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ABSTRACT

Offline reinforcement learning (RL) seeks to optimize policies from fixed datasets,
enabling deployment in domains where environment interaction is costly or unsafe.
A central challenge in this setting is the overestimation of out-of-distribution (OOD)
actions, which arises when Q-networks assign high values to actions absent from
the dataset. To address this, we propose Penalized Action Noise Injection (PANI),
a lightweight Q-learning approach that perturbs dataset actions with controlled
noise to increase action-space coverage while introducing a penalty proportional
to the noise magnitude to mitigate overestimation. We theoretically show that
PANI is equivalent to Q-learning on a Noisy Action Markov Decision Process
(NAMDP), providing a principled foundation for its design. Importantly, PANI is
algorithm-agnostic and requires only minor modifications to existing off-policy
and offline RL methods, making it broadly applicable in practice. Despite its
simplicity, PANI achieves substantial performance improvements across various
offline RL. benchmarks, demonstrating both effectiveness and practicality as a
drop-in enhancement.

1 INTRODUCTION

Reinforcement learning (RL) enables agents to learn decision making policies through interaction
with an environment. While effective in many domains, real world applications such as healthcare
and autonomous driving often restrict such interaction due to safety and cost concerns. Offline RL
addresses this limitation by training policies on precollected datasets, removing the need for online
exploration. Despite this advantage, offline RL remains challenged by the overestimation of out of
distribution (OOD) actions, which can degrade policy performance at deployment.

To mitigate the OOD problem, recent approaches have explored the generative capabilities of diffusion
models. Methods such as Diffusion-QL (Wang et al.,|2022) and SfBC (Chen et al.,2022)) use diffusion
models to construct behavior cloning policies that support )-learning. Other techniques, including
QGPO (Lu et al.| [2023), incorporate ()-value feedback to guide action sampling, while DTQL (Chen
et al.| 2024)) and SRPO (Chen et al.|[2023a) apply diffusion-based regularization instead of relying on
generative policies. Although these methods achieve strong empirical results.

Motivated by the success of diffusion-based methods, which leverage multi-scale noise perturbations
to provide reliable learning signals even in low-density regions of the data distribution, we propose
Penalized Action Noise Injection (PANI). PANI is a lightweight method that perturbs actions from
offline datasets with controlled noise and penalizes them according to the noise magnitude. In doing
so, PANI broadens the coverage of ()-network updates across the action space, thereby mitigating
overestimation errors in ()-learning while maintaining computational efficiency. While most offline
RL algorithms inherently rely on the neural network’s generalization to evaluate unseen actions,
which often leads to overestimation in regions with limited or no data coverage, PANI enforces
updates across the entire action space through noise-injected perturbations, which makes it distinctive
in this regard among offline RL methods.

PANI is broadly compatible with existing off-policy and offline RL algorithms, requiring only minor
modifications to integrate with methods such as IQL (Kostrikov et al.[2021)), TD3 (Fujimoto et al.,
2018)), and even generative model-based approaches like QGPO (Lu et al.,|2023)). Our contributions
are threefold. First, we introduce Penalized Action Noise Injection (PANI), a simple yet theoretically
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grounded method that enables (Q-network updates over a broader region of the action space using only
offline data. Second, we formalize the Noisy Action MDP (NAMDP), a modified Markov Decision
Process induced by noise injection, and provide a theoretical analysis of the resulting ()-values to
show that it mitigates out-of-distribution (OOD) value overestimation. Third, we propose a Hybrid
Noise Distribution, derived from the NAMDP-based analysis, which further improves performance
and stability across tasks.

2 PRELIMINARIES

RL provides a foundational framework for solving sequential decision-making problems, where an
agent learns to optimize its actions through interactions with an environment. Formally, RL problems
are modeled as Markov Decision Processes (MDPs), defined by (S, A, R, P, ), where S is the state
space, A is the action space, R is the reward function, P is the transition probability distribution, and
v € (0, 1) is the discount factor. The primary objective in RL is to find a policy 7, which maps states
to a probability distribution over actions, maximizing the expected cumulative discounted reward:
n(m) =Ex [>,2y '], where r, denotes the reward received at time ¢. This is typically achieved
by iteratively refining the policy to approach the optimal policy 7* = arg max, n(7). One way to
evaluate the policy’s performance is to estimate the action value function Q™ (s, a), which measures
the expected cumulative reward starting from state s, taking action a, and subsequently following

policy m: Q™ (s,a) = Er [> oo ¥'7e | S0 = s,a0 = a].

Offline RL  Offline reinforcement learning (RL) aims to learn a policy from a fixed dataset without
further environment interaction. A key challenge is the overestimation of unseen, out-of-distribution
(OOD) actions, whose ()-values remain uncorrected due to the lack of data. In deep RL, the standard
practice of alternating value maximization and bootstrapped updates can amplify this issue. While
online RL mitigates overestimation through continuous data collection, offline RL lacks this feedback,
causing policies to overprioritize OOD actions and perform poorly at deployment if left unaddressed.

A detailed discussion of related work is provided in the Appendix

3 Q-VALUE OVERESTIMATION PROBLEM IN OFFLINE RL

Out-of-distribution (OOD) error poses a major challenge not only in offline reinforcement learning
(RL) but also in generative modeling. A representative example is score matching (Hyvéarinen &
Dayan, [2005), which estimates the score function V, log p(x) of a distribution p based on sample
data. However, in regions where data is sparse, score estimates become unreliable due to insufficient
updates, leading to significant estimation errors (Song & Ermon, [2019).

To address this issue, Denoising Score Matching (DSM) (Vincent, |2011) was introduced. Instead
of directly estimating the score of the original data distribution, DSM learns the score function of a
noise-perturbed version of the data. By injecting noise into samples, it enables learning signals even
in low-density regions, helping mitigate errors in score estimation. Specifically, the score network sg
is trained to minimize the following objective:

Josm(0) = ]E:r~p,i~qg(-|a:) ["59(5&) — Vlog gy (7 | x)”%} )
where ¢, (- | z) is a noise distribution, typically Gaussian: N (z, o°T).

However, DSM still tends to produce unreliable estimates at lower noise levels, where updates rely on
sparse data. At higher noise levels, the added noise can obscure important data structures, reducing
the accuracy of score estimation and degrading downstream performance.

Diffusion models extend the principles of DSM by learning the score of the noisy distribution through
a multi-step denoising process (Song et al., 2020). These models are trained to progressively denoise
data corrupted by noise at varying levels, corresponding to different time steps ¢. Specifically, by
minimizing the following objective:

J(H) = ]Etwl/{(O,l),eN./\/'(O,I) |:||€9(Zt, t) — 6”%} where 2t = 04X + O4€, thllS, Zt N(atx, O'tQI)
This formulation can also be viewed from the perspective of DSM. Defining q,, (-|7) ~ N (ayz, o21):

lleo(ze.t) — €ll3 = ofllso(zt,t) — Vlog qo, (z¢) |3
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Figure 1: Visualization of learned (-values on toy datasets. Each pair compares models trained with
and without PANI on Rings (left) and Pinwheel (right). Background shows ()-values (red: high, blue:
low); circles represent dataset actions, colored by their rewards.

we can rewrite the objective as:

J(0) = Een(0,1),210~a0, (o) [0 150 (21, 1) = V1og g, (ze2)3] -

This training framework uses DSM to approximate the score function over multiple noise scales,
combining the detailed signals at low noise levels with the robustness of higher noise. Moreover,
training iteratively across noise levels can be seen as a form of data augmentation, as it exposes the
model to a broader range of input variations during learning (Kingma & Gao), 2024)).

In offline RL, analogous to score matching, limited coverage in the action space can hinder ()-network
updates in low-density regions, potentially leading to overestimation of unseen or rarely sampled
actions. In particular, actions absent from the dataset receive no direct learning signal, making
them prone to out-of-distribution overestimation. To address this, we take inspiration from DSM
and propose Penalized Noisy Action Injection, which injects noise into actions during training to
encourage updates in underrepresented regions of the action space. Furthermore, motivated by the
use of multi-scale noise in diffusion models, we introduce a hybrid noise distribution that combines
various noise levels to enhance robustness. The effectiveness of our approach is illustrated in Figure[T]

4 PENALIZED ACTION NOISE INJECTION

In this section, we present Penalized Action Noise Injection (PANI), a simple yet effective method
for extending value-based RL algorithms to better handle out-of-distribution actions. Given a dataset
D, conventional value-based methods typically optimize the following objective:

J(e) = ]E(S,ms’)ND [(Q9(57 CL) - Z/(S, a, S/))2] ;
where y is the target value derived from the Bellman equation. In offline RL, updates are limited to
actions in D, leaving the (-network prone to overestimating unseen actions.

To mitigate the overestimation of unseen actions, we inject noise into dataset actions, allowing the
@-function to be updated on perturbed actions while penalizing ()-values according to the squared
distance from the original action. Specifically, we modify the standard update objective as follows:

J(0) = E(uoyopamay (o) | (Qo(s,@) = y(s,0,8") — o —al3)’]

where the penalized target value is defined by ¥(s,a,s’,a) = y(s,a,s’) — ||a — a||3. Here, the
penalty term ||a — @l|3 discourages the network from assigning high -values to actions that deviate
significantly from dataset actions.

Thus, our method can be implemented with minimal changes by sampling actions from the dataset,
injecting noise to obtain perturbed actions @, and updating the ()-network using the penalized target
value. This procedure integrates seamlessly with various offline RL algorithms, requiring only minor
modifications to the Q-update step (see Appendix [C|for details).

Remark It is worth noting that PANI operates entirely in the offline setting, unlike prior RL work
where noise is widely used for representation learning (Laskin et al., 2020; |Sinha et al., [2022) or
simulation-based control (Qiao et al., 2021)). PANT’s distinct approach lies in employing penalized
action noise to control Q-values of function approximators for unseen actions, rather than augmenting
data or enhancing state representations.
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5 NOISY ACTION MARKOV DECISION PROCESS

To understand how noise affects learning, we formalize the PANI objective as -learning within
a new Markov Decision Process, the Noisy Action MDP (NAMDP), and analyze its properties to
provide theoretical insights into the approach.

We begin by formally defining the noise distribution, which plays a crucial role in the formulation of
the NAMDP. The noise distribution determines how noise is injected into the action space, influencing
the updates in the Q-network and the resulting policy behavior.

Definition 5.1 (Noise Distribution). A noise distribution ¢, is a distribution parameterized by a € A
and a noise scale o > 0, with support supp(g, ) such that the action space A is a subset of its support.

