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ABSTRACT

We investigate the distance function implicitly learned by message passing neu-
ral networks (MPNN5) on specific tasks. Our goal is to capture the functional
distance that is implicitly learned by an MPNN for a given task. This contrasts
previous work which relates MPNN distances on arbitrary tasks to structural dis-
tances that ignore the task at hand. To this end, we distill the distance between
MPNN embeddings into an interpretable graph distance. Our distance is an opti-
mal transport on the Weisfeiler Leman Labeling Tree (WILT), whose edge weights
reveal subgraphs that strongly influence the distance between MPNN embeddings.
Moreover, it generalizes the metrics of two well-known graph kernels and is com-
putable in linear time. Through extensive experiments, we show that MPNNs
define the relative position of embeddings by focusing on a small number of sub-
graphs known by domain experts to be functionally important.

1 INTRODUCTION

Message passing graph neural networks (MPNNs) have been reported to achieve high predictive
performance in various domains (Zhou et al., 2020). To understand these performance gains, many
studies have focused on the expressive power of MPNNs (Morris et al.|[2019; Xu et al.L[2019; Maron
et al., 2019). However, the binary nature of expressive power excludes any analysis of the distance
between graph embeddings, which is considered to be a key to the predictive power of MPNNs (Liu
et al [2022b; [L1 & Leskovec| [2022; Morris et al.,[2024). Recently, there has been growing interest
in the analysis of MPNN (generalization) performance using structural distances between graphs
Boker et al.| (2024); |Franks et al.|(2024) that consider graph topology but ignore the target function
to be learned. One can then derive generalization bounds under assumptions on the margin between
classes or on Lipschitz constants of the target function. Both assumptions do often not hold on real
data and MPNN architectures used in practice. In this work, we instead investigate the distance
dypnn implicitly obtained from an MPNN and its relation to a functional distance dg,. defined on
the target values of the learning task.

Specifically, we ask: What properties does the distance dypyy learned by a well-performing MPNN
have in practice that can explain the high performance? While previous studies (Chuang & Jegelka,
2022; [Boker et al., [2024) focused on the alignment between dypnn and a non-task-tailored struc-
tural graph distance dg,., we have found that it is not critical to the predictive performance of
MPNNSs. Rather, even if an MPNN was trained with classical cross-entropy loss, dypnn respects
the task-relevant functional distance dg, and the alignment between both is highly correlated with
the predictive performance of MPNNs. Then, we move to our second question: How do MPNNs
learn such a metric structure? Since MPNNs essentially consider graphs as multisets of Weisfeiler
Leman (WL) subgraphs, we propose a method to identify WL subgraphs whose presence in a graph
significantly affects its relative position to other graphs in the MPNN embedding space. Specifi-
cally, we distill MPNNSs into a weighted Weisfeiler Leman Labeling Tree (WILT) while preserving
dypnn. The WILT yields an optimal transport distance on a tree ground metric, which we prove
to be a trainable generalization of the graph distances of existing high-performance kernels (Kriege
et al.| [2016; [Togninalli et al |2019). We show experimentally that the WILTing tree distance fits
MPNN distances well. Examination of the resulting edge parameters on WILT after distillation
shows that only a small number of WL subgraphs determine dypnn- In a qualitative experiment, the
subgraphs that strongly influence dypnn are those that are known to be functionally important by
domain knowledge. In short, our contributions are:
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Figure 1: Examples of how the Weisfeiler Leman algorithm works on graphs. @ and e are colors cor-
responding to initial node labels. Node colors in iterations one and two are shown in the small circles
next to the nodes. For example, @ = (e, { (0, —), (0, —)}}) and 0 = (o, { (0, —), (0, —), (@, ) }).

* We show that MPNN distances after training are aligned with the task-relevant functional
distance of the graphs and that this is key to the high predictive performance of MPNNs.

* We propose a trainable graph distance on a weighted Weisfeiler-Lehman Labeling Tree
(WILT) that generalizes Weisfeiler Leman-based distances and is efficiently computable.

* WILTs allow a straightforward definition of relevant subgraphs. Thus, distilling an MPNN
into a WILT enables us to identify subgraphs that strongly influence the distance between
MPNN embeddings, allowing an interpretation of the MPNN embedding space.

2 PRELIMINARIES

We define a graph as a tuple G = (V, E, luode, ledee), Where V' and E are the set of nodes and
edges, respectively. Each node and each edge have a label defined by lpqe : V' — Xpode and
ledgge : B — Yegge, Where Yoqe and Yeqge are finite sets. We restrict them to finite sets because
our method is based on the Weisfeiler Leman test described below, which is discrete in nature. We
denote the set of all labeled graphs up to isomorphism as G. Note that we only consider undirected
graphs, but extending our work to directed graphs is easy by employing an appropriate version of
the Weisfeiler Leman test. We denote the set of neighbors of node v as A/ (v).

Message Passing Algorithms (Gilmer et al., 2017) include popular GNNs such as Graph Con-
volutional Networks (GCN, [Kipf & Welling, [2017)), and Graph Isomorphism Networks (GIN, Xu
et all [2019). At each iteration, a message passing algorithm updates the embeddings of all nodes
by aggregating the embeddings of themselves and their neighbors in the previous iteration. After L
iterations, the node embeddings are aggregated into the graph embedding hq:

h = upp® (hgf—U,AGG(“ ({(hgl—l), eon) | u € N(m]})) he = READ ({hg“ lve V}})

Here {}} denotes a multiset and 0 < I < L with hY = Inode (V). hP e R? and hg € RY
are the embedding of node v after the [-th layer and the graph embedding, respectively. AGGY,
UPD®), and READ are functions. Message Passing Neural Networks (MPNNs) implement upPD®
and AGG") using multilayer perceptrons (MLPs). Sum and mean pooling are popular for READ.

The Weisfeiler Leman (WL) Algorithm is a message passing algorithm, where UPD®Y is an injec-
tive function. AGG") and READ are the identity function on multisets. A node embedding of the
WL algorithm is called color. We use cq(f) instead of hq(f) to refer to it. Figure shows the progress
of the WL algorithm on two graphs: G and H start with the same colors, but after two iterations,

they no longer share any colors, i.e., {{01(,2) |veVeln {{cq(,z) lveVg} =0.
Message Passing Pseudometrics The WL algorithm cannot distinguish some nonisomorphic

graphs (Cai et al.,|1992)) and all MPNNS are bounded by its expressiveness (Xu et al.,2019). Hence,
any MPNN yields a pseudometric on the set of pairwise nonisomorphic graphs G.

Definition 1 (Graph Pseudometric). A graph pseudometric space (G, d) is given by a non-negative
real valued function d : G X G — R that satisfies for all F,G,H € G:

d(G,G)=0 (Identity)
d(G,H) =d(H,G) (Symmetry)
d(G,F) <d(G,H)+d(H,F) (Triangle inequality)
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Given an MPNN, we obtain a pseudometric space (G,dmpnn) by setting dypnn(G, H) =
d(hg, hg), where d : RY x RY — Risa (pseudo)metric and hg and hy are graph embed-
dings. Note that (G, dypnn) is not a metric space since there are nonisomorphic graphs G, H with
identical representations and hence dypnn (G, H) = 0. For the remainder of this paper, we will use
dyenn (G, H) = ||he — hil|2, but other distances between embeddings can also be used. It should
be noted that dypnn depends not only on the input graphs but also on the task on which the MPNN
is trained. For example, dypnny of an MPNN trained to predict the toxicity of molecules will be
different from the dypnn of another MPNN trained to predict the solubility of the same molecules.

Structural Pseudometrics To date, many different graph kernels have been proposed (Kriege et al.,
2020). Each positive semidefinite graph kernel & : G x G — R corresponds to a pseudometric
between graphs. See Appendix for how the kernels used in this article are transformed into
corresponding pseudometrics. We will refer to these pseudometrics as structural pseudometrics and
write dgyc, as they only consider the structural and node/edge label information of graphs, without
being trained using the target label information on a training set.

Functional Pseudometrics To formally define the functional distance between graphs, we introduce
another pseudometric on G that is based on the target labels of the graphs.

Definition 2 (Functional Pseudometric). Let yg be the target label of graph G in a given task. In
classification, yq is a categorical class, while yg is a numerical value in regression. We assume
the space for yc is bounded. Then, the functional pseudometric space (G, dfnc) is obtained from
djine + G x G — [0, 1] defined as:

Lyostyn (classification)
diinc (G, H) = § _lva—yu| (regression)
supyr— inf y; ’
Ieg Ieg

where 1y 2y, is the indicator function that returns 1 if yo # yu, otherwise 0.

