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Abstract

Learning in MDPs with highly complex state rep-
resentations is currently possible due to multi-
ple advancements in reinforcement learning algo-
rithm design. However, this incline in complexity,
and furthermore the increase in the dimensions of
the observation came at the cost of volatility that
can be taken advantage of via adversarial attacks
(i.e. moving along worst-case directions in the
observation space). To solve this policy instabil-
ity problem we propose a novel method to detect
the presence of these non-robust directions via
local quadratic approximation of the deep neural
policy loss. Our method provides a theoretical
basis for the fundamental cut-off between safe
observations and adversarial observations. Fur-
thermore, our technique is computationally effi-
cient, and does not depend on the methods used
to produce the worst-case directions. We conduct
extensive experiments in the Arcade Learning En-
vironment with several different adversarial attack
techniques. Most significantly, we demonstrate
the effectiveness of our approach even in the set-
ting where non-robust directions are explicitly
optimized to circumvent our proposed method.

1. Introduction
Since Mnih et al. (2015) showed that deep neural networks
can be used to parameterize reinforcement learning policies,
there has been substantial growth in new algorithms and
applications for deep reinforcement learning. While this
progress has resulted in a variety of new capabilities for rein-
forcement learning agents, it has at the same time introduced
new challenges due to the volatility of deep neural networks
under imperceptible adversarial directions originally discov-
ered by Szegedy et al. (2014). In particular, Huang et al.
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(2017); Kos & Song (2017) showed that the non-robustness
of neural networks to adversarial perturbations extends to
the deep reinforcement learning domain, where applications
such as autonomous driving, automatic financial trading or
healthcare decision making cannot tolerate such a vulnera-
bility.

There has been a significant amount of effort in trying to
make deep neural networks robust to adversarial perturba-
tions (Goodfellow et al., 2015; Madry et al., 2018; Pinto
et al., 2017). However, in this arms race it has been shown
that deep reinforcement learning policies learn adversarial
features independent from their worst-case (i.e. adversarial)
training techniques (Korkmaz, 2022). More intriguingly, a
line of work has focused on showing the inevitability of the
existence of adversarial directions, the cost of robust train-
ing on generalization, and the intrinsic difficulty of learning
robust models (Dohmatob, 2019; Mahloujifar et al., 2019;
Korkmaz, 2023; Gourdeau et al., 2019). Given that it may
not be possible to make DNNs completely robust to adver-
sarial examples, a natural objective is to instead attempt to
detect the presence of adversarial manipulations.

In this paper we propose a novel identification method for
directions of volatility in the deep neural policy manifold.
Our study is the first one that focuses on detection of adver-
sarial directions in the deep reinforcement learning neural
loss landscape. Our approach relies on differences in the
curvature of the neural policy in the neighborhood of an
adversarial observation when compared to a baseline state
observation. At a high level our method is based on the
intuition that while baseline states have neighborhoods de-
termined by an optimization procedure intended to learn a
policy that works well across all states, each non-robust di-
rection is the output of some local optimization in the neigh-
borhood of one particular state. Our proposed method is
computationally efficient, requiring only one gradient com-
putation and two policy evaluations, requires no training
that depends on the method used to compute the adversarial
direction, and is theoretically well-founded. Hence, our
study focuses on identification of non-robust directions and
makes the following contributions:

• Our paper is the first to focus on identification of ad-
versarial directions in the deep reinforcement learning
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policy manifold.

• We propose a novel method, Identification of Non-
Robust Directions (INRD), to detect adversarial state
manipulations based on the local curvature of the neu-
ral network policy. INRD is independent of the method
used to generate the adversarial direction, computation-
ally efficient, and theoretically justified.

• We conduct experiments in various MDPs from the
Arcade Learning Environment that demonstrate the
effectiveness of INRD in identifying adversarial direc-
tions computed via several state-of-the-art adversarial
attack methods.

• Most importantly, we demonstrate that INRD remains
effective even against multiple methods for generating
non-robust directions specifically designed to evade
INRD.

