Under review as a conference paper at ICLR 2022

MOLECULAR GRAPH GENERATION VIA GEOMETRIC
SCATTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have been used extensively for addressing prob-
lems in drug design and discovery. Both ligand and target molecules are repre-
sented as graphs with node and edge features encoding information about atomic
elements and bonds respectively. Although existing deep learning models perform
remarkably well at predicting physicochemical properties and binding affinities,
the generation of new molecules with optimized properties remains challenging.
Inherently, most GNNs perform poorly in whole-graph representation due to the
limitations of the message-passing paradigm. Furthermore, step-by-step graph
generation frameworks that use reinforcement learning or other sequential pro-
cessing can be slow and result in a high proportion of invalid molecules with sub-
stantial post-processing needed in order to satisfy the principles of stoichiometry.
To address these issues, we propose a representation-first approach to molecular
graph generation. We guide the latent representation of an autoencoder by cap-
turing graph structure information with the geometric scattering transform and
apply penalties that structure the representation also by molecular properties. We
show that this highly structured latent space can be directly used for molecular
graph generation by the use of a GAN. We demonstrate that our architecture
learns meaningful representations of drug datasets and provides a platform for
goal-directed drug synthesis.

1 INTRODUCTION

Recently there has been a great deal of interest in developing neural networks for graph-structured
data. However, the vast majority of the literature on graph neural networks and variants has focused
on node embeddings and node classification. Because of this, most GNNs are designed to produce
features for nodes based on neighborhood aggregation, which gives only localized information. A
smaller subset of this literature has focused on graph classification. These networks have recently
proposed using longer-range information via skip connections or attention mechanisms (Abu-El-
Haija et al., 2019; [Yun et al., [2019). However, there has been relatively little attention given to
graph generation, with the most common approaches being somewhat cumbersome methods of se-
quential or reinforcement-learning based generation. Here, we seek to remedy this by focusing on
a representation-first approach to graph generation that we call GRASSY (GRAph Scattering SYn-
thesis network). GRASSY focuses on producing a latent space embedding of molecular graphs that
is organized both by molecular structure and physicochemical properties. It is then trained adversar-
ially to generate molecules with desirable properties directly from this latent space.

The GRASSY framework makes use of the geometric scattering transform in order to learn a rich
representation of the graph. This transform discretizes the original scattering transform of |Mallat
(2012) and uses multiscale graph diffusion wavelets to form globally-contextualized descriptions of
each graph. Notably, the version of the scattering transform we use here collects statistical moments
of multi-scaled diffusion wavelet coefficients through global summation. Therefore, the represen-
tation it produces is fully permutation-invariant, and the number of moments we obtain does not
depend on the size of the original graph.

After computing the scattering transform, GRASSY reduces the dimensionality of the resulting
space with an autoencoder which is penalized by a reconstruction penalty and a property-prediction
penalty. This yields a highly structured latent space, which we may sample from in order to generate
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scattering coefficients corresponding to molecular graphs with desirable properties. To complete the
graph generation process, GRASSY utilizes an adversarial framework which produces molecular
graphs directly from the latent space. Importantly, we note that GRASSY does not use a sequen-
tial process or reinforcement-learning-based method for molecular synthesis but rather immediately
generates molecules based on the organization of the latent space.

In summary, the key components of GRASSY include:

* A geometric scattering network to generate multiscale descriptions of graphs

* A regularized autoencoder for producing representations of molecules in a structured latent
space

* An adversarial molecular generation network.

We show the utility of GRASSY on two datasets described in detail in Section@ 1) ZINC, a dataset
of drug-like molecules with several properties of each molecule, 2) BindingDB, a database of drug-
target interactions. We show that GRASSY learns the latent space of several tranches of ZINC and
produces drug-like molecules. We also show that it can learn molecules with binding affinities to
specific targets and generate molecules in this space as well.

2 RELATED WORK ON MOLECULE GENERATION VIA GRAPH NEURAL NETS

A variety of notable approaches have been made to tackle the difficult problem of molecular graph
generation. GraphAF (Shi et al.,2020) leverages a flow-based autoregressive model, which formu-
lates graphs as a sequential decision process and then applies reinforcement learning to generate
graphs with specified properties. MolGAN (Cao & Kipf, [2018) takes a different approach, using a
GAN-based architecture. From normally distributed samples, it generates graphs using a discrimi-
nator which is based on the Graph Convolutional Network (GCN) of Kipf & Welling| (2017). This
discriminator also penalizes graphs based on a reward network, which encourages the generated
graphs to have specific, desired properties. Similarly, LGGAN (Fan & Huang, 2021) uses a GAN-
based architecture, and also uses a GCN as a means to discriminate between real and fake graphs. In
a different approach, Gémez-Bombarelli et al.| (2018)), generate graphs by creating an auto-encoder
that encodes and decodes SMILES strings, which allowed them to sample points from the latent
space and generate new SMILES strings.

