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Abstract

Linear regression is one of the simplest machine learning tasks. Despite much1

work, differentially private linear regression still lacks effective algorithms. We2

propose a new approach based on a multivariate extension of the Theil-Sen esti-3

mator. The theoretical advantage of our approach is that we do not directly rely4

on noise addition, which requires bounding the sensitivity. Instead we compute5

differentially private medians as a subroutine, which are more robust. We also6

show experimentally that our approach compares favourably to prior work.7

1 Introduction8

Background & Motivation Differential Privacy [DMNS06] is a standard for ensuring that the9

output (i.e., trained model) of a machine learning system does not leak sensitive details about its10

input (i.e., training data, which could contain private information about individual people). Differ-11

entially private machine learning has been the topic of considerable research, both theoretical and12

empirical, and is also used in practice [MT22].13

Arguably, the simplest machine learning task is linear regression. That is, we are given a dataset14

(x1, y1), (x2, y2), · · · , (xn, yn) ∈ Rd × R and our goal is to fit a linear model of the form yi ≈15

〈θ, xi〉 for some θ ∈ Rd. More precisely, ordinary least squares linear regression minimizes the16

squared error
∑n
i (〈θ, xi〉 − yi)2. This objective corresponds to assuming that the errors (i.e., the17

deviations from a perfect linear relationship) are Gaussian. This objective is particularly nice, as18

it has a closed-form solution: θ = (XTX)−1XT y, where X = (x1, x2, . . . , xn)T ∈ Rn×d and19

y = (y1, y2, . . . , yn)T ∈ Rn.20

Given the practical importance of linear regression, there has been a lot of work on differentially21

private linear regression. (We discuss the related work in more detail in Section 1.3.) However,22

these prior works all suffer from the same limitation: To guarantee differential privacy they add23

noise to some quantity – either to the raw data X and y, to the sufficient statistics XTX and XT y,24

or to the gradients
∑
i xi · (〈θ, xi〉 − yi) encountered when optimizing the least squares objective.25

This noise addition approach requires bounding the sensitivity, which essentially means we must26

provide a priori bounds on ‖xi‖ and |yi| or, rather, we must scale/clip the quantities of interest to27

enforce these bounds. The clipping hyperparameter induces a harsh privacy-utility tradeoff: If the28

bounds are loose, we must add more noise than necessary. If the bounds are too tight, the clipping29

distorts the data. This raises the question: Can we perform differentially private linear regression in30

a way that is (nearly) agnostic to the sensitivity?31

Inspiration for Our Approach To gain some intuition, consider the even simpler task of mean32

estimation, i.e., computing the average 1
n

∑n
i xi. Here we face the same difficulty in terms of33

clipping the data to bound the sensitivity. Numerous approaches to mean estimation have been34

studied [e.g.: KV17; BS19; KSU20; BDKU20; LKKO21; LKO21].35
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Figure 1: Comparison of DP linear regression algorithms. Mean square error (i.e., E[(〈θ̂, x〉−y)2] on
vertical axis in logarithmic scale) as a function of the number of samples (i.e., n on horizontal axis)
for dimensions d = 10 (left) and d = 30 (right); and a function of ε for n = 105 and dimensions
d = 10 (left) and d = 30 (right). The line show the median and the semitransparent shadow shows
the 0.1 and 0.9 quantiles of the error; values are computed over 20 runs. Privacy parameters are
ε = 1 and δ = 10−6; and ` = 1. Data is synthetic, see Section 2.1 for details.

One way to sidestep this sensitivity issue is to look at the median instead of the mean. Under36

reasonable distributional assumptions, the median is a good approximation to the mean, with the37

advantage that the sensitivity of the median is usually much lower than the mean. Thus the median38

can be a good tool for differentially private mean estimation.39

The key innovation of our approach is to carry this median-instead-of-mean idea over to the setting40

of linear regression. But this is far from straightforward – we are interested in the multidimensional41

setting and even defining a multi-dimensional median is nontrivial.42

We draw further inspiration from the literature on robust statistics – intuitively, the median is a robust43

replacement for the mean. In particular, the Theil-Sen estimator [The50; Sen68] uses the median44

to perform robust simple linear regression (i.e., d = 1). Indeed, a differentially private Theil-Sen45

estimator has been studied by Dwork and Lei [DL09] and Alabi, McMillan, Sarathy, Smith, and46

Vadhan [AMSSV22]. We extend this to multivariate linear regression using a variant of the (non-47

private) approach of Dang, Peng, Wang, and Zhang [DPWZ08].48
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Algorithm 1 Private efficient multivariate Theil-Sen estimator.

1: Input: (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd × R.
2: Parameters: Privacy parameter ε > 0. Number of partitions ` ≥ 1. Output rangeR ⊂ R.
3: Let m = bn/dc.
4: Initialize an empty multiset Θ ⊂ Rd.
5: for k ∈ [`] do . Generate ` ·m subproblems Sj,k such that each input appears in at most `.
6: Randomly choose m disjoint sets S1,k, S2,k, . . . , Sm,k ⊂ [n] each of size d.
7: for j ∈ [m] do
8: Compute θj,k ∈ Rd such that 〈θj,k, xi〉 = yi for all i ∈ Sj,k.
9: Project θj,k ∈ Rd into θ̃j,k ∈ Rd – i.e., θ̃j,k = arg minθ̃∈Rd ‖θ̃ − θj,k‖.