See Appendix for a proof that (G, dgync) is a pseudometric space. If the sup/inf of y¢ in G are
unknown, they can be approximated by the max/min in a training dataset D.

The Expressive Power of a message passing algorithm is defined based on its ability to distinguish
non-isomorphic graphs. Formally, a message passing graph embedding function f is said to be at
least as expressive as another one g if the following holds:

VG,H e G: f(G)=f(H) = g(G) =g(H),
where G is the set of all pairwise non-isomorphic graphs. We extend the above to pseudometrics on
graphs. Specifically, a graph pseudometric d is said to be at least as expressive as d’ (d > d') iff
VG,HeG:d(G,H)=0 = d'(G,H)=0.
d and d’ are equally expressive (d = d') iff d > d' and d’ > d. Furthermore, d is said to be more
expressive than d’ (d > d’) iff d > d’ and there exists G, H € Gs.t. d(G, H) #0ANd (G, H) = 0.

3 Is THE MPNN EMBEDDING DISTANCE CRITICAL TO PERFORMANCE?

Our first question is what properties dypnn Of well performing MPNNs have in practice that can
explain their high performance. This section investigates whether the alignment between dypnn and
the task-relevant pseudometric dgnc is such a property. Specifically, we address questions below:

Q1.1 Does training MPNN increase the alignment between dypnn and the task-relevant dyype?
Q1.2 Does a strong alignment between dypnn and dyype indicate high performance of the MPNN?

Note that the alignment between dyipnn and task-irrelevant structural graph pseudometrics dg,e has
been considered a key to MPNN performance in previous studies (Chuang & Jegelkal 2022; [Boker
et al.| 2024} [Franks et al., 2024)). However, we found that this property is not consistently improved
by training and does not correlate with performance. (See Appendix [E|for detailed analyses).

To answer Q1.1 and Q1.2, we should first define a measure of the alignment between dypnn and
dsunc. Note that it is inappropriate to adopt a typical min/max of % to measure the alignment.

This is because dpy, is a binary function for classification tasks, and expecting the exact match of
the two distances is unreasonable. Thus, we define another evaluation criterion in the following.
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Figure 2: The distribution of ALI(dmpnN, dunc) under different k and datasets.

Table 1: Correlation between ALI(dypnN, dfunc) and the performance on Dy, and Diey under
different k. Performance is accuracy for Mutagenicity and ENZYMES, and RMSE for Lipophilicity.

Mutagenicity ENZYMES Lipophilicity
k 1 5 10 20 1 5 10 20 1 5 10 20

train 0.71 0.69 0.67 064 088 081 077 074 -074 -0.72 -0.70 -0.69
test 0.71 0.69 0.66 064 049 043 038 034 -056 -0.53 -0.53 -0.52

Definition 3 (Evaluation Criterion for Alignment Between dypnn and dpune). Let D be a graph
dataset, k be an integer hyperparameter, and Ny,(G) C D\ {G} be a set of k > 1 graphs that are
closest to G under dypyy. Let

1
Ap(G) =+ Z dnc(G, H),  Bi(G) = D —k—1 Z dfunc (G, H).
HeN(G) HED\(N;(G)U{G})

Then dypyy is aligned with dfunc lf

1
ALL; (dmpnn, dfunc) = D] Y [FAKG) + B(@))]
GeD

is positive. In addition, the larger ALI}, is, the more we say dypny is aligned with dgp,.

Here, A;(G) and By, (G) are the average functional distances between G and its neighbors and non-
neighbors, respectively. If Ax(G) < By (G), then the MPNN embeds G and functionally similar
graphs closer on average than functionally dissimilar graphs.

We show the distribution of ALI(dmpNn, diunc) for 48 different MPNNss on different datasets and
varying k in Figure 2] Each model was trained with a standard loss function (cross entropy loss
for classification and RMSE for regression). We did not explicitly optimize ALI;. We also include
the results for untrained MPNNSs to see the effect of training. We can see that there is little overlap
between the distributions of the untrained and trained MPNNs. This means that ALl consistently
improves a lot through training, implying a positive answer to Q1.1. Next, we tested the Pearson
correlation coefficient (PCC) between ALIj (dmpnN, drunc) Of trained MPNNs and their predictive
performance. We use accuracy and RMSE between the ground truth target and predicted values
to measure classification and regression performance, respectively. Table [I] shows that the PCC
for Mutagenicity and ENZYMES is close to one, indicating that the higher the ALIy, the higher the
accuracy. Similarly, the higher the ALI}, the lower the RMSE for Lipophilicity. The correlations are
consistent across training and test sets. These results suggest that the degree of alignment between
dyvpnn and dyyy 18 a crucial factor contributing to the high performance of MPNNs, answering Q1.2
positively. See Appendix [D]for more details and additional results on non-molecular datasets.

4  WILTING PSEUDOMETRICS

Section |§| confirms that MPNNSs are implicitly trained so that dypnn aligns with dgyne, which turns
out to be crucial for MPNN’s performance. Then, our second research question is: How do MPNNs
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learn dypnn that respects dpyne? Since MPNN embeddings are aggregations of WL color embed-
dings, we can infer that MPNNs learn during training which WL colors are important for captur-
ing the task-relevant functional graph distance dg,. This determines the relative position between
MPNN embeddings based on the existence of such WL colors in graphs. To identify WL colors that
strongly influence dypnn, We propose to distill dypyy into our new graph pseudometric dyyrr, which
has tunable weights and is based on the WL colors of the input graphs. dwyrr is an optimal transport
distance on the Weisfeiler Leman Labeling Tree (WILT) and generalizes two existing distances of
high-performing graph kernels (Kriege et al., 2016} [Togninalli et al.| [2019). After distillation, the
parameters of dywyrr allow us to identify WL colors that are considered important by the MPNN.

4.1 WEISFEILER LEMAN LABELING TREE (WILT)

The Weisfeiler Leman Labeling Tree (WILT) Tp is a rooted weighted tree built from the set of
colors obtained by the WL test on a graph dataset D C G. Given D, we define V' (T’p) as the set of

colors that appear on any node during the WL test plus the root node r, that is, V(Tp) = {cq(}l) |ve
Va,G € D,l € [L]} U{r}. Colors x,y € V(Tp) \ {r} are connected in Tp if and only if there

exists a node v in some graph in D and an iteration [ with x = cg,l) and y = cq()l_l)

all x = CE,O). Due to the injectivity of the AGG and UPD functions in the WL algorithm, it follows
that T'p is a tree. Figure 3| (upper left) shows the WILT built from the graphs G and H in Figure[I]
See Appendix [C] for a detailed algorithm to build a WILT from D.

. r is connected to

We consider edge weights w : E(Tp) — Rx>o on WILT. We only allow non-negative weights so that
the WILTing distance in Definition ] will be non-negative. Given a WILT T'p with weights w, the
shortest path distance dyan (2, Y5 W) 1= D, cpyn(a ) W(€) is the sum of edge weights of the unique

shortest path Path(z, y) between = and y. Note that dy is a pseudometric on V (T'p), i.e., the set of
WL colors in D. Intuitively, dpan (2, y; w) is large if Path(z, y) is long, but w allows us to tune this
distance according to the needs of the learning task.

4.2 THE WILTING DISTANCE

A WILT Tp with edge weights w yields a pseudometric dwyr on the graph set D. This section
shows two equivalent characterizations of dwy r as an optimal transport distance and as a weighted
Manhattan distance. The latter allows us to define the importance of specific WL colors and to
compute our proposed distance efficiently. For simplicity, we define dwyr for graphs with the same
number of nodes. In the next section, we will discuss the extension to graphs with different num-
bers of nodes. For two distributions with identical mass on the same pseudometric space, optimal
transport distances such as the Wasserstein distance (Villani, [2009) measure the minimum effort of
shifting probability mass from one distribution to the other. Each unit of shifted mass is weighted
by the distance it is shifted. We define our pseudometric dwy (G, H;w) as the optimal transport
between Vi and Vp, where the ground pseudometric is the shortest path metric on the WILT T'p.

Definition 4 (WILTing Distance). Let G, H € D be graphs with |Vg| = |V |. Then

. — i » (L) (L)
dW/LT(Gv H; w) = Igrlenrl‘ Z Z PZJ d]’alh(cm ) cuj )
vi€Ve u; EVH

where I == {P € RIVelxIVul | p, . >0,P1=1,PT1 =1}.

