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Abstract

Diverse planning is an important problem in automated plan-
ning with various real world applications. Recently, diverse
planning has seen renewed interest, with work that defines
a taxonomy of computational problems with respect to both
plan quality and solution diversity. However, despite the re-
cent advances in diverse planning the variety of approaches
and the number of available tools for these problems are
still quite limited, even nonexistent for several computational
problems. In this work, we aim to extend the portfolio of ap-
proaches and tools for various computational problems in di-
verse planning. To that end, we introduce a novel approach
to finding solutions for three computational problems within
diverse planning and present planners for these three prob-
lems. For one of these problems, our approach is the first one
that is able to provide solutions to the problem. For another,
we show that top-k and top quality planners can provide, al-
beit naive, solutions to the problem and we extend these plan-
ners to improve the diversity of the obtained solution. Finally,
for the third problem, we show that some existing diverse
planners already provide solutions to the problem. Further,
we suggest another approach and empirically show that our
suggested approach compares favorably with these existing
planners.

Introduction

Diverse planning is an important problem in Al Planning
with many practical applications that require generating
multiple plans rather than one. Example applications include
automated machine learning (Mohr, Wever, and Hiillermeier
2018), risk management (Sohrabi et al. 2018), automated
analysis of streaming data (Riabov et al. 2015), and mal-
ware detection (Boddy et al. 2005). Diverse planning is also
important in the context of re-planning and plan monitoring
(Fox et al. 2006), under-specified user preferences (Myers
and Lee 1999; Nguyen et al. 2012), as well as plan recogni-
tion and its related applications (Sohrabi, Riabov, and Udrea
2016). In all these applications it is important to generate
multiple diverse plans, and it is of equal importance to be
able to control solution quality.

Most diverse planners developed over the last decade are
focused on addressing a particular diversity metric. For ex-
ample, while the diverse planner DLAMA focuses on find-
ing a set of plans by considering a landmark-based diversity

measure (Bryce 2014), other diverse planners such as LPG-
d, DIV, DFAA/DFAM, and A*AA/A*AM focus on find-
ing a set of plans with a particular minimum action dis-
tance (Nguyen et al. 2012; Coman and Mufioz-Avila 2011;
Vadlamudi and Kambhampati 2016). Goldman and Kuter
(2015) propose a diversity metric based on information re-
trieval literature. Roberts, Howe, and Ray (2014) suggest an-
other diversity metric, introducing several planners, such as
it A* and MQA, which, in addition to the diversity metrics,
consider plan quality. While all these planners implement
the chosen diversity metric and switching to another metric
is not trivial, the planners DFAA/DFAM and A*AA/A'AM
work in two phases: finding a set of plans and choosing a
proper subset from the found set. That is, selection of a set of
plans is independent of the diversity metric. Recently, plan-
ners Fl-diverse were introduced (Katz and Sohrabi 2020).
These planners also separate the phase of finding candidate
plans from choosing a diverse subset of these plans. Further,
the authors provide a tool for selecting a subset of plans for
a variety of metrics and computational problems (Katz and
Sohrabi 2019).

Another important recent contribution introduced a tax-
onomy of computational problems and classified existing
planners according to the problems they tackle (Katz and
Sohrabi 2020). Most existing planners, according to that tax-
onomy, solve Satisficing Diverse Planning (sat-k), where
any sufficiently large set of plans is a solution, and the
aim is to improve solution diversity. The planners LPG-
d (Nguyen et al. 2012) and bFI (Katz and Sohrabi 2020)
tackle Bounded Diversity Diverse Planning (bD-k), where
a set of plans is a solution only if its diversity is above a
certain specified bound. Top-k planners (Katz et al. 2018b;
Speck, Mattmiiller, and Nebel 2020) and top-quality plan-
ners (Katz, Sohrabi, and Udrea 2020), while usually are
not considered as diverse planners, according to the afore-
mentioned taxonomy return, albeit naive, solutions to the
Bounded Quality Diverse Planning (bQ-k) problem, where
plan set quality is required to be above a specified bound.
The planners DFAA/DFAM and A*AA/A"AM (Vadlamudi
and Kambhampati 2016) tackle Bounded Quality and Di-
versity Diverse Planning (bQbD-k), where both the quality
and the diversity of plan sets is bounded from above.



Despite these recent advances in diverse planning, the
pool of existing tools is still quite limited. The planners
DFAA/DFAM and A*AA/A'AM by Vadlamudi and Kamb-
hampati (2016) are the only existing planners for bQbD-k.
Top-quality planners (Katz, Sohrabi, and Udrea 2020), al-
though technically solving bQ-k, do not aim at improving
the diversity of the solution. No planners exist for other com-
putational problems, such as Optimal Diversity Bounded
Quality Diverse Planning (bQoptD-k), where a solution cor-
responds to a set of plans of best diversity among the sets of
bounded quality.