10: Add θ̃j,k to Θ.
11: end for
12: end for
13: . Compute an approximate median θ̂ ∈ Rd of the set Θ in a DP manner.
14: for i ∈ [d] do . Independently sample i-th coordinate of θ̂ using the exponential mechanism.
15: Sample θ̂i ∈ R with probability proportional to

P[θ̂i] ∝ exp
(
− ε

2`d
max

{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣}) .
16: end for
17: return θ̂.

1.1 Our Algorithm49

Our private linear regression algorithm is described in Algorithm 1. We proceed with some remarks50

about our algorithm.51

The high-level idea of the Theil-Sen estimator is that, rather than trying to solve the global objective52

(i.e., minθ
∑n
i (〈θ, xi〉 − yi)2), we solve ` ·m subproblems and then combine these solutions into53

a single solution via a median. Each subproblem consists of a subset of d out of n of the input54

points (which is enough to uniquely specify the weights θj,k ∈ Rd, assuming the xis are linearly55

independent).56

The standard Theil-Sen estimator considers all
(
n
d

)
possible subproblems. This is computationally57

prohibitive for realistic values of n and d; hence we randomly select a subset of ` ·m subproblems.58

We will consider small numbers of repetitions, such as ` = 1.59

From a differential privacy perspective, changing one input point (xi, yi) can change ` subproblems60

and hence ` elements of Θ. If our method for computing the median is (ε/`)-differentially private61

with respect to changing one element of Θ, then by group privacy it is ε-differentially private with62

respect to changing one input point (xi, yi), as required.1 This is a straightforward extension of the63

sample-and-aggregate framework [NRS07].64

There are many ways to defube and compute a multivariate median (even non-privately). For sim-65

plicity, we compute a marginal median: we simply compute the univariate median for each coor-66

dinate – i.e., θ̂i ≈ median
θ∈Θ

θi for each i ∈ [d]. Privately approximating the univariate median is67

a well-studied problem [NRS07; Smi08; DL09; Smi11; BNSV15; KV17; FS18; KLSU19; BS19;68

AD20; KLMNS20; GJK21; ABEC22]. We compute the median by a simple application of the expo-69

nential mechanism [MT07a]; although this doesn’t achieve optimal asymptotic bounds, it performs70

remarkably well in practice. To be specific, following Smith [Smi11] and Feldman and Steinke71

[FS18], we sample each coordinate θ̂i from a probability distribution that decays exponentially with72

how far away it is from the median. This ensures that the overall algorithm satisfies ε-DP and is73

1For simplicity, in this discussion, we restrict ourselves to pure differential privacy, but, to obtain better com-
position bounds in the high-dimensional setting, we will work with concentrated differential privacy [DR16;
BS16] or approximate differential privacy [DKMMN06].

3



accurate under reasonable conditions. Each coordinate θ̂i is computed in a way that is ε/d-DP.74

Composing over the d coordinates yields the final ε-DP bound.75

Note that we restrict the range of the coordinates to R ⊂ R. This can either be an interval (e.g.,76

R = [a, b]) or a discrete set (e.g.,R = {a+ (b− a) · (i− 1)/r : i ∈ [r + 1]}). For the exponential77

mechanism to be well-defined, it is necessary to ensure that R has finite measure (i.e., a bounded78

interval with Lebesgue measure or a finite set with the counting measure). Regardless of our choice79

of algorithm, it is known that some such restriction is necessary in the worst case [ALMM19]. In80

most cases, the exact choice of R is not particularly critical for our algorithm, so we do not dwell81

on this issue.82

There is a subtlety of our choice of loss function for the exponential mechanism: If θ̂i 6= θi for all83

θ ∈ Θ, we have84

max
{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣} =

max
{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , |Θ| − ∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣}
=

∣∣∣∣∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣− 1

2
|Θ|
∣∣∣∣+

1

2
|Θ|.

The final expression is more natural than the first expression. The quantity
∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣85

gives the rank (i.e., rescaled quantile) of the value θ̂i in the multiset {θi : θ ∈ Θ}. The true median86

has rank 1
2 |Θ|, so the loss measures how far the rank is from this ideal. When everything has a con-87

tinuous distribution, the above equality between the expressions holds with probability 1. However,88

if we have a discrete distribution (such as whenR is a discrete set), the above equality does not hold.89

Consider the extreme case where the multiset Θ consists of a single point θ∗ repeated many times.90

When θ̂i = θ∗i , our loss function takes value 0 and, for θ̂i 6= θ∗i , our loss function takes value |Θ|.91

In contrast, the final expression above would yield a constant function taking value |Θ| everywhere.92

Thus our loss function performs better in the discrete case.93

1.2 Our Results94

We provide a theoretical privacy and utility analysis of our algorithm, as well as an experimental95

evaluation of our algorithm. Our theoretical guarantee is helpful to build understanding. However,96

our experimental results give a clearer comparison to prior work. See Figure 1 for an experimental97

comparison of algorithms. Next we state the main accuracy result:98

Theorem 1.1 (Main Result). For any ε̃, δ̃ > 0 and n, d, r ∈ N, Algorithm 1 with appropriate99

settings of parameters provides (ε̃, δ̃)-DP and the following accuracy guarantee.100

Fix θ∗ ∈ [−r,+r]d and σ > 0. Assume the inputs (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd × R are101

drawn i.i.d. as follows. Independently for each i ∈ [n], we have xi ← N (0, I) and then, conditioned102

on xi, we have yi ← N (〈θ∗, xi〉, σ2).103

If θ̂ is the output of Algorithm 1 with the above inputs and parameters, then, for all β > 0, we have104

P

‖θ̂ − θ∗‖∞ ≤ σ ·O
d ·

√
d · log(1/δ̃)

ε̃n
log

(
dr

β

)
+

√
d · log(d/β)

n

+
1

r

 ≥ 1− β.