3  PRELIMINARIES AND BACKGROUND

3.1 GRAPH DIFFUSION

The geometric scattering transform introduced in the following subsection uses multi-scale diffusion
wavelets which are inspired, in part, by methods from high-dimensional data analysis (Coifman &
Maggioni, 2006). In many applications, one is given a data set {x;}?_; contained in very high-
dimensional Euclidean space R". The excessively large dimension of such a data set makes it hard
to analyze and expensive to store or process. Fortunately, in many applications, the data has an in-
trinsic lower-dimensional structure and can be modeled as lying along a d-dimensional Riemannian
manifold for some d < N. To exploit this low-dimensional structure, one aims to construct a graph
whose geometry models the underlying manifold. A popular method for doing this is to let the data
points x; be the vertices of the graph and to define the affinity between vertices using a predefined
kernel function. A common choice is to define a weighted edge between vertices i and j, i # j with
weight given by W; ; = e~ lIxi=x;l3/¢ for a suitably chosen parameter . One may view the W as
the weighted adjacency matrix of a weighted graph G = (V, E, W). (Here, we set W; ; = 0 so that
the graph has no self-loops.)

The matrix W encodes local information about the graph G. In order to capture information about
the graphs global geometry, we introduce a lazy random walk matrix

1
P = 5(1,L+WD*1), (1)
where I, is the n x n identity matrix and D is the diagonal degree matrix whose non-zero entries
are defined by D; ; = Z?:1 W;. ;. Raising the matrix P to different powers captures information
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about the graph at various degrees of resolution. For example, P? encodes information within two-
step neighborhoods of each vertex whereas P raised to a very large power captures global averages.
The popular diffusion maps algorithm, introduced in |(Coifman & Lafon| (2006), is based on the
eigendecomposition of this matrix P and its powers. It has been shown to be useful for many
applications including data visualization (Moon et al., [2019), denoising (van Dijk et al., [2017)), and
trajectory analysis (Haghverdi et al.,|2016).

3.2 GEOMETRIC SCATTERING

The scattering transform, originally introduced in Mallat| (2012) for Euclidean data is a wavelet-
based, feed-forward network which produces a latent-space representation of an input via an alter-
nating sequence of convolutions and nonlinearities. The architecture of the scattering transform is
similar to a convolutional neural network but uses predesigned filters rather than filters learned from
training data. Inspired by the rise of graph neural networks, several works (Zou & Lerman), 2020;
Gama et al., [2018; |Gao et al., |2019) have adapted the scattering transform to the graph setting and
analyzed the stability of the resulting networks (Perlmutter et al.,[2019; Gama et al.,[2019). Similar
to Mallat| (2012), the original formulations of the graph scattering transforms were fully designed
networks using dyadic wavelets. However, subsequent work has incorporated learning via cross-
channel convolutions (Min et al., [2020), attention mechanisms (Min et al., 2021}, or by replacing
dyadic-scales with scales learned from data (Tong et al.l |2021)). Most closely to our work, (Zou &
Lerman, 2019) and (Castro et al., |2020) have shown that the scattering transform can be incorpo-
rated into an encoder-decoder type network. Here we utilize this framework for molecular graph
generation.

3.3 SCATTERING MOMENTS FOR GRAPH STRUCTURE REPRESENTATION

The primary focus of |Gao et al.|(2019) was applying the graph scattering transform to graph classi-
fication. There, the authors construct the scattering transform as an alternating cascade of wavelet
transforms and pointwise nonlinearities. In particular, they use diffusion wavelets constructed from
the matrix P defined in equation[I|raised to dydadic powers. Specifically, for J > 1, they define

Vo=I,-P, U;=pP" _pY=p¥ (,-P¥"), j>1. )

Different powers of P capture information about the graph at different scales. In particular, because
of the larger values of j, the scattering transform is able to capture both local and long-range infor-
mation in a single layer. This is in stark contrast to many popular graph neural networks such as
GCN (Kipf & Welling| |2017) in which the convolutions are purely local averaging operations.