In this work, expand the pool of available planners for di-
verse planning. We introduce novel planners for the three
aforementioned computational problems, bQ-k, bQbD-k,
and bQoptD-k, exploiting the recently introduced top-
quality planners. To that end, we introduce a novel quality
metric that reflects bounded plan costs, making a connec-
tion between the costs of plans in a set and quality of a
set of plans. Focusing on the most popular diversity met-
ric (Nguyen et al. 2012; Coman and Muifioz-Avila 2011;
Vadlamudi and Kambhampati 2016), for all three planners
we generate a subset of all plans of bounded quality as a first
step. In the second step, we select a subset of plans found
in the first step that constitutes a solution to the respective
computational problem. For bQ-k, as any sufficiently large
subset of plans is, albeit naive, a solutions to the problem,
we extend these planners by using a previously suggested
greedy algorithm to choose a subset of plans of higher di-
versity (Katz and Sohrabi 2020). For bQbD-k, we show that
the decision problem that corresponds to the second step is
NP-complete and suggest using previously proposed inte-
ger linear programming formulation. As the formulation was
not previously formally described, we describe it formally
and prove that it provides us with a solution to bQbD-k. For
bQoptD-k, as the optimization problem in second step is NP-
hard, we propose using a novel mixed integer linear program
to solve it. We formally describe the program and prove that
a solution to the program can be used for solving bQoptD-k.
Our approach is the first one that is able to provide solutions
to the problem.

Finally, we perform an empirical evaluation of our pro-
posed planners. For bQbD-k, we show to favorably compare
to the existing planners. For bQ-k, as no previous planners
exist, we test the quality of our solution by comparing it to
the quality of the optimal solution, obtained by our proposed
planner for bQoptD-k, where no previous planners exist ei-
ther. We show that the greedy algorithm works very well
on tested domains, producing results close to the optimum.
Our novel contributions, thus, include (i) the introduction of
the new quality metric that allows us to connect between the
cost of plans and quality of a set of plans, (ii) a concrete al-
gorithmic scheme that uses top quality planners for the first
step, finding a set of plans of bounded cost, (iii) computa-
tional complexity investigation of the second step, choosing
a proper subset from the found set, for various computational
problems, and (iv) introduction of the new mixed integer lin-
ear program for the resulting optimization problem.

Preliminaries and Related Work

In this work we follow the notation of Katz and Sohrabi
(2020). A sAs™ planning task (Bickstrom and Nebel 1995)
is given by a tuple (V, A, sq, s«), with V) being a set of state
variables and A being a finite set of actions. Each state vari-
able v € V has a finite domain dom(v) of values. A pair
(v,9) with v € V and 9 € dom(v) is called a fact. A
(partial) assignment to V is called a (partial) state. Often
it is convenient to view partial state p as a set of facts with
(v,9) € pifand only if p[v] = 9. Partial state p is consistent
with state s if p C s. We denote the set of states of a planning
task by S. sq is the initial state, and the partial state s, is the
goal. Each action a is a pair (pre(a), eff (a)) of partial states
called preconditions and effects. An action cost is a mapping
C : A — R, An action a is applicable in a state s € S if
and only if pre(a) is consistent with s. Applying a changes
the value of v to eff (a)[v], if defined. The resulting state is
denoted by s[a]. An action sequence ™ = (aq,...,ax) is
applicable in s if there exist states sg, - - - , S such that (i)
so = s, and (ii) for each 1 < i < k, a; is applicable in s;_;
and s; = s;_1[a;]. We denote the state si by s[r]. 7 is a
plan iff 7 is applicable in sg and s, is consistent with so[7].
We denote by P(II) (or just P when the task is clear from
the context) the set of all plans of II. The cost of a plan 7,
denoted by C() is the summed cost of the actions in the
plan.

In regard to reasoning about sets of plans rather than indi-
vidual plans, there are two main measures defined on sets of
plans, quality and diversity. Previous work has introduced
one definition of quality, mirroring the International Plan-
ning Competition (IPC) quality metric for individual plans
(Katz and Sohrabi 2020).

Definition 1 Let P be the set of known plans of 11 and let
P’ C P be a subset of plans. The relative quality of P' with
respect to P is defined as

|P’|
P = X ,
Q(P) = o7 X 2 G
where Ty, ..., 7 p/| and ﬂi,...,ﬂ'l'P,l are plans in P and

P, respectively, sorted in ascending order of their costs.

The relative quality of a set of plans is always between 0
and 1, being 1 if and only if there is no plan in P\ P’ that is
cheaper than any plan in P’.

Switching now our attention to diversity metrics, pairwise
plan distance is defined by é(r, ') = 1 — sim(w, '), where
sim is a similarity measure, a value between O (unrelated)
and 1 (equivalent). The diversity of a set of plans, D(P),
P C P is then defined as some aggregation (e.g., min or
average) of the pairwise distance within the set P. In this
work, we focus on one of the most popular similarity mea-
sures, stability (Fox et al. 2006; Coman and Mufioz-Avila
2011). Stability similarity measures the ratio of the number
of actions that appear on both plans to the total number of
actions on these plans, referring to plans as action multi-
sets (sets with repetitions). Given two plans 7, 7, it is de-
fined as simapiliey (7, 7') = |A(7) VA(7")|/|A(7) U A(7")],
where A(7) is the multi-set of actions in 7. In what follows,



by D,,, we denote the diversity metric computed as min-
imum over the pairwise plan distance under stability simi-
larity, the diversity metric implemented by multiple existing
diverse planners (Nguyen et al. 2012; Coman and Mufoz-
Avila 2011; Vadlamudi and Kambhampati 2016).

