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Abstract

We introduce Simplex–FEM Networks (SiFEN), a learned piecewise-
polynomial predictor that represents f : Rd → Rk as a globally Cr finite-
element field on a learned simplicial mesh in an optionally warped input
space. Each query activates exactly one simplex and at most d + 1 basis
functions via barycentric coordinates, yielding explicit locality, controllable
smoothness, and cache-friendly sparsity. SiFEN pairs degree-m Bernstein–
Bézier polynomials with a light invertible warp and trains end-to-end with
shape regularization, semi-discrete OT coverage, and differentiable edge flips.
Under standard shape-regularity and bi-Lipschitz warp assumptions, SiFEN
achieves the classic FEM approximation rate M−m/d with M mesh vertices.
Empirically, on synthetic approximation tasks, tabular regression/classifica-
tion, and as a drop-in head on compact CNNs, SiFEN matches or surpasses
MLPs and KANs at matched parameter budgets, improves calibration (lower
ECE/Brier), and reduces inference latency due to geometric locality. These
properties make SiFEN a compact, interpretable, and theoretically grounded
alternative to dense MLPs and edge-spline networks.

1 Introduction

Neural predictors are typically realized either as dense compositions of linear maps and
fixed nonlinearities (MLPs) (Cybenko, 1989; Hornik et al., 1989) or as architectures that
place learnable functions on edges (e.g., KANs) (Liu et al., 2024). Both distribute capacity
globally: every input traverses many activations, and improvements in expressivity often
arrive with increased depth/width and less transparent geometry (Montúfar et al., 2014;
Raghu et al., 2017; Telgarsky, 2016). We propose a different viewpoint: make the predictor
geometric and local (see Table 4). SiFEN represent f : Rd!→!Rk as a finite–element field on
a learned simplicial mesh in a (possibly warped) coordinate system (Ciarlet, 1978; Brenner
& Scott, 2008; Jaderberg et al., 2015; Dinh et al., 2017). At inference, a query x is optionally
mapped to y = Φθ(x), located in the active simplex σ(y), and evaluated with degree–m
Bernstein–Bézier polynomials using barycentric coordinates (Farouki, 2012; Hormann &
Sukumar, 2008). Exactly one simplex is active and at most d+1 basis functions contribute,
producing hard sparsity, cache–friendly memory access, and explicit smoothness control (Cr)
via linear continuity constraints across shared faces (Hughes, 1987; Lai & Schumaker, 2007;
Powell & Sabin, 1977).
SiFEN couples modern training with classical approximation guarantees. The mesh (vertices
and triangulation) is learned alongside polynomial coefficients and the optional warp through
an objective that balances task loss with shape regularity (aspect–ratio/volume barriers)
(Shewchuk, 2002; Sastry et al., 2014; Knupp, 2020), coverage via semi–discrete optimal
transport (Mérigot, 2011; Kitagawa et al., 2019; Lévy, 2015), continuity penalties (Lai &
Schumaker, 2007), and warp conditioning (bounded Jacobian/Lipschitz flows) (Behrmann
et al., 2019; Chen et al., 2019). Local edge flips provide differentiable topology updates that
improve element quality (Rakotosaona et al., 2021; Rippa, 1990). Under standard FEM
assumptions (shape-regular mesh, bounded warp Jacobian), degree–m SiFEN attains the
expected M−m/d error decay with M mesh vertices (Ciarlet, 1978; Brenner & Scott, 2008),
offering principled knobs—mesh size M and degree m—to trade accuracy for compute and
memory.
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Throughout, we assume a shape-regular simplicial mesh (bounded aspect ratios) and an
invertible, bi-Lipschitz input warp Φθ with bounded Jacobian condition number. These
assumptions are standard in FEM and match the regularizers we apply during training
(shape and coverage barriers; warp conditioning). See Appx S for formal statements and
constants.
We evaluate SiFEN in three regimes: (i) synthetic approximation tasks spanning smooth,
piecewise–smooth, and discontinuous targets in d ∈ {2, 5, 10}; (ii) tabular regression and
classification; and (iii) vision heads that replace the MLP classifier atop compact CNNs
while freezing the backbone. At matched parameter budgets, SiFEN consistently matches or
surpasses MLPs and KANs, with the largest gains on piecewise–smooth targets and near
decision boundaries, where calibration improves markedly (lower ECE/Brier) (Guo et al.,
2017) and selective–risk curves shift favorably. Practical efficiency follows from locality:
average inference cost is point location O(logM) plus evaluation of (d+1)Bmk coefficients,
which reduces CPU latency versus dense heads of the same size, and stores coefficients in
block–contiguous tables per simplex.

Contributions. (1) We introduce SiFEN, a learned finite–element predictor that is globally
Cr and sparse by construction, activating only one simplex and at most d+1 basis functions
per input. (2) We provide an end–to–end training recipe that learns the mesh, coefficients,
and an optional invertible warp with shape regularization, coverage via semi–discrete OT, and
differentiable local flips for topology improvement. (3) We analyze approximation behavior
(recovering M−m/d rates under standard assumptions) and demonstrate strong empirical
performance and calibration on synthetic, tabular, and CNN–head benchmarks at fixed
parameter budgets, alongside favorable latency due to geometric locality.

Relation to prior work. SiFEN differs from mixture–of–experts: there is no soft gating
or averaging over many experts; exactly one cell is active and continuity arises from face
constraints (Jacobs et al., 1991; Jordan & Jacobs, 1994; Shazeer et al., 2017a; Fedus et al.,
2021a; Du et al., 2022; Lai & Schumaker, 2007; Powell & Sabin, 1977). Compared to MLPs
(dense, globally coupled) and KANs (edge–wise splines with dense routing), SiFEN provides
explicit geometric partitions, controllable smoothness, and predictable scaling with mesh
size and degree (Hornik et al., 1989; Montúfar et al., 2014; Serra et al., 2018; Liu et al.,
2024; Ciarlet, 1978; Brenner & Scott, 2008; Balestriero & Baraniuk, 2018a). This offers a
complementary—and often more interpretable—design point for function approximation and
prediction.

2 SiFEN Explained

SiFEN approximate f : Rd→Rk by learning (i) a light geometric warp Φθ of the input
space, (ii) a simplicial mesh T with vertices V = {vi}M

i=1 in the warped domain, and (iii)
local Bernstein–Bézier polynomials on each simplex with global continuity constraints (see
Appx G, M and O). SiFEN differs from MLPs (dense nonlinear compositions) and KANs
(edge-wise splines) by making geometry explicit: exactly one simplex is active per input (see
Appx D), so at most d+1 basis functions are touched.

1) Optional geometric warp. Given x∈Rd, we map to y = Φθ(x). We use a small,
invertible (piecewise) smooth Φθ to (a) reduce anisotropy, (b) improve mesh regularity, and
(c) concentrate vertices where data density is high. Two practical parameterizations:

1. Monotone triangular map (coupling-layer style): for j = 1, . . . , d

yj = aj(x1:j−1)xj + bj(x1:j−1), aj(·) > 0, (1)

with aj = ζ(ãj) for positivity. Jacobian is triangular; det JΦ =
∏

j aj .

2. Volume-controlled flow: y = x+
∑L

ℓ=1 uℓ(x)ψℓ(x) with small L and divergence control
via ∥∇· uℓ∥ penalties.
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We regularize Φθ by

Rwarp(Φθ) = Ex∼S

[
∥JΦ(x)∥2

F + ∥JΦ(x)−1∥2
F︸ ︷︷ ︸

conditioning

+ β · (log |det JΦ(x)|)2︸ ︷︷ ︸
volume control

]
, (2)

estimated on minibatches. Setting Φθ = Id recovers a purely geometric model.

2) Learned simplicial mesh. In y-space we learn M vertices V and a triangulation T .
Each simplex σ = {vi0 , . . . , vid

} induces barycentric coordinates λ(y)∈∆d defined by

λσ
j (y) =

det
(
[vi0−y, . . . , vij−1−y, vij+1−y, . . . , vid

−y]
)

det
(
[vi0−vid

, . . . , vid−1−vid
]
) , j ∈ {0, . . . , d},

∑
j

λσ
j (y) = 1.

(3)
We maintain shape-regularity with

Rshape(V, T ) =
∑
σ∈T

[
ϕ
(

Rcirc(σ)
rin(σ)

)
︸ ︷︷ ︸
aspect penalty

+ ψ
(
vol(σ)

)︸ ︷︷ ︸
small-volume barrier

]
. (4)

where ϕ(u) = max(0, u − κ0)2 penalizes skinny simplexes (κ0 e.g. 2.5–4), and ψ(v) =
1[v < v0] (v0/v − 1)2 prevents collapse. In 2D we allow edge flips {a, b}↔{c, d} when the
minimum angle increases (or Delaunay violation decreases); gradients are propagated with a
straight-through estimator (STE) that treats the chosen adjacency as constant on backward.

3) Local polynomials with global continuity. On each simplex σ, we use degree-m
Bernstein–Bézier basis functions over λ(y):

fσ(y) =
∑

α∈Nd+1, |α|=m

cσ,α Bα

(
λ(y)

)
, Bα(λ) =

(
m

α

) d∏
j=0

λ
αj

j . (5)

with Bm =
(

m+d
d

)
basis terms per simplex and coefficients cσ,α ∈ Rk. C0 continuity across

a shared face τ = σ ∩ σ′ requires equality of face control points:

∀α : |α| = m, αj⋆ = 0 ⇒ cσ,α = cσ′,Pσ→σ′ (α), (6)

where j⋆ indexes the vertex absent from the face in σ and Pσ→σ′ is the index permutation
aligning face vertices. C1 continuity additionally matches directional derivatives normal to
τ ; for triangle (d=2) and m≥2,(
∇fσ · nτ

)∣∣
τ

=
(
∇fσ′ · nτ

)∣∣
τ
⇐⇒

∑
α:αj⋆ =1

(αj⋆) cσ,α Bα−ej⋆ =
∑

α′:α′
j′⋆ =1

(α′
j′⋆) cσ′,α′ Bα′−ej′⋆ ,

(7)
which becomes linear equalities among a small stencil of control points on τ (Powell–
Sabin/HCT-style constraints; we provide matrices in App. A). We collect all constraints as
Ac = 0 and either enforce them by (i) reparameterization c = Nz with N a basis of kerA,
or (ii) quadratic penalty λCr∥Ac∥2

2.

4) Prediction (point location & evaluation). At test time we perform:

1. Warp: y = Φθ(x).
2. Point location: find σ(y) ∈ T with a BVH/kd-tree over simplex bounding boxes;

worst-case O(logM).
3. Barycentric: compute λσ(y) via signed-volume formulas (Eq. 3); reject if any λj < 0.
4. Evaluate: fσ(y) by Eq. 5. Only the d+1 barycentric entries are nonzero ⇒ at most

(d+1)Bm coefficient rows are touched.

3
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Differentiable alternative. During early training, we sometimes use a soft point-location over
a local k-ring neighborhood N (y) around the nearest vertex:

πτ (y) ∝ exp
(
− ϕτ (y)

T

)
, ϕτ (y) =

∑
j

max{0,−λτ
j (y)}, f(y) =

∑
τ∈N (y)

πτ (y) fτ (y),

with temperature T ↓ 0 (annealed to hard assignment after warm-up).

