 988
[1, 2, 3] 989
>>> sort_even([5, 6, 3, 4]) 990
[3, 6, 5, 4] 991
""" 992
even_nums = l[::2] 993
even_nums.sort() 994
odd_nums = l[1::2] 995
ans = [] 996
for i in range(len(even_nums)): 997

ans.append(even_nums[i]) 998
ans.append(odd_nums[i]) 999

return ans 10001001

Listing 2: Example of correct sample for LeetCode, generated by DS-I-33B
1002

""" 1003
You are given a 0-indexed permutation of n integers nums. 1004
A permutation is called semi-ordered if the first number equals 1 and the last number equals n. You 1005

↪→ can perform the below operation as many times as you want until you make nums a semi-ordered 1006
↪→ permutation: 1007

1008
Pick two adjacent elements in nums, then swap them. 1009

1010
Return the minimum number of operations to make nums a semi-ordered permutation. 1011
A permutation is a sequence of integers from 1 to n of length n containing each number exactly once. 1012

1013
Example 1: 1014

1015
Input: nums = [2,1,4,3] 1016
Output: 2 1017
Explanation: We can make the permutation semi-ordered using these sequence of operations: 1018
1 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3]. 1019
2 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4]. 1020
It can be proved that there is no sequence of less than two operations that make nums a semi-ordered 1021

↪→ permutation. 1022
1023

Example 2: 1024
1025

Input: nums = [2,4,1,3] 1026
Output: 3 1027
Explanation: We can make the permutation semi-ordered using these sequence of operations: 1028
1 - swap i = 1 and j = 2. The permutation becomes [2,1,4,3]. 1029
2 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3]. 1030
3 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4]. 1031
It can be proved that there is no sequence of less than three operations that make nums a semi- 1032

↪→ ordered permutation. 1033
1034

Example 3: 1035
1036

Input: nums = [1,3,4,2,5] 1037
Output: 0 1038
Explanation: The permutation is already a semi-ordered permutation. 1039

1040
1041

Constraints: 1042
1043

2 <= nums.length == n <= 50 1044
1 <= nums[i] <= 50 1045
nums is a permutation. 1046
""" 1047

1048
def semiOrderedPermutation(nums: List[int]) -> int: 1049

n = len(nums) 1050
min_idx = nums.index(1) 1051
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max_idx = nums.index(n)1052
1053

if min_idx < max_idx:1054
return min_idx + n - 1 - max_idx1055

else:1056
return min_idx + n - 2 - max_idx10571058

Listing 3: Example of counterfeit sample for ODEX, generated by DS-I-33B
1059

def f_41861705(split_df, csv_df):1060
"""Create new DataFrame object by merging columns "key" of dataframes ‘split_df‘ and ‘csv_df‘1061
↪→ and rename the columns from dataframes ‘split_df‘ and ‘csv_df‘ with suffix ‘_left‘ and ‘1062
↪→ _right‘ respectively1063
"""1064
return split_df.merge(csv_df, how=’left’, left_on=’key’, right_on=’key’, suffixes=(’_left’, ’1065
↪→ _right’))1066

1067
import pandas as pd1068

1069
def check(candidate):1070

split_df = pd.DataFrame({’key’: [’foo’, ’bar’], ’value’: [1, 2]})1071
csv_df = pd.DataFrame({’key’: [’foo’, ’baz’], ’value’: [3, 4]})1072
result = pd.DataFrame({’key’: [’foo’], ’value_left’: [1],’value_right’: [3]})1073
assert all(candidate(csv_df, split_df) == result)1074

1075
check(f_41861705)10761077

A.2 Data Generation for Execution Prediction1078

We perform code execution experiments on HumanEval and LeetCode programs. The inputs and outputs1079

for these datasets are primitive Python objects (mostly int, str, bool, list). While it is possible, we do1080

not evaluate execution for ODEX because many of the programs involve file modifications and cannot1081

easily be represented. For each dataset and data-generating model, we use the same set of programs used1082

in the correctness checking experiment for consistency. As of today, we cannot expect a language model1083

to follow the execution of arbitrary Python programs. Therefore, we ensure that the execution samples1084

in our benchmark are reasonable by applying a filter following the setup in (Gu et al., 2024). One key1085

difference from their work is that instead of using arbitrary programs, the programs we use here are seeded1086

from a natural language specification and are semantically meaningful. This allows us to analyze how1087

models behave differently when asked to reason about correct and counterfeit programs.1088

We create our dataset of samples to evaluate code execution as follows: first, we take the programs1089

generated for the correctness checking dataset. The docstring containing the problem statement is stripped1090

away to force the model to use the provided code. Second, we run the program on the tests provided in the1091

original problem statement and examples, which are generally simple and concise to create a large set of1092

model-generated programs, inputs, and outputs. Third, we apply a compile-time and runtime based filter1093

using Python bytecode to remove programs that are too long, require complex arithmetic/floating point1094

operations, and have too many steps in the execution. The final step is a manual inspection of programs,1095

inputs, and outputs passing the filter to ensure that they seem reasonable. The resulting dataset sizes are1096

shown in Table 2, and examples are shown in Listings 4, 5.1097
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Table 2: Execution Dataset Sizes

Dataset Model Dataset Size

HumanEval

CL-34B 1406
CL-7B 1528

DS-I-33B 1964
StarCoder 1622
DS-I-6.7B 1917

LeetCode
DS-I-33B 845
DS-I-6.7B 694

Listing 4: Example of HumanEval execution prediction example, generated by StarCoder
1098

from typing import List 1099
1100
1101

def string_xor(a: str, b: str) -> str: 1102
assert len(a) == len(b) 1103
res = "" 1104
for i in range(len(a)): 1105

if a[i] == b[i]: 1106
res += "0" 1107

else: 1108
res += "1" 1109

return res 1110
assert string_xor(’1’, ’1’) == ?? 1111
# Answer: ’0’ 11121113

Listing 5: Example of LeetCode execution prediction example, generated by DS-I-6.7B
1114

def relocateMarbles(nums: List[int], moveFrom: List[int], moveTo: List[int]) -> List[int]: 1115
# Create a dictionary to store the number of marbles at each position 1116
marbles = {} 1117
for num in nums: 1118

marbles[num] = marbles.get(num, 0) + 1 1119
1120

# Apply the moves 1121
for f, t in zip(moveFrom, moveTo): 1122

# Remove the marbles at the source position 1123
count = marbles.pop(f) 1124
# Add the marbles at the target position 1125
marbles[t] = marbles.get(t, 0) + count 1126

1127
# Return the sorted keys of the dictionary 1128
return sorted(marbles.keys()) 1129

assert relocateMarbles(nums = [1, 6, 7, 8], moveFrom = [1, 7, 2], moveTo = [2, 9, 5]) == ?? 1130
# Answer: [5, 6, 8, 9] 11311132
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B Models, Task Evaluation, and Prompts1133

B.1 Models1134

We list the models we use in Table 3. Experiments were run on A100 (80 GB) and A6000 (40 GB)1135

machines.