There is a variety of computational problems that fall un-
der the umbrella of diverse planning. In our work, focusing
on bounded quality problems, we follow the recently intro-
duced taxonomy (Katz and Sohrabi 2020).

Definition 2 (Diverse planning solution) Let I be a plan-
ning task and ‘P be the set of all plans for I1. Given a nat-
ural number k, P C P is a k-diverse planning solution if
|P| =kor P="PIif|P|<k.
Definition 3 (Quality-bounded solution) Let I1 be a plan-
ning task, () be some quality metric, c be some bound, and
‘P be the set of all 11's plans. Given a natural number k,
P C P is a c-quality-bounded k-diverse planning solution
if it is a k-diverse planning solution and Q(P) > c.
Bounded Quality Diverse Planning computational prob-
lem is defined as follows.

bQ-k : Given k and c, find a c-quality-bounded
k-diverse planning solution.

Definition 4 (Diversity-bounded solution) Letr 11 be a
planning task, D be some diversity metric, b be some bound,
and P be the set of all 11’s plans. Given a natural number k,
P C P is a b-diversity-bounded k-diverse planning solution
if it is a k-diverse planning solution and D(P) > b.

Bounded Quality and Diversity Diverse Planning compu-
tational problem is defined as follows.

bQbD-k : Given k, b, and c, find a c-quality-bounded
and b-diversity-bounded k-diverse planning solution.

Note that the definition above generalizes the previously
suggested search problem described in Equation 1 below and
implemented for the diversity metric D,,, by Vadlamudi
and Kambhampati (2016).

cCOSTdADISTANTKSET : find P with P C P,
|P| =k, minP §(m,7") >d,C(n) < cVm € P. M)
T, e

Finally, Optimal Diversity Bounded Quality Diverse Plan-
ning optimization problem is defined as follows.

bQoptD-k : Given k and c, find a diversity-optimal
among c-quality-bounded k-diverse planning solutions.

Bounded Quality in Diverse Planning

As stated above, in this work, we focus on the three com-
putational problems in diverse planning taxonomy of Katz
and Sohrabi (2020) that deal with bounded quality, bQ-k,
bQbD-k, and bQoptD-k. Our proposed solutions to these
three problems all have in common the first step - find-
ing a set of plans of bounded quality. While existing plan-
ners for bounded quality diverse planning took the same

approach (Vadlamudi and Kambhampati 2016), they used
planners for the top-k planning problem (Riabov, Sohrabi,
and Udrea 2014). Specifically, A* AA/A'AM apply the m-A*
algorithm (Flerova, Marinescu, and Dechter 2016), while
DFAA/DFAM apply the well-known branch-and-bound al-
gorithm. We suggest using a different approach, generating
plans with a planner for a recently proposed unordered top-
quality problem (Katz, Sohrabi, and Udrea 2020). Switch-
ing to top-quality allows to ensure that all plans of bounded
cost are found. Unordered top-quality allows to disregard
plans that are reorderings of the found plans. For some diver-
sity metrics, this is highly beneficial, with pairwise diversity
between a plan and its reordering might be very low. Fur-
ther, ignoring plan orders reduces the computational effort
required for finding all plans of bounded cost.

The second step, after finding a set of plans of bounded
quality, is different for the different computational problems
that we consider in this work. For bQ-k, although any set of
k plans is a solution, we strive to obtain solutions of higher
diversity. Therefore, we apply a greedy algorithm that iter-
atively increases the set of plans by adding at each step the
candidate plan that increases the overall diversity score the
most, the same algorithm that was used for satisficing di-
verse planning (Katz and Sohrabi 2020). For bQbD-k and
bQoptD-k, we cast the problem of finding the subset of plans
as (mixed) integer linear programs. We describe these pro-
grams in detail in what follows. We start with the discussion
of the quality metric that we consider in this work.

Quality Metric

While we consider the planners DFAA/DFAM and
A*AA/A"AM to be solving the Bounded Quality and Di-
versity Diverse Planning problem as defined by Katz and
Sohrabi (2020), the quality metric they maximize is not ob-
vious. These planners consider the set P of plans of cost
smaller or equal than a given absolute bound value ¢, or
maxecp C(m) < c. Alternatively, the criterion can be ex-
pressed via Q,(P) > ¢’ for the quality measure

*

C

Qa(P) = 2)

maxyep C(m)

where ¢* is the task’s optimal plan cost and ¢’ = % € [0, 1].
Thus, the planners above solve the bQbD-k problem for the
quality metric ), as in Eq. 2. Note that this quality measure
is different from the measure described in Definition 1, as
introduced by Katz and Sohrabi (2020), where the quality
of the set of plans is affected by the costs of all plans, not
only most expensive ones. The above proposed quality met-
ric makes it possible to connect the quality metric to the cost
bound.