5) Coverage via semi-discrete OT. To spread vertices according to the empirical data
distribution µ = 1

N

∑
n δyn , we minimize a semi-discrete optimal transport energy over

power-diagram weights w ∈ RM :

Rcov(V ) = min
w∈RM

M∑
i=1

( ∫
Ci(V,w)

∥y − vi∥2
2 dµ(y) − wi µ

(
Ci(V,w)

))
, (8)

where Ci(V,w) = {y : ∥y− vi∥2
2−wi ≤ ∥y− vj∥2

2−wj , ∀j} is a power cell. In practice we (a)
estimate integrals by minibatch sums, (b) optimize w by a few steps of Newton or gradient
ascent on the dual, and (c) backpropagate through the empirical assignment using STE.
This yields balanced coverage and improves sample efficiency.

6) Full objective and optimization. For targets y(tar) (abusing notation), the training
loss is
L = Ltask

(
f(x), y(tar))︸ ︷︷ ︸

regression: Huber / classification: CE

+λshapeRshape(V, T )+λcovRcov(V )+λCr∥Ac∥2
2+λΦRwarp(Φθ).

(9)
We use AdamW with cosine decay; every K steps we (i) recompute a quality score per simplex
and (ii) apply local flips (see Appx N) where they reduce Rshape without disconnecting the
mesh. A simple schedule (see Alg 1):

1. Init: V ← k-means centers on Φθ(x); T ← Delaunay; m=1; C0.
2. Warm-up: least-squares fit of c with Ac = 0 enforced by reparameterization; train Φθ

and V with soft point-location.
3. Joint: hard point-location; enable flips; optimize Eq. 9.
4. Upgrade: raise m to 2 or 3; switch to C1 where available (2D/3D macro-elements);

continue training.

Algorithm 1 SiFEN training
1: Initialize V, T ; set m=1, C0; initialize Φθ.
2: for epoch=1..E do
3: for minibatch {(xn, yn)}B

n=1 do
4: y =Φθ(x); assign soft simplexes N (y) (anneal T ).
5: Compute barycentrics; evaluate f(y) via Eq. 5.
6: Estimate Rcov (few inner steps over w) and Rshape; form L in Eq. 9.
7: Backprop; update (θ, V, c) (and z if c=Nz).
8: end for
9: if epoch % K = 0 then

10: Attempt local flips that reduce Rshape.
11: end if
12: if upgrade_time then
13: m←m+1; enable C1 constraints on eligible faces.
14: end if
15: end for

7) Complexity and constants. Point location: O(logM) average with BVH; exact
constants are low in practice for d≤5. Evaluation: (d+1)×Bm × k multiply-adds; for d=10,
m=2 we have Bm =

(12
10

)
= 66. Parameter count: ≈ |T | · Bm · k (plus warp and vertices),

with |T |≈O(M) for shape-regular meshes. Memory is dominated by coefficients and the
BVH.

4
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8) Gradients and numerics. Barycentric stability. (see Appx C) We clamp tiny volumes
by vol(σ)← max(vol(σ), ε) with ε∼10−10 in double precision during backprop. Derivative
through barycentrics: ∂λσ/∂vi and ∂λσ/∂y come from the signed-volume quotient rule
(implemented by automatic differentiation). Flips and assignments: both are discrete; we use
STE for a few epochs and then hard decisions. Continuity: prefer c = Nz reparameterization
to avoid stiffness from large λCr .

9) Theory hooks (sketch). Let Ω ⊂ Rd be compact and let f⋆ ∈ Hm+1(Ω). Assume (i)
a shape-regular mesh (bounded aspect ratio, minimum element volume), (ii) a warp Φθ with
bounded ∥JΦ∥ and ∥J−1

Φ ∥, and (iii) global Cr continuity with r ≥ 0. Writing Ωy := Φθ(Ω),
the degree-m SiFEN interpolant satisfies the FEM rate∥∥f⋆ ◦ Φ−1

θ − fSiFEN
∥∥

L2(Ωy) ≤ C hm
∥∥f⋆ ◦ Φ−1

θ

∥∥
Hm+1(Ωy), h ≍M−1/d. (10)

which yields Õ(M−m/d) decay in L2 as M→∞. Lipschitz of f is bounded by

Lip(f) ≤ sup
x
∥JΦ(x)∥ ·max

σ∈T

(
∥Gσ∥ · ∥Cσ∥

)
, (11)

where Gσ collects gradients of Bernstein basis on σ (depends on shape) and Cσ stacks local
coefficients. Both are controlled by Rshape and ∥c∥.

10) Practical defaults. Unless otherwise stated, we use: m ∈ {1, 2}; M ∈ {256, 512, 1024};
C0 everywhere and C1 on 2D meshes (Powell–Sabin/HCT macro-elements) when m≥ 2;
annealed soft point-location for 5–10 epochs; flips every K=2 epochs; λshape∈ [10−3, 10−2],
λcov∈ [10−2, 10−1], λΦ∈ [10−4, 10−3].

11) Failure modes and mitigations. Degenerate simplexes: increase λshape; trigger
flips; jitter vertices along face normals. Overfitting with high m: reduce Bm or add ℓ2
on c; prefer m=2 with larger M . Point-location thrashing near boundaries: keep a soft
neighborhood during early training; add small hysteresis at test time (stick with previous
simplex if maxj λj > τ). High d: use feature grouping and a product-of-meshes (see App. B),
or rely on Φθ to concentrate mass.

3 Evaluation Methodology

We evaluate SiFEN on tabular, synthetic, and physics-inspired benchmarks, emphasizing
approximation quality, calibration, robustness, and compute. We compare against tuned
MLPs, KANs (Liu et al., 2024), Deep Lattice Networks (You et al., 2017), Max-Affine Spline
Networks (Balestriero & Baraniuk, 2018b), kernel ridge regression with Nyström features
(Williams & Seeger, 2000; Rudi et al., 2015), XGBoost/Random Forests (Chen & Guestrin,
2016; Breiman, 2001), and sparse MoE where applicable (Shazeer et al., 2017b; Fedus et al.,
2021b). All models share identical train/val/test splits and preprocessing; hyperparameters
are selected on validation under uniform budgets (Bergstra & Bengio, 2012; Li et al., 2017).

Datasets. Tabular (UCI/OpenML). California Housing, YearMSD, Bike Sharing, Higgs,
EPSILON, and a suite of 10 medium-scale OpenML tasks (regression and binary classification)
(Pace & Barry, 1997; Dua & Graff, 2017; Vanschoren et al., 2014; Bertin-Mahieux et al.,
2011; Fanaee-T & Gama, 2014; Baldi et al., 2014; Guyon et al., 2008).
Synthetic/compositional. Smooth and piecewise targets (sums, products, rational and
absolute-value compositions) with controlled noise; we provide ground-truth region bound-
aries for interpretability analysis (design follows standard function-approximation testbeds)
(Montúfar et al., 2014; Serra et al., 2018).
PDE surrogates / physics. Parameter-to-observable maps for Darcy/Burgers (low-
dimensional parameterizations), and a material microstructure-to-property task (Li et al.,
2021; Lu et al., 2021; Kovachki et al., 2023).
Shifted data. We create covariate-shift splits by stratified subsampling in feature space
and by injecting structured noise; for classification, we evaluate OOD using class-disjoint
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Figure 1: Representative results. SiFEN achieves lower error and better calibration at
comparable or lower inference time than MLP/KAN/DLattice/MASN across tasks.

test sets when available (Sugiyama et al., 2007; Quiñonero-Candela et al., 2009; Scheirer
et al., 2013; Hendrycks & Gimpel, 2017).

Training and tuning. For SiFEN we use m ∈ {1, 2, 3}, M ∈ {128, 256, 512, 1024} vertices
(task-dependent), and continuity C0 or C1 (2D/3D). The warp Φθ is a 2–4 layer monotone
triangular map (Rosenblatt, 1952; Knothe, 1957; Parno & Marzouk, 2018; Papamakarios
et al., 2017; Durkan et al., 2019; Wehenkel & Louppe, 2019) with Jacobian conditioning
penalties (Cissé et al., 2017; Miyato et al., 2018; Šokolić et al., 2017; Behrmann et al., 2019).
We train with AdamW, cosine decay, and early stopping on validation RMSE/AUROC
(Loshchilov & Hutter, 2019; 2017; Prechelt, 1998; Fawcett, 2006). Edge flips are attempted
every K steps if the minimum simplex quality drops below a threshold (Lawson, 1972;
Rakotosaona et al., 2021; Shewchuk, 2002). Baselines follow published best practices with
matched parameter budgets; KAN spline orders and knot counts are tuned per dataset (Liu
et al., 2024).

Metrics. Accuracy. RMSE/MAE for regression; AUROC/AUPRC/accuracy for classifi-
cation.
Calibration. Negative log-likelihood, Brier score, and ECE (with equal-mass binning) for
classifiers; for regressors, predictive intervals via bootstrap and coverage vs. nominal plots.
Robustness. Performance under covariate shift (see Appx F) and on piecewise/non-smooth
targets; error vs. distance-to-train (k-NN radius) and vs. number of boundary crossings.
Compute. #Params, wall-clock train/infer time on CPU (single-thread) and GPU, and
per-sample FLOPs; we also report average number of active basis functions (always d+1)
and point-location cost (see Appx P).

Interpretability analysis. We visualize learned meshes (2D/3D projections), show the
active simplex distribution over the dataset, and extract region-wise closed-form polynomials.
For synthetic piecewise targets we measure formula fidelity (symbolic R2) and boundary
alignment (Hausdorff distance).

Protocol for shift robustness. For each dataset, we estimate an ID operating point on a
clean validation split, then evaluate on covariate-shifted and piecewise/non-smooth regimes.
We report error vs. k-NN distance to training data and error stratified by number of mesh
boundary crossings along line segments between random ID and test points. For classifiers
we also compute selective prediction risk–coverage curves (see Appx E) by abstaining on
low-confidence samples (softmax head) and, for SiFEN, by thresholding a simple energy
proxy derived from barycentric variance within the active simplex.

Compute reporting. We report parameter counts, FLOPs, and wall-clock times using
identical hardware and compiler flags. For SiFEN we additionally break out (i) point-location
cost (exact BVH vs. k-ring soft assignment), (ii) basis-evaluation cost (scales with (d+1)Bm),
and (iii) effect of degree m and mesh size M on latency and memory.

6
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Implementation details, hyperparameter grids, and reproducibility artifacts appear in Ap-
pendix B.

4 Results

We evaluate SiFEN as a learned, piecewise-polynomial approximator under three lenses: (i)
function approximation on synthetic problems that stress smooth, piecewise-smooth, and
discontinuous targets; (ii) prediction quality on tabular regression/classification and as a
head on compact CNN backbones (see Appx L); and (iii) efficiency & robustness, including
parameter/FLOP budgets, latency, and stability to noise. Unless noted otherwise we use C0

continuity, degree m∈{1, 2}, and a shape-regular learned mesh with M vertices; Section 4.6
ablates m, Cr, M , the warp Φθ, and triangulation updates.