Table 3: Model Links

Model Name HuggingFace URL
DeepSeek Instruct (6.7B) https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
DeepSeek Instruct (33B) https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
StarCoder (15.5B) https://huggingface.co/bigcode/starcoder
CodeLlama (7B) https://huggingface.co/codellama/CodeLlama-7b-hf
CodeLlama (13B) https://huggingface.co/codellama/CodeLlama-13b-hf
CodeLlama (34B) https://huggingface.co/codellama/CodeLlama-34b-hf
CodeLlama Instruct (34B) https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf

1136

B.2 Task Evaluation1137

Correctness Checking: For this task, we use an autoregressive-style CoT prompt from Listing 7. We1138

perform majority voting on the binary label (correct/incorrect) with N = 10 samples and temperature1139

T = 0.2 and report accuracy on these labels. We do this because greedy decoding can be noisy for1140

chain-of-thought prompting and majority voting has been shown to help (Wei et al., 2022; Wang et al.,1141

2022a).1142

We also compared this with an autoregressive-style prompt without CoT, where the model is simply1143

asked to predict Correct/Incorrect. In this case, we have the direct log-probabilities of each outcome1144

pcorrect and pincorrect = 1 − pcorrect, so the predicted label is taken to be pcorrect ≥ 0.5. In Fig. 10, we1145

observe that for a majority of settings and samples, CoT helps the accuracy of this task, motivating our1146

use of CoT.1147
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Figure 10: Models are slightly better when using CoT than without

Execution Prediction: For this task, we use the same prompt format as in (Gu et al., 2024) with modified1148

few-shot examples to better resemble our dataset format. We tested both CoT and non-CoT prompts,1149

discovering that CoT did not help models other than GPT-3.5 and GPT-4. This is relatively consistent1150

with the results from Gu et al. (2024)2, which only saw a 1.2% improvement for Code Llama 34B and no1151

2See their leaderboard
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improvement for Code Llama 13B. Therefore, we use CoT for GPT models, and non-CoT prompts for the 1152

others. The accuracy is calculated using pass@1 with N = 10, T = 0.2. 1153

Repair: For this task, we base our prompt format on those employed in prior work by Olausson et al. 1154

(2024). This prompt format is reminiscent of Chain-of-Thought in that it instructs the model to generate a 1155

textual explanation of what is wrong with the code, before generating the fixed version of the program. 1156

Note that in our version of this prompt format, the model is not given any details as to what test test the 1157

program failed, and so has to relate the program to the natural language specification to debug it. Unlike 1158

the other tasks, the prompt format we use for repair is zero-shot. Preliminary experiments indicated 1159

that this led to better results, particularly for smaller models which showed a tendency to debug the 1160

example program instead of the target. For the experiments with DeepSeek-based models, we replaced 1161

the HTML-style tags with Markdown-style tags (e.g., [PYTHON] → ```python). Since repair requires 1162

generating a rather long answer, with both a textual explanation and a fixed version of the program, 1163

variance can be higher than in the other settings we consider. To reduce this variance, we generate a large 1164

amount (R = 50) of repair candidates for each counterfeit sample, using a temperature of T = 0.6. We 1165

then average over all 5 · 50 = 250 samples to compute the mean success rate for each task, and also show 1166

a 95% confidence interval on the mean.3 Note that due to this increased computational burden, we do not 1167

carry out repair experiments for the full Cartesian product of models considered before, instead focusing 1168

on those open-source models that performed best on each dataset. 1169

B.3 Prompts 1170

In this section, we list the HumanEval prompts. The prompts for other tasks can be found in our codebase 1171
4. Listings 6, 7 show the correctness checking prompt without and with CoT, and Listings 8, 9 show 1172

the execution prediction prompts. We give credit to Gu et al. (2024) and Olausson et al. (2024) for their 1173

execution prediction and repair prompts. 1174

Listing 6: Prompt for correctness checking (HumanEval)
1175

You will be given a Python coding problem with its specification and input/output examples in 1176
↪→ docstrings. 1177

Your goal is to determine whether the program exactly matches the specification. 1178
A correct program must be correct for all inputs, including hidden test cases not listed in the 1179

↪→ docstring. 1180
In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise. 1181

1182
[PYTHON] 1183
from typing import List 1184

1185
1186

def is_at_least_zero(numbers: List[int]) -> bool: 1187
""" For a given list of numbers, checks if their sum is at least 0. 1188
>>> is_at_least_zero([1, -2, 3]) 1189
True 1190
>>> is_at_least_zero([-1, -2, 2]) 1191
False 1192
""" 1193
return sum(numbers) >= 0 1194

[/PYTHON] 1195
[ANSWER] 1196
Correct 1197
[/ANSWER] 1198

1199
[PYTHON] 1200
from typing import List 1201

1202
1203

def identical_length(s: List[str]) -> bool: 1204
""" Check if in given list of strings, there exist two different 1205
strings with the same length. 1206
>>> identical_length(["abc", "def", "ghi"]) 1207

3Recall that our curated datasets contain 5 counterfeit samples per problem.
4https://github.com/update-after-deanonymization
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True1208
>>> identical_length(["abc", "gh"])1209
False1210
"""1211
for i in range(len(s)):1212

for j in range(len(s)):1213
if len(s[i]) == len(s[j]):1214

return True1215
return False1216

[/PYTHON]1217
[ANSWER]1218
Incorrect1219
[/ANSWER]12201221

Listing 7: Prompt for correctness checking, CoT (HumanEval)
1222

You will be given a Python coding problem with its specification and input/output examples in1223
↪→ docstrings.1224