For example, a Gaussian noise distribution ¢, (@ | a) = N'(a | a, 0°I) satisfies these requirements.

Given a sample a, the probability that is gener-

ated from a under the distribution p, incorporat-  os{ 1o

ing the noise distribution ¢,, can be expressed 06 08
as: z El 06%
S 0.4 [ %
a d a a o 0.4 8

pla|a,0) = Lla]O) gy T

Jp(a)gs(a | a)da |
-2 -1 0 1 2
The denominator in this equation represents the Action Action
convolution of the noise distribution g, with the [— autten Gl — Jatlalpolalda — ' ® Target]

given distribution p:
Figure 2: Left: Noise distributions and the re-

po(a) = / p(a)g,(a | a) da. sulting noised distribution. Right: )-value predic-
tions under the NAMDP, with the background color
If the noise distribution g, is reasonable, the representing pp(a | ai1,0). Note that a; = —1,

probability p(a | a, o) tends to be higher for a @2 = 1, with rewards r(a1) = 0,7(az) = 1. The
near a and lower for those farther away. This green curve shows the groundtruth Q-values.
behavior is illustrated in Figure[2]

We define the Noisy Action MDP using the weight function pp(a | s, a, ), which, under a reasonable
noise distribution, assigns higher weight to actions near a.

Definition 5.2 (Noisy Action MDP). Given a noise distribution g,, a finite dataset D =
{(s4,ai,7i,8;)}; and a dataset distribution pp, the NAMDP is defined as an MDP (S, A, R, Py,7),
where:

P,(s' | s,a) = / pp(s’ | s,a)pp(als,a,o)da,
A
Ro(s,a) = / po(@| s,a,0) (R(s,a) — [la— al}2) da.
A

Using this definition, we now show that minimizing the PANI objective is equivalent to learning the
@-value function in the NAMDP. This result provides a formal grounding for PANI within a modified
decision process, enabling theoretical analysis based on the structure of the NAMDP.

Theorem 5.3 (PANI Objective). Suppose that the function Q minimizes the following objective:
N _\\2
Eanpp(-1s),avaq (o) [(Q(& a) = y(s,a,a)) } 7
where the target value §(s, a,a) is defined as:
By pp(|s,a),amm(-|s") |:R(Sa a) — lla—all5 +~Q" (s, d)} :
Then, the function @ is the Q-value function of 7 in the NAMDP.

This offers a key insight into the behavior of PANI. As established in Definition [5.1] the noised
training distribution spans the entire action space, mitigating the overestimation of ()-values typically
caused by bootstrapped updates using out-of-distribution (OOD) actions in offline RL (Kumar et al.|
2019). This directly leads to the result in the preceding theorem, demonstrating that minimizing the
PANI objective yields the exact ()-value function of the NAMDP.
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Figure 3: Comparison of noise distributions (Gaussian and Laplace) and their impact on NAMDP.
The left two plots show the noisy action distributions [ pp(a)g,(- | @) da for Gaussian (leftmost)
and Laplace (second from left) distributions across different noisy levels (¢ = 0.5,0.75, 1.0). The
right two plots illustrate the corresponding NAMDP ground-truth ()-values under these distributions.

An interesting trade-off emerges as the noise level o increases. On one hand, the balanced action
coverage induced by ¢, accelerates the convergence of (); on the other hand, higher noise levels cause
the NAMDP to deviate further from the original MDP, introducing additional bias. Further theoretical
results, including error bounds and an analysis showing how PANI discourages the selection of OOD
actions, are provided in Appendix [B]

6 NOISE DISTRIBUTION SELECTION

The choice of noise distribution plays a key role in the performance of PANI. As o — 0, the effect
of PANI diminishes, leaving the overestimation problem unaddressed. When the injected noise is
too small, perturbed actions remain close to the original dataset actions, and the number of samples
required to sufficiently cover the action space increases sharply. As a result, the (Q-network receives
limited updates in low-density regions, allowing overestimated (Q-values for unseen actions to persist.
In contrast, we next examine the side effects associated with high noise levels.

Consider the formulation of pp(a | s, a,0) in Eq. (I), where the denominator is given by p, (a |
s) = [pp(a| s)g-(a | a)da. In practice, since the dataset is finite, this results in p, (a | s) being
a finite mixture of noise distributions centered at observed actions. As the noise level o increases,
the modes of this mixture tend to shift away from the original action modes. This shift can cause
the distribution to place non-negligible probability mass on actions far from the dataset support,
inadvertently distorting the weight function pp (@ | s, a, o) to emphasize unreliable actions, which
amplifies OOD overestimation.

For example, when using a Gaussian noise distribution, the leftmost plot in Figure [3] shows how
increasing the noise level o (the standard deviation) affects the noisy distribution p,. At low noise
levels (02 = 0.5), the distribution retains distinct modes that reflect the dataset’s original action
structure. As o increases (02 > 0.75), these modes blur and merge, obscuring the boundaries between
actions. The right plot shows how this mode collapse distorts the ground-truth Q-function in the
NAMDP: with high noise levels, Q-values are overestimated in regions far from the dataset.

High noise levels can also lead to sample inefficiency, resulting in ineffective ()-network updates.
In typical RL settings with bounded action spaces, using an unbounded noise distribution such as
Gaussian can cause sampled actions to fall outside the valid range, producing invalid or uninformative
targets. Additionally, high noise levels reduce the precision of action sampling. For example, when
two actions a; and ay are far apart, the likelihood of sampling a noisy action a near either becomes
nearly uniform. This flattens the sampling distribution, increases variance in the estimated targets,
and ultimately reduces learning stability. These observations highlight the importance of carefully
selecting and tuning the noise distribution in PANI to balance expressiveness and stability.

6.1 DISTRIBUTION SELECTION

Above, we analyzed the trade-offs associated with high and low noise levels. Here, we explore
strategies for selecting noise distributions that balance these trade-offs. By tailoring the noise
distribution, we aim to maintain broad coverage of the action space while avoiding issues such as
mode collapse and sample inefficiency.
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Leptokurtic Distributions Leptokurtic distributions, which have sharper peaks and heavier tails
than Gaussians, offer favorable properties for noise injection. The Laplace distribution is a repre-
sentative example. Its sharp peak helps preserve distinct modes, mitigating the mode shift problem
under high noise. Meanwhile, the heavier tails increase the likelihood of sampling distant actions,
supporting updates in less-visited regions of the action space.

To further analyze the effect of noise shape, we compare Gaussian and Laplace distributions under
equal variance. As shown in Figure [3] the comparison highlights how distribution shape affects
mode preservation and the resulting ()-values in the NAMDP. The results show that even under
fixed variance, the shape of the noise distribution has a significant impact on mode preservation and
@-value quality. These findings suggest that leptokurtic distributions are well-suited for PANI, as
they mitigate mode collapse at high noise levels and improve coverage at low noise levels.

While leptokurtic distributions help alleviate high-noise issues such as mode collapse and instability
they remain sensitive to the choice of noise scale. To address this limitation and improve robustness
across a broader range of noise levels, we design the Hybrid Noise Distribution, which combines the
concentrated mass of leptokurtic distributions with the broader coverage of a uniform component.

Hybrid Noise Distribution The hybrid noise distribution is designed to maintain robust perfor-
mance across varying noise scales by combining two complementary components: a uniform mixture
for broad exploration and an exponential scaling mechanism to induce leptokurtic behavior. Its
construction involves two key steps.

First, to address sample inefficiency at high noise levels, we define a mixture of the original noise
and a uniform distribution over the action space:

¢i'(ala)=a()U(@| A+ (1 - at)a] a),

where U(a | A) denotes the uniform distribution over A, and «(t) = min(¢,1). Ast — 1, the
distribution transitions smoothly to uniform, increasing coverage and reducing the likelihood of
out-of-bound or degenerate samples.

To further improve robustness, we build on the motivation presented in Section[3] where diffusion-
based methods leverage multi-scale noise to stabilize learning. Specifically, exponential scaling of
Gaussian noise is known to increase kurtosis (West, | 1987)), which helps preserve mode structure at
high noise, reducing instability across noise levels.

Based on this insight, we define the hybrid noise distribution as:

hyb
45

_ A _
(@] 0) = Exutiono0) [dpon (@ | )]
where ¢ = exp(\). Here, o controls the overall noise level rather than serving as a standard deviation.
This formulation combines the broad coverage of the uniform mixture with the scale-adaptive kurtosis
induced by exponential sampling, leading to improved robustness.

In our experiments, we used a Gaussian base noise defined as ¢;(a | a) = N'(a | a,t?I). This setup
balances exploration with local structure, resulting in stable and effective ()-network updates. To
evaluate its effectiveness, we compared the hybrid noise distribution with Gaussian and Laplace noise.
As shown in Figure da] the hybrid distribution was more stable across noise levels, and we use it as
the default in all subsequent experiments.

7 EXPERIMENTS

In this section, we present experimental results demonstrating the effectiveness of the Penalized
Action Noise Injection (PANI) method. We first show that applying PANI to baseline algorithms
such as TD3 (Fujimoto et al., 2018)) and IQL (Kostrikov et al., 2021} leads to significant performance
improvements across various datasets and environments in the various benchmark. Next, we conduct
a series of ablation studies to answer the following research questions: Q1. Does the Hybrid Noise
Distribution provide more robust performance across different noise scales compared to Gaussian
and Laplace noise? Q2. Is PANI computationally more efficient than diffusion-based methods? Q3.
Does PANI effectively reduce OOD @-value overestimation? Q4. Does PANI consistently improve
performance when applied to other state-of-the-art offline RL algorithms?
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Table 1: Average normalized scores following (Fu et al.| [2020), reported on Gym-MuJoCo and
AntMaze tasks. Results are computed over 5 random seeds with 10 trajectories per seed for Gym-
MuJoCo, and 100 trajectories per seed for AntMaze. The &+ symbol indicates standard error across
training seeds. Bold numbers indicate the highest score for each task, and underlined values denote
the second highest. Red text shows the performance gain relative to the original baseline.