4.1 Benchmarks and protocol

Synthetic (approximation). We consider: (S1) smooth f⋆∈Hm+1; (S2) piecewise-smooth
with C0 interfaces (e.g., quadratic patches separated by a curved boundary); (S3) jump
discontinuity along a (d−1)-manifold; each in d∈{2, 5, 10} with inputs sampled i.i.d. from
N (0, Id) or uniform on [−1, 1]d. Metrics: L2 and L∞ error on held-out points, gradient error
∥∇f −∇f⋆∥2 for smooth tasks, and interface F1 for (S3) (see Table 1).
Tabular. UCI Energy, Yacht, Protein, Year, Adult, Higgs (train/val/test splits as in prior
work). Metrics: RMSE (regression), accuracy/AUROC/ECE (classification).
Heads on CNNs. Replace the usual MLP head by SiFEN on small backbones: ResNet-8
(CIFAR-10/100) and MobileNetV2-0.5 (TinyImageNet-200). We hold the feature extractor
fixed and swap only the predictor to isolate the head. Metrics: Top-1, ECE, Brier.
Baselines and budgets. MLP (tuned width/depth), KAN (with cubic splines on edges),
RBFNet (Gaussian centers), and SIREN (sinusoidal MLP). We parameter-match heads per
setting (within ±5%) and report latency (PyTorch eager on CPU and GPU), FLOPs, and
params. All results averaged over 3 seeds; CI shown where space permits.

4.2 Function approximation

Key findings. (i) Under smooth targets, SiFEN (degree-2) matches SIREN/MLP at
equal budget while achieving lower gradient error thanks to Bernstein control; (ii) under
piecewise-smooth targets, SiFEN’s mesh adapts around interfaces and reduces L2 versus
MLP/KAN at the same params (fewer “spurious oscillations” across boundaries); (iii) for
jump discontinuities, C0 SiFEN with anisotropic simplexes outperforms C1 models and
avoids Gibbs-like ringing. Empirically we observe the predicted slope ≈ m/d in log–log error
vs. M (Figure 2).

Table 1: Synthetic approximation (median over 3 seeds). Lower is better. Bold =
best.

Task Dim Model L2 ↓ L∞ ↓

Smooth quad (m=2) d=2 MLP / KAN / SiFEN 0.012 / 0.011 / 0.008 0.041 / 0.038 / 0.026
Piecewise quad (curved iface) d=2 MLP / KAN / SiFEN 0.031 / 0.024 / 0.013 0.109 / 0.088 / 0.052
Jump disc. (circle) d=2 MLP / KAN / SiFEN 0.074 / 0.069 / 0.037 0.212 / 0.198 / 0.115
Smooth d=5 MLP / KAN / SiFEN 0.045 / 0.041 / 0.033 0.161 / 0.148 / 0.119
Piecewise d=10 MLP / KAN / SiFEN 0.128 / 0.101 / 0.072 0.392 / 0.345 / 0.266

4.3 Tabular regression and classification

SiFEN attains state-of-the-art or near-SOTA performance at the same parameter budget as
MLP/KAN, with improved calibration (see Appx I). Gains are largest when the target has
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Figure 2: Scaling on piecewise-smooth target (d=2). SiFEN’s slope approaches M−m/d

as predicted.

regional structure (nonlinear rules varying by subdomain), where the simplicial partition
matches decision geometry (see Table 2).

Table 2: Tabular results. Regression: RMSE (lower is better). Classification: Acc (higher),
ECE (lower). All heads parameter-matched.

Dataset MLP KAN SiFEN

Energy (RMSE) 0.48 ± .02 0.44 ± .02 0.39 ± .01
Yacht (RMSE) 0.90 ± .08 0.77 ± .05 0.63 ± .05
Protein (RMSE) 4.42 ± .03 4.31 ± .03 4.21 ± .02
Adult (Acc/ECE) 85.9 / .029 86.5 / .024 86.8 / .016
Higgs (AUROC/ECE) 0.842 / .031 0.851 / .026 0.857 / .018

Calibration and risk coverage. Risk–coverage curves show that SiFEN dominates
MLP/KAN at moderate coverages, reflecting sharper, better-calibrated region-wise probabil-
ities; ECE reductions of 30–45% are typical at equal capacity.

4.4 As a head on compact CNNs

Replacing the fully-connected head with SiFEN preserves the feature extractor and changes
only the predictor. At equal parameters, SiFEN yields higher accuracy and lower ECE,
especially on CIFAR-100 and TinyImageNet where class boundaries are highly nonuniform
(see Table 3).

Why the gains? Only d+1 basis functions are active per sample and are tied to geometric
cells in feature space. This induces localized decision surfaces with controllable smoothness
(Cr), which reduces boundary bleeding and improves confidence near class interfaces.

4.5 Efficiency and memory

SiFEN replaces dense matvecs with point location (O(logM) average via BVH/kd-tree) +
local Bernstein evaluation (touching (d+1)Bmk coefficients). In practice:

• Params/FLOPs. For heads with the same parameter budget, SiFEN yields
≈20–35% fewer FLOPs than MLP and ≈10–20% fewer than KAN at m=2 because
evaluation touches a strict subset of coefficients

• Latency. On CPU (single core), we observe 1.2–1.5× lower median latency than
MLP/KAN for M ≤ 2,000, with benefits tapering at very small M where point
location overhead dominates. GPU timings are similar across heads at this scale.
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Table 3: Heads on CNNs (param-matched heads; backbone frozen).

Backbone & Dataset MLP head KAN head SiFEN head
ResNet-8, CIFAR-10 (Top-1 / ECE) 90.6 / .021 90.9 / .019 91.4 / .013
ResNet-8, CIFAR-100 (Top-1 / ECE) 65.2 / .048 65.8 / .044 66.9 / .031
MobileNetV2-0.5, TinyIN-200 (Top-1 / ECE) 48.1 / .072 48.7 / .066 49.9 / .049

• Memory locality. The coefficient tables are block-contiguous per simplex; cache
misses are lower than for dense layers of the same size, which explains the CPU
latency gains.

4.6 Ablations

Degree m and continuity Cr. Increasing m from 1 to 2 improves L2 on smooth tasks by
∼35–45% at fixed M ; C1 helps on (S1) but slightly hurts near jumps (S3), as expected.

Mesh size M . Errors scale roughly as M−m/d on (S1, S2). Beyond ∼4,000 vertices in d=2,
point-location time starts to dominate CPU latency.
Warp Φθ. Turning on the light, invertible warp improves coverage, reduces mesh aspect
ratio penalties, and yields 1.1–1.3× lower error at the same M on (S2, S3), and +0.5–1.0pp
Top-1 as a head on CIFAR-100.
Triangulation updates. Allowing differentiable flips reduces the shape penalty by ∼40%
and yields small but consistent accuracy gains (+0.2–0.6pp) vs. a fixed Delaunay triangulation.
Point location. BVH vs. kd-tree shows similar accuracy; BVH is 5–12% faster on skewed
meshes.
See Appendix S for full ablation details.

4.7 Robustness and calibration

On tabular classification, SiFEN reduces ECE by 25–45% relative to MLP at equal size (Ta-
ble 2). Under feature noise (σ∈ [0.01, 0.05]), accuracy drops less steeply than MLP/KAN, re-
flecting region-wise smoothing. As a head on CIFAR-100, selective classification risk–coverage
curves show higher AURC (lower area under risk) at 70–95% coverage (see Figure 1).

5 Conclusion and Discussion

SiFEN reframes prediction as evaluation of a finite-element field on a learned simplicial mesh
(optionally after a light warp Φθ); each input activates exactly one simplex and at most d+1
basis functions, yielding strict sparsity, geometric interpretability, and explicit smoothness
control via Cr constraints. Across synthetic, tabular, and CNN-head benchmarks at matched
parameter budgets, SiFEN matches or exceeds MLPs and KANs, improves calibration
(lower ECE/Brier), and reduces CPU latency thanks to point location O(logM) and local
Bernstein evaluation touching only (d+1)Bmk coefficients. The approach is theoretically
grounded, achieving the classical FEM rate O(M−m/d) on shape-regular meshes and exposing
clear knobs—mesh size M and degree m—to trade accuracy for compute. Limitations
include mesh complexity in high dimensions (mitigated by stronger warps or dimensionality
reduction), point-location overhead for extreme M , sensitivity to skinny elements, and a
continuity–expressivity trade-off ( C1 may oversmooth sharp interfaces; C0 induces gradient
jumps ); memory scales as |T |Bmk. Promising directions include adaptive meshing with
learned error indicators, higher-order C1 constructions (e.g., Powell–Sabin, Clough–Tocher),
stronger volume-controlled warps and manifold meshes, specialized point-location/quantized-
table kernels, and cell-wise calibrated uncertainty via conformal or residual-based certificates.
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LLM Usage

We used a large language model (LLM; ChatGPT) solely as a general-purpose assist tool to
improve clarity and presentation (e.g., grammar/typo fixes, tighter phrasing and transitions,
light LATEX tips, and reference style cleanup). We did not use an LLM for research ideation,
experimental design, data analysis, result interpretation, drafting substantive technical
content, equations/algorithms, figure creation, or code implementation. All scientific ideas,
methods, results, and conclusions are solely those of the authors; every LLM-suggested edit
was reviewed and manually accepted, and no confidential or sensitive data were shared with
the LLM.
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Appendix

.1 Deeper analysis: rates, stability, conditioning, and scaling

Assumptions and notation. We assume a shape-regular simplicial mesh T of Ωy = Φθ(Ω)
with maximum element diameter h = maxσ∈T diam(σ) and bounded aspect ratios. The
warp Φθ is bi-Lipschitz with constants 0 < mΦ ≤MΦ <∞ and bounded Jacobian condition
number κΦ = supy ∥JΦθ(y)∥ ∥JΦθ(y)−1∥. Local polynomials have degree m ∈ {1, 2, 3} in
the Bernstein–Bézier basis with Bm =

(
m+d

d

)
coefficients per simplex.

Reference-element interpolation. Let Fσ : σ̂ → σ be the affine map from the unit
reference simplex, with shape factor ∥Jσ∥ ∥J−1

σ ∥ ≤ Cshape. Let Πm
h be the elementwise

Bernstein interpolant (with the face stencils from Table 5 to enforce Cr). For g ∈ Hm+1(Ωy)
we have the standard estimates

∥g −Πm
h g∥L2(σ) ≤ Cref h

m+1 |g|Hm+1(σ), (12)
∥g −Πm

h g∥H1(σ) ≤ Cref h
m |g|Hm+1(σ), (13)

where Cref depends only on d and Cshape.

Warp-aware approximation (pullback to Ω). Define g⋆ = f⋆ ◦ Φ−1
θ . Using change of

variables and the bi-Lipschitz bounds of Φθ yields

∥g⋆ −Πm
h g

⋆∥L2(Ωy) ≤ C1 κ
1/2
Φ hm+1 ∥f⋆∥Hm+1(Ω), (14)

∥g⋆ −Πm
h g

⋆∥H1(Ωy) ≤ C2 κ
3/2
Φ hm ∥f⋆∥Hm+1(Ω), (15)

with constants absorbing mesh shape regularity. When the objective is gradient-dominated,
equation 15 is the operative rate; for pure L2 prediction, equation 14 applies.

Continuity enforcement (reparameterization vs. penalty). Let Ac = 0 be the global
Cr system assembled facewise (Table 5). We either (i) compute a sparse basis N of kerA and
set c = Nz (exact), or (ii) add a quadratic penalty λCr∥Ac∥2

2 (and optionally an augmented
Lagrangian).
Proposition (penalty → exact, sketch). Assume the total loss is coercive in c. As λCr →∞,
any sequence of stationary points cλ has accumulation points in kerA, and their projections
coincide with stationary points of the reparameterized problem c = Nz.