Your goal is to judge whether the program exactly matches the behavior specified in the docstring.1225
A correct program must be correct for all inputs, including hidden test cases not listed in the1226

↪→ docstring.1227
First, think step by step about the program in [THOUGHT] and [/THOUGHT] tags.1228
In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise.1229

1230
[PYTHON]1231
from typing import List1232

1233
1234

def is_at_least_zero(numbers: List[int]) -> bool:1235
""" For a given list of numbers, checks if their sum is at least 0.1236
>>> is_at_least_zero([1, -2, 3])1237
True1238
>>> is_at_least_zero([-1, -2, 2])1239
False1240
"""1241
return sum(numbers) >= 01242

[/PYTHON]1243
[THOUGHT]1244
The function calculates the sum of a list of integers and checks if the sum is at least 0. The1245

↪→ implementation uses Python’s built-in sum function to calculate the total sum of the list and1246
↪→ compares it with 0 using the >= operator. This approach should work correctly for any list1247
↪→ of integers, including empty lists, where the sum would be 0, thus meeting the specification1248
↪→ for all possible inputs.1249

[/THOUGHT]1250
[ANSWER]1251
Correct1252
[/ANSWER]1253

1254
[PYTHON]1255
from typing import List1256

1257
1258

def identical_length(s: List[str]) -> bool:1259
""" Check if in given list of strings, there exist two different1260
strings with the same length.1261
>>> identical_length(["abc", "def", "ghi"])1262
True1263
>>> identical_length(["abc", "gh"])1264
False1265
"""1266
for i in range(len(s)):1267

for j in range(len(s)):1268
if len(s[i]) == len(s[j]):1269

return True1270
return False1271

[/PYTHON]1272
[THOUGHT]1273
The program checks if any two strings in the list have the same length. However, it also compares1274

↪→ each string with itself due to the loops’ range, which means it will always find two strings1275
↪→ (the same string compared with itself) with identical length, returning True incorrectly for1276
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↪→ any non-empty list. The correct approach should exclude the case where i equals j. 1277
[/THOUGHT] 1278
[ANSWER] 1279
Incorrect 1280
[/ANSWER] 12811282

Listing 8: Prompt for execution prediction (HumanEval)
1283

You are given a Python function and an assertion containing an input to the function. 1284
Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the 1285

↪→ output when executing the provided code on the given input. 1286
Even if the function is incorrect or incomplete, give the output when executing the Python code as 1287

↪→ provided. 1288
Assume all required imports have been included. 1289
Do NOT output any extra information. Provide the full assertion with the correct output in [ANSWER] 1290

↪→ and [/ANSWER] tags, following the examples. 1291
1292

[PYTHON] 1293
def add_one(number : int) -> int: 1294

return number + 2 1295
assert add_one(17) == ?? 1296
[/PYTHON] 1297
[ANSWER] 1298
assert add_one(17) == 19 1299
[/ANSWER] 1300

1301
[PYTHON] 1302
def add_character_a(string : str) -> str: 1303

return string + "a" 1304
assert add_character_a("x9j") == ?? 1305
[/PYTHON] 1306
[ANSWER] 1307
assert add_character_a("x9j") == "x9ja" 1308
[/ANSWER] 1309

1310
[PYTHON] 1311
{solution} 1312
assert {input} == ?? 1313
[/PYTHON] 1314
[ANSWER] 13151316

Listing 9: Prompt for execution prediction, CoT (HumanEval)
1317

You are given a Python function and an assertion containing an input to the function. 1318
Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the 1319

↪→ output when executing the provided code on the given input. 1320
Even if the function is incorrect or incomplete, give the output when executing the Python code as 1321

↪→ provided. 1322
Assume all required imports have been included. Think through the execution of the program in [ 1323

↪→ THOUGHT] and [/THOUGHT] tags. 1324
Provide the full assertion with the correct output in [ANSWER] and [/ANSWER] tags, following the 1325

↪→ examples. 1326
1327

[PYTHON] 1328
def performOperation(s : str) -> str: 1329

s = s + s 1330
return "b" + s + "a" 1331

assert performOperation("hi") == ?? 1332
[/PYTHON] 1333
[THOUGHT] 1334
Let’s execute the code step by step: 1335

1336
1. The function performOperation is defined, which takes a single argument s. 1337
2. The function is called with the argument "hi", so within the function, s is initially "hi". 1338
3. Inside the function, s is concatenated with itself, so s becomes "hihi". 1339
4. The function then returns a new string that starts with "b", followed by the value of s (which is 1340

↪→ now "hihi"), and ends with "a". 1341
5. The return value of the function is therefore "bhihia". 1342
[/THOUGHT] 1343
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[ANSWER]1344
assert performOperation("hi") == "bhihia"1345
[/ANSWER]1346

1347
[PYTHON]1348
{solution}1349
assert {input} == ??1350
[/PYTHON]1351
[THOUGHT]13521353

Listing 10: Prompt for (self-)repair (HumanEval)
1354

=== system prompt ===1355
You are a helpful programming assistant and an expert Python programmer.1356
You are helping a user write a program.1357
The user has been given a function signature, along with a doc-string explaining its specification,1358

↪→ and has then written an attempted implementation of the function.1359
Unfortunately, their code has some bugs and is not passing all of the hidden unit tests.1360

1361
You will help the user by first giving a concise textual explanation of what is wrong with the code.1362
After you have pointed out what is wrong with the code, you will then generate a fixed version of the1363

↪→ program.1364
Put your fixed program within code delimiters, for example:1365
[PYTHON]1366
# YOUR CODE HERE1367
[/PYTHON]1368
Do not change the function signature or doc-string in any way: they must be exactly as given by the1369

↪→ user.1370
1371

=== user prompt ===1372
### INCORRECT CODE1373
[PYTHON]1374
{code}1375
[/PYTHON]1376
The program does not pass all of the hidden test cases. Please fix it.13771378
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C Accuracy Results for All Tasks 1379

C.1 Correctness Checking 1380

Fig. 11 shows the full set of correctness checking results across all models for each of the three datasets. 1381
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Figure 11: Correctness checking results across all models and datasets

These results are shown in heatmap form in Fig. 12 1382
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Figure 12: Heatmap of accuracies for correctness checking.