Diffusion-policy Diffusion-based Diftusion-free Ours

Dataset Environment SfBC D-QL QGPO SRPO DTQL IQL TD3+BC IQL-AN TD3-AN
medium halfcheetah 459 51.1 54.1 60.4 57.9 50.0 54.7 554403 61.5 + 0.3
medium hopper 57.1 90.5 98.0 95.5 99.6 65.2 60.9 984 + 1.2 982+ 09
medium walker2d 77.9 87.0 86.0 34.4 89.4 30.7 777 87.5+3.7 88.5+ 0.6
medium-replay  halfcheetah 37.1 47.8 47.6 514 50.9 42.1 45.0 495+ 04 533403
medium-replay  hopper 86.2 100.7 96.9 101.2 100.0 89.6 55.1 100.8 £ 04 1023 +0.2
medium-replay ~ walker2d 65.1 95.5 84.4 34.6 38.5 75.4 68.0 88.8 +3.6 87.8 £ 6.3
medium-expert  halfcheetah 92.6 96.8 93.5 92.2 92.7 92.7 89.1 899+23 96.4 + 0.8
medium-expert  hopper 108.6 111.1 108.0 100.1 109.3 85.5 87.8 1053 +£3.7 108.8£0.9
medium-expert  walker2d 109.8  110.1 110.7 114.0 110.0 112.1 110.4 109.6 £ 0.6 1149 +0.2
Average 75.6 88.0 86.6 87.1 88.7 77.0 72.1 87.2 (+10.2) 90.2 (+18.1)
- umaze 92.0 93.4 96.4 97.1 92.6 83.3 66.3 912+ 1.1 98.4 + 0.5
diverse umaze 85.3 66.2 74.4 82.1 74.4 70.6 53.8 68.0 £3.2 74.6 4.9
play medium 81.3 76.6 83.6 80.7 76.0 64.6 26.5 744 +£3.7 838 £2.7
diverse medium 82.0 78.6 83.8 75.0 80.6 61.7 25.9 752 +£1.6 858+ 1.2
play large 59.3 46.4 66.6 53.6 59.2 425 0.0 49.4+3.0 65.4 +£2.7
diverse large 455 56.6 64.8 53.6 62.0 27.6 0.0 528 £2.6 58.0£5.1
Average (AntMaze) 74.2 69.6 78.3 73.7 74.1 58.4 28.8 68.5 (+10.1)  77.7 (+48.9)

Table 2: Performance comparison on the Adroit pen tasks. Results are averaged over 5 random seeds
with 100 trajectories per seed, and the 4= symbol indicates the standard error across seeds. TD3-AN
results are reported using this protocol, and baseline results are taken from the original papers.

Dataset Env  TD3-AN CPQL CPIQL FQL DTQL DQL CAC

cloned pen 93.6+51 653+11 574+£22 740£39 813+30 573£119 50.1£1.0
human pen 80.6+54 567+22 480+£38 53.0+21 641+30 728+9.6 634+34

7.1 EVALUATION

We evaluate the effectiveness of PANI across a diverse set of offline RL benchmarks, including Gym-
MuJoCo, AntMaze, Adroit, and OGBench. On Gym-MuJoCo and AntMaze (Table , we applied
PANI to both the off-policy algorithm TD3 (Fujimoto et al.;[2018)) and the offline RL algorithm IQL
(Kostrikov et al.2021])), yielding TD3-AN and IQL-AN. Both variants consistently improved over
their original baselines and performed competitively with state-of-the-art diffusion-based methods
such as DQL (Wang et al.}[2022), SfBC (Chen et al., 2022), QGPO (Lu et al.| 2023)), DTQL (Chen
et al., [2024), and SRPO (Chen et al.,[2023al).

On the Adroit dataset (Table[2), we compared TD3-AN with several generative model-based ap-
proaches, including the consistency model methods CPQL and CPIQL (Chen et al., 2023b)), the
flow-based method FQL (Park et al., 2025)), and the diffusion-based algorithms DTQL (Chen et al.,
2024) and DQL (Wang et al.,|2022). The PANI-enhanced variant TD3-AN achieved performance
that was competitive with or superior to these advanced methods.

Finally, on the challenging OGBench benchmark (Table[3), specifically the antmaze-giant-navigate-
singletask suite, we compared TD3-AN with IDQL (Hansen-Estruch et al., 2023), SRPO (Chen
et al.,[2023a), CAC (Ding & Jin, |[2023)), FAWAC, FBRAC, IFQL, and FQL (Park et al., [2025). TD3-
AN achieved non-zero success rates in settings where most of these generative approaches failed,
underscoring its effectiveness in this challenging regime. Taken together, these results demonstrate
that PANI achieves strong generalization across diverse benchmarks, extending its applicability to a
wide range of datasets and environments.
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Table 3: Performance comparison on the antmaze-giant-navigate-singletask suite across five tasks.
TD3-AN results are averaged over five random seeds, with standard errors reported. Performance

metrics for all other baselines are taken from @

Task TD3-AN IDQL  SRPO CAC FAWAC FBRAC IFQL FQL

Task1 142+65 000 000 0£00 000 O0£04 O0£00 4+£18
Task2 58+44 0+£00 0£00 0£00 O0£00 4+25 0=x+00 9+25
Task 3 1.6 £ 0.7 0+£00 0£00 0£00 O0£00 0400 0x£00 0+04
Task4 21.6+104 0+00 000 O0£00 0400 9+14 000 14+£8.1
Task 5 64+22 0+£00 0£00 O0£00 O0£00 6+35 13£32 16£99
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Figure 4: Comparison of noise distribution and noise scale effects in Gym-MuJoCo. (a) Average
score of TD3-AN comparing different noise distributions. High, Medium, Low, and Very Low
represent progressively lower noise levels, with specific ranges adjusted for each distribution. Error
bars indicate the standard error of the average score across 5 training seeds. Optimal represents the
best-performing noise scale selected individually for each distribution. (b) Wall-clock training time
for different algorithms, showing that the use of PANI incurs only a small overhead.

7.2 ABLATION STUDY

We now provide detailed analyses addressing the five research questions introduced above. Specifi-
cally, we examine the impact of different noise distributions, noise scales, and dataset action coverage
on performance. We also evaluate the computational efficiency of PANI and assess its generalizability
by applying it to other state-of-the-art offline RL algorithms.

Noise Distribution The choice of noise distribution is a critical factor in PANI. As discussed
in Section [6] the hybrid noise distribution is specifically designed to address the sensitivity of
performance to variations in noise scale. To evaluate its effectiveness, we compared it against both
the Gaussian and Laplace Noise Distributions under identical hyperparameter settings, using different
ranges of noise levels tailored to the characteristics of each distribution.

For the hybrid noise distribution, we tested a range of noise levels appropriate to its characteristics.
Similarly, for the Gaussian and Laplace noise distributions, we selected noise levels that reflect their
typical behavior and scale, ensuring a fair comparison across all methods. As shown in Figure[@a the
hybrid noise distribution outperformed the Gaussian and Laplace noise distributions. These results
highlight the hybrid distribution’s ability to balance robustness and coverage, making it well-suited
for a variety of environments. Detailed settings for each noise scale, along with full results and
learning curves, are provided in Appendix[C.3]

Compute Resource We compared the training time of PANI-enhanced methods with their original
counterparts. As shown in Figure #b] PANI introduces minimal computational overhead while
maintaining efficient training times. Detailed results, including hardware specifications, are provided
in Appendix [C|
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Figure 5: Learned ()-value landscapes in Gym-MuJoCo datasets. Colors represent ()-value magni-
tudes (red: high, blue: low), and the white star indicates the dataset action. These plots illustrate how
the learned )-functions evaluate dataset and surrounding actions across different environments.

Wemr | —
Dataset TD3+BC TD3-AN IQL IQL-AN Hop-mr \ =
halfcheetah-expert 0.014 0.002  0.014  0.001 L
halfcheetah-medium 0.112 0.004 0.211 0.006 Hop-m ([
hopper-expert 0.483 0.034 0.425 0.036 Hemy
hopper-medium 0379 0036 0360 0042 v F
walker2d-expert 0.322 0.000 0.327 0.001 Heme W
walker2d-medium 0.316 0.002  0.147  0.004 e S B T

(a) Measured probability of OOD overestimation P(Q(s,a) > Q(s,a)) (b) Performance difference be-
across datasets, comparing baseline and PANI-enhanced methods. tween QGPO and QGPO-AN.

Figure 6: Empirical evaluation of OOD overestimation reduction and performance improvement.
(a) shows the probability of OOD overestimation P(Q(s,a) > Q(s,a)), where (s,a) ~ D and a is
uniformly sampled, evaluated across different datasets (all 95% confidence intervals < 0.001). (b)
shows the performance difference of QGPO-AN relative to QGPO across multiple tasks.

Overestimation Mitigation We evaluate the effectiveness of PANI in reducing OOD action overes-
timation. First, as shown in Figure[5] PANI predicts lower Q-values for actions that deviate from the
dataset actions in Gym-MulJoCo, indicating reduced overestimation in out-of-distribution regions.
Second, we measure the probability P(Q(s,a) > Q(s,a)), where a is a dataset action and @ is
uniformly sampled. As summarized in Table [6a] TD3-AN and IQL-AN significantly lower this
probability across all datasets, demonstrating improved robustness compared to their base versions.

PANI with Other Algorithms We also applied PANI to QGPO 2023), a diffusion-based
Q)-learning algorithm. Using the same hyperparameters (5, K) as in the original QGPO for fair
comparison, QGPO-AN showed performance improvements, as shown in Figure[6b] demonstrating
the generality of PANI. See Appendix [C.3|for implementation details.

8 CONCLUSION

We introduced Penalized Action Noise Injection (PANI), a lightweight method designed to address
out-of-distribution overestimation in offline RL. By perturbing dataset actions with controlled noise
and penalizing them according to noise magnitude, PANI broadens Q-network updates across the
action space with minimal modification to existing algorithms. Unlike most offline RL methods, which
rely on neural network generalization to evaluate unseen actions and are thus prone to overestimation
in low-coverage regions, PANI enforces updates across the entire action space, making it distinctive
in this regard. Evaluations on various benchmarks demonstrate that PANI generalizes effectively
across different datasets, environments, and algorithmic families. These results suggest that PANI is
not only a practical tool for enhancing existing offline RL algorithms but also a broadly applicable
principle for addressing a fundamental limitation of learning from fixed datasets.
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APPENDIX

A RELATED WORKS

Offline RL  Various algorithms have been proposed to address the issue of OOD action overesti-
mation in offline reinforcement learning. These approaches can be broadly categorized into three
groups: (1) methods that enforce conservative (Q-value estimates, (2) methods that apply penalties
during policy extraction, and (3) methods that leverage generative models, either as policies or as
regularizers, to guide action selection away from OOD actions.

Notable examples in the first category include CQL (Kumar et al., [2020), which explicitly trains
the Q-network to assign lower values to OOD actions, and ensemble-based approaches such as
EDAC (An et al.}[2021)) and RORL (Yang et al.} 2022)), which mitigate overestimated ()-values by
aggregating predictions from multiple Q-networks.