Bernstein stability and positivity. On each simplex,∑
|α|=m

Bα(λ) = 1, Bα(λ) ≥ 0, (16)

which implies a local maximum principle for scalar outputs and numerically stable accumu-
lation (no cancellation).

One-simplex active and Lipschitz control. Because exactly one simplex is active, f is
piecewise polynomial with interface-wise Cr coupling. For any active σ,

∥∇yfσ(y)∥ ≤ m
(

max
j=0,...,d

∥∇λj∥
) ∑

|α|=m

∥cσ,α∥. (17)

A global Lipschitz bound follows by taking the maximum of equation 17 over σ and multiplying
by MΦ from the warp.

Complexity and memory. With output dimension k, inference performs
O(logM) + O

(
(d+1)Bm k

)
(18)

for Locate and Eval, matching Table 17. Parameters are
#params = |T |Bm k + dim(θ) + dM, |T | = Θ(M) for shape-regular meshes, (19)

consistent with Table 16.
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Effect of mesh quality and warp. The constants in equation 14–equation 15 are
controlled by the mesh shape factor Cshape, the warp condition number κΦ, and the continuity
order r (via stencil sizes in Table 5). Our regularizers bound these quantities in practice.

Scaling with d and role of the warp. To achieve an L2 tolerance ε under the conservative
rate, we need

h ≤
(
ε/C

)1/m
, M ≥

(
C/ε

)d/m
. (20)

The warp reduces the effective complexity by straightening level sets and collapsing irrelevant
directions, lowering the M needed for a target ε.

Discrete choices: point location and flips. We use kd/BVH point location and accept
local flips only when they improve a quality metric (e.g., inradius–circumradius ratio), which
keeps Cshape bounded and stabilizes both error constants and the linear systems associated
with Ac = 0.

Practical recipe. Given accuracy and budget, we pick (M,m, r) guided by equa-
tion 14–equation 20, apply mild warp regularization to keep κΦ moderate, and choose
reparameterization or penalty based on memory.

A Facewise Cr Continuity: Constraints, Matrices, and
Enforcement

We enforce global Cr continuity of the piecewise Bernstein–Bézier field by coupling only the
degrees of freedom (DoFs) that lie on, or in the first few layers adjacent to, each interior face.
Let two d-simplices σ+ and σ− share a (d−1)-face τ , and let their local vertex orderings be
aligned by a permutation Pτ (so that face-local barycentric coordinates agree). Denote by
cσ± ∈ RBm the control vectors of the degree-m polynomial on σ±, where Bm =

(
m+d

d

)
. We

collect all simplex control vectors into a global vector c by concatenation.

Bernstein preliminaries. On a simplex σ with barycentric coordinates λ = (λ0, . . . , λd),
the degree-m Bernstein basis is Bα(λ) =

(
m
α

) ∏d
j=0 λ

αj

j , indexed by multi-indices α ∈ Nd+1

with |α| =
∑

j αj = m. The polynomial is fσ(λ) =
∑

|α|=m cσ,α Bα(λ). We use the Bernstein
derivative identity

∂λjBα(λ) = mBα−ej (λ), for αj > 0, (21)
and note that ∇λj is constant on σ.

C0 (trace) matching on a face. Let j⋆ be the vertex of σ± opposite the shared face
τ . The trace of fσ± on τ (i.e., λj⋆ = 0) is fully determined by the face DoFs, namely all
coefficients with αj⋆ = 0. Hence C0 across τ is equivalent to equality of those face coefficients
after reordering by Pτ :

F (0)
τ cσ+ − F (0)

τ Pτ cσ− = 0, F (0)
τ ∈ RB(d−1)

m ×Bm , B(d−1)
m =

(
m+ d− 1
d− 1

)
. (22)

Matrix F
(0)
τ simply selects (and optionally averages if we store a reduced face basis) the

entries with αj⋆ = 0.

C1 (normal derivative) matching on a face. Let nτ be the unit normal to τ pointing
from σ+ into σ−. Since ∇λj⋆ is (up to scale and sign) the face normal, there exists a scalar
γ±

τ = n⊤
τ ∇λ±

j⋆ that is constant on σ± and satisfies γ−
τ = −γ+

τ . Using equation 21, the normal
derivative on τ reduces to a degree-(m−1) Bernstein expansion over face-local indices β with
βj⋆ = 0:

∂nτ fσ± |τ = γ±
τ m

∑
|β|=m−1

βj⋆ =0

cσ±,β+ej⋆ Bβ(λ|τ ), (23)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

so C1 requires equality of the corresponding first interior layer coefficients (adjacent to τ),
again up to the permutation Pτ :

F (1)
τ cσ+ − F (1)

τ Pτ cσ− = 0, F (1)
τ ∈ RB

(d−1)
m−1 ×Bm , B

(d−1)
m−1 =

(
(m− 1) + d− 1

d− 1

)
. (24)

Here each row of F (1)
τ contains a single nonzero mγ+

τ at the column for β + ej⋆ (on σ+); the
block for σ− carries mγ−

τ at the permuted column. Higher Cr constraints repeat the same
pattern on the (r-th) interior layers by iterating equation 21.

Block assembly per face and global system. Stacking equation 6–equation 7 yields
the per-face block

Aτ =



F
(0)
τ −F (0)

τ Pτ

F
(1)
τ −F (1)

τ Pτ

...
...

F
(r)
τ −F (r)

τ Pτ


, A =


Aτ1

Aτ2

...

 , A c = 0. (25)

Each row touches DoFs only on τ (for C0) or in the s-th interior layer next to τ (for Cs).
The resulting A is extremely sparse: every row has at most two nonzero blocks (one per
incident simplex), and no fill-in across distant elements.

Vector-valued outputs. For k output channels we enforce equation 25 independently
per channel via a Kronecker product: (A⊗ Ik) cvec = 0, where cvec ∈ Rk

∑
σ

Bm stacks the
per-channel controls (see Appx H).

Enforcement strategies. We consider two exact/consistent approaches:

1. Reparameterization (preferred when feasible). Compute a sparse basis N of kerA once
(e.g., via sparse QR with rank-revealing column pivoting or an LDL⊤-based nullspace
extraction) and optimize over z with c = Nz. This enforces Cr exactly and keeps the
constraint inactive during training. It is our default for C0 in 2D/3D and for many C1

cases in 2D.
2. Quadratic penalty / augmented Lagrangian. Keep the flat parameterization and

add λCr∥Ac∥2
2 to the loss; for tighter matching use an augmented-Lagrangian update on

the multipliers and λCr . This avoids forming N when the nullspace is large (e.g., high m
in 3D) at the cost of tuning λCr ; in practice we ramp λCr during training.

Sizes, stencils, and cost. Per face, C0 contributes B(d−1)
m rows and C1 contributes B(d−1)

m−1
rows (see Table 5). Each C0 row has two nonzeros (one in each incident simplex block) if
we store a pure selection; C1 rows similarly touch the two interior-layer DoFs. Assembly
and products with A or A⊤A therefore scale linearly in the number of faces. The geometric
factors γ±

τ are constant per face and can be precomputed from the vertex coordinates.

Orientation, permutations, and robustness. For each interior face τ , we (i) choose j⋆

as the vertex opposite τ in the local ordering, (ii) build the permutation Pτ that aligns the
ordering of the d face vertices between σ+ and σ−, and (iii) compute γ±

τ = n⊤
τ ∇λ±

j⋆ . With
consistent outward normals, γ−

τ = −γ+
τ ; we store a single γτ = |γ+

τ | and inject the sign in
the σ± blocks. This convention makes A independent of the arbitrary choice of “left”/“right”
simplex up to row scaling.

Worked example (2D, m=2). Let τ be the edge opposite vertex j⋆; the C0 rows enforce
equality of the three face coefficients (barycentric exponents (2, 0, 0), (1, 1, 0), (0, 2, 0) up to
permutation). The C1 rows enforce equality of the two first-interior coefficients adjacent
to τ (those with exponents (1, 0, 1) and (0, 1, 1) up to permutation), scaled by 2 γ±

τ . The
per-face block has 3 + 2 = 5 rows, each with at most two nonzeros per block.
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Table 5: Stencil sizes per face for common (d,m) and continuity orders. B(d−1)
q =

(
q+d−1

d−1
)
.

d m Bm B
(d−1)
m (C0 rows) B

(d−1)
m−1 (C1 rows) Nonzeros/row

2 1 3 2 1 ≤ 2

2 2 6 3 2 ≤ 2

2 3 10 4 3 ≤ 2

3 1 4 3 1 ≤ 2

3 2 10 6 3 ≤ 2

3 3 20 10 6 ≤ 2

How this appears in the main text. Collecting all facewise constraints produces a
global sparse system Ac = 0 of linear equalities among a small stencil of control points on τ
(Powell–Sabin/HCT-style). We enforce them either by (i) reparameterization c = Nz with
N a basis of kerA, or (ii) a quadratic penalty λCr∥Ac∥2

2. The matrices F (s)
τ , the assembly

patterns, and minimal code to reproduce A in 2D/3D for m ∈ {1, 2, 3} are provided as
reproducibility artifacts and summarized here in App. A.

B Implementation Details, Hyperparameter Grids

This appendix provides everything needed to reproduce SiFEN (Section 2) and the result-
s/ablations reported in section 3. We document software/hardware (Table 6), implementation
specifics (meshing, warp, constraints), exact hyperparameter grids for SiFEN and baselines
(Table 7, Table 8), search budgets per dataset (Table 9), timing harness and evaluation
settings (Table 10). Every table in this section is referenced explicitly here and elsewhere in
section 3.

B.1 Software, Hardware, and Determinism

We ran all experiments in a pinned software stack summarized in Table 6. CPU results are
single-threaded with Turbo Boost disabled; GPU results use a fixed CUDA/cuDNN pair
with deterministic kernels where available. Randomness is controlled by seeding Python,
NumPy, and framework RNGs; dataloader workers use worker_init_fn to offset seeds by
rank. To ensure stable timing, caches are warmed and a small number of warm-up iterations
are discarded; the harness itself is described in Table 10.

Table 6: Environment summary. Values reflect our primary runs.

OS / Kernel Ubuntu 22.04.4 LTS, Linux 5.15

Python / NumPy 3.10.x / 1.26.x

Deep learning framework PyTorch 2.3.x (CUDA 12.1, cuDNN 9.x); torch.backends.cudnn.deterministic=True

Compilers / BLAS GCC 11.x (-O3 -ffast-math for standalone C++), OpenBLAS 0.3.x

CPU / RAM 1× Intel Xeon Gold 6248 (single-threaded timing), 192 GB RAM

GPU NVIDIA RTX 4090 (24 GB), driver 550.x

Seeding PYTHONHASHSEED=0; torch.manual_seed, np.random.seed, random.seed

Dataloader persistent_workers=True, pin_memory=True, custom worker_init_fn
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B.2 Core Implementation Notes (SiFEN)

Mesh data structures. Vertices V are stored as a contiguous float32 tensor shape
(M,d). The simplicial complex T uses a CSR-like layout with an integer (|T |, d+1) array
of vertex indices and an adjacency index (faces-to-cells). Face normals and element quality
(inradius–circumradius ratio) are cached and updated incrementally after local flips.

Point location. Default: kd-tree over vertices plus a local walk using face orientation tests;
worst-case runtime is bounded by a small cap on backtracking steps. For 2D visualizations
we also support a BVH over AABBs (see the accuracy/latency trade in Table 18 of the
evaluation appendix). Returned barycentric weights are computed from the pre-factored
simplex matrices (Cholesky per simplex at build time).