2. Related Work and Background
2.1. Deep Reinforcement Learning

In this paper we focus on discrete action set Markov Deci-
sion Processes (MDPs) which are given by a continuous set
of states S, a discrete set of actions A, a transition proba-
bility function P : S× A× S→ R, and a reward function
R : S×A×S→ R. A policy π : S→ P(A) assigns a prob-
ability distribution on actions π(·|s) to each state s. The goal
in reinforcement learning is to learn the state-action value
function that maximizes expected cumulative discounted
rewards R = Eat∼π(st,·)

∑
t γ

tR(st, at, st+1) by taking
action a in state s. The temporal difference learning is
achieved by one step Q-learning which updates Q(st, at)
by

Q(st, at) + α[Rt+1 + γmax
a

Q(st+1, a)−Q(st, at)].

2.2. Adversarial Examples

Goodfellow et al. (2015) introduced the fast gradient method
(FGM) for producing adversarial examples for image clas-
sification. The method is based on taking the gradient of
the training cost function J(x, y) with respect to the input
image, and bounding the perturbation by ε where x is the
input image and y is the output label. Later, an iterative ver-
sion of FGM called I-FGM was proposed by Kurakin et al.
(2016). This is also often referred to as Projected Gradient
Descent (PGD) as in (Madry et al., 2018) where the I-FGM
update is

xN+1
adv = clipε(x

N
adv + αsign(∇xJ(xNadv, y))). (1)

where x0adv = x. Dong et al. (2018) further modified I-FGM
by introducing a momentum term in the update, yielding a
method called MI-FGSM. Korkmaz (2020) later proposed a

Nesterov-momentum based approach for the deep reinforce-
ment learning domain. The DeepFool method of Moosavi-
Dezfooli et al. (2016) is an alternative approach to those
based on FGSM. DeepFool performs iterative projection to
the closest separating hyperplane between classes. Another
alternative approach proposed by Carlini & Wagner (2017a)
is based on finding a minimal perturbation that achieves
a different target class label. The approach is based on
minimizing the loss

min
sadv∈S

c · J(sadv) +
∥∥sadv − s

∥∥


(2)

where s is the base input, sadv is the adversarial example,
and J(s) is a modified version of the cost function used to
train the network. Chen et al. (2018) proposed a variant of
the Carlini & Wagner (2017a) formulation that adds an `1-
regularization term to produce sparser adversarial examples,

min
sadv∈S

c · J(sadv) + λ
∥∥sadv − s

∥∥


+ λ
∥∥sadv − s

∥∥


(3)

Our method focusing on identifying non-robust directions
in the deep neural policy manifold is the first method to
investigate detection of adversarial manipulations in deep
reinforcement learning. Our identification method does not
require modifying the training of the neural network, does
not require any training tailored to the adversarial method
used, and uses only two neural network function evaluations
and one gradient computation.

2.3. Adversarial Deep Reinforcement Learning

The adversarial problem initially has been investigated by
Huang et al. (2017) and Kos & Song (2017) concurrently. In
this work the authors show that perturbations computed via
FGSM result in extreme performance loss on the learnt pol-
icy. Lin et al. (2017) and Sun et al. (2020) focused on timing
strategies in the adversarial formulation and utilized the Car-
lini & Wagner (2017a) method to produce the perturbations.
While there is a reasonable body of work focused on finding
efficient and effective adversarial perturbations, a substan-
tial body of work focused on building agents robust to these
perturbations. While several studies focused on specifi-
cally crafted adversarial perturbations, some approached
the robustness problem more widely and considered natural
directions in a given MDP (Korkmaz, 2023). Pinto et al.
(2017) modeled the adversarial interaction as a zero sum
game and proposed a joint training strategy to increase ro-
bustness in the continuous action space setting. Recently,
Gleave et al. (2020) considered an adversary who is allowed
to take natural actions in a given environment instead of
`p-norm bounded perturbations and modeled the adversarial
relationship as a zero sum Markov game. However, recent
concerns have been raised on the robustness of adversarial
training methods by Korkmaz (2021; 2022; 2023). In this
line of work the authors show that the state-of-the-art adver-
sarial training techniques end up learning similar non-robust
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features that allow black-box attacks against adversarially
trained policies, and further that adversarial training results
in deep reinforcement learning policies with substantially
limited generalization capabilities as compared to vanilla
training. Thus, with the rising concerns on robustness of
recent proposed adversarial training techniques, our work
aims to solve the adversarial problem from a different per-
spective by detecting adversarial directions.