In the second category, policy-level regularization techniques mitigate OOD actions through explicit
penalties. AWAC (Nair et al.,|2020) introduces KL regularization, while TD3+BC (Fujimoto & Gul
2021) and ReBRAC (Tarasov et al., | 2024)) apply L2 penalties to keep the learned policy close to the
behavior policy. Anti-exploration approaches such as TD3-CVAE (Rezaeifar et al.,[2022), SAC-RND
(Nikulin et al.;,[2023), and SAC-DRND (Yang et al.||2024) explicitly discourage selection of uncertain
or unfamiliar actions.

The third category leverages generative models either as behavior policies or as regularizers during
policy learning to avoid OOD actions. Early approaches such as BCQ (Fujimoto et al., 2019) use a
VAE to generate filtered actions, avoiding OOD actions during policy improvement. More recent
diffusion-based methods, including Diffusion-QL (Wang et al., 2022), SfBC (Chen et al., 2022), and
IDQL (Hansen-Estruch et al.,[2023), construct denoising-based behavior policies. SRPO (Chen et al.}
2023a) and DTQL (Chen et al., |2024)) regularize policy learning by constraining action selection
to stay close to the dataset, thereby avoiding OOD actions. In contrast, QGPO (Lu et al., [2023)
combines Q-guidance with generative sampling to guide the policy toward high-value actions.

In contrast to these approaches, PANI directly addresses OOD overestimation by modifying the
Q-learning objective to include penalized updates on noise-injected actions.

Data Augmentation in RL  While noise-based augmentations are used in RL to enhance sample
efficiency or generalization, most existing approaches focus on representation learning rather than
addressing OOD overestimation.

For example, RAD (Laskin et al.,2020) applies image-based augmentations to observations in online
RL to improve generalization. S4RL (Sinha et al., [2022) adapts this idea to the offline setting,
applying RAD-style augmentation to states in static datasets. These methods target representation
learning rather than correcting distributional mismatch in action values.

Some works consider action noise in the context of differentiable simulation. For instance, (Qiao et al.
(2021) use noisy actions to approximate gradients and transitions in simulator-based environments,
enabling more efficient learning. In contrast, our method injects noise in the offline setting without
access to a simulator, using it not to create synthetic targets but to penalize ()-values for out-of-
distribution actions.

Various Noise Scales and Leptokurtic Noise Distributions Noise variation and scaling have
been extensively studied in generative modeling and denoising frameworks. MDNS (Li et al., 2023)
explores training with diverse noise levels in denoising score matching, while NCSN (Song &
Ermon, [2019) conditions training on continuous noise scales. Diffusion-based methods such as Score
Distillation Sampling (Poole et al.,[2022) leverage outputs across multiple noise levels to stabilize
generation.

While most prior work uses Gaussian noise, recent studies explore alternative noise shapes to improve
robustness. Heavy-Tailed Denoising Score Matching (HTDSM) (Deasy et al.| [2021) and t-EDM
(Pandey et al.||2024)) employ leptokurtic noise distributions to better handle outliers and data sparsity.

Our method draws on these insights, but applies them in a context: penalizing noisy actions in the
offline RL setting to systematically reduce OOD value overestimation.

13
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B NoOISY ACTION MARKOV DECISION PROCESS

In this section, we revisit the definition of the Noisy Action Markov Decision Process (NAMDP) and
the associated noise distribution. We provide formal proofs for the key theorems introduced in the
main text and offer additional theoretical insights under specific assumptions.

Definition B.1 (Noise Distribution). A noise distribution ¢, is a distribution parameterized by a € A
and a noise scale o > 0, with support supp(g, ) such that the action space A is a subset of its support.

Definition B.2 (Noisy Action MDP (NAMDP)). Given a noise distribution ¢, a finite dataset D =
{(si,a;i,7i, s;)}: and a dataset distribution ppp, the NAMDP is defined as an MDP (S, A, R, P,,7),
where:

Py(s" | s,a) = / pp(s’ | s,a)ppl(al s,a,o)da, )
JA
R,(s,a) = / pp(al s,a,0) (R(s,a) — [la — al3) da, 3)
A
pp(@| s,0,0) = del@lopolals) @)

[ a0(@| a)pp(als) da
B.1 CONNECTION BETWEEN PANI AND NAMDP

In this subsection, we present a key result that connects the PANI objective with the Noisy Action
Markov Decision Process (NAMDP). Specifically, we show that Q-learning with PANI corresponds
to learning the Q-function of the NAMDP under the defined noise distribution.

Theorem B.3 (PANI Objective). Suppose that the function () minimizes the following objective:
Eanpp(ls),anan (o) [1Q(s:@) — (s, a, @) 3], )
where the target value §(s, a,a) is defined as:
Es'wpp(-\s,a),éww(~|s') |:R(Sa Cl) - HCL - d”% + VQW(S/a El):| .
Then, the function @ is the Q-value function of w in the NAMDP.

Proof. Let us derive the optimal Q-function for the NAMDP by applying the Euler equation for
functionals (Gelfand et al.| 2000). Consider a functional of the form:

J[u}:/---/F(xl,...,xn,u)d:cl-~-da:n (6)
R
which depends on n independent variables z1, . . . , x,, and an unknown function wu of these variables.
For the functional to be optimal, the following condition must hold:

F.,(z)=0 forall =z 7

The NAMDP objective eq. (5) can similarly be expressed as a functional:

2
J[Q] = EaNPD('IS)) [HQ(S’ a) — Es’~pp(-\8,a) [R(S’ a) - lla— a||§ +7Q7 (s, &)] HJ ®

a~gs(-la arm(-|s")

_ / n /A pp(als)go (ala)

2
|Q5.0) = Evrpp o [Rs.0) = lla = al} +7Q7(s',0)] | dada  ©)

ar~m(-|s")
:/ Flay, ... an, Q)da (10)
where
F(ay,...,a,,Q) = (1)
| potals)analo)|@ts.a) - Bt [R5 0) = 3= 0l +9Q7(s')] L a2
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Suppose that Q* is the minimizer of the NAMDP objective equation[5] By the Euler equation for the
functional equation [6] we have:

Fo- (@) = (13)
2 /A p(als)as(ala) (Q*(w) ~Eyppiiom [R(5:0) — la—al2 + VQ“(S’,G)]> da =0
arm(-]s")
(14)
Thus,
/App(a\S)qg(&\u)Q*(s,&)da (15)
- /A P(al3)0 (@) By <y p 1o,y [R(5, @) — 1@ — all? +1Q7(s', @) da (16)
arm(-|s")

f_ApD (a"s)q”(a"(]’)EslwpD(-\s,a) [R(S’ a) - H& - a”% + ’YQT{(Sla d)} da

L anm(ls')
_ _ 17
= @ (S7a) (/APD((I‘S qd((_l,‘(l)(](l (an

)
= Js Jarplals)gs(ala)pp(s']s,a)Bamn(s [R(s, a) — la — al|3 + Q7 (s', a)] dads’
J4pp(als)g,(ala)da

= / / po(s'ls,a)pp(als,a,0)Eqmn(|s) [R(s,a) —||la —all3 —l—ny”(s’,d)}dads’ (19)
SJA

(18)

- / pp(als,a,0)(R(s,a) - |la — al2)da
A

+ 'y/ Eaor(s) [QT (8", a)] / pp(s'|s,a)pp(als,a,o)dads’ (20)

S JA
= RU(S, (_L> + VES’NP,T(-\s.ﬁ),éww(~|s’) [Qﬂ—(S/, a)} (2D
Therefore, Q* satisfies the Bellman equation in NAMDP and is )-value of 7 in NAMDP O

This result enables us to analyze how the choice of noise distribution in PANI influences the learned
2-values, by comparing the ground-truth Q-function under the NAMDP to that of the original MDP.

B.2 ERROR BOUND BETWEEN NAMDP AND THE TRUE MDP

In this subsection, we provide theoretical insight into the difference in expected returns between the
Noisy Action MDP (NAMDP) and the original MDP. For this analysis, we assume that both the state
space S and the action space A are finite, and that R,, is well-defined on S x A.

Theorem B.4 (Error Bound in NAMDP). Let 7(w) and 7j(7) denote the expected returns in the true
MDP (S, A, R, P,v) and the NAMDP (S, A, Ry, Py, ), respectively. suppose that NAMDP reward
function R is bounded, The error between them is bounded as:

In(m) = n(m)| < € + €m,
where:
€r = Egr [ |R(S7a) - RU(Sv a)| ]7
VEar [TV(P(s'|s, a)|| P (s's, a))]
(1—7)? '

Here, R(s,a), and d™ are the reward functions and the discounted state-action visitation distribution
in the true MDP, 7, is the maximum reward in NAMDP, y is the discount factor, TV is the total
variation.

€m = 2Tpax
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Proof. Let d™ denote the discounted state-action visitation distribution induced by policy  in the
NAMDP. Then, the difference in expected returns between the true MDP and the NAMDP can be
written as:

[n(m) — ()| =

Z (d"(s,a)R(s,a) — d"(s,a)R,(s, a))‘ .

s,a

Applying the triangle inequality, we decompose this expression as:

In() =a(m)| < | d"(s,a) (R(s,a) = Ro(s,a))| +|Y_ (d"(s,a) = d"(s,a)) Ro(s,a)| (22)
= E(s,a)wd" [|R(S7 (l) - RU(S7 G)H + Z (dﬂ-(sa a’) - gﬂ-(sa a’)) RU(Sa a’) . (23)
s,a
For the second term, we apply Lemma A.1 from |Lee et al.|(2020), which yields:
L qm 27’Fmax / /
Z (d (s,a) —d (s,a)) Ry(s,a)| < WE(S,Q)NCM [TV(P(s" | s,a) || Pr(s"| s,a))],
where 7oy = max; o | Ry (s, a)).
Substituting this into the previous expression gives the final bound:
— 27Fmax
[n(m) = (m)| < Ear [|R(s,a) — Rs(s,a)|] + WE(N [TV(P(s" | s,a) || Po(s" | 5,a))].
O

Therefore, if the noise distribution is reasonable, it assigns higher weight to dataset actions, where
both the reward and transition dynamics of the true MDP are accurately represented. In this case,
as long as the learned policy avoids OOD actions, the optimal policy in the NAMDP is expected to
perform well in the original MDP. In the following subsections, we show that, in practice, policies
optimized under appropriate noise settings in NAMDPs tend to avoid OOD actions.

B.3 AVOIDING OOD ACTIONS IN NAMDP WHEN o — 0

In this subsection, we examine the behavior of the optimal policy in the NAMDP as the noise level
o — 0. We show that under certain conditions, the limiting optimal policy avoids OOD actions;
however, this result does not directly imply that the same behavior holds for all NAMDPs when o is
merely small.