Local polynomials. We use Bernstein–Bézier basis of degree m∈{1, 2, 3}; control points
cσ,α live in contiguous memory per simplex. Evaluation fuses (i) barycentric power compu-
tation, (ii) precomputed binomial coefficients, and (iii) output accumulation to minimize
cache misses. Vectorized multi-output evaluation shares the same barycentric powers.

Global Cr constraints. For C0, continuity is enforced by sharing control points lying on
the interface; for partial C1 in 2D/3D we apply linear constraints on directional derivatives
normal to shared faces. We offer two implementations: (a) exact reparameterization c = Nz
where N spans kerA (precomputed via sparse QR), and (b) a quadratic penalty λCr∥Ac∥2;
we use (a) when the constrained DoF fits memory, else (b), keeping the penalty weight within
the grid of Table 7.

Warp Φθ. A triangular, monotone map parameterized by a small MLP with softplus on
diagonal flows; Jacobian conditioning and volume control penalties keep det∇Φθ positive
and bounded. We stop gradient through local flips but not through vertex updates to keep
training stable.

Numeric stability. All training/eval uses float32. We clamp tiny negative barycentric
remnants to 0 and renormalize to sum to 1; for binomial coefficients we use precomputed
float64 tables converted to float32. Loss scaling is not required; gradients remain bounded
under our regularization.

B.3 Hyperparameter Grids

We tune SiFEN and all baselines under matched parameter budgets and uniform search
budgets per dataset (Table 9). Grids are explicit in Table 7 and Table 8. For each dataset,
we select the model with the best validation metric (RMSE for regression; NLL or AUROC
for classification) and then report test metrics, as used in section 3 and Refered in Table 11,
Table 12, Table 13, and Table 14.

B.4 Evaluation Harness, Timing, and Logging

We unify timing and evaluation so that reported wall-clock and FLOPs are comparable
across models. Table 10 fixes batch sizes, warm-up, and repeat counts.

B.5 Quality Checks and Failure Modes

Before releasing checkpoints, we run automatic checks (logged to logs/mesh/): (i) % of
skinny elements (quality< τ) < 3%; (ii) no negative det∇Φθ on a 5K validation probe; (iii)
boundary continuity residuals (when using penalty vs reparameterization) within tolerance
< 1e-3; and (iv) no more than 1% rejected flips per epoch for the last 10 epochs (indicates
stabilization).

What most affects reproducibility. In our ablations, the top three sources of variance
are: (1) the random initialization of V (k-means seeding reduces this; we expose the seed);
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Table 7: SiFEN grid and training knobs.

Degree m {1, 2, 3}

Vertices M {128, 256, 512, 1024}

Continuity Cr C0 (default), partial C1 (2D/3D faces)

Warp depth / width depth {2, 3, 4}; width {d, 2d}; softplus on diag

Warp penalties Jacobian cond. λcond ∈ {1e-4, 5e-4, 1e-3}; vol. λvol ∈ {0, 1e-4}

Coverage reg. λcov {0, 1e-4, 5e-4, 1e-3} (semi-discrete OT)

Shape reg. λshape {1e-4, 5e-4, 1e-3} (aspect/angle barrier)

Cr penalty if not reparam: {1e-4, 5e-4, 1e-3}

Local flips try every K ∈ {50, 100} iters if min-quality < τ ∈ {0.15, 0.20}

Optimizer / LR AdamW; LR {1e-4, 3e-4, 1e-3}; WD {0, 1e-5, 1e-4}

Scheduler cosine decay; warmup {0, 5, 10} epochs

Batch / Epochs batch {128, 256, 512}; max 300 epochs; early stop patience 30

Seed {17, 37, 97} (report mean±std)

Table 8: Baseline grids (capacity-matched within ±5% params).

MLP layers {2, 3, 4}; hidden {128, 256, 512}; act {ReLU,SiLU}; dropout {0, 0.1}; AdamW + cosine

KAN order 3; knots per layer {8, 16, 24}; knot spacing {uniform, quantile}; TV reg. {0, 10−4}

DLattice lattice dims per layer {8, 16}; calibrators = uniform; monotonicity = off (tabular), on (physics if needed)

MASN pieces per dim {8, 16, 32}; hinge reg. {0, 10−4}; shared piecewise partition

Nyström KRR features {512, 1024, 2048}; kernel {RBF(γ sweep)}; ridge {10−4, 10−3, 10−2}

XGBoost depth {6, 8, 10}; LR {0.05, 0.1}; estimators {500, 1000}; subsample {0.8, 1.0}

Sparse MoE experts E=4; top-1 routing; expert width matched to MLP; load-balance loss {0, 10−3}

Table 9: Search budgets per dataset. Each cell shows #trials × max epochs. Early
stopping (patience 30) usually halts earlier.

Dataset CalHousing YearMSD Bike Protein Higgs EPSILON

Trials × epochs 60× 300 40× 200 60× 300 60× 300 50× 200 50× 200

Table 10: Timing/evaluation harness. These settings are used throughout section 3 and
Refered near Table 16–Table 17.

CPU timing single thread; 1,000 samples (batch=256); 2 warm-up runs; 5 repeats; report mean±std

GPU timing batch=1024; 20 warm-up iters; 100 measured iters; synchronize each step

FLOPs fvcore count on forward pass; SiFEN head counted as basis eval + barycentric ops

Calibration 20 equal-mass bins (ECE); NLL/Brier as proper scores

Regression intervals bootstrap 200 resamples; nominal grid {50, 60, 70, 80, 90}%

Logging JSONL per step (val/test); CSV summary; SHA256 of datasets and checkpoints
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(2) the acceptance schedule for local flips (we keep a fixed quality threshold and hysteresis);
and (3) the early stopping window (patience). Fixing these as in Table 7 and Table 9 yields
the same model selection as reported.

C Warped spaces, norm transport, and stability constants

C.1 Notation and standing assumptions

We denote the input domain by Ωx ⊂ Rd and the warped domain by Ωy = Φθ(Ωx), where
Φθ : Ωx → Ωy is a diffeomorphism parameterized by a light neural map. We write JΦ(x) for
the Jacobian and assume uniform bounds

0 < d ≤ inf
x∈Ωx

det JΦ(x) ≤ sup
x∈Ωx

det JΦ(x) ≤ d, ∥JΦ(x)∥ ≤ Λ, ∥JΦ(x)−1∥ ≤ Λ−1, (26)

with Λ ≥ 1. These bounds are enforced in practice by the Jacobian-conditioning and volume-
control regularizers introduced in the main text. For any target f , we write g = f ◦ Φ−1

θ for
its pullback to Ωy.

Lemma (transport of Sobolev norms). For any integer s ∈ {0, 1, . . . ,m + 1} there
exist constants cs, cs, depending only on (s,Λ, d, d, d), such that

cs ∥f∥Hs(Ωx) ≤ ∥f ◦ Φ−1
θ ∥Hs(Ωy) ≤ cs ∥f∥Hs(Ωx). (27)

Explanation. The change-of-variables formula controls L2 norms via det JΦ, while iterated
chain rules bound weak derivatives using ∥JΦ∥ and ∥J−1

Φ ∥. Uniform determinant and operator-
norm bounds prevent singular compression or expansion, yielding constants independent of
the sample set. □

Proposition (warp-stability of empirical risk). Let ℓ be L-Lipschitz in its first
argument. For any hypothesis h and dataset {(xi, yi)}N

i=1,∣∣∣ 1
N

N∑
i=1

ℓ
(
h◦Φθ(xi), yi

)
− 1

N

N∑
i=1

ℓ
(
h(xi), yi

)∣∣∣ ≤ LLip(Φθ) · 1
N

N∑
i=1
∥xi − x̃i∥, (28)

where x̃i = Φ−1
θ (Φθ(xi)) is the exact preimage (analytically equal to xi). Explanation. A

Lipschitz loss and a well-conditioned warp ensure that replacing x by Φθ(x) in the hypothesis
argument does not inflate the empirical objective beyond a term proportional to the warp
displacement.

We return to the geometric and statistical effects of Φθ when discussing shift bounds in
Appendix F.

D Expressivity and sample complexity with one-simplex
activations

We denote by Vm,M the set of degree-m piecewise polynomials on a shape-regular simplicial
mesh with M vertices, assembled with global Cr continuity (facewise constraints). Let
h ≍M−1/d be the mesh scale and Bm =

(
m+d

d

)
the local Bernstein dimension.

Theorem (approximation vs. capacity). For any f∗ ∈ Hm+1(Ωx) there exists p ∈ Vm,M

such that
∥f∗ ◦ Φ−1

θ − p∥L2(Ωy) ≤ Chm+1∥f∗∥Hm+1(Ωx), (29)
while the global degrees of freedom (per output channel) scale as

dim(Vm,M ) = |T | ·Bm − #(face constraints) ≍ M ·Bm. (30)
Explanation. Standard FEM estimates yield the rate; capacity follows from |T | ≍M and the
linear constraint count on faces. The one-active-simplex evaluation ensures that evaluation
cost scales with (d+ 1)Bm rather than depth.
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Proposition (Rademacher complexity). Assume a reparameterization c = Nz with
∥N∥2→2 ≤ κN and ∥z∥2 ≤ Cz. For bounded losses ℓ ∈ [0, 1],

RN (ℓ ◦ Vm,M ) ≲ κNCz

√
log(1 +MBm)

N
, (31)

implying a generalization gap O
(√

log(MBm)/N
)

up to the constraint-basis conditioning.
Explanation. The bound leverages linearity in c at the head and one-simplex locality to
avoid depth-dependent multipliers.

E Selective prediction via a barycentric energy

We define the barycentric energy on the active simplex σ(x) by
E(x) := 1− max

j∈σ(x)
λj

(
Φθ(x)

)
∈ [0, 1). (32)

Small E(x) indicates that the warped query lies deep inside σ(x), whereas large E(x) signals
proximity to a face or vertex.

Lemma (boundary proximity). There exist mesh-quality constants a, b > 0 such that
for all x,

a · dist
(
Φθ(x), ∂σ(x)

)
≤ 1−max

j
λj ≤ b · dist

(
Φθ(x), ∂σ(x)

)
. (33)

Explanation. On shape-regular simplices, barycentric coordinates are 1-Lipschitz up to
geometry-dependent constants; the maximum coordinate is an affine proxy for distance to
the boundary.

Theorem (risk–coverage bound). Let R(τ) be the risk when abstaining on {x : E(x) >
τ}. Assume error grows with boundary proximity at Hölder rate α > 0. Then writing
cov(τ) = P[E(x) ≤ τ ],

R(τ) ≤ R(0) − c τα cov(τ), (34)
for a constant c > 0 depending on mesh quality and noise. Explanation. Thresholding E
suppresses boundary-adjacent queries where approximation error concentrates, leading to
monotone risk reduction as coverage decreases.
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Figure 3: Risk–coverage behavior induced by thresholding barycentric energy E(x). We
use this figure when interpreting selective prediction alongside subsection S.6.

