
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OFFLINE REINFORCEMENT LEARNING
WITH PENALIZED ACTION NOISE INJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) seeks to optimize policies from fixed datasets,
enabling deployment in domains where environment interaction is costly or unsafe.
A central challenge in this setting is the overestimation of out-of-distribution (OOD)
actions, which arises when Q-networks assign high values to actions absent from
the dataset. To address this, we propose Penalized Action Noise Injection (PANI),
a lightweight Q-learning approach that perturbs dataset actions with controlled
noise to increase action-space coverage while introducing a penalty proportional
to the noise magnitude to mitigate overestimation. We theoretically show that
PANI is equivalent to Q-learning on a Noisy Action Markov Decision Process
(NAMDP), providing a principled foundation for its design. Importantly, PANI is
algorithm-agnostic and requires only minor modifications to existing off-policy
and offline RL methods, making it broadly applicable in practice. Despite its
simplicity, PANI achieves substantial performance improvements across various
offline RL benchmarks, demonstrating both effectiveness and practicality as a
drop-in enhancement.

1 INTRODUCTION

Reinforcement learning (RL) enables agents to learn decision making policies through interaction
with an environment. While effective in many domains, real world applications such as healthcare
and autonomous driving often restrict such interaction due to safety and cost concerns. Offline RL
addresses this limitation by training policies on precollected datasets, removing the need for online
exploration. Despite this advantage, offline RL remains challenged by the overestimation of out of
distribution (OOD) actions, which can degrade policy performance at deployment.

To mitigate the OOD problem, recent approaches have explored the generative capabilities of diffusion
models. Methods such as Diffusion-QL (Wang et al., 2022) and SfBC (Chen et al., 2022) use diffusion
models to construct behavior cloning policies that support Q-learning. Other techniques, including
QGPO (Lu et al., 2023), incorporate Q-value feedback to guide action sampling, while DTQL (Chen
et al., 2024) and SRPO (Chen et al., 2023a) apply diffusion-based regularization instead of relying on
generative policies. Although these methods achieve strong empirical results.

Motivated by the success of diffusion-based methods, which leverage multi-scale noise perturbations
to provide reliable learning signals even in low-density regions of the data distribution, we propose
Penalized Action Noise Injection (PANI). PANI is a lightweight method that perturbs actions from
offline datasets with controlled noise and penalizes them according to the noise magnitude. In doing
so, PANI broadens the coverage of Q-network updates across the action space, thereby mitigating
overestimation errors in Q-learning while maintaining computational efficiency. While most offline
RL algorithms inherently rely on the neural network’s generalization to evaluate unseen actions,
which often leads to overestimation in regions with limited or no data coverage, PANI enforces
updates across the entire action space through noise-injected perturbations, which makes it distinctive
in this regard among offline RL methods.

PANI is broadly compatible with existing off-policy and offline RL algorithms, requiring only minor
modifications to integrate with methods such as IQL (Kostrikov et al., 2021), TD3 (Fujimoto et al.,
2018), and even generative model-based approaches like QGPO (Lu et al., 2023). Our contributions
are threefold. First, we introduce Penalized Action Noise Injection (PANI), a simple yet theoretically

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

grounded method that enablesQ-network updates over a broader region of the action space using only
offline data. Second, we formalize the Noisy Action MDP (NAMDP), a modified Markov Decision
Process induced by noise injection, and provide a theoretical analysis of the resulting Q-values to
show that it mitigates out-of-distribution (OOD) value overestimation. Third, we propose a Hybrid
Noise Distribution, derived from the NAMDP-based analysis, which further improves performance
and stability across tasks.

2 PRELIMINARIES

RL provides a foundational framework for solving sequential decision-making problems, where an
agent learns to optimize its actions through interactions with an environment. Formally, RL problems
are modeled as Markov Decision Processes (MDPs), defined by (S,A, R, P, γ), where S is the state
space, A is the action space, R is the reward function, P is the transition probability distribution, and
γ ∈ (0, 1) is the discount factor. The primary objective in RL is to find a policy π, which maps states
to a probability distribution over actions, maximizing the expected cumulative discounted reward:
η(π) = Eπ [

∑∞
t=0 γ

trt] , where rt denotes the reward received at time t. This is typically achieved
by iteratively refining the policy to approach the optimal policy π∗ = argmaxπ η(π). One way to
evaluate the policy’s performance is to estimate the action value function Qπ(s, a), which measures
the expected cumulative reward starting from state s, taking action a, and subsequently following
policy π: Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt | s0 = s, a0 = a] .

Offline RL Offline reinforcement learning (RL) aims to learn a policy from a fixed dataset without
further environment interaction. A key challenge is the overestimation of unseen, out-of-distribution
(OOD) actions, whose Q-values remain uncorrected due to the lack of data. In deep RL, the standard
practice of alternating value maximization and bootstrapped updates can amplify this issue. While
online RL mitigates overestimation through continuous data collection, offline RL lacks this feedback,
causing policies to overprioritize OOD actions and perform poorly at deployment if left unaddressed.

A detailed discussion of related work is provided in the Appendix A.

3 Q-VALUE OVERESTIMATION PROBLEM IN OFFLINE RL

Out-of-distribution (OOD) error poses a major challenge not only in offline reinforcement learning
(RL) but also in generative modeling. A representative example is score matching (Hyvärinen &
Dayan, 2005), which estimates the score function ∇x log p(x) of a distribution p based on sample
data. However, in regions where data is sparse, score estimates become unreliable due to insufficient
updates, leading to significant estimation errors (Song & Ermon, 2019).

To address this issue, Denoising Score Matching (DSM) (Vincent, 2011) was introduced. Instead
of directly estimating the score of the original data distribution, DSM learns the score function of a
noise-perturbed version of the data. By injecting noise into samples, it enables learning signals even
in low-density regions, helping mitigate errors in score estimation. Specifically, the score network sθ
is trained to minimize the following objective:

JDSM(θ) = Ex∼p,x̃∼qσ(·|x)
[
∥sθ(x̃)−∇ log qσ(x̃ | x)∥22

]
,

where qσ(· | x) is a noise distribution, typically Gaussian: N (x, σ2I).

However, DSM still tends to produce unreliable estimates at lower noise levels, where updates rely on
sparse data. At higher noise levels, the added noise can obscure important data structures, reducing
the accuracy of score estimation and degrading downstream performance.

Diffusion models extend the principles of DSM by learning the score of the noisy distribution through
a multi-step denoising process (Song et al., 2020). These models are trained to progressively denoise
data corrupted by noise at varying levels, corresponding to different time steps t. Specifically, by
minimizing the following objective:

J(θ) = Et∼U(0,1),ϵ∼N (0,I)

[
∥ϵθ(zt, t)− ϵ∥22

]
where zt = αtx+ σtϵ, thus, zt ∼ N (αtx, σ

2
t I).

This formulation can also be viewed from the perspective of DSM. Defining qσt(·|x) ∼ N (αtx, σ
2
t I):

∥ϵθ(zt, t)− ϵ∥22 = σ2
t ∥sθ(zt, t)−∇ log qσt(zt|x)∥22

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

PANI - Rings w/o PANI - Rings PANI - Pinwheel w/o PANI - Pinwheel

Low

High

Dataset Samples

Figure 1: Visualization of learned Q-values on toy datasets. Each pair compares models trained with
and without PANI on Rings (left) and Pinwheel (right). Background shows Q-values (red: high, blue:
low); circles represent dataset actions, colored by their rewards.

we can rewrite the objective as:
J(θ) = Et∼U(0,1),zt∼qσt (·|x)

[
σ2
t ∥sθ(zt, t)−∇ log qσt

(zt|x)∥22
]
.

This training framework uses DSM to approximate the score function over multiple noise scales,
combining the detailed signals at low noise levels with the robustness of higher noise. Moreover,
training iteratively across noise levels can be seen as a form of data augmentation, as it exposes the
model to a broader range of input variations during learning (Kingma & Gao, 2024).

In offline RL, analogous to score matching, limited coverage in the action space can hinderQ-network
updates in low-density regions, potentially leading to overestimation of unseen or rarely sampled
actions. In particular, actions absent from the dataset receive no direct learning signal, making
them prone to out-of-distribution overestimation. To address this, we take inspiration from DSM
and propose Penalized Noisy Action Injection, which injects noise into actions during training to
encourage updates in underrepresented regions of the action space. Furthermore, motivated by the
use of multi-scale noise in diffusion models, we introduce a hybrid noise distribution that combines
various noise levels to enhance robustness. The effectiveness of our approach is illustrated in Figure 1.

4 PENALIZED ACTION NOISE INJECTION

In this section, we present Penalized Action Noise Injection (PANI), a simple yet effective method
for extending value-based RL algorithms to better handle out-of-distribution actions. Given a dataset
D, conventional value-based methods typically optimize the following objective:

J(θ) = E(s,a,s′)∼D
[
(Qθ(s, a)− y(s, a, s′))2

]
,

where y is the target value derived from the Bellman equation. In offline RL, updates are limited to
actions in D, leaving the Q-network prone to overestimating unseen actions.

To mitigate the overestimation of unseen actions, we inject noise into dataset actions, allowing the
Q-function to be updated on perturbed actions while penalizing Q-values according to the squared
distance from the original action. Specifically, we modify the standard update objective as follows:

J̄(θ) = E(s,a,s′)∼D,ā∼qσ(·|a)

[(
Qθ(s, ā)− y(s, a, s′)− ∥a− ā∥22

)2]
,

where the penalized target value is defined by ȳ(s, a, s′, ā) = y(s, a, s′) − ∥a − ā∥22. Here, the
penalty term ∥a− ā∥22 discourages the network from assigning high Q-values to actions that deviate
significantly from dataset actions.

Thus, our method can be implemented with minimal changes by sampling actions from the dataset,
injecting noise to obtain perturbed actions ā, and updating the Q-network using the penalized target
value. This procedure integrates seamlessly with various offline RL algorithms, requiring only minor
modifications to the Q-update step (see Appendix C for details).

Remark It is worth noting that PANI operates entirely in the offline setting, unlike prior RL work
where noise is widely used for representation learning (Laskin et al., 2020; Sinha et al., 2022) or
simulation-based control (Qiao et al., 2021). PANI’s distinct approach lies in employing penalized
action noise to control Q-values of function approximators for unseen actions, rather than augmenting
data or enhancing state representations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

5 NOISY ACTION MARKOV DECISION PROCESS

To understand how noise affects learning, we formalize the PANI objective as Q-learning within
a new Markov Decision Process, the Noisy Action MDP (NAMDP), and analyze its properties to
provide theoretical insights into the approach.

We begin by formally defining the noise distribution, which plays a crucial role in the formulation of
the NAMDP. The noise distribution determines how noise is injected into the action space, influencing
the updates in the Q-network and the resulting policy behavior.
Definition 5.1 (Noise Distribution). A noise distribution qσ is a distribution parameterized by a ∈ A
and a noise scale σ > 0, with support supp(qσ) such that the action space A is a subset of its support.

For example, a Gaussian noise distribution qσ(ā | a) = N (ā | a, σ2I) satisfies these requirements.

2 1 0 1 2
Action

0.0

0.2

0.4

0.6

0.8

De
ns

ity
2 1 0 1 2

Action

1.0

0.5

0.0

0.5

1.0

Q-
va

lu
e

0.2

0.4

0.6

0.8

1.0

p D
(|

a 1
,

)

q (|a1) q (|a2) q (|a)pD(a)da Q * Target

Figure 2: Left: Noise distributions and the re-
sulting noised distribution. Right: Q-value predic-
tions under the NAMDP, with the background color
representing pD(ā | a1, σ). Note that a1 = −1,
a2 = 1, with rewards r(a1) = 0, r(a2) = 1. The
green curve shows the groundtruth Q-values.

Given a sample ā, the probability that is gener-
ated from a under the distribution p, incorporat-
ing the noise distribution qσ, can be expressed
as:

p(ā | a, σ) = p(a)qσ(ā | a)∫
p(a)qσ(ā | a) da

. (1)

The denominator in this equation represents the
convolution of the noise distribution qσ with the
given distribution p:

pσ(ā) =

∫
p(a)qσ(ā | a) da.

If the noise distribution qσ is reasonable, the
probability p(ā | a, σ) tends to be higher for ā
near a and lower for those farther away. This
behavior is illustrated in Figure 2.

We define the Noisy Action MDP using the weight function pD(ā | s, a, σ), which, under a reasonable
noise distribution, assigns higher weight to actions near a.
Definition 5.2 (Noisy Action MDP). Given a noise distribution qσ, a finite dataset D =
{(si, ai, ri, s′i)}i and a dataset distribution pD, the NAMDP is defined as an MDP (S,A, Rσ, Pσ, γ),
where:

Pσ(s
′ | s, ā) =

∫
A
pD(s

′ | s, a) pD(ā | s, a, σ) da,

Rσ(s, ā) =

∫
A
pD(ā | s, a, σ)

(
R(s, a)− ∥a− ā∥22

)
da.