Note that dwyrr is not a metric but a pseudometric on the set of pairwise nonisomorphic graphs
G. This is because there are nonisomorphic graphs G and H whose colors are the same after L

iterations, i.e., {{cE,L) |ve Vel = {cq()L) |veVul.
Generic algorithms to compute Wasserstein distances require cubic runtime. In our case, however,

there exists a linear time algorithm to compute dwy . as shown below, since the ground pseudometric
dparn 1s the shortest path metric on a tree (Le et al.,|2019).

Definition 5 (WILT Embedding). The WILT embedding of a graph G € D is a vector, where each
dimension counts how many times a corresponding WL color appears during the WL test on G, i.e.,

véi={ve Ve |3 e[l P = c} forc € V(Tp) \ {r}. (see upper right ofFigure.
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Figure 3: (upper left): The Weisfeiler Leman Labelling Tree (WILT) built from D = {G, H } from
Figure I} (lower left): The WILT built from D = {G, H} with dummy nodes. (right): The WILT
embeddings v,  with size normalization, and ¥ with dummy node normalization.

Proposition 1 (Equivalent Definition of WILTing Distance). dy;.r in Deﬁnition is equivalent to:

dwir(G H;w) = Y w (eqepey) V8 — v,
ceV (ToN{r}

where e, (0} is the edge connecting c and its parent p(c) in Tp.

This equivalence allows efficient computation of dwyr given the WILT embeddings of graphs,
which can be computed by the WL algorithm in O(L|E¢|) time, where L is the number of WL
iterations. Using sparse vectors for v and v, dwyr(G, H) can be computed in O(|Vg| + [V ).

4.3 NORMALIZATION AND SPECIAL CASES OF WILTING DISTANCE

The definition of dwir(G, H) as an optimal transport distance requires |V| = |Vg|. However,
|V| and |V | usually do not match, so we propose two solutions. Interestingly, the two modified
WILTing distances generalize two distance functions corresponding to well-known graph kernels.

Size Normalization Straightforwardly, we can restrict the mass of each node to ﬁ when calcu-

lating the Wasserstein distance in Definition 4] In other words, we replace T’ with I' .= {P ¢
RVelxIVul | p, ;> 0,P1 = ﬁl,PTl = ﬁl} Similarly, v in Propositionis changed to

v = I;G\ . The resulting distance dwrr effectively ignores differences in the number of nodes of

G and H, generally assigning fractions of colors in G to colors in H. In Figure 3] (right center), we
show © of G and H in Figure dwir(G, H) is calculated as:

. 3 2 2 2 0 2
dwir (G, H) = w(efe,0}) ’5 - 4’ +w(eqo,03) ‘5 - 4‘ +... +w(eqo0}) ‘5 - 4‘ .

An interesting property of dwLr is that it generalizes the pseudometric corresponding to the Wasser-
stein Weisfeiler Leman graph kernel (Togninalli et al., [2019): When w = m, dwir matches
their distance. See Appendix [B.3|for technical details.

Dummy Node Normalization We can also add isolated nodes with a special label, called dummy
nodes, to graphs so that all the graphs have the same number of nodes. The WILT will be built in the
same way as described in Section@after dummy nodes are added to all graphs in D. The resulting

WILT has new colors 2, cL, ..., cE that arise from the WL iteration on the isolated dummy nodes

- =

(Figure[3]lower left). The WILT embedding will be slightly changed to

c -

_a N —|Vgl|ifce {2, c,... ck
U= )
v¢ otherwise
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Algorithm 1 Optimizing edge weights of WILT

Input: Graph dataset D, an MPNN f with L message passing layers trained on D, and WILT Tp
built from the results of L-iteration WL test on D
Parameter: batch size, number of epochs FE, and learning rate Ir
Output: Optimized edge weights of WILT Tp
ne  |E(Tp)|
w4 1 € R
optimizer <— Adam(params=w, lr=[r)
fore =1to E do
for batch B in D? do )
[+ ﬁ > (dWILT(G,H) — dvenn (G, H))
(G,H)eB
[.backward()
optimizer.step()
w 4— max(w, 0) > Ensuring that each dimension of w is non-negative
end for
end for
return w

where N = maxgep |V| (See Figure [3| (lower right)). Then, the resulting distance dwrr(G, H)
for the graphs in Figure I]is:

dwir(G, H) = w(eqe01)]3 — 2| + wlegooy)]2 — 2| + ... + w(e0p)[0 — 1.

Similar to size normalization, dwyr includes the pseudometric of Weisfeiler Leman optimal as-
signment kernel (Kriege et al., 2016)) as a special case. When w = % dwiLr 1s equivalent to their
distance. See Appendix [B.3]for more details.

4.4 WILTING TREE LEARNING AND IDENTIFICATION OF IMPORTANT WL COLORS

Now, we have a graph distance on WILT defined for any pairs of graphs in D. Next, we show how
to optimze the edge weights w. Proposition [T]allows us to learn the edge weights w, given training
data. Specifically, given a target distance d,rgec We adapt the distance function dwyir by minimizing

2
L(w) = Z (dWILT(G,H;w) _dtarget(GvH)) ;
(G,H)eD?

with respect to w. Note that dwyr can refer to both dwir and dwir. In this work, we focus on
drarget = dmpnn. That is, we train dwyir to mimic the distances between the graph embeddings of
a given MPNN, as shown in Algorithm [T} Once we have trained w by minimizing £, we can gain
insight into dypnn Via dwior. WL colors with large edge weights are those whose presence in a
graph significantly affects dypnn between the graph and other graphs. Specifically, we can derive
the following reasoning.

Large difference between G and H in the number or ratio of WL colors with a large w(eyc,p(c)})
= Large dwir(G, H) (. Proposition|[I])
= Large dvpnn(G, H) (. dwiir approximates dypnn)

4.5 EXPRESSIVENESS OF PSEUDOMETRICS ON WILT

Here, we discuss which of the two normalizations is preferred for a given MPNN based on the
expressive power. Below are the relationships between the expressiveness of dypnn and dwirr.

Theorem 1 (Expressive Power of the Pseudometrics on WILT). Let dysiy and dyiiny be dupnn of
MPNNs with mean/sum graph poolings, respectively. We also define a pseudometric based on the
L-iteration WL test:

dw (G H) = Ly ey gel® pwevin
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Then, the following inequalities hold for WILT with positive edge weights.
dwir < dwir = dwr, dypyy < dWILT(< dwir),  dysy < dwirr, dﬁgNN\ﬁ\dWILT.

Proof. See Appendix [B.4] O

Since dwirr is more expressive than dywyr, you might think that dwy 1 is always preferable to approx-
imating dvpnn. However, dwriir is expected to be better at approximating dyi\y, since it provides
a tighter bound. Intuitively, this follows from the fact that mean pooling and the size normalization
are essentially the same procedure: They both ignore the number of nodes. In contrast, dwir is
expected to work well on d}jp\yN, Which retains the information about the number of nodes and thus

cannot be bounded by dwy - We will experimentally confirm these analyses in Section |5 Note
that Theorem [1| considers only the binary expressiveness of pseudometrics. Regarding the size of
the family of functions that each pseudometric can represent, dypnn iS expected to be superior to
dwiLr, because dwypr is restricted to an optimal transport on the tree for faster computation and better
interpretability. Still, in Section@ we empirically show that dwyr can approximate dypnn Well.