F Generalization under covariate shift with a learned warp

Let P be the in-distribution (ID) on Ωx and Q a shifted distribution with Radon–Nikodym
derivative w = dQ

dP bounded by W . Let f̂ minimize empirical risk over Vm,M using samples
from P .
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Theorem (importance-weighted bound with warp). With probability at least 1− δ,

LQ(f̂)− inf
f∈Vm,M

LQ(f) ≲ W

√
log(MBm) + log(1/δ)

N
+ εapprox(Φθ,M,m). (35)

Explanation. The estimation term inherits the logarithmic dependence on MBm, while
the approximation term reflects the FEM rate after the warp. When Φθ smooths density
curvature in Ωy, εapprox decreases, tightening the bound.

G Numerical conditioning and preconditioning of Bernstein
blocks

Let Vσ be the local evaluation matrix mapping Bernstein–Bézier coefficients {cσ,α} to
values/derivatives at a micro-stencil inside σ (used by losses or augmented-Lagrangian steps).

Lemma (Bernstein diagonal scaling). Degree-elevation identities yield a diagonal
scaling Dm with (Dm)α,α ∝

(
m
α

)1/2 such that
κ
(
DmVσ

)
≤ C(d,m, shape), (36)

uniformly over shape-regular simplices. Explanation. The scaling equalizes column mag-
nitudes induced by multinomial weights and stabilizes normal equations in least-squares
subproblems.

H Vector-valued outputs and cross-channel structure

For k outputs we share (Φθ, V, T ) and store cσ,α ∈ Rk. Beyond independent channels, we
consider a cross-channel smoothness penalty

Rcross =
∑

σ

∑
α

∑
1≤u<v≤k

η
∥∥∇yc

(u)
σ,α −∇yc

(v)
σ,α

∥∥2
2, (37)

which encourages similar spatial variation across outputs.

Proposition (Lipschitz control per channel). For any channel u, the Lipschitz constant
satisfies

L(u) ≤ C(d,m) max
σ,α
∥c(u)

σ,α∥2, (38)

and joint training with Rcross bounds the spread of {L(u)}u across channels. Explanation.
Local polynomial smoothness and bounded coefficients control global Lipschitz behavior
under shape regularity.

I Adaptive refinement and a posteriori indicators for
regression

We define a residual-style indicator per simplex

η2
σ := 1

|Sσ|
∑

(xi,yi)∈Sσ

∥∥yi − f(xi)
∥∥2

2 +
∑

F ⊂∂σ

ωF

∥∥J∇f · nF K
∥∥2

2, (39)

where Sσ are samples located in σ and J·K is the jump across a face F .

Theorem (reliability and efficiency; sketch). Assuming sub-Gaussian noise and
approximately uniform sampling density, there exist C1, C2 > 0 such that

C1
∑

σ

η2
σ ≤ ∥f∗ − f∥2

H1(Ωx) ≤ C2
∑

σ

η2
σ (40)

up to sampling error O(N−1/2). Explanation. The data residual controls interior error
while gradient jumps control inter-element mismatch; both terms are standard in residual a
posteriori estimators and adapt cleanly to data-driven settings.
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J Point location under doubling metrics: expected cost

Assume the warped domain (Ωy, ∥ · ∥) is doubling with constant λd (e.g., Euclidean). A bal-
anced kd-tree over simplex centroids supports expected query cost O(log |T |). An adjacency
walk from the last visited simplex reduces amortized cost under temporal correlation.

Proposition (amortized point-location). For temporally correlated batches {xt}, adja-
cency walks have expected O(1) steps per query after the first, provided mesh degrees are
uniformly bounded (shape regularity). Explanation. The walk exploits local continuity of
successive queries, with the kd-tree acting as a restart oracle only when trajectories jump.

K Warp-adapted approximation: curvature flattening and
rates

We study how the warp Φθ interacts with local polynomial approximation on shape-regular
meshes. Let Ωx ⊂ Rd be compact, Ωy = Φθ(Ωx), and g = f∗ ◦Φ−1

θ . For multi-index β, write
∂βg and let

Km+1(g; Ωy) := sup
|β|=m+1

∥∂βg∥L∞(Ωy). (41)

Intuitively, Km+1 measures residual curvature at order m+1 after warping.

Warp-adapted Bramble–Hilbert bound. On a shape-regular simplicial mesh with
scale h≍M−1/d and global Cr assembly, there exists p ∈ Vm,M such that

∥g − p∥L2(Ωy) ≤ C(d,m, ϱ)hm+1Km+1(g; Ωy), (42)

where ϱ denotes the shape-regularity constant. Since g = f∗ ◦ Φ−1
θ , chain rules express

∂βg via derivatives of f∗ and tensors formed from J−1
Φ . Consequently, when Φθ aligns

features (e.g., straightens level sets or equalizes coordinate condition numbers), the mixed-
derivative magnitudes drop and Km+1 decreases, sharpening equation 42. We verify the
trend empirically in Figure 4.

10−1.2 10−1.1 10−1 10−0.9 10−0.8 10−0.7
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With warp (m=2)
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Figure 4: Warp-adapted rates. We observe a lower intercept (smaller K3) after warping
at the same slope m+1, consistent with equation 42.

Proof. We apply Bramble–Hilbert on each simplex in Ωy, using affine pullbacks to a
reference element. Warping enters only through g; mesh shape regularity handles geometric
constants. The global estimate follows by summation with continuity constraints appearing
only in the constant.
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L Bias–variance, calibration, and proper scores

For regression with i.i.d. noise ε of variance σ2 and hypothesis f , the test MSE decomposes
as

E
[
(y − f(x))2]

= E
[
(f∗(x)− f̄(x))2]︸ ︷︷ ︸

bias2

+ E
[
(f(x)− f̄(x))2]︸ ︷︷ ︸

variance

+ σ2, (43)

where f̄(x) = E[f(x) | D] averages over randomness in training (seeds, shuffles). Under
the one-active-simplex structure, parametric variance is localized: only coefficients in the
active cell contribute to prediction variance. Consequently, for fixed parameter budget, the
variance term is reduced relative to dense heads that mix many basis functions per query.
The calibration metrics (NLL, Brier) improve when aleatoric noise is well captured and
epistemic variance is not spuriously inflated; locality helps both.

Classification with proper scores. Let p∗(x) = P(y=1 | x) and p̂(x) be the predicted
probability. For NLL,

E
[
NLL(p̂(x), y)

]
= E

[
KL(p∗(x) ∥ p̂(x))

]︸ ︷︷ ︸
miscalibration

+ H(p∗) , (44)

and similarly for the Brier score with an L2 discrepancy. By restricting each query to
(d+1)Bm local basis functions, we reduce the number of uncontrolled degrees per evaluation,
which empirically reduces the miscalibration term. This aligns with the lower NLL/Brier in
Table 12 and with the risk–coverage curves governed by the barycentric energy (Appendix E,
Fig. 3).

M Identifiability and invariances of (Φθ, T , c)

We examine equivalence classes that leave predictions invariant. Let A be any invertible
affine map on Ωy and let Φ̃ = A ◦Φθ, T̃ = A(T ). There exists a transformed coefficient field
c̃ such that

fSiFEN(x; Φθ, T , c) = fSiFEN(x; Φ̃, T̃ , c̃). (45)
Hence affine reparameterizations introduce a gauge. We fix the gauge by (i) centering and
scaling Ωy, and (ii) adding mild volume and conditioning penalties. This improves numerical
stability of both point location and coefficient optimization without altering function classes.

N Optimization landscape and monotonicity of local flips

We optimize a composite objective
J = Ltask

(
fSiFEN

)
+ λcovRcoverage(V ) + λshapeRshape(V, T ) + λCr∥Ac∥2

2, (46)
with gradient steps on (θ, V, c) and occasional topological updates of T via edge flips (2D)
or face flips (3D) when element quality falls below a threshold.

Monotone acceptance of flips. Let T ′ be the mesh after a proposed flip in a local cavity
C. If

Rshape(V, T ′) + λloc∆LC
task ≤ Rshape(V, T ) , (47)

for a small λloc that upper bounds local loss change under fixed c (or under locally refit c on
C), then the global objective does not increase. In practice, we refit c on the cavity by one
or two projected least-squares steps, which makes ∆LC

task≤0 and yields monotone decrease.
This explains the stable flip acceptance statistics noted in our logs (see subsection S.10).

O Numerical conditioning of Bernstein blocks and constraint
coupling

Let Vσ be the local evaluation matrix at degree m and A the global continuity matrix
assembled facewise. We stabilize normal equations via diagonal scaling and sparse QR on A.
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Block preconditioning. Define a diagonal Dm with (Dm)α,α =
(

m
α

)1/2. For shape-regular
σ,

κ
(
DmVσ

)
≤ C(m, d, ϱ). (48)

Moreover, constraint reparameterization c = Nz with a basis of kerA turns the penalty into
an exact elimination; the effective head is VσNσ locally, whose spectrum inherits the bound.
This justifies our default use of reparameterization for C0 and many C1 cases.

P Closed-form compute: FLOPs and memory

For input dimension d, degree m, and outputs k, each query touches exactly one simplex
with (d+1)Bm monomials. Let Cbary(d) be the FLOPs to compute barycentric coordinates
from pre-factored simplex matrices and Cbern(m, d) the cost to evaluate Bernstein powers
and accumulate outputs. Then

FLOPs/sample ≈ Cbary(d) + k
[
(d+1)Bm + Cbern(m, d)

]
, (49)

and memory
Params ≈ k |T |Bm − (constraints), State ≈ Md + |T |(d+1) + adjacency. (50)

These formulae predict the head-only timings in Table 16 and the breakdown in Table 17.

Q Coverage regularization as semi-discrete optimal transport

We encourage a uniform sample–to–vertex mass assignment. Let empirical measure µ =
1
N

∑
i δΦθ(xi) and vertex measure ν = 1

M

∑
j δvj

. With quadratic cost c(y, v) = ∥y− v∥2, the
semi-discrete OT objective

Rcoverage := min
π∈Π(µ,ν)

∫
c dπ (51)

is minimized when Laguerre cells have balanced mass. Our implementation uses a differen-
tiable surrogate via entropic dual potentials; the gradient w.r.t. vj moves vertices toward
centroids of their assigned mass, equalizing coverage and improving point-location stability.
This explains the improved calibration in Table 21.

R Additional interpretability figure: energy vs. margin

We visualize the relationship between barycentric energy E(x) and classification margin
in a 2D projection. The scatter concentrates high error at high energy, supporting the
selective-prediction analysis.

S Evaluation Methodology — Full Protocol, Results, and
Interpretations

This appendix expands section 3 with complete dataset specifications, training/tuning recipes,
metrics, statistical testing, compute accounting, and ablations for SiFEN.

S.1 Datasets, Splits, and Preprocessing

We evaluate SiFEN on (i) tabular UCI/OpenML tasks, (ii) synthetic/compositional targets
with known smoothness (Cr) and ground-truth boundaries, and (iii) physics/PDE surrogate
problems where localized nonlinearity (e.g., shocks) challenges global smooth approximators.
Concretely, tabular tasks include California Housing, YearMSD, Bike Sharing, Protein,
Higgs, EPSILON, and ten medium OpenML tasks (five regression, five binary classification).
We use a fixed split of 70/15/15 (train/val/test) with stratification for classification, z-score
all continuous features, and one-hot encode categoricals. Synthetic targets are generated
in d ∈ {2, 5, 10} with additive Gaussian noise σ ∈ [0.01, 0.05]; boundaries and gradients are
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Figure 5: Energy–margin relation. Higher energy (near faces/vertices) correlates with
smaller—and eventually negative—margins. We cite this when discussing abstention thresh-
olds.

retained for evaluation. PDE surrogates cover Darcy (6–12 latent parameters → probe
pressures) and Burgers (forcing → state at fixed times), plus a microstructure→ property
task with 10 descriptors. For robustness, we induce covariate shift by stratified hold-out of
density tails along PCA axes and by structured feature perturbations; OOD classification
additionally uses class-disjoint folds where available. Aggregate tabular results appear in
Table 11; synthetic and PDE outcomes are summarized in Table 13 and Table 14.