Using this definition, we now show that minimizing the PANI objective is equivalent to learning the
Q-value function in the NAMDP. This result provides a formal grounding for PANI within a modified
decision process, enabling theoretical analysis based on the structure of the NAMDP.
Theorem 5.3 (PANI Objective). Suppose that the function Q minimizes the following objective:

Ea∼pD(·|s), ā∼qσ(·|a)

[
(Q(s, ā)− ȳ(s, a, ā))2

]
,

where the target value ȳ(s, a, ā) is defined as:

Es′∼pD(·|s,a),ã∼π(·|s′)

[
R(s, a)− ∥a− ā∥22 + γQπ(s′, ã)

]
.

Then, the function Q is the Q-value function of π in the NAMDP.

This offers a key insight into the behavior of PANI. As established in Definition 5.1, the noised
training distribution spans the entire action space, mitigating the overestimation of Q-values typically
caused by bootstrapped updates using out-of-distribution (OOD) actions in offline RL (Kumar et al.,
2019). This directly leads to the result in the preceding theorem, demonstrating that minimizing the
PANI objective yields the exact Q-value function of the NAMDP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2 1 0 1 2

Action

0.10

0.15

0.20

0.25

D
en

si
ty

Gaussian: pD(a)q (|a)da

2 1 0 1 2

Action

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Laplace: pD(a)q (|a)da

2 1 0 1 2

Action

1.0

0.5

0.0

0.5

1.0

Q
-v

al
ue

Gaussian: NAMDP Q-values

2 1 0 1 2

Action

1.5

1.0

0.5

0.0

0.5

1.0

Q
-v

al
ue

Laplace: NAMDP Q-values

2
= 0.5

2
= 0.75

2
= 1.0 Target

Figure 3: Comparison of noise distributions (Gaussian and Laplace) and their impact on NAMDP.
The left two plots show the noisy action distributions

∫
pD(a)qσ(· | a) da for Gaussian (leftmost)

and Laplace (second from left) distributions across different noisy levels (σ2 = 0.5, 0.75, 1.0). The
right two plots illustrate the corresponding NAMDP ground-truth Q-values under these distributions.

An interesting trade-off emerges as the noise level σ increases. On one hand, the balanced action
coverage induced by qσ accelerates the convergence ofQ; on the other hand, higher noise levels cause
the NAMDP to deviate further from the original MDP, introducing additional bias. Further theoretical
results, including error bounds and an analysis showing how PANI discourages the selection of OOD
actions, are provided in Appendix B.

6 NOISE DISTRIBUTION SELECTION

The choice of noise distribution plays a key role in the performance of PANI. As σ → 0, the effect
of PANI diminishes, leaving the overestimation problem unaddressed. When the injected noise is
too small, perturbed actions remain close to the original dataset actions, and the number of samples
required to sufficiently cover the action space increases sharply. As a result, the Q-network receives
limited updates in low-density regions, allowing overestimated Q-values for unseen actions to persist.
In contrast, we next examine the side effects associated with high noise levels.

Consider the formulation of pD(ā | s, a, σ) in Eq. (1), where the denominator is given by pσ(ā |
s) =

∫
pD(a | s)qσ(ā | a)da. In practice, since the dataset is finite, this results in pσ(ā | s) being

a finite mixture of noise distributions centered at observed actions. As the noise level σ increases,
the modes of this mixture tend to shift away from the original action modes. This shift can cause
the distribution to place non-negligible probability mass on actions far from the dataset support,
inadvertently distorting the weight function pD(ā | s, a, σ) to emphasize unreliable actions, which
amplifies OOD overestimation.

For example, when using a Gaussian noise distribution, the leftmost plot in Figure 3 shows how
increasing the noise level σ (the standard deviation) affects the noisy distribution pσ. At low noise
levels (σ2 = 0.5), the distribution retains distinct modes that reflect the dataset’s original action
structure. As σ increases (σ2 ≥ 0.75), these modes blur and merge, obscuring the boundaries between
actions. The right plot shows how this mode collapse distorts the ground-truth Q-function in the
NAMDP: with high noise levels, Q-values are overestimated in regions far from the dataset.

High noise levels can also lead to sample inefficiency, resulting in ineffective Q-network updates.
In typical RL settings with bounded action spaces, using an unbounded noise distribution such as
Gaussian can cause sampled actions to fall outside the valid range, producing invalid or uninformative
targets. Additionally, high noise levels reduce the precision of action sampling. For example, when
two actions a1 and a2 are far apart, the likelihood of sampling a noisy action ā near either becomes
nearly uniform. This flattens the sampling distribution, increases variance in the estimated targets,
and ultimately reduces learning stability. These observations highlight the importance of carefully
selecting and tuning the noise distribution in PANI to balance expressiveness and stability.

6.1 DISTRIBUTION SELECTION

Above, we analyzed the trade-offs associated with high and low noise levels. Here, we explore
strategies for selecting noise distributions that balance these trade-offs. By tailoring the noise
distribution, we aim to maintain broad coverage of the action space while avoiding issues such as
mode collapse and sample inefficiency.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Leptokurtic Distributions Leptokurtic distributions, which have sharper peaks and heavier tails
than Gaussians, offer favorable properties for noise injection. The Laplace distribution is a repre-
sentative example. Its sharp peak helps preserve distinct modes, mitigating the mode shift problem
under high noise. Meanwhile, the heavier tails increase the likelihood of sampling distant actions,
supporting updates in less-visited regions of the action space.

To further analyze the effect of noise shape, we compare Gaussian and Laplace distributions under
equal variance. As shown in Figure 3, the comparison highlights how distribution shape affects
mode preservation and the resulting Q-values in the NAMDP. The results show that even under
fixed variance, the shape of the noise distribution has a significant impact on mode preservation and
Q-value quality. These findings suggest that leptokurtic distributions are well-suited for PANI, as
they mitigate mode collapse at high noise levels and improve coverage at low noise levels.

While leptokurtic distributions help alleviate high-noise issues such as mode collapse and instability
they remain sensitive to the choice of noise scale. To address this limitation and improve robustness
across a broader range of noise levels, we design the Hybrid Noise Distribution, which combines the
concentrated mass of leptokurtic distributions with the broader coverage of a uniform component.

Hybrid Noise Distribution The hybrid noise distribution is designed to maintain robust perfor-
mance across varying noise scales by combining two complementary components: a uniform mixture
for broad exploration and an exponential scaling mechanism to induce leptokurtic behavior. Its
construction involves two key steps.

First, to address sample inefficiency at high noise levels, we define a mixture of the original noise
and a uniform distribution over the action space:

qAt (ā | a) = α(t)U(ā | A) + (1− α(t)) qt(ā | a),

where U(ā | A) denotes the uniform distribution over A, and α(t) = min(t, 1). As t → 1, the
distribution transitions smoothly to uniform, increasing coverage and reducing the likelihood of
out-of-bound or degenerate samples.

To further improve robustness, we build on the motivation presented in Section 3, where diffusion-
based methods leverage multi-scale noise to stabilize learning. Specifically, exponential scaling of
Gaussian noise is known to increase kurtosis (West, 1987), which helps preserve mode structure at
high noise, reducing instability across noise levels.

Based on this insight, we define the hybrid noise distribution as:

qhyb
σ (ā | a) = Eλ∼U(log σ,0)

[
qAexp(λ)(ā | a)

]
,

where t = exp(λ). Here, σ controls the overall noise level rather than serving as a standard deviation.
This formulation combines the broad coverage of the uniform mixture with the scale-adaptive kurtosis
induced by exponential sampling, leading to improved robustness.

In our experiments, we used a Gaussian base noise defined as qt(ā | a) = N (ā | a, t2I). This setup
balances exploration with local structure, resulting in stable and effective Q-network updates. To
evaluate its effectiveness, we compared the hybrid noise distribution with Gaussian and Laplace noise.
As shown in Figure 4a, the hybrid distribution was more stable across noise levels, and we use it as
the default in all subsequent experiments.

7 EXPERIMENTS

In this section, we present experimental results demonstrating the effectiveness of the Penalized
Action Noise Injection (PANI) method. We first show that applying PANI to baseline algorithms
such as TD3 (Fujimoto et al., 2018) and IQL (Kostrikov et al., 2021) leads to significant performance
improvements across various datasets and environments in the various benchmark. Next, we conduct
a series of ablation studies to answer the following research questions: Q1. Does the Hybrid Noise
Distribution provide more robust performance across different noise scales compared to Gaussian
and Laplace noise? Q2. Is PANI computationally more efficient than diffusion-based methods? Q3.
Does PANI effectively reduce OOD Q-value overestimation? Q4. Does PANI consistently improve
performance when applied to other state-of-the-art offline RL algorithms?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Average normalized scores following (Fu et al., 2020), reported on Gym-MuJoCo and
AntMaze tasks. Results are computed over 5 random seeds with 10 trajectories per seed for Gym-
MuJoCo, and 100 trajectories per seed for AntMaze. The ± symbol indicates standard error across
training seeds. Bold numbers indicate the highest score for each task, and underlined values denote
the second highest. Red text shows the performance gain relative to the original baseline.

Diffusion-policy Diffusion-based Diffusion-free Ours

Dataset Environment SfBC D-QL QGPO SRPO DTQL IQL TD3+BC IQL-AN TD3-AN

medium halfcheetah 45.9 51.1 54.1 60.4 57.9 50.0 54.7 55.4 ± 0.3 61.5 ± 0.3
medium hopper 57.1 90.5 98.0 95.5 99.6 65.2 60.9 98.4 ± 1.2 98.2 ± 0.9
medium walker2d 77.9 87.0 86.0 84.4 89.4 80.7 77.7 87.5 ± 3.7 88.5 ± 0.6

medium-replay halfcheetah 37.1 47.8 47.6 51.4 50.9 42.1 45.0 49.5 ± 0.4 53.3 ± 0.3
medium-replay hopper 86.2 100.7 96.9 101.2 100.0 89.6 55.1 100.8 ± 0.4 102.3 ± 0.2
medium-replay walker2d 65.1 95.5 84.4 84.6 88.5 75.4 68.0 88.8 ± 3.6 87.8 ± 6.3

medium-expert halfcheetah 92.6 96.8 93.5 92.2 92.7 92.7 89.1 89.9 ± 2.3 96.4 ± 0.8
medium-expert hopper 108.6 111.1 108.0 100.1 109.3 85.5 87.8 105.3 ± 3.7 108.8 ± 0.9
medium-expert walker2d 109.8 110.1 110.7 114.0 110.0 112.1 110.4 109.6 ± 0.6 114.9 ± 0.2

Average 75.6 88.0 86.6 87.1 88.7 77.0 72.1 87.2 (+10.2) 90.2 (+18.1)

- umaze 92.0 93.4 96.4 97.1 92.6 83.3 66.3 91.2 ± 1.1 98.4 ± 0.5
diverse umaze 85.3 66.2 74.4 82.1 74.4 70.6 53.8 68.0 ± 3.2 74.6 ± 4.9

play medium 81.3 76.6 83.6 80.7 76.0 64.6 26.5 74.4 ± 3.7 83.8 ± 2.7
diverse medium 82.0 78.6 83.8 75.0 80.6 61.7 25.9 75.2 ± 1.6 85.8 ± 1.2

play large 59.3 46.4 66.6 53.6 59.2 42.5 0.0 49.4 ± 3.0 65.4 ± 2.7
diverse large 45.5 56.6 64.8 53.6 62.0 27.6 0.0 52.8 ± 2.6 58.0 ± 5.1

Average (AntMaze) 74.2 69.6 78.3 73.7 74.1 58.4 28.8 68.5 (+10.1) 77.7 (+48.9)

Table 2: Performance comparison on the Adroit pen tasks. Results are averaged over 5 random seeds
with 100 trajectories per seed, and the ± symbol indicates the standard error across seeds. TD3-AN
results are reported using this protocol, and baseline results are taken from the original papers.

Dataset Env TD3-AN CPQL CPIQL FQL DTQL DQL CAC

cloned pen 93.6 ± 5.1 65.3 ± 1.1 57.4 ± 2.2 74.0 ± 3.9 81.3 ± 3.0 57.3 ± 11.9 50.1 ± 1.0
human pen 80.6 ± 5.4 56.7 ± 2.2 48.0 ± 3.8 53.0 ± 2.1 64.1 ± 3.0 72.8 ± 9.6 63.4 ± 3.4

7.1 EVALUATION

We evaluate the effectiveness of PANI across a diverse set of offline RL benchmarks, including Gym-
MuJoCo, AntMaze, Adroit, and OGBench. On Gym-MuJoCo and AntMaze (Table 1), we applied
PANI to both the off-policy algorithm TD3 (Fujimoto et al., 2018) and the offline RL algorithm IQL
(Kostrikov et al., 2021), yielding TD3-AN and IQL-AN. Both variants consistently improved over
their original baselines and performed competitively with state-of-the-art diffusion-based methods
such as DQL (Wang et al., 2022), SfBC (Chen et al., 2022), QGPO (Lu et al., 2023), DTQL (Chen
et al., 2024), and SRPO (Chen et al., 2023a).