Instead, we establish an intermediate result in this subsection that will later allow us to prove, in
the next subsection, that optimal policies in NAMDPs with a finite action space indeed avoid OOD
actions under small noise.

We begin by stating an assumption on the noise distribution, which will be used throughout the
analysis:

Assumption B.5. The noise distribution g, (a | a) satisfies the following properties for all a, a1, as €

A:
L. If la; — a||3 > |laa — al|3, then

lim (@] o)

=0.
o—0+ gy (a | az)
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2. If |a; — al|3 = |laz — al|3, then

4o(a ] a1)

m —— = 1
o—0+ ¢y (a | az)

For example, distributions such as the Gaussian and Laplace distributions satisfy the properties.
Given an arbitrary function S : A x A — R, the following lemma characterizes the limiting behavior
of a noise-weighted average as ¢ — 0.

Lemma B.6. Given a noise distribution q, if the support of p is finite, then for any function S, we
have:

a a S a,a)pla
lim [ S(a,a)p(ala)da = 2 aec(ap) S(aa)p(a)
o—0t A ZaGC(@p) p(a)

=Eovpo(la) [S(a,a)], (24)

where

plala) = %,ow,p) — {a € supp() | lla—all3 < | — yI3¥y € supp(p)} -

(25)
Proof. We analyze the expectation by splitting it into two cases: points in C'(a, p) and points outside
C(a,p).

Let a* € C(a,p) be a closest point to a. By the Assumption qq"(((_jlafi)) — 0aso — 07 for
a ¢ C(a,p). Thus:

. _\_4o(ala)p(a)
im Y S(a,a) S AUPY) (26)
e o TS s @la)p(@)
— lim Zagc(ap S(a’ )qa'(a|a’) ( )
0t S s eoiag 0o @a)D(@) + Sagoap) 4o (@la)p(@)
= lim 2agcap S(a:a) g (aa\awp( a)
7 Laectan 2 ?(@ + Tagean aaai(@)
0
= =0. 27
ZaEC(a,p) p(a) + 0
For a € C(a, p), the noise property gives ZZEZ}“% — 1forall a,a € C(a,p). Hence:
, .\ go(ala)p(a)
lim Z S(a, )— (28)
o0t D) 2_a 4o (@la)p(a)
— lim ZaEC(ap (a ) U(a|a) ( )
o0t Zaecw,p) qo(ala)p(a) + Za¢0(ap) 4o (ala)p(a)
— lim ZaGC (a,p) S(a’ ) :(Ela“ai))p( )
o0+ ZaGC(a Y 9o a‘laa*) (a)+za¢0ap qa((a‘laa*))p(@
_ Zaec(a,p) S(a,a)p(a) (29)
ZaEC(&,p) p(a)
Therefore, we have
lim [ S@aplaaydo= Tm [ S Seapa)+ Y S apla)
g a 7 a€eC(a,p) a¢C(a,p)
> aec(ap) Sla,a)p(a)
— ZacC@p) = Eope(a) [S(a,a)] (30)
ZaGC(&,p) p(a)
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p(a)

where pc(ala) = Yaecap P(@)

is the restriction of p to C(a, p). O

Using this lemma, we can express the Q-value in closed form as o — 0T, as shown below:
Lemma B.7. suppose that o — 07", then the Q value in NAMDP holds:

Bonpo(an@(s,a)] =Q(s,) + _ inf i —als.

Proof. We assume o — 07, leveraging the fact that the dataset is finite. By Lemma the transition
probabilities in the NAMDP converge as:

P(s'|s,a) = lim / po(s'ls,a)pp(als, a,0) da 31)
o—0t

> aeC(@apn(|s) Po(8'[s,a)pp(als)

= : (32)
ZaEC(FL,pD(-L‘;)) pD(a‘S)
= Eanpo(las po(s']s, a)l. (33)
For the reward R(s, a), we derive:
R(s,a) = lim [ pp(als,a,0)(R(s,a) - ||la—all3)da (34)
o—=0t J 4
. ZaeC(a,pD(-\s))pD(a|5)(R(37a) —lla—al3) (35)
ZaeC(a,pD(.\s)) pp(als)
= Eonpo(las) [B(5,0) = [la —all3). (36)

Next, note that the definition of C(a@, pp(:|s)) is:

C(a.pp(ls)) = {a € supp(pp(‘[s)) | [la — all3 < [la—bll3 b € supp(pp(-|s))}-

This means C(a, pp(+|s)) contains actions a in supp(pp(+|s)) that are closest to @ in Ly-norm. By
construction, the distribution p¢ (+|a, s) assigns full probability mass to C'(a, pp(-|s)), and therefore:

Eppaslla—al?] = inf a— all?.
potaalla=alfl = inf a3

Now, using the Bellman equation for the NAMDP:
Qﬂ—(sa 5,) = R(S, 5,) + VES’Nﬁ(-\s,TI) [Vﬂ(s/)]'

Substituting R(s,a) and P(s'|s, a):

Q" (5,a) = Eupe(las) [R(s,a) — |la—a3] + 'y/ Eape(la,s) pp(s']s,a)VT(s")] ds" (37)
Eompo(las) [R(s:a) = [|a = all3 + 1By mpp (15,00 [V ()] (38)

= Ea~pc( |a,s) [R(S,a) +YEy "~pp(]s,a) [V ( /)H - IEa~pc(-|d,s) [Ha - GH%] . (39

= EaNpC( |a,s) [ (S,(L) + ’}/Eg '~P(+|s,a) [V ( /)]] - EGNPC('mvS) [Hd - a”%] . (40)

= EGNPC(‘|@7S) [QW(Sa a)] - Ea~p0(~\&,5) [Ha - a||§] . (41

Finally, since Eqpe (1a,s) [[1a — all3]] = infacquppon 15 @ — all3, we conclude:

EN -la,s ﬂ—Saa = 778’&_’_ inf L_l_a/2~
avpe(lan@ (5] =Q(s,a)+ i | lla —ally

This completes the proof. O

Using the above lemma, we can now show that the optimal policy avoids OOD actions in the limiting
case, as formalized in the following corollary:
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Corollary B.8 (No OOD when ¢ — 0). Given a noise distribution q,, when o — 0, the optimal
policy in the NAMDP is guaranteed to select actions within the dataset distribution.

Proof. Suppose that 7* is the optimal policy in the NAMDP when ¢ — 0. Assume for contradiction
that there exists s € S and @ € A such that @ € supp(7n*(-|s)) but @ ¢ supp(pp(:|s)). This
assumption implies that the policy selects an action a outside the dataset distribution pp(+|s) despite
being optimal.

By lemma [B.7] the )-value can be expressed as:

Eoopeilas) [QF(s,a)] = Q*(s,a) + inf a—al?,
petine Q.0 = Qsa)+ il Jaaf?

where the term inf,equpp(pp (5)) [|@ — @||3 represents the minimum penalty induced by the distance
between a and the closest action in supp(pp(+]s)).

Since @ ¢ supp(pp(:|s)), this penalty term is strictly positive. Hence, substituting this into the
inequality, we have:

Gy “(s,a) 2 Eqnpo(las) Q7 (s, a 42)
‘IGC(ELPD(-\S))Q ( ) pc(-la,s) [Q ( )]
=Q%(s,a) + inf la — al|? 43)
a€supp(pp(+]s))
> Q*(s,a). 44)

This inequality implies that there exists another action a € C(a,pp(-|s)) (where C(a,pp(-|s))
represents the set of nearby actions under the dataset distribution) with a higher @)-value than
Q*(s,a). Thus, a cannot be optimal, contradicting the assumption that a € supp(7*(-|s)). O

B.4 AVOIDING OOD ACTIONS UNDER SMALL NOISE

In this subsection, we further analyze the case where the action and state spaces are finite and
show that, under sufficiently small noise, the optimal policy in the NAMDP avoids OOD actions.
Specifically, we show that for any € > 0, there exists a ¢’ > 0 such that for all 0 < ¢ < ¢’, the
Bellman optimality operator of the NAMDP is within € of that of the noiseless case when o — 0.

Unless otherwise specified, we denote the NAMDP in the limit when o — 0by M = (S, A, R, P, ),
and the NAMDP with noise scale o0 by M, = (S, A, Ry, P,,7).

Lemma B.9. Let T denote the Bellman optimality operator of the NAMDP M, and let Ty denote
the Bellman optimality operator of the NAMDP M. Let Q) denote the Q-function under M. Then,
for any € > 0, there exists o’ > 0 such that for all 0 < o < o,

sup  [(TQ)(s,a) — (ToQ)(s,a)| <.

(s,a)eSx.A

Proof. Let T and 7T, be defined as in Lemma Fix any € > 0. Since R, — Rand P, — P as
o — 0, for each (s, a), there exists ag oy > Osuch that forall 0 < o < a{g oy

|R(s,a) — Ry(s,a)| < g

P

Similarly, for each (s, a, s’), there exists ag%s,) > 0 such that forall 0 < o < o{ , .,

- (1—7)e
27|S|max, o |R(s, a)| '

|P(s'|s,a) = Py(s]s, a)]
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We now bound the difference between the Bellman operators, for any (s, a),

(TQ)(s,a) — (TQ)(s, a)| (45)

< |R(s,a) — Ry(s,a)| +7 Z (P(s']s,a) — Ps(s]s,a)) mng(s', a) (46)

ry

< |R(s,a) = Ro(s,a)| + 7S] tax [P(s']s,a) — Ps(s'|s,a)| max|Q(s, o) 47)

B

+ ’7|‘S‘ max(s a,s’) ‘P(Sllsa a) - Pg (Sl|57 a)| maXs, q) |R(S7 a)'

S \R(s,a)ng(s,aﬂ 1_7

(48)

Define ¢/ = min ({J(Ig’a)}(s,a) U {Uéva,s/)}(s,aﬁsl)). Since the state and action spaces are finite,
this minimum is taken over a finite set, ensuring that o’ > 0.

Then, for all 0 < o < o', we have

sup  [(TQ)(s,a) — (ToQ)(s, a)| (49)
(s,a)eSx.A

< sup |R(8aa) - RU(S,CL)| (50)

(s,a)eSxA

S|max(s 4 s |P(s]|s,a) — P, (s'|s, a)| max(s o) | R(s,a
L NSImax (a0 [P(s']s, 0) (s'|s, a)| maxs o) |R(s, a)| 51)
L=y
€ €

S = 2
< 5 + 3 €, (52)
completing the proof. [

As a direct consequence of Lemma[B.9] we obtain the following corollary:

Corollary B.10. Let Q* denote the optimal Q-function of M, and let Q. denote the optimal
Q-function of M. Then, for any € > 0, there exists ¢’ > 0 such that for all 0 < o < o¢’,

sup |Q*(Sva) _Q;(Saa” <e
(s,a)eSxA
Proof. Fix any € > 0. By Lemma|B.9] there exists ¢’ > 0 such that for all 0 < o < ¢,
sup  [(TQ")(s,a) = (T,Q")(s,a)] < (1 —7)e.