3. Identification of Non-Robust Directions
(INRD)

In this section we give the high-level motivation for and
formal description of our identification method. We begin by
introducing necessary notation and definitions. We denote
an original base state by s̄ and an adversarially perturbed
state by sadv.

Definition 3.1. The cost of a state, J(s, τ), is defined as the
cross entropy loss between the policy π(a|s) of the agent,
and a target distribution on actions τ(a).

J(s, τ) = −
∑
a

τ(a) log(π(a|s)) (4)

Definition 3.2. The argmax policy, π∗(a|s), is defined as
the distribution which puts all probability mass on the high-
est weight action of π(a|s).

π∗(a|s) = 1a=argmaxa′ π(a′|s) (5)

We use the following notation for the gradient and Hessian
with respect to states s:

∇sJ(s0, τ0) = ∇sJ(s, τ)|s=s0,τ=τ0
∇2
sJ(s0, τ0) = ∇2

sJ(s, τ)|s=s0,τ=τ0

3.1. First-Order Identification of Non-Robust
Directions (FO-INRD)

As a naive baseline we first describe an identification method
based on estimating how much the cost function J(s, τ)
varies under small perturbations. Prior work of (Roth et al.,
2019; Hu et al., 2019) has shown that the behavior of deep
neural network classifiers under small, random perturbations
is different at base versus adversarial examples. Therefore,
a natural baseline detection method is: given an input state
s0 sample a small random perturbation η ∼ N (0, εI) and
compute,

K(s0, η) = J(s0 + η, π∗(·|s0))− J(s0, π
∗(·|s0)). (6)

The first-order identification method proceeds by first es-
timating the mean and the variance of K over a base run
(i.e. unperturbed) of the agent in the environment. Next
a threshold t is chosen so that a desired false positive rate

(FPR) is achieved (i.e. some desired fraction of the states
in the base run lie more than t standard deviations from
the mean). Finally, at test time a state encountered by the
agent is identified as adversarial if it is at least t standard
deviations away from the mean. Otherwise the state is iden-
tified as a base observation. As a first attempt, the first-order
method can be naturally interpreted as a finite-difference
approximation to the magnitude of the gradient at s0. If
we assume that the first-order Taylor approximation of J is
accurate in a ball of radius r > ε centered at s0, then

J(s0 + η, π∗(·|s0)) ≈ J(s0, π
∗(·|s0))

+∇sJ(s0, π
∗(·|s0)) · η.

Therefore,

K(s0, η) ≈ ∇sJ(s0, π
∗(·|s0)) · η. (7)

Thus, for η ∼ N (0, εI) the test statistic K(s0, η) is ap-
proximately distributed as a Gaussian with mean 0 and
variance ε2‖∇sJ(s0, π

∗(·|s0))‖2. Under this interpretation
one would expect the test statistics for base and adversar-
ial states to have the same mean with potentially different
standard deviations, possibly making it hard to distinguish
base from adversarial. However, this is not what we observe
empirically, and in fact the first-order method does a decent
job of detecting adversarial examples. The method works
because, in fact, the mean of K(s̄, η) for base examples s̄
is reasonably well separated from the mean of K(sadv, η)
for adversarial examples sadv. The empirical performance
of the first-order method thus indicates that the assump-
tion of accuracy for the first-order Taylor approximation
of J does not hold in practice. This leads naturally to the
consideration of information on the second derivatives (i.e.
the local quadratic approximation) of J in order to identify
non-robust directions.