On the Adroit dataset (Table 2), we compared TD3-AN with several generative model-based ap-
proaches, including the consistency model methods CPQL and CPIQL (Chen et al., 2023b), the
flow-based method FQL (Park et al., 2025), and the diffusion-based algorithms DTQL (Chen et al.,
2024) and DQL (Wang et al., 2022). The PANI-enhanced variant TD3-AN achieved performance
that was competitive with or superior to these advanced methods.

Finally, on the challenging OGBench benchmark (Table 3), specifically the antmaze-giant-navigate-
singletask suite, we compared TD3-AN with IDQL (Hansen-Estruch et al., 2023), SRPO (Chen
et al., 2023a), CAC (Ding & Jin, 2023), FAWAC, FBRAC, IFQL, and FQL (Park et al., 2025). TD3-
AN achieved non-zero success rates in settings where most of these generative approaches failed,
underscoring its effectiveness in this challenging regime. Taken together, these results demonstrate
that PANI achieves strong generalization across diverse benchmarks, extending its applicability to a
wide range of datasets and environments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on the antmaze-giant-navigate-singletask suite across five tasks.
TD3-AN results are averaged over five random seeds, with standard errors reported. Performance
metrics for all other baselines are taken from Park et al. (2025).

Task TD3-AN IDQL SRPO CAC FAWAC FBRAC IFQL FQL

Task 1 14.2 ± 6.5 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.4 0 ± 0.0 4 ± 1.8
Task 2 5.8 ± 4.4 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 4 ± 2.5 0 ± 0.0 9 ± 2.5
Task 3 1.6 ± 0.7 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.4
Task 4 21.6 ± 10.4 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 9 ± 1.4 0 ± 0.0 14 ± 8.1
Task 5 6.4 ± 2.2 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 6 ± 3.5 13 ± 3.2 16 ± 9.9

High Medium Low Very Low Optimal
0

20

40

60

80

Av
er

ag
e

Sc
or

e

32.9

63.2

72.3

22.3

79.0

51.9

64.3

78.7

27.1

82.0

45.3

83.7 82.7

73.0

90.2
Gaussian
Laplace
Hybrid

(a) Average score in Gym-MuJoCo, comparing different noise distribu-
tions.

IQL IQL-AN TD3 TD3-AN
0

2

4

6

8

10

12

14

16

18

Tr
ai

ni
ng

 T
im

e
(m

in
ut

es
)

9m 33s
10m 22s
(+9%)

15m 45s
16m 14s
(+3%)

(b) Training wall-clock time (106

steps).

Figure 4: Comparison of noise distribution and noise scale effects in Gym-MuJoCo. (a) Average
score of TD3-AN comparing different noise distributions. High, Medium, Low, and Very Low
represent progressively lower noise levels, with specific ranges adjusted for each distribution. Error
bars indicate the standard error of the average score across 5 training seeds. Optimal represents the
best-performing noise scale selected individually for each distribution. (b) Wall-clock training time
for different algorithms, showing that the use of PANI incurs only a small overhead.

7.2 ABLATION STUDY

We now provide detailed analyses addressing the five research questions introduced above. Specifi-
cally, we examine the impact of different noise distributions, noise scales, and dataset action coverage
on performance. We also evaluate the computational efficiency of PANI and assess its generalizability
by applying it to other state-of-the-art offline RL algorithms.

Noise Distribution The choice of noise distribution is a critical factor in PANI. As discussed
in Section 6, the hybrid noise distribution is specifically designed to address the sensitivity of
performance to variations in noise scale. To evaluate its effectiveness, we compared it against both
the Gaussian and Laplace Noise Distributions under identical hyperparameter settings, using different
ranges of noise levels tailored to the characteristics of each distribution.

For the hybrid noise distribution, we tested a range of noise levels appropriate to its characteristics.
Similarly, for the Gaussian and Laplace noise distributions, we selected noise levels that reflect their
typical behavior and scale, ensuring a fair comparison across all methods. As shown in Figure 4a, the
hybrid noise distribution outperformed the Gaussian and Laplace noise distributions. These results
highlight the hybrid distribution’s ability to balance robustness and coverage, making it well-suited
for a variety of environments. Detailed settings for each noise scale, along with full results and
learning curves, are provided in Appendix C.5.

Compute Resource We compared the training time of PANI-enhanced methods with their original
counterparts. As shown in Figure 4b, PANI introduces minimal computational overhead while
maintaining efficient training times. Detailed results, including hardware specifications, are provided
in Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1.0 0.5 0.0 0.5 1.0
Action Dimension 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
tio

n
Di

m
en

sio
n

2

Antmaze-umaze

1.0 0.5 0.0 0.5 1.0
Action Dimension 1

Halfcheetah-medium

1.0 0.5 0.0 0.5 1.0
Action Dimension 1

Hopper-medium

1.0 0.5 0.0 0.5 1.0
Action Dimension 1

Walker2d-medium

Low

High

Dataset Action

Figure 5: Learned Q-value landscapes in Gym-MuJoCo datasets. Colors represent Q-value magni-
tudes (red: high, blue: low), and the white star indicates the dataset action. These plots illustrate how
the learned Q-functions evaluate dataset and surrounding actions across different environments.

Dataset TD3+BC TD3-AN IQL IQL-AN

halfcheetah-expert 0.014 0.002 0.014 0.001
halfcheetah-medium 0.112 0.004 0.211 0.006
hopper-expert 0.483 0.034 0.425 0.036
hopper-medium 0.379 0.036 0.360 0.042
walker2d-expert 0.322 0.000 0.327 0.001
walker2d-medium 0.316 0.002 0.147 0.004

(a) Measured probability of OOD overestimation P (Q(s, ā) > Q(s, a))
across datasets, comparing baseline and PANI-enhanced methods.

2 0 2 4 6 8

HC-me

Hop-me

W-me

HC-m

Hop-m

W-m

HC-mr

Hop-mr

W-mr

(b) Performance difference be-
tween QGPO and QGPO-AN.

Figure 6: Empirical evaluation of OOD overestimation reduction and performance improvement.
(a) shows the probability of OOD overestimation P (Q(s, ā) > Q(s, a)), where (s, a) ∼ D and ā is
uniformly sampled, evaluated across different datasets (all 95% confidence intervals < 0.001). (b)
shows the performance difference of QGPO-AN relative to QGPO across multiple tasks.

Overestimation Mitigation We evaluate the effectiveness of PANI in reducing OOD action overes-
timation. First, as shown in Figure 5, PANI predicts lower Q-values for actions that deviate from the
dataset actions in Gym-MuJoCo, indicating reduced overestimation in out-of-distribution regions.
Second, we measure the probability P (Q(s, ā) > Q(s, a)), where a is a dataset action and ā is
uniformly sampled. As summarized in Table 6a, TD3-AN and IQL-AN significantly lower this
probability across all datasets, demonstrating improved robustness compared to their base versions.

PANI with Other Algorithms We also applied PANI to QGPO (Lu et al., 2023), a diffusion-based
Q-learning algorithm. Using the same hyperparameters (βQ,K) as in the original QGPO for fair
comparison, QGPO-AN showed performance improvements, as shown in Figure 6b, demonstrating
the generality of PANI. See Appendix C.3 for implementation details.

8 CONCLUSION

We introduced Penalized Action Noise Injection (PANI), a lightweight method designed to address
out-of-distribution overestimation in offline RL. By perturbing dataset actions with controlled noise
and penalizing them according to noise magnitude, PANI broadens Q-network updates across the
action space with minimal modification to existing algorithms. Unlike most offline RL methods, which
rely on neural network generalization to evaluate unseen actions and are thus prone to overestimation
in low-coverage regions, PANI enforces updates across the entire action space, making it distinctive
in this regard. Evaluations on various benchmarks demonstrate that PANI generalizes effectively
across different datasets, environments, and algorithmic families. These results suggest that PANI is
not only a practical tool for enhancing existing offline RL algorithms but also a broadly applicable
principle for addressing a fundamental limitation of learning from fixed datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. arXiv preprint arXiv:2310.07297, 2023a.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. arXiv preprint arXiv:2405.19690, 2024.

Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy.
arXiv preprint arXiv:2310.06343, 2023b.

Jacob Deasy, Nikola Simidjievski, and Pietro Liò. Heavy-tailed denoising score matching. arXiv
preprint arXiv:2112.09788, 2021.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier Corporation,
2000.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020.

Byungjun Lee, Jongmin Lee, Peter Vrancx, Dongho Kim, and Kee-Eung Kim. Batch reinforcement
learning with hyperparameter gradients. In International Conference on Machine Learning, pp.
5725–5735. PMLR, 2020.

Zengyi Li, Yubei Chen, and Friedrich T Sommer. Learning energy-based models in high-dimensional
spaces with multiscale denoising-score matching. Entropy, 25(10):1367, 2023.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International Conference on Machine Learning, pp. 26228–26244.
PMLR, 2023.

Kushagra Pandey, Jaideep Pathak, Yilun Xu, Stephan Mandt, Michael Pritchard, Arash Vahdat, and
Morteza Mardani. Heavy-tailed diffusion models. arXiv preprint arXiv:2410.14171, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Efficient differentiable simulation
of articulated bodies. In International Conference on Machine Learning, pp. 8661–8671. PMLR,
2021.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8106–8114, 2022.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision for
offline reinforcement learning in robotics. In Conference on Robot Learning, pp. 907–917. PMLR,
2022.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Mike West. On scale mixtures of normal distributions. Biometrika, 74(3):646–648, 1987.

Kai Yang, Jian Tao, Jiafei Lyu, and Xiu Li. Exploration and anti-exploration with distributional
random network distillation. arXiv preprint arXiv:2401.09750, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Robust
offline reinforcement learning via conservative smoothing. Advances in neural information
processing systems, 35:23851–23866, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORKS

Offline RL Various algorithms have been proposed to address the issue of OOD action overesti-
mation in offline reinforcement learning. These approaches can be broadly categorized into three
groups: (1) methods that enforce conservative Q-value estimates, (2) methods that apply penalties
during policy extraction, and (3) methods that leverage generative models, either as policies or as
regularizers, to guide action selection away from OOD actions.

Notable examples in the first category include CQL (Kumar et al., 2020), which explicitly trains
the Q-network to assign lower values to OOD actions, and ensemble-based approaches such as
EDAC (An et al., 2021) and RORL (Yang et al., 2022), which mitigate overestimated Q-values by
aggregating predictions from multiple Q-networks.

In the second category, policy-level regularization techniques mitigate OOD actions through explicit
penalties. AWAC (Nair et al., 2020) introduces KL regularization, while TD3+BC (Fujimoto & Gu,
2021) and ReBRAC (Tarasov et al., 2024) apply L2 penalties to keep the learned policy close to the
behavior policy. Anti-exploration approaches such as TD3-CVAE (Rezaeifar et al., 2022), SAC-RND
(Nikulin et al., 2023), and SAC-DRND (Yang et al., 2024) explicitly discourage selection of uncertain
or unfamiliar actions.

The third category leverages generative models either as behavior policies or as regularizers during
policy learning to avoid OOD actions. Early approaches such as BCQ (Fujimoto et al., 2019) use a
VAE to generate filtered actions, avoiding OOD actions during policy improvement. More recent
diffusion-based methods, including Diffusion-QL (Wang et al., 2022), SfBC (Chen et al., 2022), and
IDQL (Hansen-Estruch et al., 2023), construct denoising-based behavior policies. SRPO (Chen et al.,
2023a) and DTQL (Chen et al., 2024) regularize policy learning by constraining action selection
to stay close to the dataset, thereby avoiding OOD actions. In contrast, QGPO (Lu et al., 2023)
combines Q-guidance with generative sampling to guide the policy toward high-value actions.

In contrast to these approaches, PANI directly addresses OOD overestimation by modifying the
Q-learning objective to include penalized updates on noise-injected actions.

Data Augmentation in RL While noise-based augmentations are used in RL to enhance sample
efficiency or generalization, most existing approaches focus on representation learning rather than
addressing OOD overestimation.

For example, RAD (Laskin et al., 2020) applies image-based augmentations to observations in online
RL to improve generalization. S4RL (Sinha et al., 2022) adapts this idea to the offline setting,
applying RAD-style augmentation to states in static datasets. These methods target representation
learning rather than correcting distributional mismatch in action values.