(s,a)eSxA

Since Q* and Q7 are the fixed points of 7 and 7, respectively, and since the Bellman optimality
operator is a y-contraction, we have:

sup  |Q*(s,a) — QL (s,a)l (53)
(s,a)eSx.A
= sup  [(TQ")(s,a) — (TQ3)(s,a)| (54
(s,a)eSxA
< (SUP) [(TQ")(s,a) — (ToQ")(s,a)| + (SHP) (ToQ%)(s,a) — (ToQ5)(s,a)|  (55)
< (I =7v)e+vysup |Q(s,a) — Qy(s,a)l. (56)

(s,a)
Rearranging gives:

sup Q% (s,a) — QL(s,a)| < M =e. (57)

[ea

(s,a)eSxA 1- vy
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Using Lemma [B.7] and Corollary [B-T0} we can now show that the optimal policy in M, selects
actions close to those in the dataset for sufficiently small noise.

Theorem B.11 (No OOD Action Selection). Let s be the optimal policy in the NAMDP M. Then,
forany € > 0, there exists ' > 0 such that for all 0 < o < o’ and for all a € supp(7’(-|s)),

inf la—al3 <e,
a€supp(pp(+|s))

where supp(pp(+|s)) denotes the support of the behavior policy pp, that is, the set of actions observed
in the dataset at state s.

Proof. Assume for contradiction that there exists ¢ > 0 such that for all 6/ > 0, there exists
0 <o <o’ anda € supp(m}(+]s)) satisfying

inf la—all3 > €.
a€supp(pp (+]s))

By Corollary B.10} there exists o’ > 0 such that for all 0 < o < ¢”,

/

* * €
sup ‘Q (S,CL) _QU(87C”)| < Z (58)
(s,a)eSx.A

Next, using Lemma[B.7] which states that

Eanpe(la.s)|@(s,0)] = Q%(s,a) + la — all3,

inf
a€C(app(-ls))
we proceed as follows:

First, observe that the expected ()-value over C'(a, pp(-|s)) under Q% is lower bounded by the same
expectation under Q*, up to the error €’ /4 from Eq. equation

Q5 (5,a) = Banpp (1s) [Q5 (s, a)] (59)

max
aeC(a,pp(-]s))
/

> anpD(-|s) [Q* (87 a)] - GZ (60)

Applying Lemma[B.7] we can expand this expectation as:

Eopp(ls) [Q7(s,a)] = Q*(s,a)+  inf  |ja—al3. (61)

1
a€supp(pp(+]s))

Substituting this into the inequality above yields:

e/

max s(s,a) > Q*(s,a) + inf a—al?—— (62)
aecw,pD<.|s>>Q (s,a) > Q*(s,a) aesupp@D(,\s))H 12 =7
!

>Qi(s,a)+  inf  fla-al} -5, 63)

N

a€supp(pp (-|s))
where the second inequality uses the fact that Q* and Q% are close by at most €’ /4 in both directions.
Since we have assumed that inf ;e qupp(pp (|s)) [|@ — @l|3 > €, this further implies:

max (s,a) > Qh(s,a)+ = > QL(s,a 64
weoldx | Qols,a) 2 Q5(s,a) + 5 > Qg (s,a) (64)

This shows that there exists an action in C(a, pp(+|s)) that achieves strictly higher Q-value than a,
meaning a cannot be optimal. This contradicts the assumption that Q% is the optimal ()-value.

O
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C IMPLEMENTATION DETAILS

All experiments were conducted on a single NVIDIA RTX 3090 GPU with an Intel Xeon Gold 6330
CPU.

Our code is available at: https://anonymous.4open.science/r/PANI-1EED

C.1 IQL-AN

Algorithm 1 IQL with Penalized Action Noise Injection (IQL-AN)

Initialize critic networks (g, , Qg,, value network V,; and actor network 74 with random parameters
01, 62, v and ¢
Initialize target networks: 6] < 01, 05 < 65, ¢' < ¢
fort =1toT do
Sample a mini-batch of transitions (s, a, r, s") from the dataset D
Sample a noisy action a from the distribution ¢, (- | a)
Value update:
Minimize the PANI value objective J%?L(qb) equation
Critic update:
Minimize the PANI critic objective JgQL(G) equation
Actor update:
if policy is deterministic then
Minimize the PANI deterministic actor objective Ji3" () equation
else
Minimize the PANI stochastic actor objective JSISL((;S) equation
end if
Target network update:
Update critic target networks: ¢} <— n; + (1 — n)0.
Update actor target network: ¢’ < no + (1 —n)¢’
end for

IQL-AN extends IQL (Kostrikov et al.| 2021) by incorporating Penalized Action Noise Injection,
enhancing its ability to address OOD overestimation as detailed in Algorithm[I} The training process
follows the objective functions defined below:

I 0) = By |25 ( iy Qusc0) — Vi) )| ©5)

where LI (z) = |7 — I(u < 0)]2?

JéQL(H) = E(s,a,s')r\«D |:(Q9(83 a) - (T(Sa a) - HCL - d”% =+ ’Yvw(sl))z} (66)
a~gy(-|a)
T (¢) = —E(s.0)op LIE}HQ Qo (s, 7T¢(5))} (67)

J9(6) = “E (y.0yop [

army(-[s)

min Qg (s, a) — alog 7T¢(a8)] (68)

=1,

In the Gym-MuJoCo environments, we used a deterministic policy, whereas in the AntMaze envi-
ronments, we employed a unimodal Gaussian policy transformed via a hyperbolic tangent bijection.
Additionally, we incorporated the NLL loss used in DTQL (Chen et al., |[2024).

During training, experiments were conducted with log o values of —1, —5, —10, —20 for Gym-
MuJoCo. For 7, we primarily set 7 = 0.7 across all Gym-MuJoCo tasks but additionally explored
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7 = 0.99 for the halfcheetah-medium-expert and halfcheetah-expert datasets. In the AntMaze
environments, we tested with log o values of —10, —20 and « values of 0.3, 0.5, 1.0, while fixing
7=0.9.

The optimal hyperparameters for each environment are provided in Table[8] while the performance
across different parameter settings is presented in Appendix For training curves, refer to

Appendix [C.6

C.2 TD3-AN

Algorithm 2 TD3 with Penalized Action Noise Injection (TD3-AN)

Initialize critic networks Qg,, Qg,, and actor network 74 with random parameters 61, 62, and ¢
Initialize target networks: 6] < 01, 05 < 0, ¢' +— ¢
fort =1toT do
Sample a mini-batch of transitions (s, a, r, s") from the dataset D
Sample a noisy action @ from the distribution ¢, (- | a)
Critic update:
Compute the target action: a <— g (s") + €, where € ~ clip(N(0,5), —c¢, ¢)
Minimize the PANI critic objective J&*(6) (69)
if t mod d = 0 then
Actor update:
Minimize the PANI actor objective JIP?(¢) (70)
Target network update:
Update critic target networks: 0 < né; + (1 —n)6;
Update actor target network: ¢’ < no + (1 —n)¢’
end if
end for

TD3-AN is an algorithm that applies Penalized Action Noise Injection to TD3 (Fujimoto et al.,
2018). As described in Sectiond] it can be implemented with only minor modifications, as shown in
Algorithm[2] Specifically, it is trained using the following objective functions:

2
TE0) = E(a0,0)p l<Q9(s, @) = (r(s,a) = fla = all5 + min Qu;(5' d)> ] >

a~go(-a)

IIP(0) = B | iy Qa5 7(5) ~ ala — mo(o)1f 70)

When training TD3-AN, we use the hybrid noise distribution described in Section[6.1] as the noise
distribution. For the Gym-MuJoCo environments, experiments were conducted with a = 0 and log o
values of —1, —5, —10, —20. In the AntMaze environments, we tested with o = 0.3,0.5,1.0 and
log o values of —5, —10, —20.

The optimal hyperparameters for each environment are provided in Table 8] while the performance
across different parameter settings is presented in Appendix [C.5] For training curves, refer to

Appendix [C.6]
C.3 QGPO-AN

In addition to TD3 and IQL, we further evaluated PANI on QGPO(Lu et al., 2023)), a state-of-the-art
diffusion-based algorithm. PANI can be integrated into QGPO with only minor modifications, as
shown in Algorithm For fair comparison, we used the same hyperparameters (3¢, /) as in the
original QGPO. We also tested additional settings with guidance scales of 1.0, 2.0, 3.0, 5.0, 8.0, and
10.0, and log o values of —0.5, —1.0, —20.0, and —30.0.

Due to computational constraints—each experiment requiring approximately 9 hours to complete—we
were unable to perform extensive hyperparameter tuning. Nevertheless, the positive results obtained
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with default parameters are encouraging and suggest that further performance gains may be possible
with more thorough optimization. The optimal hyperparameters used for each environment are
summarized in Table

Algorithm 3 QGPO with Penalized Action Noise Injection (QGPO-AN)

Initialize behavior model ¢y, critic @y, energy model f4
Train behavior model:
for each gradient step do
Sample a mini-batch of transitions (s, a) ~ D
Sample noise € ~ N(0, I)
Sample time ¢ ~ U(0,T)
Compute perturbed actions a; <— aza + o€
Minimize ||eg(as | 5,t) — €|3
end for
Generate support actions:
for each state s in D" do
Sample K actions a (%)
Store (") in DHe (s)
end for
Train critic and energy model:
for each gradient step do
Sample a mini-batch of transitions (s, a,r,s’) ~ D
Sample noise € ~ N (0, I)
Sample time ¢ ~ U(0,T)
Retrieve support actions a(1) ~ DHo(s) and &' 5) ~ Do ()
Compute target ()-value:

~ po(- | s)

€Xp ﬁQQw(S a )) s &
S exp(5aQul(s, ) 2 1)