Given these diffusion wavelets, first and second-order scattering coefficients are defined by

Sx(G,q) =Y 1¥;x(w)|?, and  Sx(j,5',q) =Y _ ;¥ ;x(v)]|". 3)
=1 =1

for1 < j,7/ < Jand 1 < ¢ < Q. The authors also use zeroth-order coefficients which are simply
defined by S(q) = |x||4. The graph scattering transform is then defined by concatenating all of
these coefficients:

Sx = {Sx(q), Sx(j, q), 5x(j,j",q),1 < j,j' < J,1 < q < Q}. “4)

We note that since these coefficients are defined via a global summation they are fully invariant to
permutations of the vertices. Moreover, the number of coefficients does not depend on the size of
the graph. This allows one to apply the graph scattering transform to data sets consisting of many
graphs where each graph may have a different number of vertices.

3.4 GEOMETRIC SCATTERING AUTOENCODER

In |Castro et al.| (2020), the authors proposed to autoencoder scattering transforms of folds of an
single non-coding RNA molecules in order to infer potential folding trajectories from latent space
visualization. They used a fixed three-scale scattering transform to obtain multi-level wavelet coeffi-
cients at each node which they concatenated and used as input to a variational autoencoder network.
They showed that this framework called Graph Scattering Autoencoder (GSAE) is able to preserve
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similarity structure in the folds, as well as fold energy, in a low-dimensional embedding. The authors
also proposed a scattering inversion network (SIN), which is an autoencoder whose middle layer is
an adjacency matrix. The SIN purports to go back from the scattering coefficients to an adjacency
matrix. However, the SIN network only produces meaningful results with very strong initializations
or guided searches around a small area of the graph space, mainly used to interpolate between two
adjacent folds of the same RNA molecule.

Unlike GSAE, our primary aim is to generate novel molecules of different sizes from the embedded
space of a neural network trained on a variety of drug-like molecules. For this purpose, we build
upon and expand GSAE in several ways. 1) We use scattering moments, i.e., aggregation of scat-
tering transform coefficients which allows us to handle graphs of different sizes. 2) We use a GAN
operates directly on the learned latent space. This molecular generation network is trained with an
adversarial loss as well as a latent interpolation loss that obviates the need for both the SIN and the
variational training in GSAE. 3) We utilize a differentiable scattering transform Tong et al.| (2021)
such that the scales of scattering are not fixed, but instead learned from the data. In the next section,
we detail features of our network which we call GRASSY.

4 METHODS

4.1 PROBLEM FORMULATION

Our main goal is to find a latent space representation that is smooth with respect to various molecular
properties as well as graph edit distance and to use such a representation to generate well-formed
molecular graphs. More formally, given molecular graphs G; = {E1,Vi}, G2 = {Es, Va}, with
molecular properties p(G1), p(G2), we seek a embedding f, and a pseudo-inversion f’ such that:

o If || f(G1) — f(G2)]l2 < €, then dist(G1, G2) < v, i.e., close graphs have close embedded
distances.

o If || f(G1) — f(G2)|l2 < €, then dist(p(G1),p(G2)) < w, ie., close graphs have similar
molecular properties.

o dist(f'(f(G1) +€),G1) < ¢4, where e ~ N(0,0), i.e. a graph generated by pseudo-
inversion after perturbation of embedding f((G1) in the latent space, is similar to the origi-
nal graph.

o dist(p(f'(f(G1) +¢€)),p(G1)) < €, where e ~ N(0,0), i.e., a graph generated by pseudo-
inversion after perturbation of embedding f(G1) in the latent space has similar molecular
properties as the original graph.

Typically, molecular graphs are not scale-free and have complex connectivity structure. Therefore,
one cannot satisfy these goals by solely searching in the adjacency matrix space. Indeed, removing a
single edge can leave the graph with vastly different connectivity structure and molecular properties.
Therefore, we seek an alternative latent space created via neural network transformations that is
continuous with respect to graph structure and property.