Some works consider action noise in the context of differentiable simulation. For instance, Qiao et al.
(2021) use noisy actions to approximate gradients and transitions in simulator-based environments,
enabling more efficient learning. In contrast, our method injects noise in the offline setting without
access to a simulator, using it not to create synthetic targets but to penalize Q-values for out-of-
distribution actions.

Various Noise Scales and Leptokurtic Noise Distributions Noise variation and scaling have
been extensively studied in generative modeling and denoising frameworks. MDNS (Li et al., 2023)
explores training with diverse noise levels in denoising score matching, while NCSN (Song &
Ermon, 2019) conditions training on continuous noise scales. Diffusion-based methods such as Score
Distillation Sampling (Poole et al., 2022) leverage outputs across multiple noise levels to stabilize
generation.

While most prior work uses Gaussian noise, recent studies explore alternative noise shapes to improve
robustness. Heavy-Tailed Denoising Score Matching (HTDSM) (Deasy et al., 2021) and t-EDM
(Pandey et al., 2024) employ leptokurtic noise distributions to better handle outliers and data sparsity.

Our method draws on these insights, but applies them in a context: penalizing noisy actions in the
offline RL setting to systematically reduce OOD value overestimation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B NOISY ACTION MARKOV DECISION PROCESS

In this section, we revisit the definition of the Noisy Action Markov Decision Process (NAMDP) and
the associated noise distribution. We provide formal proofs for the key theorems introduced in the
main text and offer additional theoretical insights under specific assumptions.
Definition B.1 (Noise Distribution). A noise distribution qσ is a distribution parameterized by a ∈ A
and a noise scale σ > 0, with support supp(qσ) such that the action space A is a subset of its support.
Definition B.2 (Noisy Action MDP (NAMDP)). Given a noise distribution qσ , a finite dataset D =
{(si, ai, ri, s′i)}i and a dataset distribution pD, the NAMDP is defined as an MDP (S,A, Rσ, Pσ, γ),
where:

Pσ(s
′ | s, ā) =

∫
A
pD(s

′ | s, a) pD(ā | s, a, σ) da, (2)

Rσ(s, ā) =

∫
A
pD(ā | s, a, σ)

(
R(s, a)− ∥a− ā∥22

)
da, (3)

pD(ā | s, a, σ) =
qσ(ā | a)pD(a|s)∫
qσ(ā | a)pD(a|s) da

. (4)

B.1 CONNECTION BETWEEN PANI AND NAMDP

In this subsection, we present a key result that connects the PANI objective with the Noisy Action
Markov Decision Process (NAMDP). Specifically, we show that Q-learning with PANI corresponds
to learning the Q-function of the NAMDP under the defined noise distribution.
Theorem B.3 (PANI Objective). Suppose that the function Q minimizes the following objective:

Ea∼pD(·|s), ā∼qσ(·|a)
[
∥Q(s, ā)− ȳ(s, a, ā)∥22

]
, (5)

where the target value ȳ(s, a, ā) is defined as:

Es′∼pD(·|s,a),ā∼π(·|s′)

[
R(s, a)− ∥a− ā∥22 + γQπ(s′, ā)

]
.

Then, the function Q is the Q-value function of π in the NAMDP.

Proof. Let us derive the optimal Q-function for the NAMDP by applying the Euler equation for
functionals (Gelfand et al., 2000). Consider a functional of the form:

J [u] =

∫
· · ·
∫
R
F (x1, . . . , xn, u)dx1 · · · dxn (6)

which depends on n independent variables x1, . . . , xn and an unknown function u of these variables.
For the functional to be optimal, the following condition must hold:

Fu(x) = 0 for all x (7)

The NAMDP objective eq. (5) can similarly be expressed as a functional:

J [Q] = Ea∼pD(·|s)
ā∼qσ(·|a)

[∥∥∥Q(s, ā)− Es′∼pD(·|s,a)
ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]∥∥∥2
2

]
(8)

=

∫
Rn

∫
A
pD(a|s)qσ(ā|a)∥∥∥Q(s, ā)− Es′∼pD(·|s,a)

ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]∥∥∥2
2
dadā (9)

=

∫
Rn

F (ā1, ..., ān, Q)dā (10)

where

F (ā1, ..., ān, Q) = (11)∫
A
pD(a|s)qσ(ā|a)

∥∥∥Q(s, ā)− Es′∼pD(·|s,a)
ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]∥∥∥2
2
da (12)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Suppose that Q∗ is the minimizer of the NAMDP objective equation 5. By the Euler equation for the
functional equation 6, we have:

FQ∗(ā) = (13)

2

∫
A
pD(a|s)qσ(ā|a)

(
Q∗(s, ā)− Es′∼pD(·|s,a)

ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

])
da = 0

(14)

Thus,∫
A
pD(a|s)qσ(ā|a)Q∗(s, ā)da (15)

=

∫
A
pD(a|s)qσ(ā|a)Es′∼pD(·|s,a)

ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]
da (16)

⇐⇒ Q∗(s, ā) =

∫
A pD(a|s)qσ(ā|a)Es′∼pD(·|s,a)

ā∼π(·|s′)

[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]
da∫

A pD(a|s)qσ(ā|a)da
(17)

=

∫
S
∫
A pD(a|s)qσ(ā|a)pD(s

′|s, a)Eā∼π(·|s′)
[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]
dads′∫

A pD(a|s)qσ(ā|a)da
(18)

=

∫
S

∫
A
pD(s

′|s, a)pD(ā|s, a, σ)Eā∼π(·|s′)
[
R(s, a)− ∥ā− a∥22 + γQπ(s′, ā)

]
dads′ (19)

=

∫
A
pD(ā|s, a, σ)(R(s, a)− ∥ā− a∥22)da

+ γ

∫
S
Eā∼π(·|s′) [Qπ(s′, ā)]

∫
A
pD(s

′|s, a)pD(ā|s, a, σ)dads′ (20)

= Rσ(s, ā) + γEs′∼Pσ(·|s,ā),ā∼π(·|s′) [Q
π(s′, ā)] (21)

Therefore, Q∗ satisfies the Bellman equation in NAMDP and is Q-value of π in NAMDP

This result enables us to analyze how the choice of noise distribution in PANI influences the learned
Q-values, by comparing the ground-truth Q-function under the NAMDP to that of the original MDP.

B.2 ERROR BOUND BETWEEN NAMDP AND THE TRUE MDP

In this subsection, we provide theoretical insight into the difference in expected returns between the
Noisy Action MDP (NAMDP) and the original MDP. For this analysis, we assume that both the state
space S and the action space A are finite, and that Rσ is well-defined on S ×A.

Theorem B.4 (Error Bound in NAMDP). Let η(π) and η̄(π) denote the expected returns in the true
MDP (S,A, R, P, γ) and the NAMDP (S,A, Rσ, Pσ, γ), respectively. suppose that NAMDP reward
function Rσ is bounded, The error between them is bounded as:

|η(π)− η̄(π)| ≤ ϵr + ϵm,

where:

ϵr = Edπ
[
|R(s, a)−Rσ(s, a)|

]
,

ϵm = 2r̄max
γEdπ [TV(P (s′|s, a)∥Pσ(s′|s, a))]

(1− γ)2
.

Here, R(s, a), and dπ are the reward functions and the discounted state-action visitation distribution
in the true MDP, r̄max is the maximum reward in NAMDP, γ is the discount factor, TV is the total
variation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Let d̄π denote the discounted state-action visitation distribution induced by policy π in the
NAMDP. Then, the difference in expected returns between the true MDP and the NAMDP can be
written as:

|η(π)− η̄(π)| =

∣∣∣∣∣∑
s,a

(
dπ(s, a)R(s, a)− d̄π(s, a)Rσ(s, a)

)∣∣∣∣∣ .
Applying the triangle inequality, we decompose this expression as:

|η(π)− η̄(π)| ≤

∣∣∣∣∣∑
s,a

dπ(s, a) (R(s, a)−Rσ(s, a))

∣∣∣∣∣+
∣∣∣∣∣∑
s,a

(
dπ(s, a)− d̄π(s, a)

)
Rσ(s, a)

∣∣∣∣∣ (22)

= E(s,a)∼dπ [|R(s, a)−Rσ(s, a)|] +

∣∣∣∣∣∑
s,a

(
dπ(s, a)− d̄π(s, a)

)
Rσ(s, a)

∣∣∣∣∣ . (23)

For the second term, we apply Lemma A.1 from Lee et al. (2020), which yields:

∣∣∣∣∣∑
s,a

(
dπ(s, a)− d̄π(s, a)

)
Rσ(s, a)

∣∣∣∣∣ ≤ 2γr̄max

(1− γ)2
E(s,a)∼dπ [TV(P (s′ | s, a) ∥Pσ(s′ | s, a))] ,

where r̄max = maxs,a |Rσ(s, a)|.
Substituting this into the previous expression gives the final bound:

|η(π)− η̄(π)| ≤ Edπ [|R(s, a)−Rσ(s, a)|]︸ ︷︷ ︸
ϵr

+
2γr̄max

(1− γ)2
Edπ [TV(P (s′ | s, a) ∥Pσ(s′ | s, a))]︸ ︷︷ ︸

ϵm

.

Therefore, if the noise distribution is reasonable, it assigns higher weight to dataset actions, where
both the reward and transition dynamics of the true MDP are accurately represented. In this case,
as long as the learned policy avoids OOD actions, the optimal policy in the NAMDP is expected to
perform well in the original MDP. In the following subsections, we show that, in practice, policies
optimized under appropriate noise settings in NAMDPs tend to avoid OOD actions.

B.3 AVOIDING OOD ACTIONS IN NAMDP WHEN σ → 0

In this subsection, we examine the behavior of the optimal policy in the NAMDP as the noise level
σ → 0. We show that under certain conditions, the limiting optimal policy avoids OOD actions;
however, this result does not directly imply that the same behavior holds for all NAMDPs when σ is
merely small.

Instead, we establish an intermediate result in this subsection that will later allow us to prove, in
the next subsection, that optimal policies in NAMDPs with a finite action space indeed avoid OOD
actions under small noise.

We begin by stating an assumption on the noise distribution, which will be used throughout the
analysis:
Assumption B.5. The noise distribution qσ(ā | a) satisfies the following properties for all a, a1, a2 ∈
A:

1. If ∥a1 − a∥22 > ∥a2 − a∥22, then

lim
σ→0+

qσ(a | a1)
qσ(a | a2)

= 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. If ∥a1 − a∥22 = ∥a2 − a∥22, then

lim
σ→0+

qσ(a | a1)
qσ(a | a2)

= 1.

For example, distributions such as the Gaussian and Laplace distributions satisfy the properties.
Given an arbitrary function S : A×A → R, the following lemma characterizes the limiting behavior
of a noise-weighted average as σ → 0.
Lemma B.6. Given a noise distribution qσ, if the support of p is finite, then for any function S, we
have:

lim
σ→0+

∫
A
S(a, ā)p(a|ā) da =

∑
a∈C(ā,p) S(a, ā)p(a)∑

a∈C(ā,p) p(a)
= Ea∼pC(·|ā) [S(a, ā)] , (24)

where

p(a|ā) = qσ(ā|a)p(a)∑
a qσ(ā|a)p(a)

, C(ā, p) =
{
a ∈ supp(p) | ∥ā− a∥22 ≤ ∥ā− y∥22∀y ∈ supp(p)

}
.

(25)

Proof. We analyze the expectation by splitting it into two cases: points in C(ā, p) and points outside
C(ā, p).