5 EXPERIMENTS

In this section, we confirm that our proposed dwrr can successfully approximate dypnn. Then, we
show that the distribution of learned edge weights of WILT is skewed towards 0, and a large part of
them can be removed with L1 regularization. Finally, we investigate the WL colors that influence
dypnn most. Due to space limitations, we report results only for a selection of MPNNSs and datasets.
Code is available online, and experimental settings and additional results are in Appendix [F}

We trained 3-layer GCNs with mean or sum pooling on the three datasets with five different seeds.
We then distilled each into two WILTSs, one with size normalization and one with dummy node
normalization. To evaluate how well a distance d approximates dypnn, We used a variant of RMSE:

1 - - 2
RMSE(dMPNN7 d) = min ——-—-= Z (dMPNN (G, H) — Q- d(G, H)) N

ocs [DP? (G,H)eD?

where dwir and d means they are normalized to [0, 1]. Intuitively, the closer the RMSE is to zero,
the better the alignment is, and zero RMSE means perfect alignment. We do not use the correlation
coefficient because it can be one even if dypnn is not a constant multiple of d: it allows non-zero
intercept. Note that the minimization over « can be solved analytically. Table 2] shows the RMSE
between dypnn and dwirr or dwir. We also include results for dwwr, and dwroa, which are special
cases of dwi r and dwir with fixed edge weights, respectively. It is obvious that dwyr aligns with
dvpnn much better than dwwr and dwioa. Interestingly, (ZWILT approximates dypnn(mean) better,
while dwyr approximates dypnn(sum) better, except for dypnn(sum) trained on Lipophilicity, where
their performance is close. This observation is consistent with the theoretical analysis in Section[4.3]

Next, we look into the distribution of the learned edge weights of WILT. Figure [] (left) shows the
histogram of the edge weights of the WILT with dummy node normalization after distillation from a
3-layer GCN with sum pooling trained on Mutagenicity. The distribution is heavily skewed towards
zero. This plot, together with Proposition [I] suggests that the relative position of MPNN graph
embeddings is determined based on only a small subset of WL colors. To further verify this idea,
we added an L1 regularization term to the objective function £ and minimized it so that w(ec p(c)})
would be set to zero for some colors. Figure E] (center) shows the RMSE between dypnn and the
resulting dwirr, as well as the ratio of non-zero edge weights, under different L1 coefficient A. As
expected, the larger A is, the more edge weights are set to zero and the larger the RMSE. However,
it is worth noting that dwyr is much better aligned with dypnn than dwpoa even when trained with
A = 1.0 and about 95% of the edge weights are zero. This good approximation with only 5%
non-zero edges implies that MPNNs rely on only a few important WL colors to define dypnn-

Finally, we show the subgraphs corresponding to the colors with the largest weights, thus influencing
dyvpnn the most. Again, we only show results for the 3-layer GCN with sum pooling trained on the
Mutagenicity dataset. To avoid identifying colors that are too rare, we only consider colors that
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Table 2: The mean-+tstd of RMSE (dypnn, d) [ % 10~2] over five different seeds. Each column corre-
sponds to a GCN with a given graph pooling method, trained on a given dataset.
Mutagenicity ENZYMES Lipophilicity
mean sum mean sum mean sum
dwwL 9.25+0.87 12.254+0.54 12.18+0.23 11.28+£0.65 10.92+0.42  10.834+0.73
deOA 18.74+3.36 5.98+1.60 16.79£2.33 6.83+0.41 13.97£0.97  10.00£1.34

dwnr 1.7440.52 1.2240.31 271+0.38 9.15+047 3.11+0.54 2.50+0.67
dwrLr 3.34£1.01 0.82+£0.17 4.64+0.67 143+0.10 6.35£1.22 2.64+0.74
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Figure 4: (left): The distribution of the edge weights of WILT after distillation. (center): The RMSE
and the ratio of non-zero edge weights after distillation with different coefficients for the L1 term.
The results are mean and std over five different seeds. (right): Example graphs with highlighted
significant subgraphs corresponding to colors with the largest weights.

appear in at least 1% of the entire graphs. Figure [] (right) shows example graphs with subgraphs
corresponding to colors with the four largest weights. The identified subgraphs in (1) and (4) are
known to be characteristic of mutagenic molecules (Kazius et al} 2005). In fact, (1) and (4) are
classified as “epoxide” and “aliphatic halide” based on the highlighted subgraphs. Given that only a
tiny fraction of the entire WL colors correspond to the subgraphs reported in (Kazius et al.,|2005),
this result suggests that MPNNs learn the relative position of graph embeddings based on WL colors
that are also known to be functionally important by domain knowledge.

6 CONCLUSIONS

We analyzed the metric properties of the embedding space of MPNNs. We found that the alignment
with the functional pseudometric improves during training and is a key to high predictive perfor-
mance. In contrast, the alignment with the structural psudometrics, which has been studied inten-
sively in previous works, does not improve and is not correlated with performance. To understand
how MPNNSs learn and reflect the functional distance between graphs, we propose a theoretically
sound and efficiently computable new pseudometric on graphs using WILT. By examining the edge
weights of the distilled WILT, we found that only a tiny fraction of the entire WL colors influence
dypnn- The identified colors correspond to subgraphs that are known to be functionally important
from domain knowledge.

While we investigated MPNNSs specifically, there is a hierarchy of more and more expressive GNNs
that are bounded in expressiveness by corresponding WL test variants. In this paper, we have defined
WILT on the hierarchy of 1-WL labels. Still, it is straightforward to extend the proposed WILT
metric to color hierarchies obtained from higher-order WL variants (Morris et al., 2023} |Geerts &
Reutter| [2022) or extended message passing schemes (Frasca et al., [2022; (Graziani et al., [2024).
While beyond the scope of this work, higher-order WILTing trees may prove useful in interpreting
a range of GNNs. However, as the number of trainable WILT weights scales with the number of
colors, the practical relevance of higher-order WILTs remains an open question. Using WILT for a
purpose other than understanding GNNss is also interesting. For example, by training WILT’s edge
parameters from scratch, we might be able to build a high-performance graph kernel.
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A RELATED WORK

A graph is a data structure composed of nodes and the edges connecting them, capable of repre-
senting various entities such as molecules and social networks. Due to the high flexibility of graph
structures, it is difficult to apply deep neural networks from non-graph domains, such as convolu-
tional neural networks (Krizhevsky et al., |2012), to graph data. Thus, graph-specific architectures
called graph neural networks have been studied for about two decades since their initial proposal
(Gori et al., 2005). Message passing graph neural networks, in particular, achieve high predictive
performance in various tasks, including node or graph classification and link prediction.

To understand the high performance of MPNNs, many studies have focused on their expressive
power (Morris et al.,2019;|Xu et al.,|2019;Maron et al.,|2019). Expressive power refers to the ability
of a permutation invariant function to embed nonisomorphic graphs into distinct representations.
Formally, a message passing graph embedding function f is said to be at least as expressive as
another function g if the following holds:

VG,H €G: f(G) = f(H) = ¢(G) =g(H),

where G is the set of all pairwise nonisomorphic graphs. However, the binary expressive power
cannot capture the similarity between graphs, so it alone is said to be insufficient to explain the
performance of MPNNs. Recently, it has become increasingly recognized that the geometry of the
embedding space in MPNNSs, not just their combinatorial expressiveness, is crucial (Li & Leskovec,
2022; [Morris et al.l 2024). For instance, many of the graph contrastive learning methods implic-
itly assume that good metric structure in the embedding space will lead to the high performance
of MPNNs (Liu et al.l 2022b). [Chuang & Jegelkal (2022) theoretically showed that the distance
between MPNN embeddings can be upper bounded by their proposed task-irrelevant structural dis-
tance, called the tree mover’s distance, paving the way for the theoretical analyses of MPNN gen-
eralization ability or robustness. |Boker et al.| (2024) proved the equivalence between the MPNN
embedding distance and other structural distances, but their analyses dealt only with dense graphs
and required the consideration of all MPNNs with some Lipschitz constant. Our study also focuses
on the geometry of the embedding space, but we investigate one MPNN trained on practical sparse
graphs.

This study is also related to GNN interpretability (Liu et al., |2022a} |Yuan et al., |2022)). The inter-
pretability of GNNs is important because people may be reluctant to apply them to real-world prob-
lems where safety or privacy are important if the mechanism behind their predictions is unknown.
Furthermore, higher interpretability of well-performing models may lead to a new understanding of
scientific phenomena when applied to scientific domains such as chemistry or biology. Most of ex-
isting interpretation methods are instance-level, which identify input features in a given input graph
that are important for its prediction. However, instance-level methods cannot explain the global be-
havior of GNNs. Recently, some studies have proposed a way to understand the global behavior of
GNNs by distilling them into highly interpretable models. The resulting model can be a GNN with
higher interpretability (Miiller et al., [2024), or a logical formula (Azzolin et al., 2023 |Kohler &
Heindorf, 2024} [Pluska et al., [2024). Our study also distills MPNNSs into highly interpretable WILT
for global-level understanding, but the difference is that ours aims to interpret the metric structure
of the MPNN embedding space, while previous studies focused on generating explanations for each
label class. In addition, our method can be applied to regression tasks on graphs, while previous
studies cannot.