4.2 LEARNED SCATTERING MOMENTS

Our proposed GRASSY framework uses the graph scattering transform to initially find a high di-
mensional embedding of the data. For each node-labelled molecular graph, we collect a set of signals
associated with each label x1,,,Xr,,...xr,. Specifically, we define xz, (v;) = 1 if the vertex v;
has label L; and x,,(v;) = 0 otherwise. We then perform multiscale wavelet transforms on each
of these signals using a learnable scattering framework (Tong et al., 2021}, and collect statistical
moments by summing over the vertices (see Eqns. [3|and E]) We let S = S(G) denote the collec-
tion of all scattering moments associated to a graph G and use these moments as the input into the
regularized autoencoder described below. Importantly, we note that while collecting these statistical
moments, we apply a global summation and therefore the dimension of the the scattering embedding
does not depend on the size of the graph.
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Figure 1: Overview of the GRASSY architecture including the 1) geometric scattering moments S
computed on the input graph, passed to an 2) encoder network X whose latent space is regularized
for property prediction and for graph generation and trained for reconstruction via the 3) decoder D,
and the 4) Molecular generation network trained with GAN and interpolation losses.

4.3 AUTOENCODER DESIGN

We feed the scattering moments S into a regularized autoencoder F'(E(X)), which is penalized by
two losses:

* The reconstruction loss that penalizes for errors in the reconstruction of scattering mo-
ments, i.e., £, = ||S — F(E(S))||, where E is the encoder and F is the decoder.

* A regression loss which penalizes the failure of a property prediction network R to predict
a physicochemical properties p of a given molecule from its latent representation, i.e., £, =
lp — R(E(S))]|.

Note that E(S(G)) is our proposed mapping function f that approximates properties described
in the problem setup. The molecule generation network, M, which we describe in the following
subsection, is our proposed pseudo-inversion f’ in the problem setup.

4.4 MOLECULE GENERATION

If S(G;) and S(G,) are the scattering moments corresponding to two graphs in our data set, we let
z; = E(S(G;)) and z; = E(S(G;)) and consider the trajectory 2, (o) = (1 — )z +az;. Welet
M be a multi-layer perceptron which inputs scattering coefficients and outputs an n x n adjacency
matrix and define W;_, (@) == M (z;_;()). As alluded to earlier, we wish to consider graphs of
different sizes, and therefore we will take n to be the size of the largest graph in the data set. Smaller
adjacency matrices will be extended to be n X n via zero padding.

Inspired by the Autoencoder Adversarial Interpolation approach applied to images in |Oring et al.
(2020), we train M and our discriminator D using three losses adapted to the graph generation
setting:
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* The adjacency matrix reconstruction loss, £, = ||[W™ — W, ||z + W7 “ _W,||p, where
adjacency matrices W; and W; are padded with zero vectors up to size n X n.

* An adversarial loss, £, = Zf:o — log(D(VAViﬁj(k/K))), where discriminator, D, is a
graph convolution network (GCN) that outputs a scalar value.

2

88ins; (k/K) , calculated by taking derivative of scat-

K
* A smoothness loss, L3 = > ;" H o

tering moments produced by the decoder, Siﬁj(a) = F(zi-j(a)).

These losses aid in the production of valid molecular adjacency matrices which have similar structure
to nearby points.

Tranche BBAB Tranche FBAB Tranche JBCD

Learned Wavelet Coefficients

Learned Wavelet Coeffcients
| Leamed Wavelet Coefficients

B 3 3 1 B B
Dyadic Scale Exponent Dyadic Scale Exponent Dyadic Scale Exponent

Figure 2: Learned geometric scattering wavelet coefficients for 3 ZINC tranches.

QED TPSA HA Mol. Wt. Ring Count

BBAB

FBAB

JBCD

Figure 3: Latent representations of molecules in the ZINC dataset, visualized using PHATE, colored
by value of physicochemical properties.

GRASSY-AE + REGR GRASSY-VAE + REGR GRASSY-AE GRASSY-VAE Scattering Moments

Figure 4: Latent representations obtained using ablations of the GRASSY model trained on the
BBAB tranche of the ZINC dataset, color-coded by QED for different models.