Let a∗ ∈ C(ā, p) be a closest point to ā. By the Assumption B.5, qσ(ā|a)
qσ(ā|a∗) → 0 as σ → 0+ for

a /∈ C(ā, p). Thus:

lim
σ→0+

∑
a/∈C(ā,p)

S(a, ā)
qσ(ā|a)p(a)∑
a qσ(ā|a)p(a)

(26)

= lim
σ→0+

∑
a/∈C(ā,p) S(a, ā)qσ(ā|a)p(a)∑

a∈C(ā,p) qσ(ā|a)p(a) +
∑
a/∈C(ā,p) qσ(ā|a)p(a)

= lim
σ→0+

∑
a/∈C(ā,p) S(a, ā)

qσ(ā|a)
qσ(ā|a∗)p(a)∑

a∈C(ā,p)
qσ(ā|a)
qσ(ā|a∗)p(a) +

∑
a/∈C(ā,p)

qσ(ā|a)
qσ(ā|a∗)p(a)

=
0∑

a∈C(ā,p) p(a) + 0
= 0. (27)

For a ∈ C(ā, p), the noise property gives qσ(ā|a)
qσ(ā|ā) → 1 for all a, ā ∈ C(ā, p). Hence:

lim
σ→0+

∑
a∈C(ā,p)

S(a, ā)
qσ(ā|a)p(a)∑
a qσ(ā|a)p(a)

(28)

= lim
σ→0+

∑
a∈C(ā,p) S(a, ā)qσ(ā|a)p(a)∑

a∈C(ā,p) qσ(ā|a)p(a) +
∑
a/∈C(ā,p) qσ(ā|a)p(a)

= lim
σ→0+

∑
a∈C(ā,p) S(a, ā)

qσ(ā|a)
qσ(ā|a∗)p(a)∑

a∈C(ā,p)
qσ(ā|a)
qσ(ā|a∗)p(a) +

∑
a/∈C(ā,p)

qσ(ā|a)
qσ(ā|a∗)p(a)

=

∑
a∈C(ā,p) S(a, ā)p(a)∑

a∈C(ā,p) p(a)
. (29)

Therefore, we have

lim
σ→0+

∫
a

S(a, ā)p(a|ā) da = lim
σ→0+

 ∑
a∈C(ā,p)

S(a, ā)p(a|ā) +
∑

a/∈C(ā,p)

S(a, ā)p(a|ā)


=

∑
a∈C(ā,p) S(a, ā)p(a)∑

a∈C(ā,p) p(a)
= Ea∼pC(·|ā) [S(a, ā)] , (30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where pC(a|ā) = p(a)∑
a∈C(ā,p) p(a)

is the restriction of p to C(ā, p).

Using this lemma, we can express the Q-value in closed form as σ → 0+, as shown below:
Lemma B.7. suppose that σ → 0+, then the Q value in NAMDP holds:

Ea∼pC(·|ā,s)[Q
π(s, a)] = Qπ(s, ā) + inf

a∈C(ā,pD(·|s))
∥ā− a∥22.

Proof. We assume σ → 0+, leveraging the fact that the dataset is finite. By Lemma B.6, the transition
probabilities in the NAMDP converge as:

P̄ (s′|s, ā) = lim
σ→0+

∫
pD(s

′|s, a)pD(ā|s, a, σ) da (31)

=

∑
a∈C(ā,pD(·|s)) pD(s

′|s, a)pD(a|s)∑
a∈C(ā,pD(·|s)) pD(a|s)

(32)

= Ea∼pC(·|ā,s)[pD(s
′|s, a)]. (33)

For the reward R̄(s, ā), we derive:

R̄(s, ā) = lim
σ→0+

∫
A
pD(ā|s, a, σ)(R(s, a)− ∥a− ā∥22) da (34)

=

∑
a∈C(ā,pD(·|s)) pD(a|s)(R(s, a)− ∥a− ā∥22)∑

a∈C(ā,pD(·|s)) pD(a|s)
(35)

= Ea∼pC(·|ā,s)[R(s, a)− ∥a− ā∥22]. (36)

Next, note that the definition of C(ā, pD(·|s)) is:

C(ā, pD(·|s)) = {a ∈ supp(pD(·|s)) | ∥ā− a∥22 ≤ ∥ā− b∥22 ∀b ∈ supp(pD(·|s))}.

This means C(ā, pD(·|s)) contains actions a in supp(pD(·|s)) that are closest to ā in L2-norm. By
construction, the distribution pC(·|ā, s) assigns full probability mass to C(ā, pD(·|s)), and therefore:

Ea∼pC(·|ā,s)[∥ā− a∥22] = inf
a∈supp(pD(·|s))

∥ā− a∥22.

Now, using the Bellman equation for the NAMDP:

Qπ(s, ā) = R̄(s, ā) + γEs′∼p̄(·|s,ā)[V π(s′)].

Substituting R̄(s, a) and P̄ (s′|s, a):

Qπ(s, ā) = Ea∼pC(·|ā,s)
[
R(s, a)− ∥ā− a∥22

]
+ γ

∫
S
Ea∼pC(·|ā,s)[pD(s

′|s, a)V π(s′)] ds′ (37)

= Ea∼pC(·|ā,s)
[
R(s, a)− ∥ā− a∥22 + γEs′∼pD(·|s,a)[V

π(s′)]
]

(38)

= Ea∼pC(·|ā,s)
[
R(s, a) + γEs′∼pD(·|s,a)[V

π(s′)]
]
− Ea∼pC(·|ā,s)

[
∥ā− a∥22

]
. (39)

= Ea∼pC(·|ā,s)
[
R̄(s, a) + γEs′∼P̄ (·|s,a)[V

π(s′)]
]
− Ea∼pC(·|ā,s)

[
∥ā− a∥22

]
. (40)

= Ea∼pC(·|ā,s) [Q
π(s, a)]− Ea∼pC(·|ā,s)

[
∥ā− a∥22

]
. (41)

Finally, since Ea∼pC(·|ā,s)
[
[∥ā− a∥22]

]
= infa∈supp(pD(·|s)) ∥ā− a∥22, we conclude:

Ea∼pC(·|ā,s)[Q
π(s, a)] = Qπ(s, ā) + inf

a∈C(ā,pD(·|s))
∥ā− a∥22.

This completes the proof.

Using the above lemma, we can now show that the optimal policy avoids OOD actions in the limiting
case, as formalized in the following corollary:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Corollary B.8 (No OOD when σ → 0). Given a noise distribution qσ, when σ → 0, the optimal
policy in the NAMDP is guaranteed to select actions within the dataset distribution.

Proof. Suppose that π∗ is the optimal policy in the NAMDP when σ → 0. Assume for contradiction
that there exists s ∈ S and ā ∈ A such that ā ∈ supp(π∗(·|s)) but ā /∈ supp(pD(·|s)). This
assumption implies that the policy selects an action a outside the dataset distribution pD(·|s) despite
being optimal.

By lemma B.7, the Q-value can be expressed as:

Ea∼pC(·|ā,s) [Q
∗(s, a)] = Q∗(s, ā) + inf

a∈supp(pD(·|s))
∥ā− a∥22,

where the term infa∈supp(pD(·|s)) ∥ā− a∥22 represents the minimum penalty induced by the distance
between ā and the closest action in supp(pD(·|s)).
Since ā /∈ supp(pD(·|s)), this penalty term is strictly positive. Hence, substituting this into the
inequality, we have:

max
a∈C(ā,pD(·|s))

Q∗(s, a) ≥ Ea∼pC(·|ā,s) [Q
∗(s, a)] (42)

= Q∗(s, ā) + inf
a∈supp(pD(·|s))

∥ā− a∥22 (43)

> Q∗(s, ā). (44)

This inequality implies that there exists another action a ∈ C(ā, pD(·|s)) (where C(ā, pD(·|s))
represents the set of nearby actions under the dataset distribution) with a higher Q-value than
Q∗(s, ā). Thus, ā cannot be optimal, contradicting the assumption that ā ∈ supp(π∗(·|s)).

B.4 AVOIDING OOD ACTIONS UNDER SMALL NOISE

In this subsection, we further analyze the case where the action and state spaces are finite and
show that, under sufficiently small noise, the optimal policy in the NAMDP avoids OOD actions.
Specifically, we show that for any ϵ > 0, there exists a σ′ > 0 such that for all 0 < σ < σ′, the
Bellman optimality operator of the NAMDP is within ϵ of that of the noiseless case when σ → 0.

Unless otherwise specified, we denote the NAMDP in the limit when σ → 0 by M̄ = (S,A, R̄, P̄ , γ),
and the NAMDP with noise scale σ byMσ = (S,A, Rσ, Pσ, γ).

Lemma B.9. Let T̄ denote the Bellman optimality operator of the NAMDP M̄, and let Tσ denote
the Bellman optimality operator of the NAMDPMσ. Let Q denote the Q-function under M̄. Then,
for any ϵ > 0, there exists σ′ > 0 such that for all 0 < σ < σ′,

sup
(s,a)∈S×A

∣∣(T̄ Q)(s, a)− (TσQ)(s, a)
∣∣ < ϵ.

Proof. Let T̄ and Tσ be defined as in Lemma B.9. Fix any ϵ > 0. Since Rσ → R̄ and Pσ → P̄ as
σ → 0, for each (s, a), there exists σR(s,a) > 0 such that for all 0 < σ < σR(s,a),

|R̄(s, a)−Rσ(s, a)| <
ϵ

2
.

Similarly, for each (s, a, s′), there exists σP(s,a,s′) > 0 such that for all 0 < σ < σP(s,a,s′),

|P̄ (s′|s, a)− Pσ(s′|s, a)| <
(1− γ)ϵ

2γ|S|maxs,a |R̄(s, a)|
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We now bound the difference between the Bellman operators, for any (s, a),

|(T̄ Q)(s, a)− (TσQ)(s, a)| (45)

≤ |R̄(s, a)−Rσ(s, a)|+ γ

∣∣∣∣∣∑
s′

(
P̄ (s′|s, a)− Pσ(s′|s, a)

)
max
ā

Q(s′, ā)

∣∣∣∣∣ (46)

≤ |R̄(s, a)−Rσ(s, a)|+ γ|S| max
(s,a,s′)

|P̄ (s′|s, a)− Pσ(s′|s, a)|max
(s,a)
|Q(s, a)| (47)

≤ |R̄(s, a)−Rσ(s, a)|+
γ|S|max(s,a,s′) |P̄ (s′|s, a)− Pσ(s′|s, a)|max(s,a) |R̄(s, a)|

1− γ
. (48)

Define σ′ = min
(
{σR(s,a)}(s,a) ∪ {σ

P
(s,a,s′)}(s,a,s′)

)
. Since the state and action spaces are finite,

this minimum is taken over a finite set, ensuring that σ′ > 0.

Then, for all 0 < σ < σ′, we have

sup
(s,a)∈S×A

|(T̄ Q)(s, a)− (TσQ)(s, a)| (49)

≤ sup
(s,a)∈S×A

|R̄(s, a)−Rσ(s, a)| (50)

+
γ|S|max(s,a,s′) |P̄ (s′|s, a)− Pσ(s′|s, a)|max(s,a) |R̄(s, a)|

1− γ
(51)

<
ϵ

2
+
ϵ

2
= ϵ, (52)

completing the proof.

As a direct consequence of Lemma B.9, we obtain the following corollary:
Corollary B.10. Let Q∗ denote the optimal Q-function of M̄, and let Q∗

σ denote the optimal
Q-function ofMσ . Then, for any ϵ > 0, there exists σ′ > 0 such that for all 0 < σ < σ′,

sup
(s,a)∈S×A

|Q∗(s, a)−Q∗
σ(s, a)| < ϵ.

Proof. Fix any ϵ > 0. By Lemma B.9, there exists σ′ > 0 such that for all 0 < σ < σ′,

sup
(s,a)∈S×A

∣∣(T̄ Q∗)(s, a)− (TσQ∗)(s, a)
∣∣ < (1− γ)ϵ.

Since Q∗ and Q∗
σ are the fixed points of T̄ and Tσ, respectively, and since the Bellman optimality

operator is a γ-contraction, we have:

sup
(s,a)∈S×A

|Q∗(s, a)−Q∗
σ(s, a)| (53)

= sup
(s,a)∈S×A

∣∣(T̄ Q∗)(s, a)− (TσQ∗
σ)(s, a)

∣∣ (54)

≤ sup
(s,a)

∣∣(T̄ Q∗)(s, a)− (TσQ∗)(s, a)
∣∣+ sup

(s,a)

|(TσQ∗)(s, a)− (TσQ∗
σ)(s, a)| (55)

< (1− γ)ϵ+ γ sup
(s,a)

|Q∗(s, a)−Q∗
σ(s, a)| . (56)

Rearranging gives:

sup
(s,a)∈S×A

|Q∗(s, a)−Q∗
σ(s, a)| <

(1− γ)ϵ
1− γ

= ϵ. (57)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using Lemma B.7 and Corollary B.10, we can now show that the optimal policy inMσ selects
actions close to those in the dataset for sufficiently small noise.
Theorem B.11 (No OOD Action Selection). Let π∗

σ be the optimal policy in the NAMDPMσ . Then,
for any ϵ > 0, there exists σ′ > 0 such that for all 0 < σ < σ′ and for all ā ∈ supp(π∗

σ(·|s)),

inf
a∈supp(pD(·|s))

∥ā− a∥22 < ϵ,

where supp(pD(·|s)) denotes the support of the behavior policy pD, that is, the set of actions observed
in the dataset at state s.

Proof. Assume for contradiction that there exists ϵ′ > 0 such that for all σ′ > 0, there exists
0 < σ < σ′ and ā ∈ supp(π∗

σ(·|s)) satisfying

inf
a∈supp(pD(·|s))

∥ā− a∥22 ≥ ϵ′.