B THEORETICAL ANALYSIS

B.1 STRUCTURAL PSEUDOMETRICS

Here we introduce the definitions of the graph edit distance (dggp, Sanfeliu & Ful [1983), Weisfeiler
Leman optimal assignment distance (dwyoa, |Kriege et al., 2016)), and Wasserstein Weisfeiler Leman
graph distance (dwwy, Togninalli et al., 2019). For the definition of tree mover’s distance, please
refer to the original paper (Chuang & Jegelka, [2022).

Definition 6 (Graph Edit Distance(Sanfeliu & Fu,|1983)). Let & be the set of graph edit operations,
and c : € — Rx>q be a function that assigns a cost to each operation. Then, the graph edit distance

12
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(GED) between G and H is defined as the minimum cost of a sequence of edit operations that
transform G into H. Formally,

deep(G, H) = gegr(%nH) Zc(e)7
) 7 ees

where S is a set of sequences of graph edit operations that transform G into H.

In this paper, £ consists of insertion and deletion of single nodes and single edges, as well as substi-
tution of single node or edge labels. We set the cost of each operation to 1, i.e., ¢(e) = 1. Next, we
move on to the Weisfeiler Leman optimal assignment (WLOA) kernel.

Definition 7 (Weisfeiler Leman Optimal Assignment Kernel (Kriege et all,[2016)). Consider G =
(Va,Eq) and H = (Vy, Eg). Let V{, and V}; be the extended node sets resulting from adding
special nodes z to G or H so that G and H have the same number of nodes. Let the base kernel k
is defined as:

u

0 (v=2zVu=2),

k(’U,u) = {ZlL_O ]lcq(j):c(l) (U 7é zZAu 7& Z)

where cg,l) and cq(f ) represent the colors of vertices v and u at iteration | of the WL algorithm (see

Section[2)). Then, the Weisfeiler Leman optimal assignment (WLOA) kernel is defined as:

kwioa(G, H) = A > k(vg,um),
G H (’Ug,uH)EB

where B(V}, V};) denotes the set of all possible bijections between V., and V.

Kriege et al.|(2016) proved that kwroa is a positive semidefinite kernel function. While they focus
only on the kernel, a corresponding graph pseudometric can be defined in the following way:

Definition 8 (Weisfeiler Leman Optimal Assignment (WLOA) Distance). A function dypoa below
is a pseudometric on the set of pairwise nonisomorphic graphs G:

dWLOA(G,H) = (L + 1) 'IIl&.X(lV'G"7 ‘VHD — kWLOA(G7 H)

Proof. Theorem [3| shows that dwoa defined as above is a special case of dwir. Since dwir is a
pseudometric on the set of pairwise nonisomorphic graphs G, so is dwLoa- O

We will show later that the above WLOA distance is a special case of our WILT distance with
dummy node normalization (Theorem [3)). [Togninalli et al| (2019) proposed another graph pseudo-
metric based on the WL algorithm, called Wasserstein Weisfeiler Leman graph distance.

Definition 9 (Wasserstein Weisfeiler Leman (WWL) Distance (Togninalli et al., 2019)). Let

dpam (v, w) be the hamming distance between [CS,O), cg,l), .. cg,L)} and E&O), c&l), .. ch)}, where

O]

¢y’ is the color of node v at iteration | of the WL algorithm (see Section|2)). Specifically,

L
1
han(®: ) = 773 D ot
-0

Then the WWL distance is defined as
dwwi (G, H) = min Z Z P; jdpam(vi, uy),

Pelwwr
v;€Vg u; €Vl

where Tyy, == {P € RLVOGMVM | P1 = W%II’PTl = lv—zll} is a set of valid transports

between two uniform discrete distributions.

Togninalli et al| (2019) have shown that dwwr is a pseudometric. In addition, they proposed a
corresponding kernel kwwy (G, H) = e~ *®w.(G.H) "and showed that it is positive semidefinite. We
will prove later in Theorem [2] that our WILT distance with size normalization includes the WWL
distance as a special case.
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B.2 FUNCTIONAL PSEUDOMETRIC

Here, we show that dp,, is a pseudometric.

Definition 2 (Functional Pseudometric). Let y¢ be the target label of graph G in a given task. In
classification, yq is a categorical class, while yg is a numerical value in regression. We assume
the space for y¢ is bounded. Then, the functional pseudometric space (G, dfinc) is obtained from
djine + G x G — [0, 1] defined as:

Lyostyn (classification)
dfinc(G, H) = lyc—ym|

- “inf

supyr—infyr

(regression),
where 1y 2y, is the indicator function that returns 1 if yo # yu, otherwise 0.

Proof. We start with the classification case.
diunc (G, G) = Lyc#ye
=0
drunc (G, H) = Lyoyn

= Lyusye
= dfunc(Hv G)

dfurIC(Ga F) = ]lyc#yp
< Lyotyn + Lynyr

= dfunc(G7 H) + dfunc(Hv F)
We can prove similarly in regression case.

lye — yal
dianc (G, G) = —————
we(G2G) = Sapyr = inor
Ieg

Ieg
=0
Yyc —Yym
dfunc(Ga H) = Q
supy; — infy;
Ieg Ieg
_ lya — el
su — inf
= dfunc(H7 G)
G —Yr
dfunc(GvF) = M
supy; — infy;
I€G Ieg
< lye — yu| n lyr — yr|

su — inf su — inf
Ierg)yz i gyl Iegyl 2 gyI
- dfunc(Ga H) + dfunc(Ha F)

In both cases, identity, symmetry, and triangle inequality are satisfied. O

If the sup/inf of y in G are unknown, they can be approximated by the max/min in a training dataset
D, and we can similarly prove that dg, is a pseudometric.

B.3 NORMALIZED WILTING DISTANCES AND RELATIONSHIP TO EXISTING DISTANCES

We present the formal definitions of the size normalization and dummy node normalization. We

then show that dywyr with size normalization generalizes the WWL distance and dyir with dummy
node normalization generalizes the WLOA distance.
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Definition 10 (WILTing Distance with Size Normalization). We define the WILTing distance with
size normalization as:

dwur(G, H; w) := min Z Z P, jepan(c4F Co; Cq(ﬁ)),

PGF’U eVo u; EVy
where T' = {P ¢ RIVeIxIVul | p, ; >0, P1 = % L el PT1 = ‘V—lHll} It is equivalent to:

dyir(G Hyw) = Y wleqepey) 78 = 0],
ceV(Tp)\{r}
where V¢ == €.
Vel
The only difference between Definition 4 and Definition[I0]is the mass assigned to each node. The

equivalence between the two definitions of dWILT is a straightforward consequence of (Le et al.
2019). The other normalization is defined as follows.

Definition 11 (WILTing Distance with Dummy Node Normalization). Let Vi be an extension of
Ve with additional N — |V | isolated dummy nodes with special label, where N := maxgep |Vl
Let Tp be WILT built from the extended graphs {(Vg, Ec)}gep. Note that Tp is just a slight
modification of Tp (see Figure[3). We define the WILTing distance with dummy node normalization

as.:
dWILT(G H: w) —I;lelli‘l Z Z dpath( (L ) (L))

v, Vg UJEVH
where T := {P e RIValxIVal | P,;>0,P1=1P'1 =1} andc e\l is the color of node v on
Tp after L iterations. An equivalent definition is:
JWILT(GaH;w) = Z w(e{é,p(é)}) |D(§ - 175{{ s
ceV (Tp)\{r}
where 0 is the WILT embedding of G using Tp.

Intuitively speaking, we add dummy nodes to all the graphs so that they have the same number of
nodesﬂ and compute the WILTing distance in exactly the same way as shown in Section

Next, we show that JWILT includes the Wasserstein Weisfeiler Leman distance and dwy 1 includes
the Weisfeiler Leman optimal assignment distance as a special case, respectively.

Theorem 2 (dww, as a Special Case of dWILT) The WWL distance in Deﬁnmon EJ] is equal to the
WILTing distance with size normalization with all WILT edge weights set to PIeEs)) +1) Specifically,

. 1
dwwi(G, H) = dwir <G7 Hyw= 2(L—|—1)) .