3.2. Second-Order Identification of Non-Robust
Directions (SO-INRD)

The second-order identification method is based on mea-
suring the local curvature of the cost function J(s, τ). The
method exploits the fact that J(s, τ) will have larger nega-
tive curvature at a base sample as compared to an adversarial
sample. In particular, the high level theoretical motivation
for this approach is that adversarial samples are the out-
put of a local optimization procedure which attempts to
find a nearby perturbed state sadv with a low value for the
cost J(sadv, τ) for some τ 6= π∗(·|s̄). A direction of large
negative curvature for J(sadv, τ) indicates that a very small
perturbation along this direction could dramatically decrease
the cost function. Therefore, such points are likely to be un-
stable for local optimization procedures attempting to mini-
mize the cost function in a small neighborhood. On the other
hand, the curvature of J(s, τ) at a base state s̄ is determined
by the overall algorithm used to train the deep reinforcement
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learning agent. This algorithm optimizes the parameters of
the neural network policy while considering all states visited
during training, and thus is not likely to be heavily overfit to
the state s̄. In particular, we expect larger negative curvature
at s̄ than at an adversarial state observation sadv. We make
the connection between negative curvature and instability
for local optimization formal in Section 3.3. Based on the
above discussion, a natural choice of metric for distinguish-
ing adversarial versus base samples is the most negative
eigenvalue of the Hessian λmin

(
∇2
sJ(s0, π

∗(·|s0)
)
. While

this is the most natural measurement of curvature, it requires
computing the eigenvalues of a matrix whose number of
entries are quadratic in the input dimension. Since the input
is very high-dimensional, and we would like to perform this
computation in real-time for every state visited by the agent,
computing the value λmin is computationally prohibitive.
Instead we approximate this value by measuring the curva-
ture along a direction which is correlated with the negative
eigenvectors of the Hessian. Given this direction, the value
that we measure is the accuracy of the first order Taylor
approximation of the cost of the given state J(s, τ). We
denote the first order Taylor approximation at the state s0 in
direction η by

J̃(s0, η) = J(s0, π
∗(·|s0)) +∇sJ(s0, π

∗(·|s0)) · η.

The metric we will use to detect adversarial samples is the
finite-difference approximation

L(s0, η) = J(s0 + η, π∗(·|s0))− J̃(s0, η). (8)

To see formally that Equation (8) gives an approximation
of the most negative eigenvector of the Hessian, we will
assume that the cost function J(s, τ) is well approximated
by its quadratic Taylor approximation at the point s0 i.e.

J(s0 + η, π∗(·|s0)) ≈ J(s0, π
∗(·|s0))

+∇sJ(s0, π
∗(·|s0)) · η

+ η>∇2
sJ(s0, π

∗(·|s0))η

for sufficiently small perturbation η. Substituting the above
formula into Equation (8) yields

L(s0, η) ≈ η>∇2
sJ(s0, π

∗(·|s0))η (9)

The above quadratic form is minimized when η lies in the
same direction as the most negative eigenvector of the Hes-
sian, in which case

L(s0, η) ≈ λmin
(
∇2
sJ(s0, π

∗(·|s0))
)
‖η‖22 (10)

We choose the sign of the gradient direction for measur-
ing the accuracy of the first order Taylor approximation.
To motivate this choice note that −∇sJ(s, τ) is locally
the direction of steepest decrease for the cost function. If
the gradient direction additionally has negative curvature

Algorithm 1 Second Order Identification of Non-Robust
Directions (SO-INRD)

Input: The base run mean L̄ and variance σ2(L), identi-
fication threshold t > 0, parameter ε > 0.
for states si visited by deep reinforcement learning policy
do
ηi = ε

sign(∇sJ(si, π
∗(·|si)))

‖∇sJ(si, π∗(·|si))‖2
J̃(si, ηi) = J(si, π

∗(·|si)) +∇sJ(si, π
∗(·|si)) · ηi

L(si, ηi) = J(si + ηi, π
∗(·|si))− J̃(si, ηi)

if |L(si, ηi)− L̄| > t · σ(L) then
Identify state si as a non-robust state observation

end if
end for

of large magnitude, then small perturbations along this di-
rection will result in even more rapid decrease in the cost
function value than predicted by the first-order gradient ap-
proximation. Note that this can be true even if the gradient
itself has small magnitude, as long as the negative curvature
is large enough. Thus, by the discussion at the beginning
of Section 3.2, adversarial examples are likely to have rela-
tively smaller magnitude negative curvature in the gradient
direction than base examples. Formally, for ε > 0 we set

η(s0) = ε
sign (∇sJ(s0, π

∗(·|s0)))

‖∇sJ(s0, π∗(·|s0))‖2
. (11)

To calibrate the detection method we record the mean L̄ =
Es[L(s, η(s))] and variance σ2(L) = Vars[L(s, η(s))] of
our proposed test statistic over states from a base run of
the policy in the MDP. Then at test time we set a threshold
t > 0, and for each state si visited by the agent test if

|L(si, η(si))− L̄| > tσ(L). (12)

If the threshold of t standard deviations is exceeded we
identify the state si as adversarial, and otherwise identify
it as a base state observation. Pseudo-code for the second
order method is given in Algorithm 1.