By Corollary B.10, there exists σ′ > 0 such that for all 0 < σ < σ′,

sup
(s,a)∈S×A

|Q∗(s, a)−Q∗
σ(s, a)| <

ϵ′

4
. (58)

Next, using Lemma B.7, which states that

Ea∼pC(·|ā,s)[Q
∗(s, a)] = Q∗(s, ā) + inf

a∈C(ā,pD(·|s))
∥ā− a∥22,

we proceed as follows:

First, observe that the expected Q-value over C(ā, pD(·|s)) under Q∗
σ is lower bounded by the same

expectation under Q∗, up to the error ϵ′/4 from Eq. equation 58:

max
a∈C(ā,pD(·|s))

Q∗
σ(s, a) ≥ Ea∼pD(·|s) [Q

∗
σ(s, a)] (59)

> Ea∼pD(·|s) [Q
∗(s, a)]− ϵ′

4
. (60)

Applying Lemma B.7, we can expand this expectation as:

Ea∼pD(·|s) [Q
∗(s, a)] = Q∗(s, ā) + inf

a∈supp(pD(·|s))
∥ā− a∥22. (61)

Substituting this into the inequality above yields:

max
a∈C(ā,pD(·|s))

Q∗
σ(s, a) > Q∗(s, ā) + inf

a∈supp(pD(·|s))
∥ā− a∥22 −

ϵ′

4
(62)

> Q∗
σ(s, ā) + inf

a∈supp(pD(·|s))
∥ā− a∥22 −

ϵ′

2
, (63)

where the second inequality uses the fact that Q∗ and Q∗
σ are close by at most ϵ′/4 in both directions.

Since we have assumed that infa∈supp(pD(·|s)) ∥ā− a∥22 ≥ ϵ′, this further implies:

max
a∈C(ā,pD(·|s))

Q∗
σ(s, a) ≥ Q∗

σ(s, ā) +
ϵ′

2
> Q∗

σ(s, ā) (64)

This shows that there exists an action in C(ā, pD(·|s)) that achieves strictly higher Q-value than ā,
meaning ā cannot be optimal. This contradicts the assumption that Q∗

σ is the optimal Q-value.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

All experiments were conducted on a single NVIDIA RTX 3090 GPU with an Intel Xeon Gold 6330
CPU.

Our code is available at: https://anonymous.4open.science/r/PANI-1EED

C.1 IQL-AN

Algorithm 1 IQL with Penalized Action Noise Injection (IQL-AN)

Initialize critic networksQθ1 ,Qθ2 , value network Vψ and actor network πϕ with random parameters
θ1, θ2, ψ and ϕ
Initialize target networks: θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ
for t = 1 to T do

Sample a mini-batch of transitions (s, a, r, s′) from the dataset D
Sample a noisy action ā from the distribution qσ(· | a)
Value update:
Minimize the PANI value objective J IQL

V (ϕ) equation 65
Critic update:
Minimize the PANI critic objective J IQL

Q (θ) equation 66
Actor update:
if policy is deterministic then

Minimize the PANI deterministic actor objective J IQL
det (ϕ) equation 67

else
Minimize the PANI stochastic actor objective J IQL

sto (ϕ) equation 68
end if
Target network update:
Update critic target networks: θ′i ← ηθi + (1− η)θ′i
Update actor target network: ϕ′ ← ηϕ+ (1− η)ϕ′

end for

IQL-AN extends IQL (Kostrikov et al., 2021) by incorporating Penalized Action Noise Injection,
enhancing its ability to address OOD overestimation as detailed in Algorithm 1. The training process
follows the objective functions defined below:

J IQL
V (ψ) = E(s,a)∼D

[
Lτ2

(
min
i=1,2

Qθ′i(s, a)− Vψ(s)
)]

(65)

where Lτ2(x) = |τ − I(u < 0)|x2

J IQL
Q (θ) = E(s,a,s′)∼D

ā∼qσ(·|a)

[(
Qθ(s, ā)− (r(s, a)− ∥a− ā∥22 + γVψ(s

′)
)2]

(66)

J IQL
det (ϕ) = −E(s,a)∼D

[
min
i=1,2

Qθ′i(s, πϕ(s))

]
(67)

J IQL
sto (ϕ) = −E (s,a)∼D

ā∼πϕ(·|s)

[
min
i=1,2

Qθ′i(s, ā)− α log πϕ(a|s)
]

(68)

In the Gym-MuJoCo environments, we used a deterministic policy, whereas in the AntMaze envi-
ronments, we employed a unimodal Gaussian policy transformed via a hyperbolic tangent bijection.
Additionally, we incorporated the NLL loss used in DTQL (Chen et al., 2024).

During training, experiments were conducted with log σ values of −1,−5,−10,−20 for Gym-
MuJoCo. For τ , we primarily set τ = 0.7 across all Gym-MuJoCo tasks but additionally explored

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

τ = 0.99 for the halfcheetah-medium-expert and halfcheetah-expert datasets. In the AntMaze
environments, we tested with log σ values of −10,−20 and α values of 0.3, 0.5, 1.0, while fixing
τ = 0.9.

The optimal hyperparameters for each environment are provided in Table 8, while the performance
across different parameter settings is presented in Appendix C.5. For training curves, refer to
Appendix C.6.

C.2 TD3-AN

Algorithm 2 TD3 with Penalized Action Noise Injection (TD3-AN)

Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters θ1, θ2, and ϕ
Initialize target networks: θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ
for t = 1 to T do

Sample a mini-batch of transitions (s, a, r, s′) from the dataset D
Sample a noisy action ā from the distribution qσ(· | a)
Critic update:
Compute the target action: ã← πϕ′(s′) + ϵ, where ϵ ∼ clip(N (0, σ̄),−c, c)
Minimize the PANI critic objective JTD3

Q (θ) (69)
if t mod d = 0 then

Actor update:
Minimize the PANI actor objective JTD3

π (ϕ) (70)
Target network update:
Update critic target networks: θ′i ← ηθi + (1− η)θ′i
Update actor target network: ϕ′ ← ηϕ+ (1− η)ϕ′

end if
end for

TD3-AN is an algorithm that applies Penalized Action Noise Injection to TD3 (Fujimoto et al.,
2018). As described in Section 4, it can be implemented with only minor modifications, as shown in
Algorithm 2. Specifically, it is trained using the following objective functions:

JTD3
Q (θ) = E(s,a,s′)∼D

ā∼qσ(·|a)

[(
Qθ(s, ā)− (r(s, a)− ∥a− ā∥22 + γ min

i=1,2
Qθ′i(s

′, ã)

)2
]

(69)

JTD3
π (ϕ) = −E(s,a)∼D

[
min
i=1,2

Qθ′i(s, πϕ(s))− α∥a− πϕ(s)∥
2
2

]
(70)

When training TD3-AN, we use the hybrid noise distribution described in Section 6.1 as the noise
distribution. For the Gym-MuJoCo environments, experiments were conducted with α = 0 and log σ
values of −1,−5,−10,−20. In the AntMaze environments, we tested with α = 0.3, 0.5, 1.0 and
log σ values of −5,−10,−20.

The optimal hyperparameters for each environment are provided in Table 8, while the performance
across different parameter settings is presented in Appendix C.5. For training curves, refer to
Appendix C.6.

C.3 QGPO-AN

In addition to TD3 and IQL, we further evaluated PANI on QGPO(Lu et al., 2023), a state-of-the-art
diffusion-based algorithm. PANI can be integrated into QGPO with only minor modifications, as
shown in Algorithm 3. For fair comparison, we used the same hyperparameters (βQ,K) as in the
original QGPO. We also tested additional settings with guidance scales of 1.0, 2.0, 3.0, 5.0, 8.0, and
10.0, and log σ values of −0.5, −1.0, −20.0, and −30.0.

Due to computational constraints—each experiment requiring approximately 9 hours to complete—we
were unable to perform extensive hyperparameter tuning. Nevertheless, the positive results obtained

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

with default parameters are encouraging and suggest that further performance gains may be possible
with more thorough optimization. The optimal hyperparameters used for each environment are
summarized in Table 6.

Algorithm 3 QGPO with Penalized Action Noise Injection (QGPO-AN)

Initialize behavior model ϵθ, critic Qψ , energy model fϕ
Train behavior model:
for each gradient step do

Sample a mini-batch of transitions (s, a) ∼ D
Sample noise ϵ ∼ N (0, I)
Sample time t ∼ U(0, T)
Compute perturbed actions at ← αta+ σtϵ
Minimize ∥ϵθ(at | s, t)− ϵ∥22

end for
Generate support actions:
for each state s in Dµ do

Sample K actions â(1:K) ∼ µθ(· | s)
Store â(1:K) in Dµθ (s)

end for
Train critic and energy model:
for each gradient step do

Sample a mini-batch of transitions (s, a, r, s′) ∼ D
Sample noise ϵ ∼ N (0, I)
Sample time t ∼ U(0, T)
Retrieve support actions â(1:K) ∼ Dµθ (s) and â′(1:K) ∼ Dµθ (s′)
Compute target Q-value:

T πQψ(s, a) = r + γ
∑
â′

exp(βQQψ(s
′, â′))∑

j exp(βQQψ(s
′, â′j))

Qψ(s
′, â′)

Sample a noisy action ā from the distribution qσ(· | a)
Minimize ∥Qψ(s, ā)− T πQψ(s, a)− ∥a− ā∥22∥22
Compute perturbed support actions ât ← αtâ+ σtϵ
Maximize: ∑

i

exp(βQψ(s, âi))∑
j exp(βQψ(s, âj))

log
exp(fϕ(âi,t | s, t))∑
j exp(fϕ(âj,t | s, t))

end for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4 HYPERPARAMETERS

Table 4: TD3-AN’s and IQL-AN’s common hyperparameters

Hyperparameter Value
optimizer Adam (Kingma, 2014)
batch size 256
learning rate (all networks) 10−3

target update rate (η) 5× 10−3

hidden dim (all networks) 256, 512 (OGBench)
hidden layers (all networks) 3, 4 (OGBench)
discount factor (γ) 0.99
training steps (T) 106, 20000 (adroit)
activation ReLU
layer norm (Ba, 2016) (all networks) True

Table 5: TD3-AN’s common hyperparameters

Hyperparameter Value
Policy update frequency (d) 2
Policy Noise (σ̄) 0.2
Policy Noise Clipping (c) 0.5

Table 6: Optimal hyperparameters for TD3-AN and IQL-AN across different environments

TD3 IQL
Dataset Environment log σ α log σ α τ

medium halfcheetah -20.0 - -20.0 - 0.70
medium hopper -5.0 - -5.0 - 0.70
medium walker2d -5.0 - -20.0 - 0.70

medium-replay halfcheetah -20.0 - -20.0 - 0.70
medium-replay hopper -10.0 - -20.0 - 0.70
medium-replay walker2d -5.0 - -5.0 - 0.70

medium-expert halfcheetah -10.0 - -1.0 - 0.99
medium-expert hopper -1.0 - -1.0 - 0.70
medium-expert walker2d -20.0 - -10.0 - 0.70

expert halfcheetah -20.0 - -1.0 - 0.99
expert hopper -1.0 - -1.0 - 0.70
expert walker2d -5.0 - -1.0 - 0.70

full-replay halfcheetah -20.0 - -20.0 - 0.70
full-replay hopper -20.0 - -5.0 - 0.70
full-replay walker2d -10.0 - -10.0 - 0.70

random halfcheetah -20.0 - -20.0 - 0.70
random hopper -10.0 - -5.0 - 0.70
random walker2d -10.0 - -10.0 - 0.70

- umaze -20.0 1.0 -10.0 1.0 0.90
diverse umaze -20.0 1.0 -20.0 1.0 0.90
play medium -10.0 1.0 -20.0 0.3 0.90
diverse medium -10.0 1.0 -10.0 0.3 0.90
play large -20.0 0.5 -20.0 0.3 0.90
diverse large -10.0 1.0 -20.0 0.3 0.90

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters used for Adroit and OGBench (antmaze-giant-navigate-singletask) experi-
ments.

Dataset log σ α

Adroit (pen-cloned) -10 30
Adroit (pen-human) -10 100

OGBench (task 0) -20 1.0
OGBench (task 1) -20 1.0
OGBench (task 3) -20 1.0
OGBench (task 4) -20 0.5
OGBench (task 5) -20 1.0

Table 8: Optimal hyperparameters for QGPO-AN across different environments

Dataset Environment log σ guidance scale

medium halfcheetah -20.0 10.0
medium hopper -20.0 10.0
medium walker2d -30.0 10.0

medium-replay halfcheetah -20.0 8.0
medium-replay hopper -1.0 5.0
medium-replay walker2d -0.5 8.0

medium-expert halfcheetah -20.0 5.0
medium-expert hopper -1.0 1.0
medium-expert walker2d -20.0 10.0

C.5 RESULTS

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

U
nderreview

as
a

conference
paperatIC

L
R

2026

Table 9: The average normalized scores, as suggested by D4RL, are reported from the final evaluation on Gym-MuJoCo and Antmaze tasks. For Gym-MuJoCo
tasks, results are obtained using five independent training seeds and 10 trajectories per seed, while for Antmaze, 100 trajectories per seed are used. The ± symbol
denotes the standard error of the mean performance across seeds. Performance metrics and standard errors for baseline methods are taken from their respective
original papers, with the exception of IQL and TD3+BC, which are sourced from ReBRAC. Diffusion-QL and DTQL report their metrics differently - their ± values
represent standard errors calculated across all trajectories from all seeds, rather than across the mean performances of individual seeds. The highest scores for each
task are highlighted in bold, while the second-highest scores are underlined. The Average (medium) score includes only medium, medium-replay, and medium-expert
datasets.