Q) =173

Sample a noisy action a from the distribution ¢, (- | a)
Minimize | Qy(s.a) — 7" Qy (s, a) — [la—al3]3
Compute perturbed support actions a; <— oG + o€
Maximize:

exp(3Qu(s,30) | explfulin | 5,0)
Z Z exp(BQy (s, a;)) og Zj exp(fo(ajz | s,t))

end for
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C.4 HYPERPARAMETERS

Table 4: TD3-AN’s and IQL-AN’s common hyperparameters

Hyperparameter | Value

optimizer Adam (Kingma, 2014)
batch size 256

learning rate (all networks) 1073

target update rate (1) 5x 1073

hidden dim (all networks) 256, 512 (OGBench)
hidden layers (all networks) 3, 4 (OGBench)
discount factor () 0.99

training steps (1) 10%, 20000 (adroit)
activation ReLU

layer norm (Bal 2016) (all networks) | True

Table 5: TD3-AN’s common hyperparameters

Hyperparameter | Value

Policy update frequency (d) | 2
Policy Noise (o) 0.2
Policy Noise Clipping (c) 0.5

Table 6: Optimal hyperparameters for TD3-AN and IQL-AN across different environments

TD3 1QL

Dataset Environment | logo « |logo « T

medium halfcheetah -200 - |-200 - 070
medium hopper -5.0 - -5.0 - 0.70
medium walker2d -5.0 - ]-200 - 070
medium-replay  halfcheetah -200 - |-200 - 070
medium-replay  hopper -100 - | -200 - 070
medium-replay ~ walker2d -5.0 - -5.0 - 070
medium-expert halfcheetah -10.0 - -1.0 - 099
medium-expert hopper -1.0 - -1.0 - 0.70
medium-expert ~ walker2d -200 - | -100 - 070
expert halfcheetah -200 - -1.0 - 099
expert hopper -1.0 - -1.0 - 070
expert walker2d -5.0 - -1.0 - 0.70
full-replay halfcheetah -200 - | -200 - 070
full-replay hopper -20.0 - -5.0 - 0.70
full-replay walker2d -100 - | -100 - 0.70
random halfcheetah -200 - ]-200 - 070
random hopper -10.0 - -5.0 - 070
random walker2d -100 - | -100 - 0.70
- umaze -200 1.0 -100 1.0 0.90
diverse umaze -200 1.0]-200 1.0 0.90
play medium -10.0 1.0 | -20.0 0.3 0.90
diverse medium -10.0 1.0 | -10.0 0.3 0.90
play large -200 0.5 -200 03 090
diverse large -10.0 1.0 | -20.0 0.3 0.90
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Table 7: Hyperparameters used for Adroit and OGBench (antmaze-giant-navigate-singletask) experi-
ments.

Dataset logo «@

Adroit (pen-cloned) -10 30
Adroit (pen-human) -10 100

OGBench (task 0) -20 1.0
OGBench (task 1) -20 1.0
OGBench (task 3) -20 1.0
OGBench (task 4) -20 0.5
OGBench (task 5) -20 1.0

Table 8: Optimal hyperparameters for QGPO-AN across different environments

Dataset Environment | logo  guidance scale
medium halfcheetah -20.0 10.0
medium hopper -20.0 10.0
medium walker2d -30.0 10.0
medium-replay  halfcheetah -20.0 8.0
medium-replay  hopper -1.0 5.0
medium-replay ~ walker2d -0.5 8.0
medium-expert  halfcheetah -20.0 5.0
medium-expert  hopper -1.0 1.0
medium-expert  walker2d -20.0 10.0

C.5 RESULTS
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Table 9: The average normalized scores, as suggested by D4RL, are reported from the final evaluation on Gym-MuJoCo and Antmaze tasks. For Gym-MuJoCo
tasks, results are obtained using five independent training seeds and 10 trajectories per seed, while for Antmaze, 100 trajectories per seed are used. The + symbol
denotes the standard error of the mean performance across seeds. Performance metrics and standard errors for baseline methods are taken from their respective
original papers, with the exception of IQL and TD3+BC, which are sourced from ReBRAC. Diffusion-QL and DTQL report their metrics differently - their & values
represent standard errors calculated across all trajectories from all seeds, rather than across the mean performances of individual seeds. The highest scores for each
task are highlighted in bold, while the second-highest scores are underlined. The Average (medium) score includes only medium, medium-replay, and medium-expert
datasets.

Diffusion-free Diffusion-policy Diffusion-based Ours

Dataset Environment IQL TD3+BC ReBRAC SfBC D-QL* QGPO SRPO DTQL* IQL-AN TD3-AN
medium halfcheetah 50.0 £0.1 547+03 65.6+03 459+07 51.1+05 541+£02 604403 579 £0.1 554403 61.5+0.3
medium hopper 652+13 609+24 1020£03 571=£13 905+46 980+£12 955408 99.6 09 984+12 982+09
medium walker2d 80.7 £ 1.1 77.7+£0.9 825+ 1.1 779 £0.8 87.0+ 0.9 86.0+0.3 844+ 1.8 89.4+0.1 87.5+3.7 88.5 £ 0.6
medium-replay  halfcheetah 42.1 £ 1.1 450+03 51.0£03 37.1£0.5 478+03 476+£06 514414 509=+0.1 495+04 533+03
medium-replay  hopper 80.6+42 551+£100 98.1+£1.7 86.2+29 1007+£0.6 969+12 101.2+04 100.0+0.1 100.8+04 102.3+0.2
medium-replay ~ walker2d 7544+29 68.0+£6.1 773 +25 651+18 955+15 844 +£18 84.6 £2.9 885+£22 888436 87.8+£63
medium-expert  halfcheetah 92.7+09 89.1£18 101.1+£1.6 926+£02 968403 935£0.1 9224+12 927+£02 899+23 96.4 £ 0.8
medium-expert  hopper 855+94 87.8+£33 107.0+£20 108.6+07 111.1+13 108.0+1.1 100.1+57 1093+15 1053+3.7 108.8=+09
medium-expert ~ walker2d 1121 £02 1104+02 111.6£0.1 109.8+0.1 110.1+03 110.7+03 1140+09 110.0£0.1 109.6+0.6 1149 +0.2
expert halfcheetah 955+£07 934+£01 1059+0.5 - - - - - 93.8+£02 1044438
expert hopper 1088 £1.0 109.6+12 100.1 £2.6 - - - - - 108.6 £2.6 109.0 £3.0
expert walker2d 969 +£102 110.0£02 1123 +0.1 - - - - - 1082 +0.2 1128 +0.2
full-replay halfcheetah 750£02 750£08 821+03 - - - - - 783 £ 0.1 812+0.5
full-replay hopper 1044+£34 979+£55 107.1+£0.1 - - - - - 1059 £ 04 108.3 £0.1
full-replay walker2d 97.5+04 903+17 1022405 - - - - - 100.6 1.7 103.8 £ 0.7
random halfcheetah 195+£03 309+0.1 295+ 05 - - - - - 243 +3.1 30.0£0.5
random hopper 10.1 + 1.9 85+0.2 8.1+0.8 - - - - - 9.0+02 10.0 £ 0.6
random walker2d 11.3£22 20+ 1.1 184+14 - - - - - 194 +2.8 58+0.7
Average (Gym-MuJoCo) 72.9 70.3 81.2 - - - - - 79.6 82.1
Average (medium) 77.0 72.1 88.5 75.6 88.0 86.6 87.1 88.7 87.2 90.2
- umaze 833+14 663+20 97.8+03 920+0.7 934+34 964+06 97.1+1.1 926+12 912+1.1 98.4 £+ 0.5
diverse umaze 706+12 53.8+£27 883+4.1 853 +1.1 662+86 744+43 82.1+44 744+19 680£32 746+49
play medium 64.6 £ 1.5 265+58 84.0+13 813+08 76.6+108 83.6+20 80729 76.0+£19 744+37 83.8+2.7
diverse medium 61719 259+48 763 +43 82.0£10 786+103 838+16 750%50 80.6£18 752+16 85.8+1.2
play large 425+2.1 0.0 £0.0 60.4 £+ 8.3 593 £45 46.4 + 8.3 66.6 =44  53.6+5.1 592+£22 494430 654£27
diverse large 27.6 £2.5 0.0£0.0 544+£79 455+£21 56676 648+L25 536£26 620£22 528£26 58.0£5.1

Average (AntMaze) 58.4 28.8 76.9 74.2 69.6 78.3 73.7 74.1 68.5 71.7
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Table 10: Comparison of QGPO and QGPO+AN performance across different environments. The +
values represent the standard error of algorithm performance across 3 random seeds.

Environment QGPO QGPO-AN
halfcheetah-medium-expert ~ 93.5 93.6 +£ 0.3 (+0.1)
hopper-medium-expert 108.0 111.24+1.7(+3.2)
walker2d-medium-expert 110.7 111.0 + 0.4 (+0.3)
halfcheetah-medium 54.1 53.8 + 0.4 (-0.3)
hopper-medium 98.0 994+ 1.1 (+1.4)
walker2d-medium 86.0 86.1 0.4 (+0.1)
halfcheetah-medium-replay ~ 47.6 47.6 + 0.1 (-0.0)
hopper-medium-replay 96.9 99.8 + 0.5 (+2.9)
walker2d-medium-replay 84.4 89.7£1.5(+5.3)

Table 11: Final performance of TD3-AN with Gaussian Noise Distribution across different log o val-
ues in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories
per seed. Standard deviations are indicated by =, and the highest scores within 5% of the best per
task are highlighted in bold.