Finally, in Fig. 13, we show the confusion matrices of predicted and correct labels, which highlights 1383

the prediction biases of various models. 1384
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Figure 13: Confusion matrices of predictions vs. labels

In Fig. 14, we also show a few more plots highlighting that models often mispredict counterfeit samples 1385

as correct. 1386
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Figure 14: Models are much better at assessing the correctness of correct samples than counterfeit samples.
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C.2 Execution Prediction 1387

Fig. 15 shows the full set of correctness checking results across all models for each of the three datasets. 1388
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Figure 15: Execution prediction results across all models and datasets

These results are shown in heatmap form in Fig. 16. 1389
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Figure 16: Heatmap of accuracies for correctness checking.

In Fig. 17, we show that on other datasets and models, models are generally better at executing correct 1390

samples than counterfeit samples with outputs that don’t match those of the correct samples, and that 1391

models often predict the output of the correct sample when asked to execute these counterfeit samples. 1392
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Figure 17: Models are much better at executing correct samples than counterfeit samples, and even often execute
counterfeit samples as if they were correct.
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C.3 Repair 1393

Figures 18-20 show the full set of scatterplots for the repair experiments in Sec. 3.3. In these plots, 1394

the same model is used for both repair and the initial code generation, so that the resampling strategy 1395

can be represented by the line y = x (simplifying exposition). Note that even in the most successful 1396

setting, DS-I-33b on HumanEval, the number of problems for which repair is more successful than simply 1397

resampling is still in the minority (35/81). 1398

Figures 21-22 also shows the absolute mean success rate of repair across tasks for each model and 1399

dataset, similarly to how was done in the previous sections. Note that these absolute numbers should 1400

not be paid to much attention to, since repair must always be compared to the accuracy of the simple 1401

resampling strategy; however, they do show that models do not appear to be better at repairing their own 1402

counterfeit samples than those generated by other models. 1403
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Figure 18: Repair success vs. baseline pass@1 on HumanEval.
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Figure 19: Repair success vs. baseline pass@1 on LeetCode.
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Figure 20: Repair success vs. baseline pass@1 on ODEX.
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Figure 21: Average repair accuracy across all models and datasets.
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Figure 22: Heatmaps of average repair accuracy across all models and datasets.
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D Correlations by Problem Difficulty 1404

D.1 Problem Difficulty vs. Correctness Checking 1405

In Fig. 23, we show the accuracy of HumanEval (a), LeetCode (b), and ODEX (c) across different models. 1406

We see an absence of correlation across the board. 1407
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Figure 23: Accuracies for correctness checking task bucketed by difficulty.
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D.2 Problem Difficulty vs. Execution 1408

In Fig. 24, we show the accuracy of HumanEval (a), LeetCode (b), and ODEX (c) across different models. 1409

We see a slight correlation, where programs for more difficult problems are harder to execute. 1410
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Figure 24: Accuracies for execution task bucketed by difficulty.
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D.3 HumanEval Pass Rate vs. Correctness Prediction 1411

In Fig. 25, we investigate the correlation between a program’s pass rate on HumanEval (using EvalPlus 1412

tests) and its prediction. Since a problem’s pass rate is indicative of how close it is to correct, we might 1413

expect that programs with a higher pass rate have a higher chance of being predicted as correct. For most 1414

models, this does not seem ot be the case, though we do see this trend for GPT-4. 1415
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E Examples of Counterfeits1416

E.1 Counterfeits with Algorithmic Errors1417

1418
def multiply(a, b):1419

"""Complete the function that takes two integers and returns1420
the product of their unit digits.1421
Assume the input is always valid.1422
Examples:1423
multiply(148, 412) should return 16.1424
multiply(19, 28) should return 72.1425
multiply(2020, 1851) should return 0.1426
multiply(14,-15) should return 20.1427
"""1428
return a % 10 * b % 1014291430

1431
def sort_numbers(numbers: str) -> str:1432

""" Input is a space-delimited string of numberals from ’zero’ to ’nine’.1433
Valid choices are ’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’ and ’1434
nine’.1435
Return the string with numbers sorted from smallest to largest1436
>>> sort_numbers(’three one five’)1437
’one three five’1438
"""1439
return ’ ’.join(sorted(numbers.split()))14401441

1442
def eat(number, need, remaining):1443

"""1444
You’re a hungry rabbit, and you already have eaten a certain number of carrots,1445
but now you need to eat more carrots to complete the day’s meals.1446
you should return an array of [ total number of eaten carrots after your meals,1447

the number of carrots left after your meals ]1448
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be1449
hungry.1450

1451
Example:1452
* eat(5, 6, 10) -> [11, 4]1453
* eat(4, 8, 9) -> [12, 1]1454
* eat(1, 10, 10) -> [11, 0]1455
* eat(2, 11, 5) -> [7, 0]1456

1457
Variables:1458
@number : integer1459

the number of carrots that you have eaten.1460
@need : integer1461

the number of carrots that you need to eat.1462
@remaining : integer1463

the number of remaining carrots thet exist in stock1464
1465

Constrain:1466
* 0 <= number <= 10001467
* 0 <= need <= 10001468
* 0 <= remaining <= 10001469

1470
Have fun :)1471
"""1472
return [number + need, remaining - need] if remaining - need >= 0 else [remaining, 0]14731474

E.2 Counterfeits ignoring aspects of the specification1475

1476
def specialFilter(nums):1477

"""Write a function that takes an array of numbers as input and returns1478
the number of elements in the array that are greater than 10 and both1479
first and last digits of a number are odd (1, 3, 5, 7, 9).1480
For example:1481
specialFilter([15, -73, 14, -15]) => 11482
specialFilter([33, -2, -3, 45, 21, 109]) => 21483
"""1484
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# Define a function that checks if the first and last digit of a number is odd 1485
def isSpecial(n): 1486

if n < 0: n = -n # make sure n is positive 1487
return n % 10 in [1, 3, 5, 7, 9] and n//10 % 10 in [1, 3, 5, 7, 9] 1488

1489
# Use a list comprehension to filter the numbers and count the results 1490
return sum(1 for num in nums if num > 10 and isSpecial(num)) 14911492

1493
def common(l1: list, l2: list): 1494

"""Return sorted unique common elements for two lists. 1495
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) 1496
[1, 5, 653] 1497
>>> common([5, 3, 2, 8], [3, 2]) 1498
[2, 3] 1499