Diffusion-free Diffusion-policy Diffusion-based Ours
Dataset Environment IQL TD3+BC ReBRAC SfBC D-QL* QGPO SRPO DTQL* IQL-AN TD3-AN

medium halfcheetah 50.0 ± 0.1 54.7 ± 0.3 65.6 ± 0.3 45.9 ± 0.7 51.1 ± 0.5 54.1 ± 0.2 60.4 ± 0.3 57.9 ± 0.1 55.4 ± 0.3 61.5 ± 0.3
medium hopper 65.2 ± 1.3 60.9 ± 2.4 102.0 ± 0.3 57.1 ± 1.3 90.5 ± 4.6 98.0 ± 1.2 95.5 ± 0.8 99.6 ± 0.9 98.4 ± 1.2 98.2 ± 0.9
medium walker2d 80.7 ± 1.1 77.7 ± 0.9 82.5 ± 1.1 77.9 ± 0.8 87.0 ± 0.9 86.0 ± 0.3 84.4 ± 1.8 89.4 ± 0.1 87.5 ± 3.7 88.5 ± 0.6

medium-replay halfcheetah 42.1 ± 1.1 45.0 ± 0.3 51.0 ± 0.3 37.1 ± 0.5 47.8 ± 0.3 47.6 ± 0.6 51.4 ± 1.4 50.9 ± 0.1 49.5 ± 0.4 53.3 ± 0.3
medium-replay hopper 89.6 ± 4.2 55.1 ± 10.0 98.1 ± 1.7 86.2 ± 2.9 100.7 ± 0.6 96.9 ± 1.2 101.2 ± 0.4 100.0 ± 0.1 100.8 ± 0.4 102.3 ± 0.2
medium-replay walker2d 75.4 ± 2.9 68.0 ± 6.1 77.3 ± 2.5 65.1 ± 1.8 95.5 ± 1.5 84.4 ± 1.8 84.6 ± 2.9 88.5 ± 2.2 88.8 ± 3.6 87.8 ± 6.3

medium-expert halfcheetah 92.7 ± 0.9 89.1 ± 1.8 101.1 ± 1.6 92.6 ± 0.2 96.8 ± 0.3 93.5 ± 0.1 92.2 ± 1.2 92.7 ± 0.2 89.9 ± 2.3 96.4 ± 0.8
medium-expert hopper 85.5 ± 9.4 87.8 ± 3.3 107.0 ± 2.0 108.6 ± 0.7 111.1 ± 1.3 108.0 ± 1.1 100.1 ± 5.7 109.3 ± 1.5 105.3 ± 3.7 108.8 ± 0.9
medium-expert walker2d 112.1 ± 0.2 110.4 ± 0.2 111.6 ± 0.1 109.8 ± 0.1 110.1 ± 0.3 110.7 ± 0.3 114.0 ± 0.9 110.0 ± 0.1 109.6 ± 0.6 114.9 ± 0.2

expert halfcheetah 95.5 ± 0.7 93.4 ± 0.1 105.9 ± 0.5 - - - - - 93.8 ± 0.2 104.4 ± 3.8
expert hopper 108.8 ± 1.0 109.6 ± 1.2 100.1 ± 2.6 - - - - - 108.6 ± 2.6 109.0 ± 3.0
expert walker2d 96.9 ± 10.2 110.0 ± 0.2 112.3 ± 0.1 - - - - - 108.2 ± 0.2 112.8 ± 0.2

full-replay halfcheetah 75.0 ± 0.2 75.0 ± 0.8 82.1 ± 0.3 - - - - - 78.3 ± 0.1 81.2 ± 0.5
full-replay hopper 104.4 ± 3.4 97.9 ± 5.5 107.1 ± 0.1 - - - - - 105.9 ± 0.4 108.3 ± 0.1
full-replay walker2d 97.5 ± 0.4 90.3 ± 1.7 102.2 ± 0.5 - - - - - 100.6 ± 1.7 103.8 ± 0.7

random halfcheetah 19.5 ± 0.3 30.9 ± 0.1 29.5 ± 0.5 - - - - - 24.3 ± 3.1 30.0 ± 0.5
random hopper 10.1 ± 1.9 8.5 ± 0.2 8.1 ± 0.8 - - - - - 9.0 ± 0.2 10.0 ± 0.6
random walker2d 11.3 ± 2.2 2.0 ± 1.1 18.4 ± 1.4 - - - - - 19.4 ± 2.8 5.8 ± 0.7

Average (Gym-MuJoCo) 72.9 70.3 81.2 - - - - - 79.6 82.1
Average (medium) 77.0 72.1 88.5 75.6 88.0 86.6 87.1 88.7 87.2 90.2

- umaze 83.3 ± 1.4 66.3 ± 2.0 97.8 ± 0.3 92.0 ± 0.7 93.4 ± 3.4 96.4 ± 0.6 97.1 ± 1.1 92.6 ± 1.2 91.2 ± 1.1 98.4 ± 0.5
diverse umaze 70.6 ± 1.2 53.8 ± 2.7 88.3 ± 4.1 85.3 ± 1.1 66.2 ± 8.6 74.4 ± 4.3 82.1 ± 4.4 74.4 ± 1.9 68.0 ± 3.2 74.6 ± 4.9

play medium 64.6 ± 1.5 26.5 ± 5.8 84.0 ± 1.3 81.3 ± 0.8 76.6 ± 10.8 83.6 ± 2.0 80.7 ± 2.9 76.0 ± 1.9 74.4 ± 3.7 83.8 ± 2.7
diverse medium 61.7 ± 1.9 25.9 ± 4.8 76.3 ± 4.3 82.0 ± 1.0 78.6 ± 10.3 83.8 ± 1.6 75.0 ± 5.0 80.6 ± 1.8 75.2 ± 1.6 85.8 ± 1.2

play large 42.5 ± 2.1 0.0 ± 0.0 60.4 ± 8.3 59.3 ± 4.5 46.4 ± 8.3 66.6 ± 4.4 53.6 ± 5.1 59.2 ± 2.2 49.4 ± 3.0 65.4 ± 2.7
diverse large 27.6 ± 2.5 0.0 ± 0.0 54.4 ± 7.9 45.5 ± 2.1 56.6 ± 7.6 64.8 ± 2.5 53.6 ± 2.6 62.0 ± 2.2 52.8 ± 2.6 58.0 ± 5.1

Average (AntMaze) 58.4 28.8 76.9 74.2 69.6 78.3 73.7 74.1 68.5 77.7

27

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

Under review as a conference paper at ICLR 2026

Table 10: Comparison of QGPO and QGPO+AN performance across different environments. The ±
values represent the standard error of algorithm performance across 3 random seeds.

Environment QGPO QGPO-AN

halfcheetah-medium-expert 93.5 93.6 ± 0.3 (+0.1)
hopper-medium-expert 108.0 111.2 ± 1.7 (+3.2)
walker2d-medium-expert 110.7 111.0 ± 0.4 (+0.3)
halfcheetah-medium 54.1 53.8 ± 0.4 (-0.3)
hopper-medium 98.0 99.4 ± 1.1 (+1.4)
walker2d-medium 86.0 86.1 ± 0.4 (+0.1)
halfcheetah-medium-replay 47.6 47.6 ± 0.1 (-0.0)
hopper-medium-replay 96.9 99.8 ± 0.5 (+2.9)
walker2d-medium-replay 84.4 89.7 ± 1.5 (+5.3)

Table 11: Final performance of TD3-AN with Gaussian Noise Distribution across different log σ val-
ues in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories
per seed. Standard deviations are indicated by ±, and the highest scores within 5% of the best per
task are highlighted in bold.

Dataset Environment 0.0 -0.5 -1.0 -2.0

medium halfcheetah 4.70±6.79 47.64±0.69 51.76±0.41 65.36±1.38
medium hopper 47.91±2.24 76.00±2.60 71.41±23.17 3.98±3.90
medium walker2d 54.84±27.71 82.77±2.33 85.67±1.47 0.29±0.82

medium-replay halfcheetah 8.48±8.63 22.49±10.17 35.76±4.75 34.69±3.66
medium-replay hopper 1.82±0.01 40.63±38.92 79.68±14.52 22.08±7.66
medium-replay walker2d -0.22±0.06 -0.21±0.02 63.36±27.89 5.46±2.18

medium-expert halfcheetah 41.80±4.72 84.29±4.21 89.94±4.55 67.52±23.73
medium-expert hopper 58.54±26.48 107.21±8.34 70.02±26.77 1.52±0.49
medium-expert walker2d 78.38±41.07 108.40±0.37 103.35±11.21 -0.12±0.04

expert halfcheetah 86.06±3.94 93.10±0.36 97.69±0.60 4.20±4.43
expert hopper 104.92±4.26 108.02±6.66 76.50±18.32 1.03±0.32
expert walker2d 108.33±0.52 108.99±0.19 109.87±0.09 18.99±23.86

full-replay halfcheetah 0.34±0.30 69.54±1.47 73.94±0.74 80.42±1.40
full-replay hopper 0.65±0.03 105.52±1.24 108.56±0.60 39.47±12.38
full-replay walker2d 1.35±1.55 71.36±43.82 101.12±1.79 25.37±26.63

random halfcheetah 17.13±0.76 22.26±1.08 31.42±0.75 30.08±2.54
random hopper 7.31±0.12 7.59±0.14 8.94±2.01 9.77±0.52
random walker2d -0.09±0.01 -0.10±0.00 7.15±0.59 3.83±1.78

Average 34.57 64.20 70.34 23.00

28

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

Under review as a conference paper at ICLR 2026

Table 12: Final performance of TD3-AN with Laplace Noise Distribution across different log σ values
in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories per
seed. Standard deviations are indicated by ±, and the highest scores within 5% of the best per task
are highlighted in bold.

Dataset Environment 0.0 -0.5 -1.0 -2.0

medium halfcheetah 27.96±9.30 47.93±0.46 51.65±0.50 64.79±0.80
medium hopper 53.43±5.83 84.00±10.10 93.21±3.67 6.79±5.63
medium walker2d 74.03±7.65 84.62±0.50 84.97±1.80 0.50±1.15

medium-replay halfcheetah 32.89±7.08 37.54±4.96 47.04±2.77 45.72±7.22
medium-replay hopper 23.23±2.71 35.24±36.73 79.60±18.46 30.72±10.57
medium-replay walker2d -0.23±0.02 1.58±3.06 71.20±37.33 6.64±1.82

medium-expert halfcheetah 88.46±2.19 88.00±6.00 96.38±0.82 85.87±8.19
medium-expert hopper 58.91±16.27 91.04±29.10 74.97±29.34 2.81±1.47
medium-expert walker2d 109.05±0.69 109.61±0.29 110.00±0.36 0.64±1.64

expert halfcheetah 88.15±4.16 93.87±0.62 99.16±1.09 48.57±14.05
expert hopper 95.63±24.05 96.38±4.84 70.74±18.13 2.12±1.84
expert walker2d 108.68±0.49 109.57±0.32 110.52±0.25 24.42±23.81

full-replay halfcheetah 15.65±12.65 73.29±2.56 76.60±0.65 80.54±0.97
full-replay hopper 91.48±32.87 106.67±0.65 107.07±0.51 48.80±20.94
full-replay walker2d 4.27±1.86 99.16±0.75 102.15±1.02 38.84±26.75

random halfcheetah 20.57±1.93 24.27±1.56 29.87±2.06 32.31±1.52
random hopper 7.64±0.19 7.62±0.20 11.08±2.51 9.64±0.72
random walker2d -0.09±0.00 -0.07±0.01 9.18±4.38 5.34±2.17

Average 49.98 66.13 73.63 29.73

Table 13: Final performance of TD3-AN with hybrid noise distribution across different log σ values
in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories per
seed. Standard deviations are indicated by ±, and the highest scores within 5% of the best per task
are highlighted in bold.