Proof.
d G,H) P; d
WWL( PIETII"I\,?WL Z Z 4,7 Cham Uza u])
vi€Va u;eVy
L
min SN Py 2 L
v, €EVg uj eV
1
= min P; id, W=
Pel'wwL Z Z 5 Tpath ( (L + 1))
v, €Ve u; EVH
1
=min Y > P jdpn ( AP, el iw = (L"‘l))
per v, €Vg u; €V
; 1
=d GHw=——].
WILT ( ’ 2([/ ¥+ 1))
O
'In fact, dwir remains a pseudometrlc even on D = G, as it can be defined without exphcn use of N. To
this end, note that im0 |75 — \ = |V(G) — V(H)| for any dummy node color ¢,
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Theorem 3 (dwoa as a Special Case of dwir). The WLOA distance in Definition|8|is equal to the
WILTing distance with dummy node normalization with all WILT edge weights set to % Specifically,

7 1
dwioa(G, H) = dwir (G,H;w = 2) )

Proof. First, dwiLoa(G, H) can be transformed as follows.
dwroa(G, H) == (L +1) - max(|Vg/|, Vi) — kwLoa(G, H)
= (L4 1) - max(|Vgl, Vi) — Bl > k(g un)

(vg,um)€EB

=  min Z (L+1—k(vg,um))
BEB(VEViy) (=

Next, we introduce a equivalent definition of k(v, ). In Definition (7} the WL algorithm is applied
only on Vi and V, not on special nodes. Assume w.l.o.g. that [V(G)| < |V(H)|, i.e., V(G)
is extended with |V (H)| — |[V(G)| dummy nodes. By treating the special nodes in V(, as dummy

nodes, we can define WL colors for the special nodes z: (c(zo)7 c(zl), .. ,ch)) = (2, ct ch).

Then, as only V/, contains special nodes, k(v, u) can be simplified to:

L
kv, u) = Z Law a0
1=0

where 61(,[) is the color of node v on the WILT T)p with dummy node normalization after [ iterations.

Then, L + 1 — k(v, u) is equivalent to dpath(aSL), elw = 1)

L
L+1-— k(v,u) =L+1-— Z 15“):5(”
=0

Therefore, dwyoa is a special case of dwir:

dwroa(G, H) = BEBI(I%/ipV,) Z (L+1—k(vg,un))
G'"H (UG,’U.H)GB

1
— g (e )., =L
BGB%;},VA) Z 5 path (cvc 7CuH Y D)

(va,um)€

. 1
x Prodo (D), 60), 0y = 1
g S X P (000 = 5

v, €V Uj eVy
- 1
= dwiLr (G,H;w = 2)
Note that x holds since adding the same number of dummy nodes to both G and H does not change

the left side, and the optimal transport on WILT always delivers a mass on a node to only one
node. O

B.4 EXPRESSIVENESS OF GRAPH PSEUDOMETRICS

We now discuss in detail the expressiveness of graph pseudometrics, which was summarized in
Section We split Theorem [I] in Section [4.5] into three theorems below, and prove each one
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separately. The discussion below provides a possible explanation for some results in Section [5|and
Appendix [E] First, we introduce a pseudometric defined by the WL test:

dWL(Ga H) = HHCS,L) ‘UGVGB:{{CS)L”UEVH}},

where L is the number of WL iterations. In other words, dwy. (G, H) = 1 if the L-iteration WL test

can distinguish G and H, otherwise 0. With this definition, we start with the comparison of dwir
and dwy for a better understanding of dwir.

Theorem 4 (Expressiveness of the WILTing Distance). Suppose dwir and dywyr are pseudometrics
defined with WILT with some edge weight functions. We assume that all edge weights are positive
for dWlLT- Then,

dwir < dwir = dyy.

Proof. We first show dWILT < JWIL’F

CZW[LT(G,H)ZO - I?GZDH N |VG‘:‘VH|

— Vleafcolorc: [{veVg|cP =c}| = {veVy | =c}
(L) _
— Vleaf color ¢ : H{v € Ve | C?L) =cj| — Vel -
{vevy|dP =c} Vil
= ¢ =pl
== dWILT(G,H) =0.

Note that leaf color ¢ means that c is a leaf of the WILT. The first implication follows from the
fact that dummy node normalization implies that only graphs with identical numbers of nodes can
have a distance of zero if the weights are positive. To see that dwy (G, H) is more expressive than

JWILT(G, H), note that there are G and H s.t. dwir(G, H) # 0 A JWILT(G, H) = 0: For example,
let G and H be k-regular graphs (such as cycles) with different numbers of nodes and identical node
and edge labels. Next, we show dwir = dwr.

CZW]LT(G, H) =0 <= ¢ =pt
— Vleafcolorc: [{veVg|cd) =c}=[{veVy]|dl =¢}

— {{c,(JL) |ve Vel = {{CS)L) |veVy}
= dWL(G,H) =0.

The first equivalence again follows from the fact that weights are positive. O

Since dypan < dwi, holds for any MPNN (Xu et al., 2019), the above theorem implies that dypnn <
dwir if all edge weights are positive. At first glance, this seems to suggest that dwyr can better align
with any MPNN than dWILT because of its high expressiveness. However, the results in Section
show that dWILT is suitable for MPNNs with mean pooling, while dwivr is suitable for MPNNs with
sum pooling. Next, we compare dypny and dwyr in more detail to interpret these results. We start

with MPNNs with mean pooling, whose pseudometrics we will call dyNx-

Theorem 5 (Expressiveness of the Pseudometric of MPNN with Mean Pooling). Suppose dwir and
dwir are pseudometrics defined with WILT with some edge weight functions. We assume that all
edge weights are positive. Then,

vy < dwir(< dwir).
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Proof. We first show the left inequality.

dwir(G, H) =0 = % =pH

L L
— Vleaf color ¢ : HUGVGM&)ZCH \{UGVH\C( )—C}|

Vel \Vh|
1 1
— Vleafcolorc: — h()L) - h(,L)
‘VG| Z i |VH‘ ZL v
veVa: c( )= veEVE: ci )=
Z (L) _ Z (L)
| veEVG ‘VH| veVy

= dﬁ%“‘N“N(Gﬂ) =0.

The first implication follows from the fact that w(e{c p()y) > 0 for all colors. The third implication
follows from Xu et al.|(2019) by noting that c(L) (L) — th) = hSJL) for any MPNN.

dWILT < dWILT follows from Theorem El O

In Section [5} we found that RMSE(dy NN JWILT) is smaller than RMSE(dyiNns dwirt). The above

theorem and the proof yield an interpretation of the result. In terms of expressiveness, dwirr is a
stricter upper bound on dyaqy than dwrir, since the mean pooling and the size normalization are

essentially the same procedure. Both ignore the information about the number of nodes in graphs.

When we try to fit dwi.r to dﬁ%‘}{}N, it is difficult to tune edge parameters so that dwir can ignore the

number of nodes in graphs, but dwir satisfies this property by definition. This may be the reason
why dWILT can be trained to be better aligned with dyjfigy than dwir. A similar discussion can be

applied to dwwr and dwpoa, Which are special cases of dWlLT and dwir, respectively. Next, we
analyze MPNNs with sum pooling.

Theorem 6 (Expressiveness of the Pseudometric of MPNN with Sum Pooling). Suppose dwiLr is
defined with WILT with an edge weight function that assigns a positive value to all edges. Then,

sum 7
dMPNN S dWILT~

In addition, if 3G € G s.t. > (5) £ 0, then

veVg

m
Ay <dwir

Proof. We begin with dﬁ;’nNN < dWILT

dwir(G,H) =0 = 79 =pf

— Vleafcolorc: [{veVg|cF =c}=|{veVy|cdl =c}

—> Vleaf color c: Z hE,L) = Z hSJL)
veVaie =c veVi:ct =c
— S
vEVG vEVH

= dypnw(G,H) =0

Next, we show d{um Kdwir. Let G be a graph that satisfies D veve P
H

a graph H that consists of two copies of G. Then, 7 = 1, since 209 = v and 2|V5| = |Vy|.

;é 0. We can consider
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Algorithm 2 Building WILT

Input: Graph dataset D
Parameter: L > 1
Output: WILT Tp

Tp <Initial tree with only the root r

for (G in D do
/* L-iteration WL test on G */
Cpre [ > Keeping colors in the previous iteration
Cnow [ > Keeping colors in the current iteration

for vin Vg do
if lnode (V) ¢ V(Tp) then
V(Tp) + V(Tp) U {lhode(v)}
E(Tp) <= E(Tp) U{(r, lnode (v)) }
end if
Cpre [U] — lnode(v)
end for
for[ =1to L do
for v in Vi do
¢y 4= HASH((cpre[0], {(Cpre[t]; legge(€uv)) | u € N'(v) }))
ifc, ¢ V(T'p) then
V(TD) — V(TD) U {Cy}
E(Tp) « E(Tp) U {(cpelol. o)}
end if
Cnow [V] <= €y
end for
Cpre < Cnow
Cnow < []
end for
end for
return 7p

Therefore, dWILT(G , H) = 0. On the other hand,

dypnn (G, H) = Z hS;L) - Z hSJL)
veEVa veVy 2
S DI
veVa veEVG 2
= > n®
veVa 2
£0.