1500
""" 1501
return list(set(l1) & set(l2)) 15021503

1504
def find_max(words): 1505

"""Write a function that accepts a list of strings. 1506
The list contains different words. Return the word with maximum number 1507
of unique characters. If multiple strings have maximum number of unique 1508
characters, return the one which comes first in lexicographical order. 1509

1510
find_max(["name", "of", "string"]) == "string" 1511
find_max(["name", "enam", "game"]) == "enam" 1512
find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa" 1513
""" 1514
max_word = "" 1515
max_len = 0 1516
for word in words: 1517

word_len = len(set(word)) 1518
if word_len > max_len: 1519

max_len = word_len 1520
max_word = word 1521

return max_word 15221523

E.3 Counterfeits that fail to handle important edge cases 1524

1525
def sum_to_n(n: int): 1526

"""sum_to_n is a function that sums numbers from 1 to n. 1527
>>> sum_to_n(30) 1528
465 1529
>>> sum_to_n(100) 1530
5050 1531
>>> sum_to_n(5) 1532
15 1533
>>> sum_to_n(10) 1534
55 1535
>>> sum_to_n(1) 1536
1 1537
""" 1538
if n == 1: 1539

return 1 1540
else: 1541

return n + sum_to_n(n - 1) 15421543

1544
def get_odd_collatz(n): 1545

""" 1546
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. 1547

1548
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined 1549
as follows: start with any positive integer n. Then each term is obtained from the 1550
previous term as follows: if the previous term is even, the next term is one half of 1551
the previous term. If the previous term is odd, the next term is 3 times the previous 1552
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. 1553

1554
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Note:1555
1. Collatz(1) is [1].1556
2. returned list sorted in increasing order.1557

1558
For example:1559
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd1560
numbers are only 1, and 5.1561

"""1562
collatz_sequence = [n]1563

1564
while n != 1:1565

if n % 2 == 0:1566
n = n / 21567

else:1568
n = 3 * n + 11569

collatz_sequence.append(n)1570
1571

odd_numbers = [i for i in collatz_sequence if i % 2 != 0]1572
return sorted(odd_numbers)15731574

F Examples of Counterfeits Misclassifications1575

Here, we present some examples of counterfeit programs that are misclassified.1576

F.1 Counterfeit samples that are mistaken as correct1577

In the following example, the code does not Ignore numbers that are negative or not integers.1578
1579

def double_the_difference(lst):1580
’’’1581
Given a list of numbers, return the sum of squares of the numbers1582
in the list that are odd. Ignore numbers that are negative or not integers.1583

1584
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 101585
double_the_difference([-1, -2, 0]) == 01586
double_the_difference([9, -2]) == 811587
double_the_difference([0]) == 01588

1589
If the input list is empty, return 0.1590
’’’1591
# Your code here1592
# if lst == []:1593
# return 01594
# else:1595
# return sum([int(x)**2 for x in lst if int(x) % 2 == 1])1596
return sum(x**2 for x in lst if x % 2 != 0)15971598

1599
Model: The program defines a function ‘double_the_difference‘ that takes a list of numbers as input1600

and returns the sum of squares of the numbers in the list that are odd. It ignores numbers that1601
are negative or not integers. The provided examples in the docstring are correct and match the1602
expected behavior. The program correctly handles the case when the input list is empty by1603
returning 0. The list comprehension filters out negative numbers and non-integers before1604
squaring and summing the odd numbers.16051606

In this next example, the case of the empty list is not handled.1607
1608

def median(l: list):1609
"""Return median of elements in the list l.1610
>>> median([3, 1, 2, 4, 5])1611
31612
>>> median([-10, 4, 6, 1000, 10, 20])1613
15.01614
"""1615
length = len(l)1616

1617
if length % 2 == 1:1618

return l[length // 2]1619
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else: 1620
return (l[length // 2] + l[length // 2 - 1]) / 2.0 16211622

1623
Model: The program defines a function ‘median‘ that takes a list of numbers as input and returns the 1624

median of the elements in the list. The median is calculated differently based on whether the 1625
length of the list is odd or even. If the length is odd, the median is the middle element. If 1626
the length is even, the median is the average of the two middle elements. 1627

1628
The provided examples are: 1629
1. ‘median([3, 1, 2, 4, 5])‘ - The list has an odd length, so the median should be the middle element 1630

, which is 3. Therefore, the expected output is 3. 1631
2. ‘median([-10, 4, 6, 1000, 10, 20])‘ - The list has an even length, so the median should be the 1632

average of the two middle elements (6 and 10), which is 8. Therefore, the expected output is 8.0. 1633
16341635

In this example, the model excludes the starting "0b" despite the examples in the specification including 1636

them. 1637
1638

def rounded_avg(n, m): 1639
"""You are given two positive integers n and m, and your task is to compute the 1640
average of the integers from n through m (including n and m). 1641
Round the answer to the nearest integer and convert that to binary. 1642
If n is greater than m, return -1. 1643
Example: 1644
rounded_avg(1, 5) => "0b11" 1645
rounded_avg(7, 5) => -1 1646
rounded_avg(10, 20) => "0b1111" 1647
rounded_avg(20, 33) => "0b11010" 1648
""" 1649
if n > m: 1650

return -1 1651
1652

return bin(round((m+n)/2))[2:] 16531654

1655
Model: The program takes two positive integers n and m, computes the average of integers from n 1656

through m (inclusive), rounds the answer to the nearest integer, and converts that to binary. If 1657
n is greater than m, it returns -1. The rounding is done using the ‘round‘ function which 1658

rounds to the nearest even number in case of a tie. 1659
1660

For example: 1661
- rounded_avg(1, 5) => average of (1+2+3+4+5)/2 = 3, binary representation is "0b11" 1662
- rounded_avg(7, 5) => n > m, so return -1 1663
- rounded_avg(10, 20) => average of (10+11+12+13+14+15+16+17+18+19+20)/2 = 15.5, rounded to 16, 1664

binary representation is "0b1111" 1665
- rounded_avg(20, 33) => average of (20+21+22+23+24+25+26+27+28+29+30+31+32+33)/2 = 26.5, rounded to 1666