We now make some remarks about the meaning of our theoretical result.105

Pure DP vs. Approximate DP Algorithm 1 offers both pure and approximate DP guarantees (and106

concentrated DP); see Proposition A.1 for details. The parameter ε of the algorithm corresponds to107

the pure (ε, 0)-DP guarantee. In high dimensional settings (i.e., large d), we can apply advanced108

composition results to obtain better guarantees. Specifically, the approximate (ε̃, δ̃)-DP guarantee109

of Theorem 1.1 is achieved by setting ε ≈ ε̃ ·
√

d
log(1/δ̃)

.110
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Accuracy Guarantee The error bound of Theorem 1.1 has three terms: σ · d
εm log

(
dr
β

)
is the111

error due to privacy; σ ·
√

log(d/β)
m is the non-private statistical estimation error (a.k.a. generalization112

error); and 1
r is the error from rounding to the discrete setR of size O(r2).113

Our accuracy guarantee bounds ‖θ̂ − θ∗‖∞. This is particularly useful if our goal is to estimate114

some parameter θ∗i , as it provides a confidence interval. We can of course also use this to bound the115

Euclidean norm: ‖θ̂ − θ∗‖2 ≤
√
d · ‖θ̂ − θ∗‖∞. It is also common to provide bounds on the mean116

squared error. Under our distributional assumptions, this is equivalent to bounding the Euclidean117

norm: If x← N (0, I) and y ← N (〈θ∗, x〉, σ2), then, for all θ̂ ∈ Rd118

E
[(
〈θ̂, x〉 − y

)2
]

= E
[
(〈θ∗, x〉 − y)

2
]

+ ‖θ̂ − θ∗‖22 = σ2 + ‖θ̂ − θ∗‖22.

Distributional Assumptions We emphasize that our privacy guarantee is worst-case and the dis-119

tributional assumptions are only for the accuracy analysis. Thus the maxim “all models are wrong,120

but some are useful” (attributed to George Box) applies. That is, we don’t expect real data to per-121

fectly follow a Gaussian distribution. Our algorithm still works even if these assumptions fail, but122

we believe that the theorem is a useful indication that our algorithm provides useful accuracy.123

There is also some flexibility in the Gaussian assumption: If the xis are drawn fromN (0,Σ) instead124

of N (0, I) then we can apply a transformation (xi, yi) 7→
(
Σ−1/2xi, yi

)
to make the distribution125

of xis spherical, run our algorithm to obtain θ̂, and then map this back to a solution to the original126

problem Σ−1/2θ̂.127

Our assumption that the data comes from a mulivariate Gaussian is reasonably standard. Assuming128

that ‖θ∗‖∞ ≤ r is less standard. In the non-private setting we don’t need to make any assumption129

on θ∗, but it is necessary in the private case [ALMM19]. Note that we can arbitrarily rescale this130

constraint: If instead we assume ‖θ∗ − θ0‖∞ ≤ b · r for some b > 0, then we can simply transform131

the data (xi, yi) 7→
(
xi,

1
b (yi −

〈
θ0, xi

〉
)
)
, run our algorithm to obtain θ̂ ∈ [−r, r]d, and then map132

this back to a solution to the original problem b · θ̂ + θ0. The accuracy guarantee will be rescaled133

accordingly. Similarly, the infinity norm can be replaced by the Euclidean norm by transforming the134

problem with a random unitary matrix [e.g., KLS21, §4.2].135

Parameters The sample size n, dimension d, noise variance σ2, and privacy parameters ε̃ and δ̃136

are all standard parameters. The only non-standard parameter of Theorem 1.1 is r. This determines137

both the size and granularity of the restricted range R in Algorithm 1. This parameter should be138

thought of as capturing how uncertain we are about θ∗ ∈ [−r, r]d and how precise our final answer139

should be – i.e., the granularity of R is 1/r (which should ideally scale with σ). Theorem 1.1 runs140

Algorithm 1 with ` = 1.141

1.3 Related Work142

Linear regression has been well studied in the non-private setting; we do not discuss this setting143

except to mention the connection to robust statistics. Robust statistics seeks to develop estimators144

that are resistant to a small fraction of the dataset being corrupted. This kind of robustness turns145

out to be useful for designing DP algorithms [NRS07; DL09; BS19] and our work extends this146

connection. In particular, the standard approach to linear regression is not robust, which led to147

the development of the robust Theil-Sen estimator [The50; Sen68] and its multivariate extension148

[DPWZ08], which are the basis for our work.149

DP linear regression has also been well-studied. Most similar to our work is that of Alabi, McMillan,150

Sarathy, Smith, and Vadhan [AMSSV22], which studies the Theil-Sen estimator in the setting of151

simple linear regression. This is essentially our algorithm restricted to the case of d = 1, although152

they also add a constant intercept, i.e., an affine relationship y ≈ θx + b. Adding an intercept is153

equivalent to adding an extra feature to x that is always 1 and adding a corresponding dimension to154