O

In terms of expressiveness, dum . is almost always not bounded by dwrr except for the trivial
MPNN which embeds all graphs to zero. In fact, the opposite JWILT < dyipnn holds if the MPNN is
sufficiently expressive, e.g. GIN. These analyses may explain why RMSE(d}ipyn» dwiit) is gener-
ally smaller than RMSE(dyPyn- dWILT) in Section No matter how much it is trained, JWILT cannot

sum

capture the information about the number of nodes that dyjp\n can. On the other hand, dwir is
expressive enough to capture the information, and thus has a chance of aligning well with d{jp\n-
Again, a similar reasoning can be applied to dwwr, and dwoa.

C ALGORITHM TO CONSTRUCT WILT

Algorithm 2] shows how to build WILT from a graph dataset D.
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Figure 5: The distribution of ALI (dmpnN, dfunc) under different & and datasets.

Table 3: Correlation between ALI (dypNN, diunc) and accuracy on Dy, and Dy under different k.
IMDB-BINARY COLLAB
k 1 5 10 20 1 5 10 20

train 038 0.60 0.60 059 089 090 0.88 0.89
test -0.03 0.14 0.19 0.28 081 083 0.81 0.81

D EXPERIMENTAL DETAILS FOR SECTION[3]

Here, we present the detailed experimental setup resulting in Figure 2] and Table [Il We conduct
experiments on three different datasets: Mutagenicity and ENZYMES (Morris et al.l 2020), and
Lipophilicity (Wu et al.,|2018)). We chose these datasets to represent binary classification, multiclass
classification, and regression tasks, respectively. For the models, we adopt two popular MPNN
architectures: GCN and GIN. For each model architecture, we vary the number of message passing
layers (1,2, 3, 4), the embedding dimensions (32, 64, 128), and the graph pooling methods (mean,
sum). This results in a total of 2 x 4 x 3 x 2 = 48 different MPNNs for each dataset. In each
setting, we split the dataset into Dypin, Deval, and Dy (8:1:1). We train the model for 100 epochs
and record the performance on Dey, after each epoch. We set the batch size to 32, and use the Adam
optimizer with learning rate of 1073, ALIL, (dmpNN; dfunc) and the performance metric (accuracy for
Mutagenicity and ENZYMES, RMSE for Lipophilicity) are calculated with the model at the epoch
that performed best on Dey,;.

Next, we offer additional experimental results on non-molecular datasets: IMDB-BINARY and
COLLAB (Morris et al., [2020). Figure visualizes the distribution of ALIy(dmpnN, dfunc) On these
datasets and varying k. Similar to Figure 2] ALI;, consistently improves with training. Table [3]also
offers results similar to Table[I] showing that there is a positive correlation between ALI}, of trained
MPNNs and their accuracy in general. We visualize in Figure [f] the plots used to compute the cor-
relation coefficient in Table [T]and Table [3] for better understanding. Each blue dot represents one of
the 48 different models. For ALI with k # 5, similar plots were observed.

E MPNN PSEUDOMETRIC AND STRUCTURAL PSEUDOMETRICS

There has been intensive research on graph kernels, which essentially aims to manually design graph
pseudometrics dgyye that lead to good prediction performance. Recent studies have theoretically
analyzed the relationship between dypny and such dgyyc, but they only upper-bounded dypyn With
dsrue (Chuang & Jegelkal [2022), or showed the equivalence for untrained MPNNs on dense graphs
(Boker et al., [2024). Therefore, this section examines if dypnn really aligns with dgc in practice,
and if the alignment explain the high performance of MPNNs. Specifically, we address the following
questions:

Q1.3 What kind of dgyy is dmpnn best aligned with?
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Figure 6: Scatter plots between ALI5(dyvpnN, dfunc) and the performance on the train/test set. In
general, higher ALI5 (dmpnN, diunc)s 1-€., higher alignment between dypnn and diync, indicates higher
performance.

Q1.4 Does training MPNN increase the alignment?
Q1.5 Does a strong alignment between dypnn and dge indicate high performance of the MPNN?

We first define an evaluation criterion for the alignment between dypny and dgye to answer them,
which is the same as the one used in Section

Definition 12 (Evaluation ~Criterion fgr Alignment Between dyipny and dyye). Consider a graph
dataset denoted by D. Let dypyy and dge be normalized versions of dypny and dgyye, respectively:

et dMPNN(G7 H) 37 dstruc(Ga H)
d G,H) = dsrue (G, H) == .
MPNN( ’ ) max dMPNN(G/a Hl) ’ ! ( ) max dxtruc(G/; H/)
(G’,H")eD? (G’,H")eD?

We measure the alignment between dypny and dg,. by the RMSE after fitting a linear model with
the intercept fixed at zero to the normalized pseudometrics:

o1
ek D2 2
(G,H)eD?

~ ~ 2
RMSE(dMPNNa dstruc) = (dMPNN(G7 H) — o dxtruc(Ga H)) .

The closer the RMSE is to zero, the better the alignment is. Zero RMSE means perfect alignment.
That is, dyvpnn 1S a constant multiple of dgy.. Note that we use different evaluation criteria to
measure the alignment between dypny and dyype (Definition E[) or dgye (Definition . There are
multiple reasons for this. First, the RMSE is in principle designed for non-binary dg,.. Therefore,
RMSE(dmpnN; dfunc) is not a meaningful value when dyyy is a binary function, which is the case
when the task is classification. Second, the computation of ALI(dmvpNn, dsirue) 1S computationally
too expensive. We explain this in terms of how many graph pairs we need to compute the distance
for. Both the RMSE and ALI, require the calculation of the distance between |D|? pairs in the
original definition. This is too demanding, especially when dgy is dgep, which is NP-hard to
compute. Therefore, in practice, we approximate the RMSE with 1000 randomly selected pairs
from D?. This kind of approximation is difficult for ALI,. To approximate ALIj, we first choose a
subset Dy, of D, and then compute dyyye of all pairs in Dfub. Even if we set | Dyyp| = 100, which is
quite small, we still need about 10 times more computation than the RMSE.

We evaluate four structural pseudometrics: graph edit distance (dggp, [Sanfeliu & Ful [1983)), tree
mover’s distance (drmp, (Chuang & Jegelkal [2022), Weisfeiler Leman optimal assignment distance
(dwLoa, Kriege et al} [2016), and Wasserstein Weisfeiler Leman graph distance (dwwy, [Togninalli
et al.. 2019). See Appendix for detailed definitions. dyvp, dwLoa, and dwwr are pseudometrics
on the set of pairwise nonisomorphic graphs G. Only dggp for strictly positive edit costs is a metric,
i.e., dgep(G, H) = 0 if and only if G and H are isomorphic. We will also call dggp a pseudometric
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Figure 7: The distributions of RMSE(dmpnN, dsirue) under different dgyy, and datasets. Each color
represents whether the MPNNSs are trained or not and which graph pooling function they use.

for simplicity. We chose dggp because it is a popular graph pseudometric. The others were chosen
because they are based on the message passing algorithm, like MPNNSs, and classifiers based on
their corresponding kernels were reported to achieve high accuracy. In addition, dryp has been
theoretically proven to be an upper bound of dypnn (Chuang & Jegelka) [2022). Note that the exact
calculation of dggp is in general NP-hard due to the combinatorial optimization over the set of valid
transformation sequences (see Definition[)). Therefore, in our experiment, we limit the computation
time of dggp of each graph pair (G, H) to a maximum of 30 seconds. If this time limit is exceeded,
we consider the lowest total cost at that point to be dgep(G, H). When we compute the RMSE
between a given MPNN and any of dyvp, dwioa, and dwwr, we set the depth of the computational
trees used to compute these dgye as the number of message passing layers in the MPNN for a fair
comparison.