3.3. Negative Curvature and Instability of Local
Optimization

In this section we formalize the connection between negative
curvature and instability for local optimization procedures
that motivated our definition of L(s, η). Given a state s0
and a target distribution τ 6= π∗(·|s0), we assume the ad-
versary is trying to find a state sadv minimizing J(sadv, τ)
among all states close to s0 by some metric. Formally, let
Ds0(s) ≥ 0 be a convex function of s that should be thought
of as measuring distance to s0. One standard choice for the
distance function is Ds0(s) = ‖s − s0‖pp. We model the
adversary as minimizing the loss

f(s) = J(s, τ) +Ds0(s). (13)
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Figure 1. L(s) for our proposed method SO-INRD vs visited states with corresponding TPR values for the following attack methods:
FGSM, MI-FGSM, Nesterov, DeepFool, Carlini&Wagner, Elastic Net Method. TPR values shown in the upper right box of the figure
when FPR is equal to 0.01.

In particular, we make the following assumption:

Assumption 3.3. The adversarial state sadv is a local mini-
mum of f(s).

Of course this assumption is violated in practice since dif-
ferent methods used to compute adversarial directions opti-
mize objective functions other than f , and do not necessarily
always converge to a local minimum. Nevertheless the as-
sumption allows us to make formal qualitative predictions
about the behavior of the second-order identification method
that correspond well with empirical results across a broad
variety of methods for generating adversarial directions. We
now state our main result lower bounding the curvature of
J(sadv, τ).

Proposition 3.4. For c > 0 assume that the maximum eigen-
value of the Hessian ∇2

sDs0(s) is bounded by c. If s∗ is a
local minimum of f(s) then λmin(∇2

sJ(s∗, τ)) ≥ −c

Proof. Let v be the eigenvector of∇2
sJ(s∗, τ) correspond-

ing to the minimum eigenvalue. At a local minimum s∗ of
f(s) the Hessian ∇2

sf(s∗) must be positive semi-definite.
Therefore,

0 ≤ v>∇2
sf(s∗)v = v>∇2

sJ(s∗, τ)v + v>∇2
sDs0(s∗)v

≤ λmin(∇2
sJ(s∗, τ)) + c

Rearranging the above inequality completes the proof.

The second order conditions for a local minimum of f imply
a lower bound on the smallest eigenvalue of ∇2

sJ(s∗, τ).
Thus, by Assumption 3.3, we obtain a lower bound on
λmin(∇2

sJ(sadv, τ)). The assumption that the maximum
eigenvalue of the Hessian ∇2

sDs0(s) is bounded by c is sat-
isfied for example when Ds0(s) = c

2‖s− s0‖
2
2. In contrast,

the local curvature of the cost function J(s, τ) at a base

sample is determined by an optimization procedure that
updates the weights θ of the neural network policy rather
than the states s. If we write Jθ(s, τ) to make explicit the
dependence on the weights, then the second order condi-
tions for optimizing the original neural network apply to
the Hessian with respect to weights∇2

θJθ(s, τ) rather than
the Hessian with respect to states ∇2

sJθ(s, τ). Addition-
ally, first order optimality conditions can help to justify the
choice of ∇sJ(s, τ) as a good direction to check for neg-
ative curvature. Indeed by the first order conditions, at a
local optimum s∗ of f(s) we have

0 = ∇sf(s∗) = ∇sJ(s∗, τ) +∇sDs0(s∗). (14)