θ. Dwork and Lei [DL09] propose two DP robust regression methods. The first is, like ours, based155

on the Theil-Sen estimator, although with a different method for computing the median. The second156

changes the loss function to one with bounded gradients, namely
∑n
i |〈θ, xi〉 − yi|/‖xi‖2, and157
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analyzes the robustness of the solution to this new problem. Unfortunately, Dwork and Lei [DL09]158

provide very limited theoretical results and no experimental results for us to compare against.159

Our algorithmic approach of analyzing several subproblems and then privately combining the an-160

swers is based on the sample-and-aggregate framework of Nissim, Raskhodnikova, and Smith161

[NRS07]. Similar algorithms have appeared in other works. In particular, Feldman and Steinke162

[FS18] use a median-of-means approach to compute a univariate mean. Singhal and Steinke [SS21]163

propose an algorithm that is similar to ours, but for the different (but related) problem of finding a164

low-dimensional subspace that captures the data.165

A natural approach to DP linear regression is to apply general-purpose optimization tools to the ob-166

jective function f(θ) =
∑n
i (〈θ, xi〉 − yi)

2. Noisy gradient descent (DP-GD) [SCS13; BST14;167

ACGMMTZ16] is a widely-used tool for private optimization. It adds noise to the gradients168

∇f(θ) = 2
∑n
i (〈θ, xi〉 − y) · xi encountered during the optimization procedure. To ensure that169

the gradients are bounded, we must clip them before addoing noise. That is, we add noise to170

min{1, c/‖∇f(θ)‖} · ∇f(θ) instead of ∇f(θ), which could be unbounded. This approach works171

remarkably well, but it requires carefully setting the clipping parameter c. The larger c is, the more172

noise we add. But if c is too small we distort the gradients and the optimization procedure may173

not even converge in time. We use this approach as a comparison point in our experiments, but we174

find that setting the parameters (c, number of steps, and learning rate) to be highly non-trivial. In175

an unpublished work, Varshney, Jain, and Thakurta [VJT22] propose a variant of DP-GD where the176

clipping parameter c is chosen in a data-dependent manner at each step of the optimization. They177

show that this adaptive clipping can achieve asymptotically optimal results. Kamath, Li, Singhal,178

and Ullman [KLSU19] apply a similar adaptive clipping approach to learning the parameters of179

a Gaussian distribution; linear regression can be reduced to this task [MKFI22]. Another general-180

purpose optimization tool is Objective Perturbation [CMS11], which was applied to linear regression181

by Wang [Wan18], but objective perturbation requires stronger assumptions than DP-GD (such as182

convexity ans smoothness) which means we also need additional assumptions to apply it to linear183

regression. Finally, we mention that, under the right assumptions, it is possible to apply the expo-184

nential mechanism [MT07b] to the linear regression objective, which can be viewed as a form of185

bayesian sampling [Wan18].186

Since there is a closed-form solution in the non-private setting – namely, θ̂ = (XTX)−1XT y where187

each example (xi, yi) is a row of X and the corresponding row of y – another natural approach188

to the problem is to perturb XTX =
∑n
i xix

T
i ∈ Rd×d and XT y =

∑n
i yixi ∈ Rd, which are189

known as the sufficient statistics. This requires us to bound the sensitivity of these terms, which190

boils down to bounding ‖xi‖2 and |yi|. For our experimental comparison, we add Gaussian noise to191

both XTX and XT y. One downside of adding Gaussian noise to XTX is that it may cease to be192

positive semidefinite. Thus it has also been suggested to add noise drawn from a Wishart distribution193

[She19]. (We note that analyzing Wishart noise is difficult and incorrect analyses of this approach194

have been published [JXZ16; IS16].) Wang [Wan18] also studied an adaptive form of sufficient195

statistics perturbation.196

It is also possible to add noise directly to the data [DTTZ14; She17; She19]. That is, we perturb X197

and y, which also requires bounding ‖xi‖2 and |yi|. This tends to yield worse results than perturbing198

the sufficient statistics. Intuitively, this approach adds noise to each of the n rows of X and y, so199

the amount of noise grows with n. In contrast, the amount of noise added to XTX and XT y does200

not grow with n. However, adding noise to the data is desirable if we are in the setting of local DP201

[KLNRS11]; our results are for the central DP setting.202

As mentioned earlier, of the key advantages of our algorithm over the optimization and perturbation203

approaches is that we do not need to clip or bound the data (xi, yi), which can be quite detrimental204

to accuracy in practice. Our use of a median-based algorithm means we have much lower sensitivity205

to these bounds (logarithmic instead of linear).206

2 Experiments207

We now perform an empirical evaluation of our algorithm using synthetic data. We compare to state-208

of-the-art approaches and, since our algorithm has several moving parts, we also consider variants209

of our algorithm.210
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Figure 2: Comparison of DP linear regression algorithms for features sampled from N (0, I). Mean
square error (i.e., E[(〈θ̂, x〉 − y)2] on vertical axis in logarithmic scale) as a function of the number
of samples (i.e., n on horizontal axis) for dimensions d = 10 (left) and d = 30 (right); and a function
of ε for n = 105 and dimensions d = 10 (left) and d = 30 (right). The line show the median and
the semitransparent shadow shows the 0.1 and 0.9 quantiles of the error; values are computed over
20 runs. Privacy parameters are ε = 1 and δ = 10−6; and ` = 1. Data is synthetic, see Section 2.1
for details.