Bounded Quality Planning

Let us consider now the (unordered) top quality planners
(Katz, Sohrabi, and Udrea 2020), that, given a multiplier
G¢m > 1, return the set of all plans P such that Vm € P
we have C(7) < g¢,, X c*, or a subset thereof with a sin-
gle representative for plans that differ only in the order of
their actions for the unordered case. For such sets, we have



Q.(P) > q%’ and therefore these planners can be used to
derive solutions of bounded quality according to the qual-
ity metric Q. Furthermore, top quality planners produce a
set of plans that is a super-set of the sets of plans that consti-
tute solutions to all three computational problems of interest,
bQ-k, bQbD-k, and bQoptD-k. Therefore, in what follows,
we will focus on finding subsets of plans out of a given set
of plans, according to the relevant solution definition for the
corresponding computational problem.

Focusing first on bQ-k, while any subset of required size
of the set of plans returned by top quality planners is a solu-
tion to bQ-k, different subsets can vary significantly in their
diversity measure score. Since bQ-k does not pose any re-
strictions on these subsets beyond the desired size, one pos-
sible way of coming up with subsets of high diversity is to
employ the same greedy selection algorithm that was used
for Satisficing Diverse Planning (Katz and Sohrabi 2020).
The algorithm iteratively constructs a set of plans by greed-
ily adding a plan that will contribute the most to already
added plans.

Bounding Diversity

Switching now our attention to bQbD-k, first, note that for a
set of plans and a number &, the decision problem of whether
there exists a subset of bounded diversity of size k is NP-
complete. The membership in NP is trivial. We show the
hardness by a polynomial reduction from the clique problem
(Garey and Johnson 1979).

For a graph G = (V,E),let P = {m, | v € V} be a
collection of plans. For a pair of plans 7, 7, € P

. d, (’U,’U) € E’
d(7ry, mp) = {07 otherwise.

Theorem 1 Given a number k and diversity bound d > 0
for diversity metrics minimal pairwise diversity, if there is a
subset of plans Pg of bounded by d diversity of size at least
k, then there is a clique in G of the same size.

Proof: Let P C Pg be a subset of plans such that |P| >
k and D(P) > d. Then for all w,, 7, € P we have
d(my, ™) > d and therefore d(m,,m,) > 0. Thus, it must
be the case that (u,v) € E for all 7, 7, € P and thus the
set V! ={v | m, € P}isaclique, of size |V'| = |P| > k.®

Next, we describe the mixed integer linear program that
is used for finding a subset of plans of bounded diversity.
While the program is not novel,! its description was not pre-
sented in the literature. Here, we describe the program in
detail. Given a set of plans P and a bound on the diversity d,
the variables are as follows.

e A binary variable v, per plan m € P, describing whether
the plan is selected for the subset.

The constraints are as follows.
(i) Vm, " € Pst. d(m,7’) < d : vy + vy < 1, stating
that if the pairwise diversity of 7w and 7’ is below d,

'The mixed integer linear program was previously used for
bounded diversity diverse planning (Katz and Sohrabi 2020)

then at most one of these plans can be selected for the
subset, and

(ii) > wx >k, forcing the size of the subset be at least k.
neP

The objective of the program is to minimize ) __p vx. In
words, the program encodes a subset selection and restrict
the selected subset to not have pairs of plans with diver-
sity outside of the provided bound. In what follows, we
prove that the program can be used for devising solutions
for bQbD-k.

Theorem 2 For a planning task 11 with a set of all plans of
bounded quality P such that |P| > k, and a bound d, the
binary program finds a subset of size k with the bounded by
d diversity score, for diversity metrics maximizing minimal
pairwise diversity, if such subset exists. Otherwise, the pro-
gram is infeasible.

Proof: We first show that a solution to bQbD-k corresponds
to a feasible assignment. Let P C P be a solution to
bQbD-k for the bound d, with | P’| = k. Then, let T assign 1
to plans 7 € P’ and 0 otherwise. Since |P’| = k, constraint
(ii) holds. For 7, 7' € P, if either of the plans is not in P’,
then U; + U, < 1. If both plans are in P, then d(w, ") > d.
Thus, constraint set (i) holds for ¥ and the program is feasi-
ble.

Now, let T be some feasible solution and let P’ = {m €
P | 7y = 1} be the corresponding subset of P. Then,
(a) from constraint (ii) we have |P’| > k, and (b) for all
w,m € P’, since Uy + U7 = 2, we know that the corre-
sponding constraint is not in the constraint set (i), and there-
fore d(m, ") > d. Therefore, P’ (or any of its subset of size
k) is a solution to bQbD-k. ]

We now switch our attention to the next computational
problem, bQoptD-k.