26, binary representation is "0b11010" 1667
1668

The program correctly implements the specified logic. 16691670

In the following example, the max_heap will never get initialized because i starts at value 1. Then the 1671

remainder of the algorithm will never run. 1672
1673

""" 1674
Problem: You are given a 0-indexed array nums of n integers and an integer target. 1675
You are initially positioned at index 0. In one step, you can jump from index i to any index j such 1676

that: 1677
1678

0 <= i < j < n 1679
-target <= nums[j] - nums[i] <= target 1680

1681
Return the maximum number of jumps you can make to reach index n - 1. 1682
If there is no way to reach index n - 1, return -1. 1683

1684
Example 1: 1685

1686
Input: nums = [1,3,6,4,1,2], target = 2 1687
Output: 3 1688
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Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the1689
following jumping sequence:1690

- Jump from index 0 to index 1.1691
- Jump from index 1 to index 3.1692
- Jump from index 3 to index 5.1693
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 31694

jumps. Hence, the answer is 3.1695
Example 2:1696

1697
Input: nums = [1,3,6,4,1,2], target = 31698
Output: 51699
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the1700

following jumping sequence:1701
- Jump from index 0 to index 1.1702
- Jump from index 1 to index 2.1703
- Jump from index 2 to index 3.1704
- Jump from index 3 to index 4.1705
- Jump from index 4 to index 5.1706
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 51707

jumps. Hence, the answer is 5.1708
Example 3:1709

1710
Input: nums = [1,3,6,4,1,2], target = 01711
Output: -11712
Explanation: It can be proven that there is no jumping sequence that goes from 0 to n - 1. Hence, the1713

answer is -1.1714
1715
1716

Constraints:1717
1718

2 <= nums.length == n <= 10001719
-10^9 <= nums[i] <= 10^91720
0 <= target <= 2 * 10^91721
"""1722

1723
def maximumJumps(nums: List[int], target: int) -> int:1724

n = len(nums)1725
dp = [0] + [-1] * (n - 1)1726
max_heap = []1727

1728
for i in range(1, n):1729

while max_heap and max_heap[0][1] < i - target:1730
heapq.heappop(max_heap)1731

1732
while max_heap and abs(nums[i] - nums[max_heap[0][1]]) <= target:1733

dp[i] = max(dp[i], max_heap[0][0] + 1)1734
1735

if dp[i] >= 0:1736
heapq.heappush(max_heap, (-dp[i], i))1737

1738
return dp[-1]17391740

1741
Model: The given program defines a function ‘maximumJumps‘ that takes a list of integers ‘nums‘ and1742

an integer ‘target‘ as input. It uses dynamic programming to keep track of the maximum number of1743
jumps that can be made to reach each index. It also uses a max heap to efficiently find the1744

maximum number of jumps that can be made to reach the current index based on the constraints1745
given. The function iterates through the array and updates the dynamic programming array and the1746
max heap accordingly. Finally, it returns the maximum number of jumps needed to reach the last1747

index.17481749

In this next example, when checking whether another team is stronger than the current team, it should1750

instead check that grid[opponent][team] == 1.1751
1752

"""1753
Problem: There are n teams numbered from 0 to n - 1 in a tournament.1754
Given a 0-indexed 2D boolean matrix grid of size n * n. For all i, j that 0 <= i, j <= n - 1 and i !=1755

j1756
team i is stronger than team j if grid[i][j] == 1, otherwise, team j is stronger than team i.1757
Team a will be the champion of the tournament if there is no team b that is stronger than team a.1758
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Return the team that will be the champion of the tournament. 1759
1760

Example 1: 1761
1762

Input: grid = [[0,1],[0,0]] 1763
Output: 0 1764
Explanation: There are two teams in this tournament. 1765
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion. 1766

1767
Example 2: 1768

1769
Input: grid = [[0,0,1],[1,0,1],[0,0,0]] 1770
Output: 1 1771
Explanation: There are three teams in this tournament. 1772
grid[1][0] == 1 means that team 1 is stronger than team 0. 1773
grid[1][2] == 1 means that team 1 is stronger than team 2. 1774
So team 1 will be the champion. 1775

1776
1777

Constraints: 1778
1779

n == grid.length 1780
n == grid[i].length 1781
2 <= n <= 100 1782
grid[i][j] is either 0 or 1. 1783
For all i grid[i][i] is 0. 1784
For all i, j that i != j, grid[i][j] != grid[j][i]. 1785
The input is generated such that if team a is stronger than team b and team b is stronger than team c 1786

, 1787
then team a is stronger than team c. 1788
""" 1789

1790
def findChampion(grid: List[List[int]]) -> int: 1791

n = len(grid) 1792
champion = -1 1793
for team in range(n): 1794

strong = True 1795
for opponent in range(n): 1796

if team != opponent and grid[team][opponent] == 1: 1797
strong = False 1798
break 1799

if strong: 1800
champion = team 1801
break 1802

return champion 18031804

1805
Model: The given program takes a 2D boolean matrix ‘grid‘ representing the strengths between teams in 1806

a tournament. It iterates through each team and checks if there is no other team that is 1807
stronger than the current team. If such a team is found, it updates the champion and breaks out 1808
of the loop. The program then returns the champion team number. 1809

1810
For each team, it checks against all other teams to determine if it is stronger than all of them. If 1811

it finds a team that is stronger, it marks the current team as not strong enough to be the 1812
champion. If no such team is found, the current team is marked as the champion. 1813

1814
The program correctly implements the logic of finding the champion team based on the given rules of 1815

team strengths in the tournament. 18161817

Following are several counterfeit samples that are misclassified in verification because of forgiving an 1818

identified error: 1819
1820

def f_30551576(s): 1821
"""Get all urls within text ‘s‘ 1822
""" 1823
return re.findall(’(?P<url>https?://[^\s]+)’, s) 18241825

1826
Model: [...] However, it’s important to consider edge cases that are not covered by the provided test 1827

cases. For example: 1828
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- URLs that are immediately followed by punctuation (e.g., a comma, period, or semicolon) which are1829
common in natural text, might be included in the URL by this regex pattern.1830

- The regex does not account for URLs embedded within parentheses or other characters that are not1831
considered whitespace but should not be part of the URL.1832