Dataset Environment -20 -10 -5 -1

medium halfcheetah 61.49±0.73 60.30±0.84 56.00±0.41 25.04±7.55
medium hopper 91.46±8.23 95.66±2.80 98.18±2.07 65.68±1.60
medium walker2d 39.52±31.27 76.67±34.27 88.49±1.28 38.13±35.15

medium-replay halfcheetah 53.35±0.68 52.25±0.75 47.39±2.42 13.92±11.19
medium-replay hopper 96.04±7.99 102.30±0.41 100.31±0.93 0.95±0.57
medium-replay walker2d 84.03±16.25 86.30±8.64 87.82±14.09 0.86±1.61

medium-expert halfcheetah 94.05±6.34 96.44±1.83 91.66±4.29 43.59±3.74
medium-expert hopper 41.61±8.27 71.33±9.41 83.46±18.92 108.84±2.10
medium-expert walker2d 114.85±0.47 111.98±0.90 111.27±0.49 104.10±10.82

expert halfcheetah 104.45±8.52 97.84±13.39 101.62±1.00 73.68±8.91
expert hopper 37.20±11.38 48.20±8.17 65.58±9.04 109.03±6.74
expert walker2d 32.95±55.54 59.99±63.97 112.76±0.45 108.92±0.33

full-replay halfcheetah 81.17±1.07 81.12±0.63 78.61±1.21 -1.37±0.51
full-replay hopper 108.31±0.33 107.67±1.13 106.86±0.31 0.86±0.53
full-replay walker2d 102.16±7.32 103.78±1.60 103.11±0.86 0.67±1.21

random halfcheetah 30.01±1.12 29.49±1.20 25.62±0.89 2.22±1.17
random hopper 9.55±0.99 9.99±1.44 9.09±0.65 1.04±0.06
random walker2d 5.69±1.82 5.79±1.66 3.58±2.69 -0.14±0.02

Average 66.00 72.06 76.19 38.67

29

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

Under review as a conference paper at ICLR 2026

Table 14: Final performance of IQL-AN with τ = 0.7 in Gym-MuJoCo environments. Results are
averaged over five training seeds with 10 trajectories per seed. Standard deviations are indicated by
±, and the highest scores within 5% of the best per task are highlighted in bold.

Dataset Environment -20 -10 -5 -1

medium halfcheetah 55.41±0.71 54.04±0.47 51.79±0.32 44.87±0.24
medium hopper 68.16±5.66 92.04±10.86 98.41±2.57 65.48±4.48
medium walker2d 87.47±8.21 86.32±4.76 79.93±17.56 78.43±4.73

medium-replay halfcheetah 49.45±0.97 45.65±2.59 43.14±3.23 26.95±6.87
medium-replay hopper 100.82±0.86 100.25±0.43 99.63±0.49 3.69±3.34
medium-replay walker2d 85.07±14.89 79.22±41.81 88.76±8.04 9.49±6.16

medium-expert halfcheetah 25.91±3.30 29.72±4.85 35.72±6.05 69.73±22.27
medium-expert hopper 31.52±19.68 46.45±21.39 76.87±29.94 105.26±8.35
medium-expert walker2d 101.61±16.03 109.62±1.29 106.17±7.39 108.31±0.75

expert halfcheetah 9.73±3.00 9.90±5.86 10.71±2.16 75.79±24.55
expert hopper 11.51±12.58 37.40±26.85 69.05±10.55 108.61±5.87
expert walker2d 51.41±27.97 40.72±35.29 98.75±19.89 108.17±0.52

full-replay halfcheetah 78.28±0.28 76.58±0.87 75.62±1.44 65.04±2.21
full-replay hopper 105.61±0.67 105.78±0.80 105.86±0.80 104.42±0.92
full-replay walker2d 97.35±6.67 100.56±3.81 99.17±2.62 69.59±13.45

random halfcheetah 24.25±7.02 23.74±7.43 16.76±4.99 1.71±0.92
random hopper 8.78±0.43 8.68±1.24 9.04±0.50 0.86±0.05
random walker2d 19.14±7.39 19.41±6.36 -0.11±0.00 -0.21±0.00

Average 56.19 59.23 64.74 58.12

Table 15: Final performance of TD3-AN in AntMaze environments. Results are averaged over five
training seeds with 100 trajectories per seed. Standard deviations are indicated by ±, and the highest
scores within 5% of the best per task are highlighted in bold.

α = 0.3 α = 0.5 α = 1.0
Dataset Environment -20.0 -10.0 -5.0 -20.0 -10.0 -5.0 -20.0 -10.0 -5.0

- umaze 90.80±3.27 96.80±1.30 93.80±2.77 93.60±4.88 97.20±2.95 98.40±1.52 98.40±1.14 97.80±3.27 98.40±1.52
diverse umaze 55.40±33.88 31.20±26.44 25.60±13.35 64.20±15.96 40.60±20.23 27.80±6.10 74.60±10.95 50.00±23.61 39.20±3.49

play medium 78.20±6.34 77.20±4.32 55.20±26.52 65.80±9.42 76.00±6.20 75.40±5.86 68.80±13.55 83.80±6.06 73.40±10.95
diverse medium 74.40±11.55 82.00±9.62 20.40±17.49 61.00±25.50 79.20±6.83 11.80±13.66 82.60±6.88 85.80±2.59 12.40±7.57

play large 62.00±17.13 44.60±16.29 17.00±11.29 65.40±6.15 52.20±10.78 19.80±12.03 57.80±9.98 43.40±12.58 14.00±9.27
diverse large 39.80±11.45 45.40±11.89 27.80±11.82 42.20±21.50 56.20±4.21 35.80±19.23 53.00±21.35 58.00±11.38 23.40±17.83

Average 66.77 62.87 39.97 65.37 66.90 44.83 72.53 69.80 43.47

Table 16: Final performance of IQL-AN in AntMaze environments. Results are averaged over five
training seeds with 100 trajectories per seed. Standard deviations are indicated by ±, and the highest
scores within 5% of the best per task are highlighted in bold.

α = 0.3 α = 0.5 α = 1.0
Dataset Environment -20.0 -10.0 -20.0 -10.0 -20.0 -10.0

- umaze 89.40±1.52 89.20±1.79 90.00±3.32 88.20±2.49 89.80±1.30 91.20±2.39
diverse umaze 61.60±2.97 53.60±6.07 62.60±2.79 59.80±2.86 68.00±7.18 60.80±6.18

play medium 74.40±8.23 73.00±3.46 74.20±4.92 70.40±4.62 55.40±5.86 50.00±4.69
diverse medium 68.50±5.97 75.20±3.63 70.80±4.15 67.20±5.67 49.40±3.36 42.40±9.71

play large 49.40±6.73 48.60±4.45 38.80±2.77 35.20±4.44 2.60±3.13 3.00±1.22
diverse large 52.80±5.89 52.20±6.38 43.00±10.61 36.40±5.08 3.40±2.51 1.60±1.67

Average 66.02 65.30 63.23 59.53 44.77 41.50

30

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

Under review as a conference paper at ICLR 2026

C.6 TRAINING CURVES

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

Av
er

ag
e

Sc
or

e

halfcheetah-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

80

halfcheetah-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
halfcheetah-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

Av
er

ag
e

Sc
or

e

halfcheetah-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

halfcheetah-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

10

20

30

halfcheetah-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

hopper-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

hopper-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
hopper-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

6

8

10

12

14
hopper-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

walker2d-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

walker2d-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

walker2d-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

5

10

15

walker2d-random

log = -2.0 log = -1.0 log = -0.5 log = 0.0

Figure 7: Training curves of TD3-AN with Gaussian Noise Distribution in Gym-MuJoCo.

31

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
Av

er
ag

e
Sc

or
e

halfcheetah-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

80
halfcheetah-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

60

80

100

halfcheetah-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

30

40

50

Av
er

ag
e

Sc
or

e

halfcheetah-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

halfcheetah-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

25

30

halfcheetah-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

50

100

hopper-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

hopper-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
hopper-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

5

10

15

20

hopper-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

walker2d-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

walker2d-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

walker2d-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

5

10

15

walker2d-random

log = -2.0 log = -1.0 log = -0.5 log = 0.0

Figure 8: Training curves of TD3-AN with Laplace Noise Distribution in Gym-MuJoCo.

32

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
Av

er
ag

e
Sc

or
e

halfcheetah-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

80
halfcheetah-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

60

80

100
halfcheetah-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

Av
er

ag
e

Sc
or

e

halfcheetah-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60
halfcheetah-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

10

20

30
halfcheetah-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

25

50

75

100

Av
er

ag
e

Sc
or

e

hopper-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

hopper-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

25

50

75

100

hopper-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

Av
er

ag
e

Sc
or

e

hopper-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

60

80

100
hopper-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

5

10

hopper-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

150

Av
er

ag
e

Sc
or

e

walker2d-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

walker2d-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

60

80

100

120

walker2d-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

walker2d-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0.0

2.5

5.0

7.5

walker2d-random

log = -20.0 log = -10.0 log = -5.0 log = -1.0

Figure 9: Training curves of TD3-AN with hybrid noise distribution in Gym-MuJoCo.

33

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60
Av

er
ag

e
Sc

or
e

antmaze-large-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

antmaze-large-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

80
antmaze-large-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

80

Av
er

ag
e

Sc
or

e

antmaze-large-play (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

antmaze-large-play (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

antmaze-large-play (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

Av
er

ag
e

Sc
or

e

antmaze-medium-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

antmaze-medium-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100
antmaze-medium-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

Av
er

ag
e

Sc
or

e

antmaze-medium-play (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

antmaze-medium-play (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

antmaze-medium-play (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

100

Av
er

ag
e

Sc
or

e

antmaze-umaze-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

25

50

75

antmaze-umaze-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

80

100
antmaze-umaze-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

80

85

90

95

100

Av
er

ag
e

Sc
or

e

antmaze-umaze (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

80

90

100
antmaze-umaze (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

80

85

90

95

100

antmaze-umaze (= 1.0)

log = -20.0 log = -10.0 log = -5.0

Figure 10: Training curves of TD3-AN with hybrid noise distribution in AntMaze.

34

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60

80
Av

er
ag

e
Sc

or
e

halfcheetah-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

50

60

70

80
halfcheetah-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

20

40

60
halfcheetah-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

10

20

30

40

50

Av
er

ag
e

Sc
or

e

halfcheetah-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

45

50

55
halfcheetah-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

10

20

30

halfcheetah-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

60

80

100

hopper-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

hopper-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

hopper-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

60

80

100
hopper-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

5

10

hopper-random

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

80

100

walker2d-full-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

25

50

75

100

125
walker2d-medium-expert

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

50

100

Av
er

ag
e

Sc
or

e

walker2d-medium-replay

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

25

50

75

100

walker2d-medium

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

10

20

walker2d-random

log = -20.0 log = -10.0 log = -5.0 log = -1.0

Figure 11: Training curves of IQL-AN with hybrid noise distribution in Gym-MuJoCo (τ = 0.7).

35

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

30

40

50

60
Av

er
ag

e
Sc

or
e

antmaze-large-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

30

40

50

antmaze-large-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

2

4

6

8
antmaze-large-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

30

40

50

Av
er

ag
e

Sc
or

e

antmaze-large-play (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

30

40

50
antmaze-large-play (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

0

2

4

6
antmaze-large-play (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

50

60

70

80

Av
er

ag
e

Sc
or

e

antmaze-medium-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

40

50

60

70

80
antmaze-medium-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

10

20

30

40

50

antmaze-medium-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

50

60

70

80

Av
er

ag
e

Sc
or

e

antmaze-medium-play (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

60

70

80
antmaze-medium-play (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

20

40

60

antmaze-medium-play (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

50

60

70

Av
er

ag
e

Sc
or

e

antmaze-umaze-diverse (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

55

60

65

70

75
antmaze-umaze-diverse (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

55

60

65

70

75
antmaze-umaze-diverse (= 1.0)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

85

90

95

Av
er

ag
e

Sc
or

e

antmaze-umaze (= 0.3)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

85

90

95
antmaze-umaze (= 0.5)

0.2 0.4 0.6 0.8 1.0
Steps (1e6) 1e6

85

90

antmaze-umaze (= 1.0)

log = -20.0 log = -10.0

Figure 12: Training curves of IQL-AN with hybrid noise distribution in AntMaze.

36

	Introduction
	Preliminaries
	Q-value overestimation problem in offline RL
	Penalized Action Noise Injection
	Noisy Action Markov Decision Process
	Noise Distribution Selection
	Distribution Selection

	Experiments
	Evaluation
	Ablation Study

	Conclusion
	Appendix
	Related Works
	Noisy Action Markov Decision Process
	Connection between PANI and NAMDP
	Error Bound Between NAMDP and the True MDP
	Avoiding OOD Actions in NAMDP when sigma -> 0
	Avoiding OOD Actions Under Small Noise

	Implementation Details
	IQL-AN
	TD3-AN
	QGPO-AN
	Hyperparameters
	Results
	Training Curves