Optimizing Diversity

Due to the NP-completeness of the decision problem of se-
lecting a subset of plans of bounded diversity, the corre-
sponding optimization problem is NP-hard. To solve it ef-
ficiently, we encode it in mixed integer linear programming.
We present a novel mixed integer linear program that we
use for finding a subset of size k that optimizes the diversity
metric. Given a set of plans P, we define the variables as
follows.

e A binary variable v, per plan m € P, describing whether
the plan is selected for the subset, and

e a single continuous variable d for bounding the pairwise
diversity.
The constraints are as follows.

() > rcpvr = Fk, stating that the size of the subset is
exactly k, and

(i) Vrr, " € P : d4vy+v < d(m,7')+2, stating that d
is bounded by the diversity of each chosen pair, if the
pair is chosen.



gm =1.00 qm =1.05 qm =1.10 qm =1.20
Coverage DFA AA FI Sym | DFA AA FI Sym | DFA AA FI Sym | DFA AA FI Sym
airport (28) 0 7 18 7 0 7 18 7 0 7 17 7 0 717 7
barmanl1 (8) 0 0 4 8 0 0 5 4 0 0 5 4 0 0 5 4
barmanl14 (4) 0 0 3 4 0 0 3 3 0 0 3 3 0 0 2 4
blocks (30) 12 21 18 28 11 20 19 29 18 20 18 28 20 20 17 22
childsnack14 (6) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
data-ntwrk18 (13) 9 7 9 11 10 7 10 10 9 7 10 10 9 7 10 10
depot (12) 0 1 3 3 0 1 3 3 2 1 3 3 2 1 3 3
driverlog (14) 3 6 10 9 2 6 10 9 6 2 10 9 8 2 10 9
elevators08 (24) 4 2 7 0 4 2 7 0 4 2 5 0 2 2 6 0
elevators11 (18) 3 1 5 0 2 1 5 0 2 1 5 0 2 1 5 0
floortile11 (14) 2 0 2 5 2 0 2 5 2 0 2 5 2 0 2 5
floortile14 (20) 0 0 0 8 0 0 0 8 0 0 0 7 0 0 0 8
freecell (22) 6 6 7 21 6 6 7 21 6 6 7 21 8 6 7 18
ged14 (19) 12 13 12 15 12 13 12 15 12 13 12 15 12 13 12 15
grid (2) 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2
gripper (20) 3 2 6 15 3 2 6 15 4 2 6 15 8 2 6 15
hiking14 (19) 3 2 7 7 3 2 8 6 2 1 6 6 3 1 8 5
logistics00 (20) 0 3 15 5 0 3 12 4 0 310 3 1 0 6 3
logistics98 (6) 1 0 5 2 1 0 5 2 3 0 5 2 3 0 5 2
miconic (143) 121 70 53 79 | 121 67 54 70 | 122 68 53 63 | 118 67 53 57
movie (30) 30 30 30 2 30 30 30 2 30 30 30 2 30 30 30 0
mprime (24) 6 21 20 17 6 21 20 17 6 21 20 17 15 21 19 16
mystery (17) 1 16 16 11 1 16 16 12 1 16 15 12 10 16 15 11
nomysteryl1 (17) 4 11 11 13 7 7 10 13 10 6 9 12 11 4 9 13
openstacks08 (30) 26 4 17 21 26 4 17 21 26 4 17 21 26 4 17 21
openstacks11 (20) 18 1 12 16 18 1 12 15 18 1 12 15 18 1 12 16
openstacks14 (18) 5 0 2 1 5 0 2 2 5 0 2 1 6 0 2 1
openstacks (17) 5 0 5 0 5 0 5 0 5 0 5 0 0 0 5 0
organic-s18 (7) 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7
organic-sspl8 (15) 11 14 14 12 11 14 14 13 11 14 15 12 11 14 15 11
parcprinter08 (30) 0 6 15 6 1 4 13 6 1 4 13 6 1 4 13 6
parcprinter11 (20) 0 3 11 3 1 1 9 3 1 1 9 3 1 1 8 3
parkingl1 (3) 2 1 0 0 1 1 1 0 1 1 1 0 2 1 1 0
parking14 (4) 2 2 0 0 2 2 0 0 1 1 0 0 2 1 0 0
pegsol08 (30) 9 21 28 29 9 21 27 29 9 21 28 29 20 20 28 29
pegsoll1 (20) 9 9 18 19 9 9 17 19 11 8 18 19 16 6 17 19
pipes-notank (22) 14 11 14 12 14 11 14 12 14 11 14 12 16 11 14 10
pipes-tank (18) 7 6 13 8 7 6 13 9 5 6 14 7 7 6 13 6
psr-small (50) 4 31 46 44 4 30 42 45 5 29 40 43 13 26 38 42
rovers (12) 3 4 6 6 2 4 6 6 4 4 5 6 6 4 5 6
satellite (15) 7 5 7 11 6 5 7 11 6 5 7 9 6 5 7 7
scanalyzer08 (19) 12 13 12 12 7 13 13 12 6 13 13 10 8 13 13 10
scanalyzerll (15) 11 10 10 9 6 10 10 9 5 10 10 7 7 10 10 7
snakel8 (11) 5 4 3 3 5 4 3 3 6 4 3 3 7 4 3 3
sokoban08 (30) 5 6 0 0 5 6 0 0 3 6 0 0 3 6 0 0
sokobanl1 (20) 3 3 0 0 3 3 0 0 1 3 0 0 0 3 0 0
spider18 (11) 5 7 6 2 6 7 4 3 8 7 5 3 8 7 5 3
storage (18) 8 11 16 14 8 11 16 14 7 11 16 14 11 11 16 13
termes18 (16) 0 0 0 10 0 0 0 9 0 0 0 10 0 0 0 10
tetris14 (9) 1 1 3 5 1 1 3 5 2 1 3 5 4 1 3 5
tidybot11 (16) 1 5 6 10 4 3 4 10 12 2 3 9 12 1 3 9
tidybot14 (10) 4 2 0 3 6 2 0 2 6 2 0 3 7 2 0 3
tpp (11) 0 3 6 4 0 3 6 4 0 3 6 4 0 3 6 4
transport08 (12) 4 5 8 11 5 5 8 4 6 5 8 4 6 5 8 4
transportl1 (8) 2 1 3 7 2 1 3 3 2 1 3 3 2 1 3 3
transport14 (7) 1 0 2 5 0 0 2 3 0 0 2 2 1 0 2 2
trucks (12) 6 3 7 5 5 3 7 6 6 3 7 5 7 3 7 5
visitall11 (12) 7 9 9 11 8 9 9 10 9 9 9 7 9 9 9 5
visitall14 (6) 6 3 3 5 6 3 3 2 6 3 3 0 6 3 3 0
woodwork08 (28) 8 7 10 22 10 6 10 22 14 6 10 22 12 6 10 22
woodwork11 (20) 7 2 5 16 8 2 4 16 9 2 5 16 7 2 5 16
zenotravel (13) 7 9 8 9 7 9 8 10 6 9 8 10 8 9 8 10
Sum other(27) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum (1192) 453 449 594 631 | 452 433 582 603 | 484 424 573 574 | 548 411 564 548