Therefore, ∇sJ(s∗, τ) = −∇sDs0(s∗). So assuming the
adversary finds a local optimum, ∇sJ(s, τ) points in a di-
rection that decreases the distance function Ds0(s∗). Thus
sufficiently negative curvature in the direction of∇sJ(s, τ)
implies not only that s is not a local minimum of f , but
also that the distance function Ds0(s) can be decreased
by moving along this direction of negative curvature. To
summarize, we have shown that second order optimality
conditions arising from computing an adversarial example
give rise to lower bounds on the smallest eigenvalue of
the Hessian λmin

(
∇2
sJ(s, τ)

)
. The function L(s, η) used

to identify adversarial directions for SO-INRD is a finite
difference approximation to

η>∇2
sJ(s, τ)η ≥ λmin

(
∇2
sJ(s, τ)

)
‖η‖2 .

Therefore the results of this section imply that L(s, η)
should be larger at adversarial samples than base samples.
It is worth noting that the theoretical motivation presented
here generalizes straightforwardly to any model which is
trained to output a probability distribution given some high-
dimensional input (e.g. autoregressive language models).
Thus, future research could significantly benefit from further
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Figure 2. ROC curves of FO-INRD, SO-INRD and OAO method for the following attack methods: FGSM, MI-FGSM, Nesterov
Momentum, DeepFool, Carlini&Wagner, Elastic Net Method in RoadRunner. TPR values shown in the lower right box of the figure when
FPR is equal to 0.01.

Table 1. True Positive Rates (TPR) for FGSM, MI-FGSM, Nesterov Momentum, Carlini&Wagner, Elastic-Net and DeepFool when False
Positive Rate (FPR) is equal to 0.01. The proposed methods SO-INRD and FO-INRD are evaluated, and compared with Roth et al. (OAO)
in Riverraid, RoadRunner, Alien, Seaquest, Boxing, Pong, and Robotank games. More results for different FPR values are reported in the
supplementary material.

Detection Method-Attack Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-INRD FGSM 0.997 1.0 1.0 0.995 0.994 1.0 0.999
FO-INRD FGSM 0.990 0.843 0.803 0.931 0.793 0.622 0.413
OAO FGSM 0.681 0.767 0.885 0.403 0.264 0.424 0.911

SO-INRD M-IFGSM 0.998 1.0 1.0 0.985 0.910 1.0 0.985
FO-INRD M-IFGSM 0.952 0.863 0.991 0.981 0.827 0.622 0.470
OAO M-IFGSM 0.775 0.554 0.929 0.581 0.499 0.679 0.777

SO-INRD Nesterov Momentum 0.995 0.989 0.996 0.952 0.865 1.0 0.954
FO-INRD Nesterov Momentum 0.990 0.714 0.997 0.979 0.746 0.633 0.574
OAO Nesterov Momentum 0.785 0.646 0.925 0.671 0.517 0.687 0.753

SO-INRD Carlini&Wagner 0.910 0.988 0.945 0.723 0.856 0.850 0.713
FO-INRD Carlini&Wagner 0.695 0.594 0.642 0.516 0.785 0.494 0.119
OAO Carlini&Wagner 0.036 0.118 0.018 0.004 0.016 0.028 0.032

SO-INRD Elastic Net 0.777 0.943 0.875 0.687 0.770 0.736 0.815
FO-INRD Elastic Net 0.685 0.454 0.561 0.502 0.743 0.361 0.212
OAO Elastic Net 0.124 0.210 0.060 0.014 0.150 0.092 0.056

SO-INRD DeepFool 0.914 0.996 0.993 0.860 0.951 0.889 0.900
FO-INRD DeepFool 0.841 0.847 0.936 0.777 0.928 0.796 0.268
OAO DeepFool 0.397 0.447 0.611 0.234 0.381 0.367 0.607

utilization of our method in other domains by leveraging the
fundamental cut-off between adversarial samples and base
samples discovered in our paper.

4. Experiments
In our experiments agents are trained with DDQN (Wang
et al., 2016) in the Arcade Learning Environment (ALE)

(Bellemare et al., 2013) from OpenAI (Brockman et al.,
2016). For a baseline we compare FO-INRD and SO-INRD
with the detection method of OAO proposed by Roth et al.
(2019), which is based on estimating the average change
in the odds ratio between classes under noise. In Figure
1 we plot the value of L(s) over states for various games
without an adversarial attack and under adversarial attack
with the following methods: Carlini & Wagner, Elastic
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Figure 3. ROC curves of FO-INRD, SO-INRD and OAO method for the following attack methods: FGSM, MI-FGSM, Nesterov
Momentum, DeepFool, Carlini&Wagner, Elastic Net Method in Robotank. TPR values are reported in the lower right box of the figure
when FPR is equal to 0.01.