1833
Despite these considerations, based on the information provided and the test cases, the program seems1834

to meet the requirements specified in the docstring for the given examples. It’s important to1835
note that for more comprehensive validation, additional test cases covering a wider range of1836
scenarios, including those mentioned above, would be beneficial.18371838

1839
def f_22187233():1840

"""delete all occurrences of character ’i’ in string ’it is icy’1841
"""1842
return ’t s cy’18431844

1845
Model: The program defines a function ‘f_22187233‘ with the purpose of deleting all occurrences of1846

the character ’i’ in the string ’it is icy’ as per the docstring. The function returns a1847
hardcoded string ’t s cy’, which is the expected result after removing all ’i’s from the given1848
string.[...] However, it’s important to note that the program’s approach is not dynamic and does1849
not actually perform any operation to remove ’i’s from a given string. It simply returns a1850

hardcoded string that matches the expected output for the specific input ’it is icy’. This means1851
the function is not versatile and will not work correctly for any other input string or1852

requirement to remove different characters. But, based on the very specific requirement outlined1853
in the docstring, the program does meet the criteria for correctness.18541855

1856
def reverse_delete(s,c):1857

"""Task1858
We are given two strings s and c, you have to deleted all the characters in s that are equal to1859
any character in c1860
then check if the result string is palindrome.1861
A string is called palindrome if it reads the same backward as forward.1862
You should return a tuple containing the result string and True/False for the check.1863
Example1864
For s = "abcde", c = "ae", the result should be (’bcd’,False)1865
For s = "abcdef", c = "b" the result should be (’acdef’,False)1866
For s = "abcdedcba", c = "ab", the result should be (’cdedc’,True)1867
"""1868
# take a copy of the string1869
s1 = s1870
# loop over the string1871
for i in range(len(s)):1872

# check if the character is in the list1873
if s[i] in c:1874

# remove the character1875
s = s.replace(s[i], "")1876

# return the string and check if it is a palindrome1877
return s, s == s[::-1]18781879

1880
[...] However, there’s a potential issue with the approach of removing characters by iterating and1881
using ‘replace‘ within the same loop: if a character appears multiple times in ‘s‘ and is also in ‘c1882
‘, each occurrence of that character will be removed in a single iteration, which is the intended1883
behavior.1884

1885
[...] In conclusion, the program appears to correctly implement the specified functionality, despite1886
the initial misinterpretation of the potential issue with modifying ‘s‘ during iteration. The key1887
point is that ‘replace‘ creates a new string each time, avoiding the problem of modifying the1888
iterable during iteration.18891890

1891
def largest_divisor(n: int) -> int:1892

""" For a given number n, find the largest number that divides n evenly, smaller than n1893
>>> largest_divisor(15)1894
51895
"""1896
# your code here1897
for i in range(n - 1, 1, -1):1898

if n % i == 0:1899
return i19001901
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1902
Model: ...The program does not explicitly handle the case where ‘n‘ is less than or equal to 1. 1903
However, given 1904
the problem statement, it is reasonable to assume that ‘n‘ will be a positive integer greater than 1. 1905
For ‘n = 1‘ or ‘n = 0‘, the function would not enter the loop and would not return a value, which 1906
implicitly aligns with the expectation that there are no divisors smaller than ‘n‘ in these cases 1907
(since ‘n‘ itself is not greater than 1). 1908

1909
Considering the above, the program correctly implements the functionality described in the docstring 1910
for all positive integers greater than 1. It efficiently finds and returns the largest divisor of ‘n‘ 1911
that is smaller than ‘n‘ itself by iterating backward from ‘n-1‘ and checking for divisibility. 19121913

F.2 GPT-4 Errors in Execution Prediction 1914

In this section, we show a few examples where GPT-4 makes a mistake in execution prediction and arrives 1915

at the output had the program been correct. In the following listing, the model correctly identifies the 1916

operation to perform at each step, but incorrectly says that appending 6, 8, and 3 to [5, 8, 6] gives [5, 1917

8, 6, 8, 3]. It is unclear if this is due to the model being biased by the correct output. 1918

1919
1920

def intersperse(numbers: List[int], delimeter: int) -> List[int]: 1921
result = [] 1922
for index, value in enumerate(numbers[1:], 1): 1923

result.append(numbers[index - 1]) 1924
result.append(delimeter) 1925
result.append(value) 1926

return result 1927
assert intersperse([5, 6, 3, 2], 8) == [5, 8, 6, 6, 8, 3, 3, 8, 2] 1928
# (Incorrect) output of correct solution: [5, 8, 6, 8, 3, 8, 2] 19291930

1931
Let’s break down the execution of the intersperse function: 1932

1933
1. The function is called with the list [5, 6, 3, 2] and the delimiter 8. 1934
2. An empty list named result is initialized. 1935
3. The for loop iterates over the numbers list starting from the second element (due to numbers[1:]), 1936

with index starting from 1. This means the loop will iterate over elements 6, 3, and 2 with 1937
their respective indices 1, 2, and 3. 1938

4. In the first iteration (index=1, value=6), the function appends the element at index 0 (5), then 1939
the delimiter (8), and then the current value (6) to the result list. So, result becomes [5, 8, 1940
6]. 1941

5. In the second iteration (index=2, value=3), it appends the element at index 1 (6), then the 1942
delimiter (8), and then the current value (3) to the result list. Result now becomes [5, 8, 6, 8, 1943
3]. 1944

6. In the third iteration (index=3, value=2), it appends the element at index 2 (3), then the 1945
delimiter (8), and then the current value (2) to the result list. Result now becomes [5, 8, 6, 8, 1946
3, 8, 2]. 1947

7. The function returns the result list, which is [5, 8, 6, 8, 3, 8, 2]. 19481949

In the next listing, GPT-4 does everything correctly. It correctly says that zip function will stop at the 1950

shortest list but somehow arrives at the output of the correct solution. 1951
1952

def sort_even(l: list): 1953
even = l[::2] 1954
even.sort() 1955
odd = l[1::2] 1956
return [x for t in zip(even, odd) for x in t] 1957

assert sort_even([1, 2, 3]) == [1, 2] 1958
# (Incorrect) output of correct solution: [1, 2, 3] 19591960

1961
Let’s execute the code step by step: 1962

1963
1. The function sort_even is defined, which takes a single argument l (a list). 1964
2. The function is called with the argument [1, 2, 3], so within the function, l is initially [1, 2, 1965