Table 1: Domain-wise coverage comparison of FI-bQbD and Sym-bQbD to DFAM and A"AM, for k=5, diversity bound 0.15,
and four quality bounds.



qm =1.00 qm =1.05 qm =1.10 qm =1.20
K DFA AA  FI Sym | DFA AA  FI Sym | DFA AA  F  Sym | DFA AA  F  Sym
10 390 373 530 394 380 354 511 539 426 338 494 335 505 318 480 499
100 189 238 433 491 194 216 403 448 229 185 365 396 291 123 302 352
1000 79 238 380 435 82 216 345 386 105 185 287 321 124 123 203 257

Table 2: The overall coverage comparison of FI-bQbD and Sym-bQbD to DFAM and A*AM, for diversity bound 0.15, four

quality bounds, and various k values.

The objective of the program is then to maximize d. In
words, as in the previous case, the program encodes a subset
selection, but in this case all subsets of size k correspond to
valid assignments. We additionally have a continuous vari-
able d that is bounded by the diversity score of the selected
subset. In the case of diversity metrics that correspond to
minimal pairwise diversity, this would mean to require the
variable d to be bounded by the diversity of each selected
pair. In other words, if a pair of plans is selected, then d
should be no greater than their diversity score. If a pair is
not selected, there is no such restriction, but since there is a
natural upper bound of 1 on the overall diversity, d can be
required to be upper bounded by any value that is larger or
equal to 1. If at least one of v, v,/ gets 0 assigned to it,
the constraint d + v, + v < d(m, 7') + 2 is then satisfied.
Therefore, the constraint is valid whether the variables v,
and v, are assigned O or 1.

In what follows, we prove that the program can be used
for devising solutions for bQbD-k.

Theorem 3 For a planning task 11 with a set of all plans of
bounded quality P such that |P| > k, the mixed integer pro-
gram finds a subset of size k with the optimal diversity score,
for diversity metrics maximizing minimal pairwise diversity.

Proof: Let 7, d be a feasible assignment to the variables of
the mixed integer program and let P’ = {w € P | v; = 1}
be the corresponding subset of P. Then, from the constraint
set (i) we have |P’| = k and from constraint set (ii) we
have d < d(m, ') for all m, 7' € P’. Further, for a plan
m € P\ P and aplan 7’ € P’ we have d < 1 + d(m,7'),
which does not pose additional constraint on the values of d
since all pairwise distances d(r, 7’) are upper-bounded by
1. Similarly, for 7,7’ € P\ P’, we have d < 2 + d(m, '),
which also does not pose additional constraint on the values
of d. Therefore we have d < d(m,n’) for all m, 7’ € P’
and maximizing d without changing T would lead to d =
ming . eps d(m,n"). Thus, the linear program finds a subset
of size k with maximum minimal pairwise diversity. L]