Table 2. TPR for Feature Matching for SO-INRD and OAO method FPR=0.01

Feature Matching Riverraid RoadRunner Alien Seaquest Boxing Robotank

SO-INRD 0.882 0.863 0.9016 0.955 0.988 0.8978
OAO Method 0.0088 0.006 0.007 0.0146 0.0106 0.0158

Net, Nesterov Momentum, DeepFool, MIFGSM and FGSM.
We show in the legends of Figure 1 the true positive rate
(TPR) values for the different attacks when false positive
rate (FPR) is equal to 0.01. The value of L(s) for base states
is generally well-concentrated and negative. On the other
hand, for states computed by the different adversarial attack
methods L(s) is clearly larger, matching the predictions of
Proposition 3.4. The fact that L(s) is consistently larger
at adversarial state observations across a wide variety of
adversarial perturbation methods indicates that Assumption
3.3 qualitatively captures the behavior of these methods.
In particular the FGSM-based methods and DeepFool do
not explicitly optimize an objective function of the form
f(s) = J(s, τ) +Ds0(s) as in Assumption 3.3. However,
by enforcing a constraint on the distance of the adversarial
sample from the original base sample, these methods implic-
itly solve an optimization problem of the form given in (13),
and thus exhibit the qualitative behavior predicted by Propo-
sition 3.4. In Table 1 we show TPR values for FO-INRD,
SO-INRD, and the OAO method under the FGSM, MI-
FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner,
and Elastic-Net attacks when FPR is equal to 0.01. For all
of the attack methods in all of the environments SO-INRD
is able to detect adversarial perturbations with large TPR.
SO-INRD outperforms the other detection methods in all
cases except for Nesterov Momentum in Alien and Seaquest
where FO-INRD has TPR 0.997 and 0.980 while SO-INRD
has 0.996 and 0.952. We also observe that while the pertur-

bations computed by FGSM, MI-FGSM, Nesterov Momen-
tum can generally be detected with large TPR values by all
the detection methods, the perturbations computed by Car-
lini&Wagner and the Elastic-Net method are more difficult
to detect. Despite the difficulty, SO-INRD achieves TPR
values ranging from 0.713 to 0.988 for Carlini&Wagner,
and TPR values ranging from 0.687 to 0.943 for Elastic-
Net when FPR is equal to 0.01. In Figure 2 and Figure
3 we show ROC curves for each detection method under
the FGSM, MI-FGSM, Nesterov Momentum, DeepFool,
Carlini&Wagner and Elastic-Net method for RoadRunner
and Robotank respectively. In Robotank the OAO method
outperforms FO-INRD and even approaches the TPR of SO-
INRD for high FPR under FGSM, MI-FGSM, Nesterov Mo-
mentum and DeepFool. However for the Carlini&Wagner
and Elastic-Net attacks, SO-INRD has a much higher TPR
across a wide range of FPR levels.

5. Computing Adversarial Directions
Specifically to Evade INRD

Recently, Tramer et al. (2020) introduced a comprehensive
methodology for tailoring the optimization procedure used
to produce adversarial examples in order to overcome de-
tection and defense methods. In particular, the high level
idea is to keep the attack as simple as possible while still
accurately targeting the detection method. More specifically,
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Table 3. TPR values of INRD in the presence of a identification aware adversary when FPR=0.01.