5 RESULTS

We trained GRASSY on large datasets of drugs and drug-like molecules from two databases, ZINC
(Irwin & Shoichet, |2005) and BindingDB (Gilson et al., 2016). ZINC contains drug-like molecules
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Table 1: Molecular property prediction error

Model Tranche Molecular Properties
QED TPSA Mol. Wt. (HA) # Rings

BBAB 0.1677+0.13 13.20+11 22.83 £18 0.6277 +0.52
GRASSY-AE + REGR FBAB 0.2090 £ 0.16 17.15 £ 15 32.89 +24 0.7122 + 0.57
JBCD 0.1941+0.15 15.18 £ 12 23.30 £ 22 0.6604 + 0.46

BBAB 0.2063 £ 0.16 1491 £ 13 56.67 + 21 0.6302 £ 0.52
GRASSY-VAE + REGR FBAB 0.2041+0.15 16.94+14 36.17 + 23 0.7130 £ 0.54
JBCD 0.2226 £ 0.17 14.74 £ 12 34.54 + 35 0.6643 £ 0.54

BBAB 0.3947 £ 0.28 78.59 £ 20 210.0 £ 15 1.489 +0.92
GRASSY-AE FBAB 1.401 £ 0.97 108.5 £ 22 3404 £ 8.6 6.528 £ 1.1
JBCD 0.4232 £ 0.26 126.9 £+ 26 4445 + 14 3.152 £0.74
BBAB 0.7413 £1.3 78.53 £ 20 2094 £ 15 1.364 £ 0.93
GRASSY-VAE FBAB 0.9313 £ 0.33 108.5 £ 22 339.5 £ 8.6 3.038 £ 0.96
JBCD 2.885 +0.92 127.8 + 26 4447 £ 14 2.974 + 0.86

Table 2: Smoothness of physicochemical properties in latent space

Model Tranche Molecular Properties

QED TPSA  Mol. Wt. (HA) # Rings

BBAB 0.0952 0.1716 0.0144 0.7153

GRASSY-AE + REGR FBAB 0.1324 0.1353 0.0021 0.3172
JBCD 0.1516  0.0645 0.0028 0.0928

BBAB 0.0829 0.1785 0.0134 0.6415

GRASSY-VAE + REGR FBAB 0.1298 0.1333 0.0020 0.3016
JBCD 0.1225 0.0541 0.0031 0.0805

BBAB 0.0692 0.1467 0.0138 0.6114

GRASSY-AE FBAB 0.1203  0.1332 0.0023 0.3413
JBCD 0.1383  0.0697 0.0037 0.0837

BBAB 0.0696  0.1442 0.0147 0.6266

GRASSY-VAE FBAB 0.1201 0.1423 0.0022 0.3593
JBCD 0.1376  0.0713 0.0036 0.0800

Table 3: Fraction of graphs generated with molecule-like structure

ZINC # Atoms Validity Models
Tranche Min. Max. Threshold GRASSY GSAE GraphAF MolGAN (A = 0)

BBAB 8 18 5 0.86 0.22 0.79 0.32
FBAB 16 27 15 0.94 0.17 0.76 0.46
JBCD 28 36 25 0.73 0.09 0.54 0.41

organized into tranches by molecular weight (abbreviated mol. wt.), solubility (logP value), re-
activity and commercial availability. BindingDB is a drug-target interaction (DTI) database, con-
taining pairs of molecules and proteins with known binding affinity. We used three tranches from
the ZINC database, namely FBAB, BBAB, and JBCD, which are organized by molecular weight.
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Table 4: Graph edit distances between 100 generated molecules and % nearest training samples

Tranch Kk Model
GRASSY GraphAF MOolGAN (A = 0)
5 11.18 +1.10 15.92+0.18 14.33 £ 1.74
BBAB 10 12.444+1.03 22.36+1.04 17.82 +0.96
15 13.48+£1.09 19.28+1.24 14.57 £ 0.81
5 19.60 £0.49  27.35 £+ 1.88 18.03 +0.96
FBAB 10 20.40+£0.92 31.97+1.90 17.31+1.18
15 21.274+1.57 28.72+1.65 20.14 +1.28

Molecules in BBAB range from 200 to 250 Daltons, molecules in FBAB range from 350 to 375
Daltons, and molecules from JBCD range from 450 to 500 Daltons. We sampled 2500 molecules
from each tranche to use as training data and used the ChEMBL database (Davies et al. |2015) to
obtain 10 physicochemical for each molecule. These properties include quantitative estimate of
drug-likeliness (QED) introduced in |[Bickerton et al.| (2012), total polar surface area (TPSA), gen-
eral chemical descriptors (mol. wt. and heavy atom mol. wt.), topochemical descriptors (Balaban],
BertzCT, HallKierAlpha), and Lipinski parameters (number of hydrogen bond donors, number of
hydrogen bond acceptors, and ring count). We also trained on known inhibitors of two protein tar-
gets on BindingDB, henceforth referred to by their UniProtKB identifiers. These targets are P14416,
a D(2) dopamine receptor, and PO0918, Carbonic anhydrase 2. All BindingDB results are shown in
the Appendix.