Dataset Environment 0.0 -0.5 -1.0 -2.0
medium halfcheetah 4.701+6.79 47.6410.69 51.761+0.41 65.36+1.38
medium hopper 4791+£2.24  76.00+2.60  71.41+£23.17 3.98+3.90
medium walker2d 54.844+27.71  82.77+2.33 85.67+1.47 0.2940.82
medium-replay  halfcheetah 8.48+8.63 22.49+10.17 35.76£4.75 34.69+3.66
medium-replay  hopper 1.8240.01 40.63+38.92  79.68+14.52  22.08+7.66
medium-replay ~ walker2d -0.2240.06 -0.2140.02 63.3627.89 5.46+2.18
medium-expert  halfcheetah 41.80+4.72 84.29+4.21 89.94+4.55 67.524+23.73
medium-expert  hopper 58.54£26.48 107.21£8.34  70.02£26.77 1.52+0.49
medium-expert ~ walker2d 78.384+41.07 108.40+£0.37 103.35+11.21  -0.12+0.04
expert halfcheetah 86.06£3.94  93.10+0.36 97.69+0.60 4.201+4.43
expert hopper 104.92+4.26 108.02+£6.66  76.50+18.32 1.03+0.32
expert walker2d 108.33+0.52  108.99+0.19  109.87+£0.09  18.99+23.86
full-replay halfcheetah 0.3440.30 69.54+1.47 73.944+0.74 80.42+1.40
full-replay hopper 0.65+0.03 105.52+1.24  108.56+0.60  39.47+12.38
full-replay walker2d 1.35+£1.55  71.36+£43.82  101.12+1.79  25.37+26.63
random halfcheetah 17.13+£0.76  22.26+1.08 31.424+0.75 30.08+2.54
random hopper 7.311+0.12 7.5940.14 8.94+2.01 9.77+0.52
random walker2d -0.09+0.01 -0.10+0.00 7.15+0.59 3.83+1.78
Average 34.57 64.20 70.34 23.00
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Table 12: Final performance of TD3-AN with Laplace Noise Distribution across different log o values
in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories per
seed. Standard deviations are indicated by +, and the highest scores within 5% of the best per task

are highlighted in bold.
Dataset Environment 0.0 -0.5 -1.0 -2.0
medium halfcheetah 27.96+9.30  47.93+£0.46  51.65+0.50  64.79+0.80
medium hopper 53.43+5.83  84.00+10.10  93.21+3.67 6.79+5.63
medium walker2d 74.03+7.65 84.62+0.50  84.97+1.80 0.50+1.15
medium-replay  halfcheetah 32.894+7.08 37.54+4.96 47.04+2.77 45.72+7.22
medium-replay  hopper 23.234£2.71  35.24436.73  79.60+£18.46 30.72+10.57
medium-replay ~ walker2d -0.2340.02 1.5843.06  71.20+37.33 6.6411.82
medium-expert  halfcheetah 88.46+2.19 88.00£6.00  96.38+0.82 85.87+8.19
medium-expert  hopper 58.91£16.27 91.04+29.10 74.974+29.34 2.814+1.47
medium-expert  walker2d 109.05+0.69  109.61+£0.29  110.00+0.36 0.64+1.64
expert halfcheetah 88.15+4.16  93.87£0.62  99.16+1.09  48.57+14.05
expert hopper 95.631+24.05  96.38+4.84  70.74+18.13 2.12+1.84
expert walker2d 108.68+0.49  109.57+0.32 110.52+£0.25 24.42+23.81
full-replay halfcheetah 15.65+12.65 73294256  76.60+0.65 80.54+-0.97
full-replay hopper 91.48+32.87 106.67+0.65 107.07+0.51 48.80+20.94
full-replay walker2d 4.27+1.86 99.16+0.75  102.15+1.02 38.84+26.75
random halfcheetah 20.57+1.93 24.27+1.56 29.87+2.06 32.31+1.52
random hopper 7.64+0.19 7.62+0.20 11.08+2.51 9.64+0.72
random walker2d -0.09+0.00 -0.07+0.01 9.18+4.38 5.3442.17
Average 49.98 66.13 73.63 29.73

Table 13: Final performance of TD3-AN with hybrid noise distribution across different log o values
in Gym-MuJoCo environments. Results are averaged over five training seeds with 10 trajectories per
seed. Standard deviations are indicated by =+, and the highest scores within 5% of the best per task

are highlighted in bold.
Dataset Environment -20 -10 -5 -1
medium halfcheetah 61.49+0.73 60.30+£0.84  56.00+0.41 25.04+£7.55
medium hopper 91.46+8.23 95.66+2.80  98.18+2.07 65.68+1.60
medium walker2d 39.524£31.27 76.67+£34.27  88.49+1.28 38.13£35.15
medium-replay  halfcheetah 53.35+0.68 52.25+0.75  47.394+2.42 13.92£11.19
medium-replay  hopper 96.04£7.99  102.30+0.41 100.31£0.93 0.95+0.57
medium-replay ~ walker2d 84.03£16.25 86.30+8.64  87.82+14.09 0.86+1.61
medium-expert  halfcheetah 94.05+6.34  96.44+1.83 91.66+4.29 43.59+3.74
medium-expert  hopper 41.61£8.27 71.33£9.41  83.46+18.92  108.84+2.10
medium-expert  walker2d 114.85+0.47 111.98+£0.90 111.27+0.49 104.10£10.82
expert halfcheetah 104.45+8.52 97.84+13.39 101.62+1.00  73.68+£8.91
expert hopper 37.20£11.38  48.20+8.17 65.58+9.04 109.03£6.74
expert walker2d 32.954+55.54 59.99+63.97 112.76+0.45  108.92+0.33
full-replay halfcheetah 81.17+1.07 81.12+0.63  78.61+1.21 -1.37+0.51
full-replay hopper 108.31+0.33  107.67+1.13  106.86+0.31 0.8640.53
full-replay walker2d 102.16+7.32  103.78+1.60 103.114+0.86 0.67£1.21
random halfcheetah 30.01£1.12  29.49+1.20 25.62+0.89 2.22+1.17
random hopper 9.554+0.99 9.99+1.44 9.0940.65 1.04£0.06
random walker2d 5.69+1.82 5.79+1.66 3.58+2.69 -0.1440.02
Average 66.00 72.06 76.19 38.67
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Table 14: Final performance of IQL-AN with 7 = 0.7 in Gym-MuJoCo environments. Results are
averaged over five training seeds with 10 trajectories per seed. Standard deviations are indicated by
=+, and the highest scores within 5% of the best per task are highlighted in bold.

Dataset Environment -20 -10 -5 -1
medium halfcheetah 55.41+0.71 54.04+047  51.79£0.32  44.871+0.24
medium hopper 68.16£5.66  92.04£10.86 98.41+2.57  65.48+4.48
medium walker2d 87.47+8.21 86.32+4.76  79.93+17.56  78.431+4.73
medium-replay  halfcheetah 49.454+0.97 45.65+2.59  43.14£3.23 26.954+6.87
medium-replay  hopper 100.82+£0.86  100.25+0.43  99.63+£0.49 3.69+3.34
medium-replay ~ walker2d 85.07+14.89  79.22+41.81  88.76+8.04 9.49+6.16
medium-expert  halfcheetah 25.91+£3.30 29.72+4.85 35.72+£6.05  69.73+22.27
medium-expert  hopper 31.524£19.68  46.454+21.39 76.87£29.94 105.26+8.35
medium-expert  walker2d 101.614+16.03  109.62+1.29 106.17+£7.39 108.31+0.75
expert halfcheetah 9.73+3.00 9.90+5.86 10.71£2.16  75.79+24.55
expert hopper 11.514+12.58  37.40+26.85 69.05£10.55 108.61+5.87
expert walker2d 51.41£27.97  40.72+£35.29 98.75£19.89  108.17+0.52
full-replay halfcheetah 78.28+0.28 76.58+0.87  75.62+1.44  65.04+2.21
full-replay hopper 105.61+£0.67  105.78+0.80 105.86:+£0.80 104.42:+0.92
full-replay walker2d 97.351+6.67 100.56+£3.81  99.17+£2.62  69.59+£13.45
random halfcheetah 24.25+7.02 23.74+7.43 16.764+4.99 1.71£0.92
random hopper 8.78+0.43 8.68+1.24 9.04+0.50 0.86+0.05
random walker2d 19.14+£7.39 19.41£6.36 -0.1140.00 -0.2140.00
Average 56.19 59.23 64.74 58.12

Table 15: Final performance of TD3-AN in AntMaze environments. Results are averaged over five
training seeds with 100 trajectories per seed. Standard deviations are indicated by =+, and the highest
scores within 5% of the best per task are highlighted in bold.

a=03 ‘ a=05 ‘ a=1.0

Dataset Environment -20.0 -10.0 -5.0 -20.0 -10.0 -5.0 -20.0 -10.0 -5.0

- umaze 90.80+£327  96.80+1.30  93.80+2.77  93.60+4.88  97.20+295  98.40+1.52  98.40+1.14  97.80+3.27  98.40+1.52
diverse  umaze 55.404+33.88 31.20+£26.44 25.60413.35 64.20£15.96 40.60+20.23  27.80+6.10  74.60+10.95 50.00£23.61  39.20+3.49
play medium 78.20+6.34  77.20+4.32  5520426.52  65.804+9.42  76.00+620  7540+5.86  68.80+13.55  83.80+6.06  73.40+10.95
diverse  medium 74.40+11.55  82.00+£9.62  20.40417.49 61.00+£25.50  79.20+6.83  11.80+13.66  82.60+6.88  85.80+2.59 12.40£7.57
play large 62.00+17.13  44.60£16.29  17.00+11.29  65.40+6.15  52.20+10.78 19.80+£12.03  57.80+9.98  43.40£12.58  14.00+9.27
diverse  large 39.804+11.45 45.40+11.89 27.80411.82 42.20£21.50  56.20+4.21  35.80+19.23  53.00421.35 58.00+£11.38 23.40+17.83

Average

66.77

62.87

39.97 65.37

66.90

44.83

72.53

69.80 43.47

Table 16: Final performance of IQL-AN in AntMaze environments. Results are averaged over five
training seeds with 100 trajectories per seed. Standard deviations are indicated by =+, and the highest
scores within 5% of the best per task are highlighted in bold.

a=0.3 a=0.>5 a=1.0
Dataset Environment -20.0 -10.0 -20.0 -10.0 -20.0 -10.0
- umaze 89.40+1.52 89.20£1.79  90.00+3.32  88.20+2.49 89.80+1.30 91.20+2.39
diverse ~ umaze 61.604+2.97 53.60+£6.07 62.604+2.79  59.80+2.86 68.00+7.18 60.8016.18
play medium 74.40+8.23 73.00+£3.46 74.20+4.92  70.40+4.62 55.40+5.86 50.00+4.69
diverse  medium 68.50+5.97 75.20+3.63  70.80+4.15  67.20+5.67 49.404+3.36  42.40+9.71
play large 49.40+6.73 48.60+4.45  38.80+2.77 35.20+4.44  2.60+3.13 3.00+1.22
diverse  large 52.80+5.89 52.20+£6.38 43.00+£10.61 36.40+5.08  3.40+2.51 1.60+1.67
Average 66.02 65.30 63.23 59.53 44.77 41.50
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C.6 TRAINING CURVES
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Figure 7: Training curves of TD3-AN with Gaussian Noise Distribution in Gym-MuJoCo.
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Figure 8: Training curves of TD3-AN with Laplace Noise Distribution in Gym-MuJoCo.
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Figure 9: Training curves of TD3-AN with hybrid noise distribution in Gym-MuJoCo.
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Figure 10: Training curves of TD3-AN with hybrid noise distribution in AntMaze.
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Figure 11: Training curves of IQL-AN with hybrid noise distribution in Gym-MuJoCo (7 = 0.7).
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Figure 12: Training curves of IQL-AN with hybrid noise distribution in AntMaze.
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