Detection Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-INRD — C&W 0.650 0.849 0.445 0.381 0.710 0.712 0.657
FO-INRD — C&W 0.346 0.348 0.351 0.193 0.621 0.325 0.0973

the methodology is based on designing an attack based on
gradient descent on some loss function. Further, minimizing
the loss function should correspond closely to subverting
the full detection method while still being possible to opti-
mize. Critically, the authors highlight that while the choice
of loss function to optimize can be a difficult task, the use
of “feature matching” (Gowal et al., 2019) can circumvent
most of the current detection methods. We now describe
how we applied the methodology discussed above to de-
sign detection aware adversaries for SO-INRD. As a first
attempt, we tested the “feature matching” approach that was
used to break the OAO detection method in Tramer et al.
(2020). This approach attempts to match the logits of the
adversarial example to those of a base example from a dif-
ferent class in order to evade detection. To optimize the
loss for this method we used up to 1000 PGD iterations,
and we searched step size varying from 0.01 to 10−6. We
find that this method succeeds in reducing the TPR of the
OAO method to nearly zero. It is also able to slightly re-
duce the TPR of our SO-INRD method (see results in Table
2). However, as we will see next, a larger reduction in the
TPR of SO-INRD can be achieved by optimizing a modified
version of the loss from Carlini & Wagner (2017b). Our
next attempt is based on a modification of the Carlini &
Wagner (2017b) formulation to additionally minimize the
cost function L(s) used in SO-INRD,

min
sadv∈S

c · J(sadv) +
∥∥sadv − s

∥∥


+ λ · L(sadv). (15)

Recall that L(s) is consistently larger at adversarial exam-
ples than at base examples. Thus the above optimization
problem attempts to find adversarial examples with as small
values of L(s) as possible. Since the function L(s) involves
taking the sign of the gradient, we use Backwards Pass
Differentiable Approximation (BPDA) as introduced in Car-
lini & Wagner (2017b) to compute the gradients. However,
we also tried designing an adversary with a fully differen-
tiable cost function by using a perturbation in the gradient
direction (without the sign). We found that this fully differ-
entiable adversary performed significantly worse than the
one based on BPDA. We conducted exhaustive grid search
over all the parameters in this optimization method: learning
rate, iteration number, confidence parameter κ, and objec-
tive function parameter λ. In C&W we used up to 30000
iterations to find adversarial examples to bypass detection
methods. We searched the confidence parameter from 0 to
50, the learning rate from 0.001 to 0.1, and λ from 0.001
to 10. In our grid search over these hyperparameters we

found that there is a trade-off between the attack success
rate and the detection of the perturbations. In other words, if
we optimize the perturbation to be undetectable the success
rate of the perturbation (i.e. the rate at which the perturba-
tion actually makes the agent choose a non-optimal action)
decreases. Therefore, when finalizing the hyperparameters
for the SO-INRD detection-aware adversary we restricted
our search to a setting where the decrease in the impact of
the attack on the policy performance was at most 10%.

Since FO-INRD is based on sampling a random perturbation,
we use another approach introduced by Carlini & Wagner
(2017b) to minimize the expectation of the original loss
function when averaged over the randomness used in the
detection method. In particular, we estimate the expectation
by computing the empirical mean of the loss over 50 samples
from the same noise source. As for the case of SO-INRD we
grid search over hyperparameters to achieve as low a TPR as
possible while losing at most 10% in the impact of the attack.
Table 3 shows the TPR in the adversary-aware setting with
the best hyperparameters found for each method. The fact
that SO-INRD still performs quite well in the adversary-
aware setting is an indication that there is a fundamental
trade-off between computing an adversarial direction and
minimizing L(s). This trade-off is further supported by
Proposition 3.4, which demonstrates that searching for an
adversarial example in a small neighborhood will tend to
increase L(s).

6. Conclusion
In this paper we introduce a novel algorithm INRD, the
first method for identification of adversarial directions in
the deep neural policy manifold. Our method is theoreti-
cally motivated by the fact that local optimization objectives
corresponding to the construction of adversarial directions
lead naturally to lower bounds on the curvature of the cost
function J(s, τ). We have further shown empirically that
the curvature of J(s, τ) is significantly larger at adversarial
states than at base observations, leading to a highly effective
method SO-INRD for detecting adversarial directions in
deep reinforcement learning. We additionally demonstrate
that SO-INRD remains effective in the adversary-aware
setting, and connect this fact to our original theoretical mo-
tivation. We believe that due to the strong empirical perfor-
mance and solid theoretical motivation SO-INRD can be an
important step towards producing robust deep reinforcement
learning policies.
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