2.1 Synthetic Data211

We perform our experiments using synthetic data, as this allows us to be precise about what assump-212

tions we are and are not making. In all these experiments θ is sampled uniformly from [−1, 1]d,213

features x1, . . . , xn are sampled independently and uniformly from [0, 1]d and each yi is sampled214

from N (〈θ, xi〉, σ2) independently (conditioned on xi), where σ = 0.1.215

Note that the features are sampled from a bounded distribution, rather than a Gaussian as in Theo-216

rem 1.1. We make this choice in order to be generous to the algorithms we compare against. The217

algorithms we compare against clip the data or gradients before adding noise, so we make the prob-218

lem easier for them by ensuring that the data is in fact bounded – i.e., we ensure that the clipping219

does not distort the data. Our algorithm does not require this kind of assumption on the features:220

Figure 2 shows the errors if the features are sampled from N (0, I).221

2.2 Private Algorithms222

We run Algorithm 1 with ` = 1 and R = [−1, 1]. For comparison, we run the following state-of-223

the-art regression algorithms:224

• DP-GD based regressor: This algorithm applies noisy gradient descent to minimize the225

loss
∑
i=1

(〈
θ̂, xi

〉
− yi

)2

. The learning rate is 0.1, the number of epochs is 100, and the226

clipping rate is 8d. (Our implementation of private GD gives result similar to the results227

obtained by running DP-SGD provided by TensorFlow Privacy.)228

• Gaussian covariate matrix perturbation regressor: This algorithm outputs θ̂ =229

(XTX + A)−1(XT y + b), where A is an appropriately scaled Gaussian matrix of size230

d× d and b is a Gaussian vector of size d.231

• Functional mechanism based regressor: This algorithm represents the loss func-232

tion
∑n
i

(〈
θ̂, xi

〉
− yi

)2

as a polynomial in θ̂1, . . . , θ̂d add appropriately scaled233

Laplacian noise to each coefficient of the polynomial to obtain p̂ and uses the Broy-234
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den–Fletcher–Goldfarb–Shanno algorithm to find θ̂ minimizing p̂; we use the implementa-235

tion provided by Holohan et al. [HBMAL19].236

Figure 1 shows that the error of our algorithm is lower that of the other algorithms we compare237

against.238

2.3 Non-private Algorithms239

Before analyzing performance of private algorithms let us study performance on the non-private ver-240

sion of the private efficient Theil-Sen estimator: non-private can be obtained from Algorithm 1 by re-241

placing Line 15 by a line that sets θ̂i such that max
{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣} =242

m
2 .243

Figure 3 shows that for reasonably large values of `, efficient multivariate Theil-Sen estimator per-244

forms as well as ordinary least squares estimator.245

2.4 Values of `246

This section analyses relative performance of `-partition DP Theil–Sen for different values of `: we247

considered ` ∈ {1, 10, 20}. Figure 4 shows that their convergence rates are comparable in contrast248

with the non private setting where increasing ` improves the accuracy: this effect can be explained249

by the fact that the median heuristic uses amount of budget proportional to 1/` so increasing `250

improves the true median, but adds more noise.251

Because of this observation we only consider ` = 1.252

2.5 Algorithms for Median253

This section is analysing relative performance of efficient private Theil–Sen estimator for two254

choices of differentially private median heuristics: private median based on exponential mechanism255

that is used in Algorithm 1 and private median based on widened exponential mechanism defined256

in [AMSSV22]. Figure 5 shows that like in case of d = 1 [AMSSV22], private median based on257

exponential mechanism performs better on synthetic data.258
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A Proof of Main Result457

In this section, we prove Theorem 1.1. The proof is split into two parts: Proposition A.1 analyzes458

the privacy (which is a worst case property). Proposition A.2 analyzes the accuracy (which requires459

distributional assumptions).460

Proposition A.1 (Privacy). Algorithm 1 satisfies ε-DP and also ε2

8d -zCDP [BS16].461

Our privacy proof follows the standard template of using the properties of the exponential mecha-462

nism along with the composition property of differential privacy.463

In addition to a pure DP guarantee, we provide a concentrated DP guarantee. In high dimensional464

settings, concentrated DP is preferrable. To achieve ρ-zCDP, we would set ε =
√

8dρ. Note that465

ρ-zCDP can be converted to (ε, δ)-DP for any ε ≥ 0 and δ = infα>1 e
(α−1)(αρ−ε) ·

(
1− 1

α

)α−1 · 1
α466

[e.g., CKS20, Cor. 13]. Asymptotically, to achieve approximate (ε̃, δ̃)-DP it suffices to set ρ =467
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Θ
(

ε̃2

log(1/δ̃)

)
[BS16, Lem. 3.5]. The privacy claim of Theorem 1.1 follows by substituting ε =468

√
8dρ = Θ(ε̃ ·

√
d/ log(1/δ̃)) into Proposition A.1.469

Proof of Proposition A.1. Algorithm 1 invokes the exponential mechanism d times. We analyze one470

invocation and then apply composition.471

The loss function max
{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣} has sensitivity 1 in terms of472

changing an element of the multiset Θ. This is because it is the maximum of two counts. Each count473

naturally has sensitivity 1 and the maximum does not increase the sensitivity. Changing one input474