Experimental Evaluation

To empirically evaluate the feasibility of our suggested
approach, we have implemented our diverse planners on
top of the Diversity Score Computation component (Katz
and Sohrabi 2019), using CPLEX v12.8.0 for solving the
mixed integer linear programs. The code is available at
https://github.com/IBM/diversescore. The experiments were
performed on Intel(R) Xeon(R) CPU E7-8837 @2.67GHz
machines, with the time and memory limit of 30min and
2GB, respectively. The benchmark set consists of all STRIPS
benchmarks from optimal tracks of International Planning

Competitions (IPC) 1998-2018, a total of 1797 tasks in 64
domains. For Bounded Quality and Diversity Diverse Plan-
ning (bQbD-k), we compare to the existing planners for
that computational problem DFAM and A"AM (Vadlamudi
and Kambhampati 2016). Since these planners are imple-
mented for the diversity metric D,,,, we focus our exper-
imental evaluation on D,,,, although our approach works
with any metric. Further, since these planners require an ab-
solute bound on the solution cost to be provided as a parame-
ter, we further restrict the benchmark set to tasks where opti-
mal costs could be found with a state-of-the-art cost-optimal
planner. For that, we used the 17 single planners from the
portfolio of Delfil (Katz et al. 2018a). As a result, for the
bQbD-k computational problem, the benchmark set consists
of 1192 tasks.

As a first step, we generate a set of plans of bounded
quality. Focusing on D,,, allows us to use unordered top-
quality planners (Katz, Sohrabi, and Udrea 2020) to de-
rive all plans (modulo reorderings) of bounded cost. This
is due to the fact that two plans that differ only in the order
of their actions would produce pairwise diversity of 0 and
thus any set of plans P that includes two such plans would
get Do (P) 0. For other diversity metrics we might
need to produce the set of all plans of bounded cost (Katz,
Sohrabi, and Udrea 2020). Note that some top-k planners,
such as K *-based (Katz et al. 2018b) and symbolic search
based (Speck, Mattmiiller, and Nebel 2020) can be easily
adapted to produce solutions for top-quality planning. Fur-
ther, these two planners can be rather naively adapted to pro-
duce unordered tog-quality solutions, by performing a du-
plicate check and skipping plans for which a reordering was
previously found. In our experiments, we have performed
the first step with each of these three planners, namely FI,
K*, and Sym. We run these planners with a 29min time
bound, to allow at least one minute for the second step. In all
cases, the overall time bound for both steps is 30min. Fur-
ther, to avoid generating a larger amount of plans, the overall
bound on the number of generated plans for the first step is
set to 10000. As a second step, we select a subset of plans ac-
cording to the computational problem of interest. For bQ-k,
we use the greedy approach suggested by Katz and Sohrabi
(2020). For the bQbD-k and bQoptD-k computational prob-
lems, we solve a mixed-integer linear program, as described
in the previous section. This results in three configurations
for each computational problem of interest. For space rea-
sons, in what follows, we focus on the two best performing
ones, FI and Sym.

Table 1 presents a domain-wise comparison of our plan-
ners, FI-bQbD and Sym-bQbD to the existing planners
DFAM and A"AM (Vadlamudi and Kambhampati 2016), for
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Figure 1: Comparison of the greedy and the optimal approaches to subset selection for £ = 5. FI-bQ vs. FI-bQoptD: (a) diversity
score and (c) score computation time. Sym-bQ vs. Sym-bQoptD: (b) diversity score and (d) score computation time.

k = 5. We use the diversity bound of 0.15 and experiment
with four quality bounds, defined by multipliers of the op-
timal plan cost, from ¢,, = 1.0 (optimal plans only), to
qm = 1.05, ¢, = 1.10, and to ¢, = 1.20 (up to 120%
of the optimal plan cost). The results for these four quality
bound multipliers are depicted in the four parts of the ta-
ble. Each part presents the coverage value for the four plan-

ners. A planner gets a coverage of 1 on a planning task if
it was able to either find a solution of size k or prove that
no such solution exists. Otherwise, the planner gets cover-
age 0. The coverage of a domain is a sum over coverages
of all tasks in the domain. Best results are highlighted in
bold. While both FI-bQbD and Sym-bQbD outperform the
existing approaches in terms of overall coverage, it is worth



mentioning that for each of the approaches there are multi-
ple domains where that approach exhibit superior behavior.
To show how these planners scale with larger values of k,
Table 2 presents aggregated overall coverage for the values
of k£ = 10,100, 1000. Going deeper into the coverage re-
sults, note that DFAM does not prove unsolvability. A"AM,
on the other hand, for large values of k£ = 100 and & = 1000,
did not find any solutions, and all the instances reported in
the table for A'AM and these values of k correspond to un-
solvable cases. For our suggested approach, both FI-bQbD
and Sym-bQbD are able to cope with both, for any value
of k. It is worth mentioning that the performance of DFAM
often improves, sometimes significantly, with larger quality
bounds. We conjecture that this increase is due to the nature
of the branch-and-bound algorithm, that does not necessar-
ily produce plans in the order of their costs.