Figure [7] presents the distributions of the RMSE in different datasets (Morris et al, 2020; [Wu et al.|
[2018), dgruc, and the graph grouping methods used in MPNN. We followed exactly the same pro-
cedure for training and evaluating MPNNs as shown in Appendix |[D| Each distribution consists of
RMSE(dmpnN; dsirue) Of 24 MPNN's with different architectures and hyperparameters. We also pro-
vide results for untrained MPNNSs to see the effect of training. As can be seen from the plots, the
distributions of the untrained and trained MPNNs overlap, and there is no strong and consistent
improvement in RMSE after training (answer to Q1.4). Regarding Q1.3, none of the four dg, per-
forms best in all cases. The best one depends on the choice of dataset and pooling. One intersting
observation is that dypny With sum pooling is more aligned with dwy oa than dwwy, while the reverse
is true for dypnn With mean pooling. This difference between pooling methods can be explained by
different normalizations of the structural pseudometrics (see Section[4.5]and Appendix [B.4).

Another insight from Figure [/|is that the degree of alignment between dypny and dgyye Varies by
model. To see if the alignment is crucial for the high predictive performance of MPNNs, we exam-
ined the PCC between RMSE(dypnn, dsirue ) Of trained models and their performance on the training
and test sets. We used accuracy and RMSE as performance criteria. Table [dshows that the correla-
tion is neither strong nor consistent across settings. Thus the alignment between dypny and dgyryc 1S
not a key to high MPNN performance. This answers Q1.5 negatively.
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Table 4: The correlation coefficient between RMSE(dypnN, dgiue) @and the performance on the train-
ing and test sets. Performance was measured based on accuracy for Mutagenicity and ENZYMES,
and based on RMSE for Lipophilicity.

Train Test

GED TMD WLOA WWL GED TMD WLOA WWL

mean 026 022 -0.06 043 031 031 0.06 0.50

Mutagenicity "0/ 004 023 035 030 -009 017 020 029

mean 032 028 024 029 037 053 038 020

ENZYMES " 0m 035 068 041 032 053 013 -009 -0.11

o mean -0.67 -0.65 -0.66 -056 -0.59 -0.67 -059  -0.59
Lipophilicity

sum -0.11 -0.60 -0.52 -0.30 -040 -0.82  -0.77 -0.58
mean 0.04  0.18 -0.38 -0.31 -026 -024 -0.35 0.37
sum 041  0.67 -0.62 -0.60 0.07 0.21 -0.19 -0.07
mean 0.75  0.63 0.59 -0.54  0.67 0.54 0.53 -0.43
sum -047 0.56 -0.50 -0.55 -036 048 -0.38 -0.48

IMDB-BINARY

COLLAB

Table 5: The mean+std of RMSE(dypnn, d) [X 1072] over five different seeds. Each column corre-
sponds to GIN with a given graph pooling method, trained on a given dataset.
Mutagenicity ENZYMES Lipophilicity
mean sum mean sum mean sum
dwwL 11.474+0.24 14.08+0.77 11.5440.30 12.1040.84 14.1240.60 14.9740.58
deOA 17.994+2.79 13.05+1.44  23.71+£0.81 9.94+1.88 16.95+0.52  13.97+0.75

dwir 3.70£0.57 386+040 5.324+0.20 8.60+0.35 6.31+046 6.49+0.50
dwrr 498+0.78 3.56+0.36 7.55£0.24 3.86+0.68 9.52+0.70 6.59+0.51

F EXPERIMENTAL DETAILS FOR SECTION 5

For the experiments in Section [5] we trained 3-layer GCN and GIN with embedding dimensions
of 64 on the three datasets. We explored both mean and sum pooling. Each model was trained on
the full dataset for 100 epochs using the Adam optimizer with a learning rate of 10~2. Then, each
model was distilled to WILT by minimizing the loss £ defined in Section We used the entire
data set for D in L. The distillation was done using gradient descent optimization with the Adam
optimizer for 10 epochs. The learning rate and batch size were set to 10~2 and 256, respectively.
See Algorithm [T] for details.

In Table@ we only show the results for GCN. _Here, we SEIOW results for GIN in Table@ The overall
trend is the same between Tables [2| and dWILT and dwyr are much better aligned with dypnn
than dwwr, and dwroa. In addition, dwwr and dwir approximate dypnn(mean) better, while the

opposite is true for dypnn(sum). We also observed the same trend on the IMDB-BINARY dataset
(see Table[0).

Next, we plot the distribution of WILT edge weights after distillation in Figure [8f While the range
of edge weights varies by model and dataset, all the distributions are skewed to zero (note that the
y-axis is log scale). This suggests that only a small fraction of all WL colors influence dypnn. In
other words, MPNNs build up their embedding space based on a small subset of entire WL colors,
regardless of model and dataset.

Finally, we visualize the WL colors with the largest weights, i.e., whose presence or absence influ-
ence dwir and therefore — by approximation — dypnny the most. We use the Mutagenicity dataset
as functionally important substructures are known from domain knowledge (Kazius et al., 2005). It
should be noted that we only consider colors that appear in at least 1% of all graphs in the dataset.
Table[7]and[§]show graphs with substructures corresponding to the WL colors with the top 10 largest
weights. Table[7]is the result for GCN with sum pooling, while Table[§]is for GCN with mean pool-
ing. If the highlighted subgraph matches one of the seven toxicophore substructures listed in Table
1 of Kazius et al.|(2005), we show the toxicophore name as well. 4 and 3 out of 10 WL colors cor-

23



Under review as a conference paper at ICLR 2025

Mutagenicity ENZYMES Lipophilicity IMDB-BINARY
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Figure 8: The distribution of edge weights of WILT after distillation from varying models trained
on different datasets. The models with sum pooling were distilled into WILT with dummy normal-
ization, while the models with mean pooling were distilled into WILT with size normalization. The

log scale y-axis is shared across all plots.
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Table 6: The mean-+tstd of RMSE(dypnn, d) [ % 10~2] over five different seeds. Each column corre-
sponds to a GCN or GIN with a given graph pooling method, trained on IMDB-BINARY.

GCN GIN
mean sum mean sum

dwwe  16.9842.06 16214245 21.324025  23.49+0.42
dwioa 19.04£439  12.01£3.81  19.65+0.45  21.23+0.39
dwnr 6.19+£1.24 9084437 2.61+£0.34 8.0940.89

dwnr 7624127 4.69+3.70 3.09+0.37 0.85-+0.13

Table 7: Example graphs with highlighted significant subgraphs corresponding to colors with top 10
largest weights. GCN with sum pooling was used. The toxicophore name is shown if the highlighted
subgraph matches toxicophore substructures reported in Table 1 of Kazius et al.| (2005))

(1) three-membered
heterocycle 2) 3) (4) alphatic halide (@)
(epoxide)

NO,

B
</ \> / ! N— CHjy
\ / CHy — CH /
H ' \ N ::::?//

/ N/ \ C 2 Br
H 6] H ‘H ‘

/
/

(6) nitroso 7) (8) ) (10) alphatic halide

Z

CH,Cl— C——CH,Cl N

(\ s CH,CI (\ S ~
4< ‘ 4< N—CHs

1 CH, ‘ N CH,
/ \ CH,Cl /

(&) OH () OH N—O F

respond to toxicophore substructures in Tables 5 and 6, respectively, which is quite a lot considering
that only 7 toxicophore substructures are listed in Table 1 of [Kazius et al.|(2005). Furthermore, there
are some colors that not fully but partially match one of the substructures in |[Kazius et al.| (2005).
For instance, (6) and (9) in Table [7] and (8) in Table [§] partially match “aromatic nitro”, while (7)
in Table [8|is part of “polycyclic aromatic system”. Note that it is impossible to identify subgraphs
that perfectly match these toxicophore substructures, since our method can only identify subgraphs
corresponding to a region reachable within fixed steps from a root node. For example, the subgraph
in (1) of Table[7]is a region reachable in 2 steps from the oxygen O. This limiation may seem to be
a drawback of our proposed method, but in fact it is not. It is natural to identify only subgraphs cor-
responding WL colors to interpret dypnn, because MPNNs can only see input graphs as a multiset
of WL colors.
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Table 8: Example graphs with highlighted significant subgraphs corresponding to colors with top
10 largest weights. GCN with mean pooling was used. The toxicophore name is shown if the
highlighted subgraph matches toxicophore substructures reported in Table 1 of |Kazius et al.[(2005)

(2) three-membered

(D heterocycle (3) alphatic halide @ ®)]
(epoxide)
i {0 @/@ 7\
CH,Cl— C ——CH,Cl1 CH3; —CH
v N
(‘,‘H;CI H o . Br o
NO,
(6) @) (8) nitroso ©)] (10)
NO,
- 00 QO O
CH;— C——CH, — CHs ~ ~ N4<
‘ \ / \'/ CH, \\

CHjy

an
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