To calculate the scattering moments for an individual molecular graph, we labeled each node by
atom type and used the signals xr,,,...,x, as described in Section We set the number of
moments () = 2 and the number of scales J = 4. Since our tranches ranged in molecular weight,
we decided to use a learnable version of graph scattering proposed in [Tong et al.|(2021) to individ-
ually learn diffusion scales for each tranche rather than just using dyadic powers 27. The learned
wavelet coefficients for each of the three ZINC tranches can be seen in Figure [2] We then passed
the scattering moments into our autoencoder, which applied regression penalties with respect to 10
physicochemical properties in latent space.

We adjusted the learning rates so that our network was properly able to learn the input data on each
tranche, and we used an early stopping mechanism that monitored the validation loss to prevent the
models from over-fitting our data. Figure [3| shows the latent space representations of each tranche
trained on GRASSY, where the latent space is colored by four different properties, each of which
was part of the latent space regression task.

We compare GRASSY to three state-of-the art frameworks for molecular graph generation:
GraphAF (Shi et al.| [2020), MolGAN (Cao & Kipf] |2018) and GSAE (Castro et al., |2020). For
GraphAF, we trained the TorchDrug implementation using a custom dataloader but without any ar-
chitectural modifications. For MolGAN, we set the hyperparameter A to O (full RL version). We
also compared with experimented with ablations of the GRASSY architecture, turning off and on
the regression penalty (with or without REG), as well as toggling variational vs vanilla autoencoder
training (GRASSY-VAE vs. GRASSY-AE).

We tested these GRASSY variations according to three criteria:

* Accuracy of physicochemical prediction in latent space across each of these models, mea-
suring by absolute error. (See Tables[I]and [5])

* Smoothness of the physicochemical properties in latent space, which we calculated from
the graph Laplacian, L, of the diffusion potential graph obtained from the PHATE transform

of the latent space embeddings. We calculated smoothness by s = 2 TTLP

P
vector containing properties of the points embedded. (See Tables 2] and@

, where p is a

* Fraction of valid molecules generated. (See Tables[3]and
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 Similarity between generated molecules and training samples, as measured by graph edit
distance computed using beam stack search (Chen et al., [2019) (See Table[d])

Tables [2] and [6] show smoothness, as described above, of physicochemical properties in the latent
space of various versions of our architecture. We have made bold values representing the highest
smoothness in the latent space for each tranch (or protein target for BindingDB) trained on each
property, across the various architectures. We can see that there is no version of our architecture that
significantly outperforms the others across the board. Though, in general, the Figure [ shows that
each version of the GRASSY produces a smooth latent space with respect to the physicochemical
properties listed.

Tables [I|and [5] show the molecular property prediction errors across different versions of our archi-
tecture on four different physicochemical properties. On both tables, we made bold the lowest error
values for each property, across the various versions of GRASSY. Table|[I|shows the prediction error
across the three different tranches of ZINC we trained, BBAB, FBAB, and JBCD. We can see that
GRASSY-AE + REGR significantly outperforms the other three versions of our architecture with
respect to property prediction in the latent space on this dataset. Table [5]shows that GRASSY-VAE
+ REGR outperformed our other architectures when trained on the BindingDB data, across protein
targets P14416 and PO0918.

Molecule-like graphs were created by thresholding the adjacency matrix output of the generator of
GRASSY and identifying the largest connected component. The resulting molecule was considered
valid if it satisfied the following criteria:

* Number of vertices in the graph must exceed a “validity threshold”, set according to size
of molecules in the training tranche. Specifically, single atoms, diatomic and tri-atomic
molecules are unlikely to function as drugs or inhibit the activity of any protein target.

* Any cycles/rings must not contain more than 10 vertices/atoms. In practice, most drugs
contain 5 or fewer rings (Aldeghi et al., 2014).

* No vertex should have degree (covalent bonds) exceeding 5. Our data predominantly con-
tains hydrogen, carbon, nitrogen, oxygen, sulphur, chlorine and fluorine atoms, none of
which have enough valence electrons to bond with more than 5 atoms simultaneously.