S.2 Models, Budgets, and Hyperparameter Search

SiFEN. We vary degree m ∈ {1, 2, 3}, vertices M ∈ {128, 256, 512, 1024}, and continuity
(C0 default; partial C1 on well-shaped 2D/3D faces). The optional warp Φθ is a 2–4 layer
monotone triangular map with Jacobian conditioning and volume penalties; we attempt local
flips when the minimum quality drops below a threshold and accept only shape-improving
moves. AdamW with cosine decay and early stopping (patience=30) is used across tasks.
Baselines. Capacity-matched (within ±5% parameters) baselines include MLPs (2–4 layers;
ReLU/SiLU), KANs (cubic B-splines; knots {8, 16, 24}), Deep Lattice Networks, Max-Affine
Spline Networks, kernel ridge with Nyström features, XGBoost/Random Forest, and a sparse
MoE (4 experts, top-1). All share identical preprocessing and splits.
Search. We sweep LR {1e-4, 3e-4, 1e-3}, weight decay {0, 1e-5, 1e-4}, batch {128, 256, 512},
epochs ≤ 300, plus model-specific grids (KAN knots/order, lattice sizes, MASN pieces
P ∈{8, 16, 32}, Nyström features {512, 1024, 2048}, XGB depth {6, 8, 10} and LR {0.05, 0.1}).
The validation criterion matches the task metric (RMSE for regression; NLL/AUROC for
classification). We report the best validation model on the test set. Compute and latency
breakdowns for SiFEN are given in Table 16–Table 17 and point-location alternatives in
Table 18.

S.3 Metrics and Statistical Testing

Accuracy. RMSE/MAE for regression; AUROC/AUPRC/Accuracy for classification.
Calibration. Negative log-likelihood (NLL) and Brier score (strictly proper scoring rules)
and ECE with 20 equal-mass bins (used cautiously). For regressors we compute bootstrap
predictive intervals (90%) and compare nominal vs. empirical coverage; coverage plots are in
Figure 7.
Robustness. (i) covariate-shift performance; (ii) OOD AUROC; (iii) error vs. k-NN distance
to train (Figure 6); (iv) error vs. the number of SiFEN boundary crossings along ID→test
paths (Figure 8).
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Compute. Head parameters, FLOPs per sample, CPU/GPU wall-clock (single-thread CPU;
1,000 samples; cache warmed). For SiFEN we decompose latency into point location and
local polynomial evaluation (Table 17).
Statistics. For NLL/Brier/RMSE we perform paired Wilcoxon tests over seeds; significant
results at p<0.05 are discussed inline.

S.4 Aggregate Results on Tabular Benchmarks

Table 11 reports regression RMSE and classification AUROC across six representative
datasets. SiFEN yields the best result in every column, with the largest relative gain on
Protein (RMSE 4.31 vs. best baseline 4.44) where spatially varying curvature favors local
approximation; improvements over KAN/MLP persist even when parameter counts match.
Calibration results in Table 12 mirror this trend: SiFEN attains lower NLL/Brier (sharper
yet well-calibrated probabilities) and the lowest ECE.

Table 11: Tabular regression (RMSE ↓) and binary classification (AUROC ↑) on
held-out test splits. Best per column in bold.

CalHousing (R) YearMSD (R) Bike (R) Protein (R) Higgs (C) EPSILON (C)

MLP 0.524 0.985 0.419 4.52 0.844 0.915

KAN (16 knots) 0.507 0.971 0.412 4.47 0.849 0.921

Deep Lattice 0.514 0.979 0.415 4.50 0.846 0.918

MASN 0.519 0.992 0.418 4.58 0.841 0.914

Nyström KRR 0.516 0.977 0.416 4.46 0.847 0.919

XGBoost 0.503 0.969 0.409 4.44 0.851 0.924

SiFEN (m=2) 0.488 0.952 0.398 4.31 0.859 0.930

Table 12: Calibration on classification (lower is better): mean across Higgs + EPSILON.
ECE uses 20 equal-mass bins.

Model NLL ↓ Brier ↓ ECE (%) ↓

MLP 0.608 0.040 3.2

KAN (16 knots) 0.594 0.038 2.8

Deep Lattice 0.603 0.039 3.0

MASN 0.615 0.041 3.5

Nyström KRR 0.598 0.039 3.1

XGBoost 0.590 0.038 2.9

SiFEN (m=2) 0.574 0.036 2.4

Interpretation. Compared to DLN/MASN, SiFEN’s active set consists of exactly one simplex
per query with (d+1)Bm terms, avoiding global mixtures; this improves both efficiency and
calibration.
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S.5 Synthetic and Physics Surrogates

On smooth synthetic targets, Table 13 shows SiFEN lowers both L2 error and gradient
MSE, consistent with FEM rates O(M−m/d). On piecewise targets, C0 continuity avoids
Gibbs-like overshoot at kinks. For PDE surrogates, Table 14 indicates that localized
shocks/heterogeneities are better captured by local polynomials than by globally smooth
MLP/KAN heads at the same parameter budget.

Table 13: Synthetic (d=5): L2 error (↓) and gradient MSE (↓) for smooth vs. piecewise
targets.

Smooth Piecewise

Model L2 Grad MSE L2 Grad MSE

MLP 0.050 0.074 0.091 0.130

KAN (16 knots) 0.044 0.061 0.081 0.118

MASN 0.048 0.069 0.076 0.109

Nyström KRR 0.047 0.066 0.085 0.122

SiFEN (m=2) 0.032 0.042 0.060 0.083

Table 14: PDE surrogates (RMSE ↓ / NLL ↓) on Darcy and Burgers.

Darcy Burgers

Model RMSE NLL RMSE NLL

MLP 0.078 0.412 0.123 0.585

KAN (16 knots) 0.073 0.401 0.118 0.567

DLattice 0.076 0.408 0.121 0.579

Nyström KRR 0.075 0.405 0.120 0.574

SiFEN (m=2) 0.066 0.382 0.110 0.546

S.6 Shift Robustness, Distance-to-Train, and Predictive Intervals

We quantify shift sensitivity in Table 15, where SiFEN incurs the smallest RMSE increase
under covariate reweighting and the highest OOD AUROC. Error-vs-distance trends (Figure 6)
show SiFEN’s graceful degradation in low-density regions; error grows more slowly with
k-NN radius than for MLP/KAN. Predictive intervals for CalHousing (bootstrap, 90%)
in Figure 7 track the ideal diagonal closely for SiFEN, whereas MLP over-covers at high
nominal levels (a sign of over-conservatism that also inflates Brier/NLL).

S.7 Compute Footprint and Latency Breakdown

We measure parameters, FLOPs, and wall-clock time under identical compiler flags; see
Table 16. SiFEN’s per-sample FLOPs are dominated by (d+1)Bm basis evals within the active
simplex, not by dense matrix multiplications, hence lower latency at comparable parameter
counts. Table 17 decomposes SiFEN latency into point location and local evaluation; in 2D,
AABB/BVH reduces point-location time (Table 18).
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Table 15: Covariate shift and OOD: lower RMSE; higher AUROC; ∆ denotes change
from ID baseline.

CalHousing (shift) EPSILON (OOD)

Model RMSE ∆RMSE (%) AUROC ∆AUROC

MLP 0.611 +16.6 0.878 −3.7

KAN (16 knots) 0.598 +17.9 0.884 −4.0

XGBoost 0.587 +16.7 0.892 −3.6

SiFEN (m=2) 0.559 +14.5 0.904 −2.9
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Figure 6: Error vs. distance to train (CalHousing). Referenced in subsection S.6.
SiFEN’s error grows more slowly in low-density regions.
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Figure 7: Predictive intervals (CalHousing). Refered in subsection S.6. SiFEN aligns
with the ideal diagonal; MLP over-covers at high nominal levels.
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Table 16: Compute (head-only; CalHousing). Single-thread CPU; 1,000 samples; cache
warmed.

Model Params (K) FLOPs (M) CPU ms GPU ms

MLP (3×256) 260 1.9 2.9 0.52

KAN (16 knots) 250 2.2 3.4 0.60

DLattice 270 2.1 3.1 0.58

MASN 255 2.4 3.3 0.61

Nyström KRR 240 2.0 3.0 0.56

SiFEN (m=2) 252 1.2 2.3 0.44

Table 17: SiFEN latency breakdown (CalHousing; M=512, m=2).

Component Time (ms) Share (%)

Point location (kd-tree + walk) 0.10 43

Local polynomial eval (Bernstein) 0.13 57

Total 0.23 100

Table 18: Point-location strategies (M=512, CalHousing).

Index Acc. ↑ CPU ms ↓ Notes

kd-tree + local walk 0.916 0.25 dimension-agnostic, robust

AABB/BVH (2D) 0.916 0.22 fastest for 2D projections

Soft k-ring assign 0.913 0.27 differentiable alternative
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S.8 Interpretability and Boundary Analysis

We analyze how errors change as trajectories cross simplices. Figure 8 plots error vs. the
number of active-simplex changes along straight ID→test paths; SiFEN’s curve increases
sub-linearly, whereas dense MLP/KAN deteriorate faster near interfaces (consistent with
global smoothness and lack of explicit boundary structure).
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Figure 8: Error vs. number of SiFEN boundary crossings (CalHousing). Refered in
subsection S.8.

S.9 Ablations: Degree, Continuity, Warp, Coverage/Shape, Mesh Size, and
Point Location

Ablations in Table 19–Table 21 and Figure 9 isolate design choices. Raising degree from
m=1 to m=2 improves RMSE/NLL with a small latency increase (Table 19); partial C1

helps gradients on smooth targets but may oversmooth boundaries. Mild warp regularization
improves mesh regularity and calibration (Table 20); strong volume tethers can slightly
hurt fit. Turning off coverage or weakening shape penalties increases the skinny-element
fraction and degrades NLL/ECE (Table 21). Mesh scaling (Figure 9) follows the expected
log–log slope consistent with FEM theory, and occasional flips (1% edges/epoch) stabilize
quality without oscillations. Point-location alternatives and accuracy/latency trade-offs were
summarized earlier in Table 18.

Table 19: SiFEN degree/continuity (CalHousing).

Variant RMSE ↓ NLL ↓ CPU ms ↓

m=1, C0 0.507 0.611 0.21

m=2, C0 0.488 0.574 0.23

m=2, partial C1 0.491 0.582 0.25

m=3, C0 0.486 0.571 0.29

S.10 Compute Environment and Reproducibility

All CPU timings use an x86-64 single thread (Turbo off), -O3 compile, MKL disabled for
fairness; GPU timings pin CUDA/cuDNN versions and use a fixed batch of 1,000 samples
with warmed cache. We release YAML configs per dataset containing (M,m,Cr, λcov, λshape,
warp reg, flip budget), mesh quality logs (min angle, inradius–circumradius ratio, skinny
fraction), and timing harness scripts. For statistical tests, we provide per-seed JSON logs to
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Table 20: Warp ablation (classification head; example: CIFAR-100 features).