(xi, yi) can change ` elements of Θ, as that input may appear in up to ` subproblems Sj,k. Thus the475

loss function has sensitivity ` in terms of changing one input.476

The distribution we sample from is477

P[θ̂i] ∝ exp
(
− ε

2`d
max

{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣}) .
Note that the multiplier ε

2`d is ε/d divided by twice the sensitivity. Thus [DR14, Thm. 3.10] tells us478

that this sampling procedure is (ε/d, 0)-DP. Since we invoke this exponential mechanism indepen-479

dently d times (for all the coordinates of θ̂), we can apply basic composition [DR14, Thm. 3.14] to480

show that the overall algorithm is (ε, 0)-DP.481

For the concentrated DP analysis, we can use an improved analysis of the exponential mechanism482

[RS21] that show that, in addition to (ε/d, 0)-DP, each invocation of the exponential mechanism483

satisfies 1
8 (ε/d)2-zCDP. Finally, we can apply composition for concentrated DP [BS16] over the d484

invocations to show that the overall algorithm is ρ-zCDP with ρ = 1
8 (ε/d)2 · d = ε2/8d.485

Next we provide a theoretical utility guarantee. However,the proof of the pudding is in the eating,486

so we direct the reader to the experimental results in Section 2 to see how our algorithm performs in487

practice.488

Proposition A.2 (Accuracy). Fix the parameters ε > 0, n, d, r ∈ N, ` = 1, m = bn/dc, and489

R =
{
−1 + 2 i−1

r−1 : i ∈ [r]
}

of Algorithm 1. Let us also fix θ∗ ∈ [−1,+1]d and σ > 0. Assume490

the inputs (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd × R are drawn i.i.d. as follows. Independently for491

each i ∈ [n], we have xi ← N (0, I) and then, conditioned on xi, we have yi ← N (〈θ∗, xi〉, σ2). If492

θ̂ is the output of Algorithm 1 with the above inputs and parameters, then, for all β > 0, we have493

P

[
‖θ̂ − θ∗‖∞ ≤

1

r − 1
+ σ ·O

(
d

εm
log

(
dr

β

)
+

√
log(d/β)

m

)]
≥ 1− β,

where the probability is over both the randomness of the algorithm and the inputs.494

The proof consists of three steps: First, we use the properties of the exponential mechanism to show495

that Algorithm 1 outputs a point with low empirical loss. Second, we use a generalization result to496

show that the output also has low population loss. Third, we use the distributional assumptions in497

the theorem to show that low population loss implies that the output is indeed close to the desired498

value.499

The first lemma shows that, with high probability, the empirical loss is low.500

Lemma A.3. Let ε, `, d, m, R, Θ, and θ̂ be as in Algorithm 1. Assume |R| < ∞. Independently,501

for each i and all β > 0, we have502

Pθ̂i

[
max

{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣} ≤ ⌊ |Θ|
2

⌋
+

2`d

ε
log

(
|R|
β

)]
≥ 1− β.

Proof. First, we note that the empirical median of {θi : θ ∈ Θ} has loss at most b|Θ|/2c. Combining503

this with the standard utility analysis of the exponential mechanism [DR14, Thm. 3.11] yields the504

result. Finally, we remark that Algorithm 1 samples each coordinate of θ̂ independently.505
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Our second lemma helps us relate the empirical loss to the population loss. That is, it is a general-506

ization result.507

Lemma A.4 (DKW inequality [DKW56; Mas90]). There exists a universal finite constant C > 0508

such that the following holds. Let F be the cumulative distribution function (CDF) of a probability509

distribution on R and let X1, X2, . . . , Xm be independent samples from that distribution – i.e.,510

F (x) = P[Xi ≤ x] for all i ∈ [m]. Then511

∀β > 0 PX

[
sup
x∈R

∣∣∣∣∣ 1

m

m∑
i

I[Xi ≤ x]− F (x)

∣∣∣∣∣ ≤
√

log(C/β)

2m

]
≥ 1− β.

Now we bring the distributional assumptions of Proposition A.2 into the analysis. For each of512

the subproblems, we are given X ∈ Rd×d and y ∈ Rd. The assumption is that X consists of513

i.i.d. standard Gaussian entries and that y = Xθ∗ + z, where z ← N (0, σ2I) is noise. Our goal is514

to estimate the unknown true parameters θ∗ ∈ Rd. The estimate for the subproblem is θ = X−1y =515

θ∗ + X−1z. Thus we need to understand the distribution of X−1z. We begin by bounding the516

norm of X−1. Then, in Lemma A.6, we use this bound to show that the distribution of X−1z is517

sufficiently concentrated around zero, which is necessary to ensure the median is well-behaved.518

Lemma A.5. Let X ∈ Rd×d have entries which are all independent standard Gaussians. There519

exists a universal constant C such that for all γ ∈ (0, 3/4),520

P
[
‖X−1‖2F = trace((XXT )−1) ≤ C · d/γ2

]
≥ 1− γ.

Proof. Let λ1(XXT ) ≤ λ2(XXT ) ≤ · · · ≤ λd(XX
T ) denote the eigenvalues of XXT in sorted521

order with multiplicities. Then trace((XXT )−1) =
∑d
j 1/λj(XX

T ).522

Szarek [Sza91] (Thm. 1.2, eq. 1.2) shows that, for all j ∈ [d] and all α ≥ 0,523

P
[√

λj(XXT ) <
α · j√
d

]
≤ (
√

2e · α)j
2

.