Tables [3| and [7| show the fraction of valid molecules generated by GRASSY, GSAE (Castro et al.}
2020), GraphAF (Shi et al.,[2020) and MolGAN (full RL version with hyperparameter A = 0 (Cao
& Kipf}, 2018)), according to the criteria above. The minimum and maximum number of atoms in the
training molecules are listed to justify the choice of the validity threshold used to mark small gener-
ated molecules as invalid. In comparison to the other state-of-the-art methods, GRASSY generates
the largest fraction of valid molecules when trained the ZINC dataset (Table[3) and achieves close to
best performer GraphAF, when trained on the BindingDB dataset (Table[7). We were unable to train
MolGAN on the BindingDB dataset using the TensorFlo implementation available on GitHub.

Table [] shows comparison between 100 generated molecules (random sampling of latent space)
and the k-nearest training samples using graph edit distance. Molecules generated using GRASSY
closely resemble the training data in the BBAB tranche, although MolGAN performs better on
FBAB. Results for the JBCD tranche could not be tabulated owing to the computational expense of
calculating graph edit distance.

6 CONCLUSIONS

We have introduced GRASSY, a novel method for molecule generation. Given a dataset of molecules
represented as graphs, we first collect a sequence of scattering moments for each graph. We then
train a regularized autoencoder on these scattering moments to produce a latent representation which
respects the physicochemical properties of each molecule. Finally, we produce new molecules
by interpolating in latent space an applying a GAN which is trained to produce chemically valid
molecules. In our experiments, we see that our network produces a higher proportion of realistic
molecules than other methods. We also see that physicochemical properties of the molecules vary
smoothly in our latent space and therefore that our network can be used to predict such properties.

"https://github.com/nicola-decao/MolGAN
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7 REPRODUCIBILITY STATEMENT

The results presented in the paper are reproducible. We will provide an anonymized direct link to
the source code in the discussion forum for submitted papers. The content of this link will contain
complete instructions on how to run the code to reproduce the results presented for the paper. The
architecture and penalties are all discussed in Section 4.

10
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A APPENDIX

Figures and tables associated with the BindingDB dataset are included below:

GRASSY-AE + REGR GRASSY-VAE + REGR

P00918

P14416

GRASSY-AE

GRASSY-VAE

Scattering Moments

QED

Figure 5: Latent representations obtained using ablations of the GRASSY model trained on the
BindingDB dataset, color-coded by QED.

Table 5: Accuracy of physicochemical property prediction for BindingDB

Model Protein Molecular Properties
Target QED TPSA Mol. Wt. (HA) # Rings
GRASSY-AE + REGR P14416  0.3072 + 043 22.52 + 30 49.51 + 66 0.8053+ 1.6
P00918  0.2911 +0.22 3550 + 34 6291 £ 71 0.8908 £ 0.75
GRASSY-VAE + REGR  P14416 0.2430+0.20 18.99+ 31 52.02 + 66 0.9096 + 1.9
P00918 0.3395 £0.27 34.80+ 33 56.72 + 64 0.7981 + 0.66
GRASSY-AE P14416  0.5672 + 0.83 56.90 + 74 399.1 £+ 196 3533+ 14
P00918 0.6871 £ 0.63 116.8 £ 57 373.3 £ 151 2483+ 1.5
GRASSY-VAE P14416  0.7300 + 0.35 56.86 + 74 399.7 + 197 4154 +13
P00918 0.6001 £ 0.30 117.1 + 57 372.3 £ 150 2.630+ 14
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Table 6: Smoothness of physicochemical properties in latent space for BindingDB

Model Protein Molecular Properties
Target QED TPSA  Mol. Wt. (HA) # Rings

GRASSY-AE + REGR P14416 0.1846 0.2813 0.0822 0.1494
P00918  0.3786  0.4469 0.1611 0.5016
GRASSY-VAE + REGR  P14416 0.1746  0.3032 0.0716 0.1475
P00918  0.3345 0.3991 0.1294 0.3926
GRASSY-AE P14416 0.1811 0.2385 0.0995 0.1505
P00918  0.2405  0.2436 0.1496 0.2954
GRASSY-VAE P14416 0.2282  0.2688 0.1148 0.1818
P00918  0.3685  0.4035 0.2368 0.4820

Table 7: Fraction of graphs generated with molecule-like structure

BindingDB # Atoms Validity Models

Target Min. Max. Threshold GRASSY GSAE GraphAF MOolGAN (A = 0)
P14416 2 191 None 0.92 0.36 1.0 N/A
P00918 7 266 None 1.0 0.58 1.0 N/A
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