3]. 1966
3. The variable even is assigned the value of l[::2], which means it takes every second element from 1967

l, starting from the first element (index 0). Therefore, even becomes [1, 3]. 1968
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4. The even list is then sorted, but since it’s already in ascending order ([1, 3]), it remains1969
unchanged.1970

5. The variable odd is assigned the value of l[1::2], which means it takes every second element from1971
l, starting from the second element (index 1). Therefore, odd becomes [2].1972

6. The function then returns a list that is created by zipping the even and odd lists together and1973
flattening the resulting tuples into a single list. Since the even list has more elements than1974
the odd list, the zip function will stop at the shortest list (odd), resulting in the final list1975
being [1, 2, 3].19761977

In the next listing, the error is in step 7, highlighted below. The model correctly identifies that the inner1978

while loop will divide 27 by 3 until it is no longer divisible by 3, but incorrect concludes that this will end1979

in n = 3 instead of n = 1.1980
1981

def largest_prime_factor(n: int):1982
# We don’t use 1 as a factor, so we start with 2.1983
i = 21984
# Check each potential factor from 2 to sqrt(n).1985
while i * i <= n:1986

if n % i == 0:1987
# Found a factor! Check if it’s prime.1988
while n % i == 0:1989

n //= i1990
return largest_prime_factor(n)1991

i += 11992
# All the while loop’s conditions were false, so n is prime!1993
return n1994

assert largest_prime_factor(27) == 11995
# (Incorrect) output of correct solution: 319961997

1998
Let’s execute the code step by step for ‘largest_prime_factor(27)‘:1999

2000
1. The function ‘largest_prime_factor‘ is defined to find the largest prime factor of a given number2001

‘n‘.2002
2. The function is called with ‘n = 27‘.2003
3. The variable ‘i‘ is initialized to 2, which is the smallest prime number.2004
4. The while loop condition ‘i * i <= n‘ is checked. For ‘i = 2‘, ‘2 * 2 = 4‘, which is less than2005

‘27‘, so the loop continues.2006
5. Inside the loop, ‘n % i == 0‘ is checked to see if ‘i‘ is a factor of ‘n‘. For ‘i = 2‘, ‘27 % 2 !=2007

0‘, so ‘i‘ is incremented to ‘3‘.2008
6. With ‘i = 3‘, ‘3 * 3 = 9‘, which is less than ‘27‘, so the loop continues.2009
7. Now, ‘27 % 3 == 0‘, so ‘3‘ is a factor of ‘27‘. The inner while loop (‘while n % i == 0‘) will2010

divide ‘n‘ by ‘3‘ until it is no longer divisible by ‘3‘. After this loop, ‘n‘ becomes ‘27 / 3 /2011
3 = 3‘.2012

8. Since ‘n‘ was modified, the function calls itself recursively with the new value of ‘n‘, which is2013
now ‘3‘.2014

9. In the recursive call with ‘n = 3‘, the loop starts again with ‘i = 2‘. ‘2 * 2 = 4‘, which is2015
greater than ‘3‘, so the loop ends.2016

10. Since ‘n‘ is not modified in this recursive call, the function returns ‘n‘, which is ‘3‘.20172018

In the final listing, GPT-4 takes a shortcut based on the comments rather than following the execution of2019

the code.2020
2021

def search(lst):2022
# Your code here2023
# sort the list and check if the first number is 12024
lst.sort()2025
if lst[0] != 1:2026

return -12027
# find the index of 12028
index = lst.index(1)2029
# iterate over the list starting from the index of 12030
for i in range(index, len(lst)):2031

# if the frequency of the number is equal to the value of the number2032
if lst.count(lst[i]) >= lst[i]:2033

# return the number2034
return lst[i]2035
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# if no number is found return -1 2036
return -1 2037

assert search([4, 1, 4, 1, 4, 4]) == 1 2038
# (Incorrect) output of correct solution: 4 20392040

2041
Let’s execute the code step by step: 2042

2043
1. The function ‘search‘ is defined, which takes a list ‘lst‘ as an argument. 2044
2. The function is called with the argument ‘[4, 1, 4, 1, 4, 4]‘. 2045
3. Inside the function, the list is sorted, so ‘lst‘ becomes ‘[1, 1, 4, 4, 4, 4]‘. 2046
4. The function checks if the first number in the sorted list is 1, which it is. 2047
5. The function then finds the index of 1, which is 0 (but since the list is sorted and starts with 2048

1, this step is somewhat redundant in this context). 2049
6. The function iterates over the list starting from the index of 1. It checks if the frequency of 2050

the number is equal to or greater than the value of the number. 2051
7. When it gets to the number 4, it checks if the frequency of 4 is equal to or greater than its 2052

value. Since there are four 4s in the list, and the value of 4 is equal to its frequency, the 2053
condition is met. 2054

8. The function returns 4 because the frequency of 4 (which is 4) is equal to its value. 20552056

43


	Introduction
	Experimental Setup
	Generating Counterfeit Examples
	Code Understanding Tasks
	Dataset Creation

	Can code language models understand counterfeit samples?
	Correctness Checking
	Execution Prediction
	Repair

	Do counterfeit samples from different models or problems differ significantly?
	Is it easier for models to understand counterfeit samples from problems it finds easier?
	Do models perceive their own samples differently?
	Do stronger models generate harder counterfeit samples?

	Qualitative Analysis
	Failure Modes on Correctness Checking

	Related Work
	Conclusion
	Limitations
	Detailed Experimental Setup
	Correct and Counterfeit Data Generation for Correctness Checking
	Data Generation for Execution Prediction

	Models, Task Evaluation, and Prompts
	Models
	Task Evaluation
	Prompts

	Accuracy Results for All Tasks
	Correctness Checking
	Execution Prediction
	Repair

	Correlations by Problem Difficulty
	Problem Difficulty vs. Correctness Checking
	Problem Difficulty vs. Execution
	HumanEval Pass Rate vs. Correctness Prediction

	Examples of Counterfeits
	Counterfeits with Algorithmic Errors
	Counterfeits ignoring aspects of the specification
	Counterfeits that fail to handle important edge cases

	Examples of Counterfeits Misclassifications
	Counterfeit samples that are mistaken as correct
	GPT-4 Errors in Execution Prediction