By a union bound, for all α ∈ [0, 1/4], we have524

P
[
∀j ∈ [d] λj(XX

T ) ≥ α2 · j2

d

]
≥ 1−

d∑
j=1

(
√

2e · α)j
2

≥

1−
∞∑
j=1

(
√

2e · α)1+3(j−1) = 1−
√

2e · α
1− (

√
2e · α)3

≥ 1− 3α.

If λj(XXT ) ≥ α2·j2
n for all j ∈ [d], then525

trace((XXT )−1) =

d∑
j

1/λj(XX
T ) ≤

∞∑
j=1

d

α2 · j2
=
π2d

6α2
.

To complete the proof, set α = γ/3 ≤ 1/4 and C = 3π2/2 < 15526

Lemma A.6. Let X ∈ Rd×d and y ∈ Rd have entries which are all independent standard Gaus-527

sians. Let u ∈ Rd be an arbitrary unit vector that is independent fromX and y. Then the distribution528

of uTX−1y is continuous and symmetric around 0. Furthermore, for all t ≥ 0,529

P
[∣∣uTX−1y

∣∣ ≤ t] ≥ 1

2
P
[
|g| ≤ t

8
√
C

]
,

where g is a standard Gaussian and C is the univeral constant from Lemma A.5.530

Proof. The distribution of uTX−1y is a mixture of centered univariate Gaussians. Specifically, if531

u and X are fixed, then uTX−1y ∼ N (0, ‖(uTX−1)T ‖22). The randomness of u and X induces a532
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mixture. From this it is immediate that the distribution is symmetric about 0 and that it is continuous533

(as P[‖(uTX−1)T ‖2 = 0] = 0).534

Since the distribution of X is spherically symmetric, so too is that of X−1. This means that the535

choice of u is irrelevant. In particular, we can assume that u is a uniformly random unit vector536

(independent from everything else).537

Fix t ≥ 0 and s ≥ 0. Let g denote a standard univariate Gaussian (independent from everything538

else). Then539

P[|uTX−1y| ≤ t] = E
u,X

[
Py[|uTX−1y| ≤ t

]
]

= E
u,X

[
Pg[‖(uTX−1)T ‖2 · |g| ≤ t]

]
≥ Pg[|g| ≤ t/s] · Pu,X [‖(uTX−1)T ‖2 ≤ s].

Now we need to bound ‖(uTX−1)T ‖2. We can express this quantity in terms of the Frobenius540

matrix inner product:541

‖(uTX−1)T ‖22 = uT (XXT )−1u =
〈
(XXT )−1, uuT

〉
.

We have E
[
uuT

]
= 1

dI . 2 Thus, by linearity of expectation,542

E
u

[
‖(uTX−1)T ‖22

]
=

〈
(XXT )−1,

1

d
I

〉
=

1

d
trace((XXT )−1) =

1

d
‖X−1‖2F .

Fix v ≥ 1/
√
d. By Markov’s inequality,543

Pu
[
‖(uTX−1)T ‖2 ≤ v‖X−1‖F

]
=

1− Pu
[
‖(uTX−1)T ‖22 > v2‖X−1‖2F

]
≥

1−
E
u

[
‖(uTX−1)T ‖22

]
v2‖X−1‖2F

= 1− 1

dv2
.

Thus544

Pu,X
[
‖(uTX−1)T ‖2 ≤ s

]
≥

Pu
[
‖(uTX−1)T ‖2 ≤ v‖X−1‖F

]
· PX

[
‖X−1‖F ≤ s/v

]
≥(

1− 1

dv2

)
· PX

[
‖X−1‖F ≤ s/v

]
.

Lemma A.5 bounds ‖X−1‖F , namely PX [‖X−1‖F ≥ s/v] ≥ 1 −
√
Cd · v/s ≥ 1/4 for some545

universal constant C. Putting everything together gives546

P
[
|uTX−1y| ≤ t

]
≥ Pg

[
|g| ≤ t/s

]
·
(

1− 1

dv2

)
·

(
1−
√
Cdv

s

)
.

We set v = 2/
√
d and s = 8

√
C, which gives547

P
[
|uTX−1y| ≤ t

]
≥ Pg

[
|g| ≤ t/8

√
C
]
· 3

4
· 3

4
.

548

Now it is time to assemble the proof:549

2To see this, imagine u = u1 is generated by taking a column of a uniformly random unitary matrix
U = (u1, u2, . . . , ud) ∈ Rd×d. By symmetry, E

[
u1u

T
1

]
= E

[
u2u

T
2

]
= · · · = E

[
udu

T
d

]
. Since

∑d
i uiu

T
i =

UUT = I , we have E
[
u1u

T
1

]
= 1

d
I .
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Proof of Proposition A.2. Fix i ∈ [d] and let ei ∈ Rd be the i-th standard basis vector. For µ, σ ∈ R,550

define a distribution Dµ,σ on R as µ + σ · eTi X−1y where X ∈ Rd×d and y ∈ Rd consist of551

independent standard Gaussians. We will denote the CDF asDµ,σ(< t) = P
[
µ+ σ · eTi X−1y < t