Switching to bQ-k and bQoptD-k, in order to evaluate the
quality of the solution obtained using the greedy algorithm,
we compare the diversity metric score of the subset chosen
by FI-bQ (respectively, Sym-bQ) to the best possible score,
obtained with the FI-bQoptD (respectively, Sym-bQoptD)
planner. Figure 1(a,b) depict the comparison for k = 5, for
all four quality multipliers 1.0, 1.05, 1.1, and 1.2, for tasks
where both planners were able to find a solution, and the
first step produced at least k£ + 1 plans. Note that the greedy
approach works surprisingly well. On these tasks, in most
cases the greedy algorithm has reached the optimum (nodes
on the diagonal): 80 out of 121, 90 out of 126, 71 out of
105, and 50 out of 105 for FI-bQ and 106 out of 176, 99 out
of 162, 67 out of 118, and 63 out of 129 for Sym-bQ (for
the four quality multipliers, respectively). When it hasn’t
reached the optimum, the scores are still mostly below the
y = x + 0.1 line. There are only 21, 18, 17, and 26 tasks
for FI-bQ and 26, 23, 20, and 30 tasks for Sym-bQ for the
four quality multipliers 1.0, 1.05, 1.1, and 1.2, respectively
above the y = x + 0.1 line, and only 21 tasks for FI-bQ and
16 tasks for Sym-bQ in total for all quality multipliers above
the y = x 4+ 0.2 line.

While our experiments show that the greedy approach of-
ten produces solutions of diversity close to optimum, the
question remains how these algorithms compare in their run
time. Figure 1 (c) and (d) present such run time comparison
between the greedy and the optimal approaches. The greedy
algorithm always finished in under 1.2 seconds, while solv-
ing mixed integer linear program takes significantly longer
on these tasks, up to 500 seconds for FI-bQoptD and 1760
seconds for Sym-bQoptD.

Finally, note that an inherent limitation of our approach to
solving bQoptD-k is that the first step must produce a solu-
tion to the (unordered) top quality planning problem. There
is no such limitation when solving bQ-k. As a result, FI-bQ
successfully solves bQ-k in 617, 617, 615, and 613 tasks
for the four quality multipliers, while FI-bQoptD solves
bQoptD-k in only 369, 333, 273, and 191 tasks. Similarly,
Sym-bQ successfully solves bQ-k in 702, 675, 648, and 624
tasks for the four quality multipliers, while Sym-bQoptD
solves bQoptD-k in only 379, 338, 262, and 196 tasks.

Discussion and Future Work

In this work, we extend the portfolio of existing tools for
various computational problems in diverse planning by in-
troducing three new such tools. We follow the recently in-
troduced taxonomy and, focusing on bQbD-k, map existing
planners DFAA /DFAM and A*AA/A'AM to that problem.
For that, we introduce a novel quality metric under which
these planners can be considered to solve bQbD-k. The met-
ric also allows us to use top quality planners as a basis for
our proposed planners, for bQbD-k as well as for other com-
putational problems, choosing a subset of plans from the so-
Iution for the top quality problem. We show that it is NP-
complete to find a solution to bQbD-k, given the set of all
plans of bounded cost and suggest using a previously pro-
posed integer linear programming based approach, which
is experimentally shown to favorably compete with existing
planners. As the integer linear program was not previously
detailed in the literature, we present it in detail and formally
prove that it can be used for solving bQbD-k. Switching
from bounding to optimizing diversity, we suggest a novel
mixed integer linear program and formally prove that this
program solves bQoptD-k. For another computational prob-
lem, bQ-k, we use an existing greedy approach of selecting
a subset of plans, and empirically show that such a simple
approach is able to often achieve the optimum in practice.

Our suggested approach is similar to the one of Vadla-
mudi and Kambhampati (2016), in that it is also separated
into two steps: (i) finding a set of plans of bounded cost,
and (ii) choosing a proper subset from the found set. There
are two major differences. The first one is the stopping cri-
teria for step (i): while Vadlamudi and Kambhampati (2016)
iterate until enough plans are found or no more plans exist,
and can stop before finding all plans of bounded cost, we are
using an existing (unordered) top-quality planner as is, and
therefore will produce the set of all plans of bounded cost in
step (i). While it is possible to adapt the top quality planner
that we used to terminate earlier, we decided not to do so,
to allow for easily replacing the top quality planner with a
different one. The second major difference is that instead of
trying to construct a feasible solution during the execution of
step (i), we perform step (ii) after the first step is finished, as
a post-processing. Further, instead of implementing a dedi-
cated algorithm, we cast the problem of choosing the proper
subset as an integer linear program, allowing us to use ex-
isting solvers. Thus, our solution is highly modular, allow-
ing us to easily replace the solvers when better ones become
available.

While there has been significant progress in the field of
diverse planning recently, there are still several interesting
computational problems for which no planners currently ex-
ist. For example, in this work we show how to optimize di-
versity when the set of candidate plans is given. However,
if the quality restriction is alleviated, it is not clear how
to choose a set of maximal diversity. It is not even clear
whether all plans must be considered while searching for
such a set. Another possible problem of interest is finding a
subset of optimal quality among the bounded diversity ones.
Focusing on these planning problems is an interesting re-
search direction.
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