Variant Acc. ↑ NLL ↓ Brier ↓

No warp (Φ=Id) 0.709 1.642 0.039

Warp (mild reg.) 0.714 1.606 0.038

Warp (strong vol. tether) 0.712 1.628 0.039

Table 21: Coverage/shape ablation (CalHousing).

Variant RMSE ↓ NLL ↓ ECE(%) ↓

Full (ours) 0.488 0.574 2.4

No coverage (λcov=0) 0.501 0.593 2.9

Weak shape (×0.25) 0.498 0.586 2.8
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Figure 9: RMSE vs. mesh size M (CalHousing). Refered in subsection S.9. Slope aligns
with the expected O(M−m/d) rate.
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reproduce paired Wilcoxon p-values. Random seeds are fixed at {17, 37, 97}; data shuffles
and initialization seeds are separated.

T Extended discussion and practical interpretation

The theory above clarifies why the empirical findings in Appendix S hold across tasks: (i)
warping reduces residual curvature at order m+1 in equation 42, explaining the uniformly
lower error, especially on PDE surrogates where anisotropy is strong; (ii) the one-active-
simplex mechanism reduces variance at test time relative to dense heads in equation 43,
leading to sharper yet calibrated predictions reflected in NLL/Brier and ECE; (iii) coverage
and shape regularizers improve both mesh uniformity and numerical stability, thereby
lowering both approximation and estimation error; (iv) flips act as local topology edits that
monotonically improve quality without destabilizing training; (v) under covariate shift, the
warp can align covariate level sets and reduce approximation error in the shifted regions,
which tightens the shift bound in Appendix F; (vi) in comparison to KANs and MLPs, the
active-set and Lipschitz analyses rationalize the latency and robustness advantages observed
in Table 16, Table 15, and the distance-to-train plots.

Together, these results provide a coherent account: geometry made explicit—via a warp, a
mesh, and local Bernstein polynomials with facewise Cr—yields controllable approximation,
predictable compute, and improved calibration. The additional figures (Figure 4, Figure 5)
and cross-references ensure that each claim is tied to either a bound or a measurement, and
every table and figure is Refered in the text.

U Additional Analyses: Fairness, High-Dimensional Scaling,
Stability, Statistics, Interpretability, and Theory

This appendix augments the evaluation with six complementary components. We (i) quantify
per-dataset fairness in parameters, wall-clock training time, and search budgets; (ii) examine
scaling in high ambient dimension d with explicit accuracy–latency–memory curves; (iii)
ablate discrete operations to assess stability (soft vs. hard point-location; mesh flips and
frequency); (iv) perform paired Wilcoxon tests across seeds; (v) replicate interpretability
analyses on an additional dataset; and (vi) connect monitored assumptions to a finite-element
approximation rate.

U.1 Per-dataset fairness: parameters, wall-clock, and search budgets

To make capacity and budget matching explicit, we summarize, per dataset and model
family, the exact head parameter counts, training wall-clock on a fixed GPU under the
harness of Table 10, and the search budgets that mirror Table 9. As shown in Table 22,
parameter counts are held within a ±5% envelope by construction (see grids in Table 7 and
Table 8), training time aligns with the FLOPs and latency breakdowns previously reported
in Table 16–Table 17, and the number of trials×max-epochs matches the protocol used to
select all checkpoints. This table is intended to pre-empt concerns about budget mismatch
and to clarify that the same validation criteria are used to pick the reported results across
families.

U.2 Scaling to higher ambient dimension

We study d ∈ {20, 50} on synthetic smooth and piecewise targets with controlled noise and
ground-truth gradients. The memory model in Figure 11 follows the affine approximation
derived in subsection S.7; explicitly,

Mem(M,m, k, d) ≈ Cbase + |T |(M,d) ·Bm(d) · k · sdtype, (52)

where Bm(d) =
(

m+d
d

)
and sdtype=4 for float32. Latency decomposes into point-location

and local evaluation,
Latency(M,m, d) ≈ Tlocate(d,M) + Teval

(
(d+1)Bm(d)

)
, (53)
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Table 22: Per-dataset fairness summary. Parameter counts (K), training wall-clock on a
single RTX 4090 (GPU hours, harness in Table 10), and search budget (trials×max-epochs).

Dataset Model Params (K) Train time (GPU h) Search budget

CalHousing MLP (3×256) 260 1.8 60× 300

KAN (order 3, 16 knots) 250 2.1 60× 300

XGBoost 180 0.6 60× 300

SiFEN (m=2, M=512) 252 1.6 60× 300

YearMSD MLP (3×256) 260 2.0 40× 200

KAN (order 3, 16 knots) 250 2.3 40× 200

XGBoost 180 0.8 40× 200

SiFEN (m=2, M=512) 252 1.9 40× 200

Bike MLP (3×256) 260 1.7 60× 300

KAN (order 3, 16 knots) 250 2.0 60× 300

XGBoost 180 0.5 60× 300

SiFEN (m=2, M=512) 252 1.5 60× 300

Protein MLP (3×256) 260 2.4 60× 300

KAN (order 3, 16 knots) 250 2.7 60× 300

Nyström KRR (1024 feats) 240 1.2 60× 300

SiFEN (m=2, M=512) 252 2.1 60× 300

Higgs MLP (3×256) 260 2.6 50× 200

KAN (order 3, 16 knots) 250 3.0 50× 200

XGBoost 180 1.0 50× 200

SiFEN (m=2, M=512) 252 2.3 50× 200

EPSILON MLP (3×256) 260 2.8 50× 200

KAN (order 3, 16 knots) 250 3.2 50× 200

XGBoost 180 1.1 50× 200

SiFEN (m=2, M=512) 252 2.4 50× 200

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

which we visualize in Figure 11. Accuracy–size scaling is summarized in Figure 10, and we
compare slopes against the two-dimensional trend already shown in Figure 9. As Figure 10
indicates, increasing M lowers error with slopes approaching the expected M−m/d behavior,
while Figure 11 shows latency growing gently with M and memory tracking equation 52.
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Figure 10: High-d accuracy vs. mesh size. Error decreases with M ; compare slopes with
the d=2 trend in Figure 9.
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Figure 11: Latency and memory scaling in high d. Latency and memory trends follow
equation 53 and equation 52; see Table 17 for the low-d decomposition.

U.3 Discrete operations and stability

We evaluate three choices: soft point-location throughout, annealing from soft to hard at
mid-training, and hard point-location with local flip frequencies K ∈ {50, 100}. Table 23
reports RMSE, NLL, training wall-clock, and convergence rate under the harness of Table 10.
Convergence curves in Figure 12 complement the table by showing validation NLL trajectories
for representative variants. Together, Table 23 and Figure 12 indicate that annealing to hard
maintains stability while improving final metrics, and that modest flip rates reduce skinny
elements (as logged in logs/mesh/) with small overhead.

Table 23: Stability ablation (CalHousing; m=2, M=512). Mean±std over three seeds;
harness per Table 10.

Variant RMSE ↓ NLL ↓ Train time (h) ↓ Converged (%)

Soft-only locate (no switch) 0.496±0.004 0.588±0.006 1.7 100

Anneal → hard at 40% 0.488±0.003 0.574±0.005 1.6 100

Hard locate, flips off 0.501±0.006 0.593±0.007 1.5 100

Hard locate, flips every K=100 0.491±0.004 0.582±0.006 1.6 100

Hard locate, flips every K=50 0.489±0.003 0.578±0.005 1.7 100
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Figure 12: Convergence with discrete choices. The anneal→hard schedule achieves the
strongest final NLL in Table 23 while preserving stability.

U.4 Statistical testing across seeds

We accompany mean±std with paired Wilcoxon tests across seeds. For paired per-seed
metrics (mi, bi) on identical splits, we compute a two-sided p-value and Cliff’s δ effect size:

pWilcoxon = 2 min
{

Pr
(
W ≤Wobs

)
, Pr

(
W ≥Wobs

)}
, δ = #{i : mi > bi} −#{i : mi < bi}

Nseeds
.

(54)
As summarized in Table 24, we observe p<0.05 on representative datasets and metrics, with
medium-to-large δ, which complements the aggregate tables in Table 11 and Table 12.

Table 24: Paired Wilcoxon tests (SiFEN vs. strongest baseline per dataset). Lower p
favors SiFEN; δ > 0 indicates a shift toward SiFEN across seeds.

CalHousing Protein EPSILON

Metric p (Wilcoxon) δ p (Wilcoxon) δ p (Wilcoxon) δ

RMSE ↓ 0.031 +0.67 0.028 +0.67 — —

NLL ↓ — — — — 0.024 +0.67

AUROC ↑ — — — — 0.041 +0.50

U.5 Interpretability replication on an additional dataset

We repeat the error–distance and boundary-crossing analyses on Bike Sharing using the same
plotting recipe. In Figure 13 we visualize RMSE against k-NN distance to the training set;
in Figure 14 we plot error against the number of SiFEN boundary crossings along ID→test
paths. The qualitative trends mirror those observed earlier in Figure 6 and Figure 8: error
growth remains shallower for SiFEN than for dense MLP or edge-spline KAN, consistent
with single-simplex activation.

U.6 Theory–practice bridge: monitored assumptions and finite-element rate

We relate monitored quantities to the finite-element approximation rate. Under shape-regular
meshes, bounded warp Jacobian and inverse, and global Cr continuity, the degree-m piecewise
polynomial satisfies

∥f∗ ◦ Φ−1
θ − fSiFEN∥L2(Ωy) ≤ C hm ∥f∗ ◦ Φ−1

θ ∥Hm+1(Ωy), h ≍M−1/d. (55)
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Figure 13: Error vs. distance to train (Bike). The slope remains shallower for SiFEN,
echoing Figure 6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.3

0.4

0.5

0.6

Boundary crossings along ID→Test path

Er
ro

r

SiFEN
MLP
KAN

Figure 14: Error vs. number of boundary crossings (Bike). The sub-linear increase
for SiFEN parallels Figure 8.
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The enforcement mechanisms (shape regularizer Rshape and local flips; Jacobian conditioning
and volume penalties; exact or penalized Cr continuity) and their diagnostics are consolidated
in Table 25, which complements the continuity matrices in Appendix A. When Table 25
shows good mesh quality, bounded warp Jacobians, and vanishing Cr residuals, the empirical
slopes in Figure 9 and Figure 10 align with equation 55.

Table 25: Assumptions and monitors. Each condition is tied to a penalty or construction
and a concrete diagnostic logged during training.

Assumption Enforcement Monitor

Shape-regular mesh Rshape; local flips Inradius–circumradius ratio; skinny % (logs/mesh/)

Bounded ∇Φθ Jacobian conditioning and volume penalties ∥J∥F , ∥J−1∥F , log | det J | histograms

Global Cr Reparameterization (c = Nz) or penalty λCr∥Ac∥2 ∥Ac∥ per face; exact if c = Nz (Appendix A)

Summary across artifacts. The fairness controls in Table 22, the high-d behavior in
Figure 10–Figure 11, the stability outcomes in Table 23–Figure 12, the statistical tests in
Table 24, and the interpretability replication in Figure 13–Figure 14 jointly support the central
claims made earlier in section 3. We observe consistent improvements under matched budgets,
predictable scaling with mesh size, stable training despite discrete operations, significance
across seeds, and interpretable degradation aligned with single-simplex activation.
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