]
552

and its complement as Dµ,σ(> t) = P
[
µ+ σ · eTi X−1y > t

]
for all t ∈ R. (By Lemma A.6, Dµ,σ553

is continuous (if σ > 0), so we do not need to worry about the strictness of the inequality.) Define554

D̃µ,σ,R to be Dµ,σ projected to R – i.e., to sample θ̃ ← D̃µ,σ,R, we sample θ ← Dµ,σ and let555

θ̃ = arg minθ∈R |θ − θ|. We will denote the CDF similarly as before (although now the strictness556

of the inequality may matter).557

We must reason about the impact of rounding toR: SinceR =
{
−1 + 2 i−1

r−1 : i ∈ [r]
}

, we have558

if t > −1, then Dµ,σ
(
< t− 1

r − 1

)
≤ D̃µ,σ,R(< t)

and

if t < 1, then Dµ,σ
(
> t+

1

r − 1

)
≤ D̃µ,σ,R(> t).

This is because the rounding can only move points by 1
r−1 (unless those points are outside the559

interval [−1,+1]). Note that, if t ≤ µ, then Dµ,σ (< t) ≤ 1
2 and, similarly, if t ≥ µ, then560

Dµ,σ (> t) ≤ 1
2 .561

We run Algorithm 1 with the parameters ε, d, ` = 1, andR. We assume the input has the distribution562

given in the statement of Theorem 1.1. That is, independently for each i, we have xi ← N (0, I)563

and yi = 〈θ∗, xi〉+ σ · zi for zi ← N (0, 1).564

Let Θ be as constructed in Algorithm 1. Then the multiset Θi = {θi : θ ∈ Θ} consists of m =565

bn/dc independent samples from the distribution D̃θ∗i ,σ,R defined above.566

By Lemma A.3, with probability at least 1− β, we have567

max
{∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣ , ∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣} ≤ ⌊ |Θ|
2

⌋
+

2`d

ε
log

(
|R|
β

)
.

Note |Θ| = ` ·m = m. By Lemma A.4, with probability at least 1− β, we have568 ∣∣∣∣ 1

m

∣∣∣{θ ∈ Θ : θi < θ̂i

}∣∣∣− D̃θ∗i ,σ,R(< θ̂i)

∣∣∣∣ ≤
√

log(C/β)

2m

and, similarly, with probability at least 1− β569 ∣∣∣∣ 1

m

∣∣∣{θ ∈ Θ : θi > θ̂i

}∣∣∣− D̃θ∗i ,σ,R(> θ̂i))

∣∣∣∣ ≤
√

log(C/β)

2m
,

where C is some universal constant. Applying a union bound, we have, for all β > 0,570

P

[
max

{
D̃θ∗i ,σ,R(< θ̂i), D̃θ∗i ,σ,R(> θ̂i)

}
≤ 1

2
+

2d

εm
log

(
|R|
β

)
+

√
log(C/β)

2m

]
≥ 1− 3β.

It follows that571

P

[
max

{
Dθ∗i ,σ

(
< θ̂i −

1

r − 1

)
,Dθ∗i ,σ

(
> θ̂i +

1

r − 1

)}
≤ 1

2
+

2d

εm
log

(
r

β

)
+

√
log(C/β)

2m

]
≥ 1−3β.

The last step in the proof is to convert this bound on the quantile into an accuracy bound. Lemma A.6572

tells us that the center of the distribution is at θ∗i – i.e., Dθ∗i ,σ(< θ∗i ) = Dθ∗i ,σ(> θ∗i ) = 1
2 – and that573

the distribution is roughly as concentrated around this point as a Gaussian with variance O(σ). In574

particular, if t ≥ θ∗i , then575

Dθ∗i ,σ(< t) ≥ 1

2
+

1

2
P

g←N (0,1)

[
0 ≤ g ≤ t− θ∗i

8
√
Cσ

]
=

1

2
+ Ω

(
t− θ∗i
σ

)
,
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where C is the universal constant from Lemma A.5. Similarly, if t ≤ θ∗i , then576

Dθ∗i ,σ(> t) ≥ 1

2
+

1

2
Pg←N (0,1)[0 ≤ g ≤

θ∗i − t
8
√
Cσ

] =
1

2
+ Ω

(
θ∗i − t
σ

)
.

Combining these inequalities gives577

max

{
Dθ∗i ,σ

(
< θ̂i −

1

r − 1

)
,Dθ∗i ,σ

(
> θ̂i +

1

r − 1

)}
≥ 1

2
+

1

2
Pg←N (0,1)[0 ≤ g ≤

|θ̂i − θ∗i | − 1
r−1

8
√
Cσ

]

=
1

2
+ Ω

(
|θ̂i − θ∗i | − 1

r−1

σ

)
.

This rearranges to578

|θ̂i − θ∗i | ≤
1

r − 1
+ σ ·O

(
max

{
Dθ∗i ,σ

(
< θ̂i −

1

r − 1

)
,Dθ∗i ,σ

(
> θ̂i +

1

r − 1

)}
− 1

2

)
.

Combining with the high probability bound establishes579

P

[
|θ̂i − θ∗i | ≤

1

r − 1
+ σ ·O

(
2d

εm
log

(
r

β

)
+

√
log(C/β)

2m

)]
≥ 1− 3β.

To obtain the stated result, we simply take a union bound over all i ∈ [d] and simplify the constants.580

581
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