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Abstract: Demonstration-guided reinforcement learning (RL) is a promising ap-
proach for learning complex behaviors by leveraging both reward feedback and a
set of target task demonstrations. Prior approaches for demonstration-guided RL
treat every new task as an independent learning problem and attempt to follow the
provided demonstrations step-by-step, akin to a human trying to imitate a com-
pletely unseen behavior by following the demonstrator’s exact muscle movements.
Naturally, such learning will be slow, but often new behaviors are not completely
unseen: they share subtasks with behaviors we have previously learned. In this
work, we aim to exploit this shared subtask structure to increase the efficiency
of demonstration-guided RL. We first learn a set of reusable skills from large
offline datasets of prior experience collected across many tasks. We then propose
Skill-based Learning with Demonstrations (SkiLD), a demonstration-guided RL
algorithm that leverages the provided demonstrations by following the demon-
strated skills instead of the primitive actions, resulting in substantial performance
improvements over prior demonstration-guided RL approaches. We validate its
effectiveness on long-horizon maze navigation and robot manipulation tasks.
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1 Introduction

Humans are remarkably efficient at acquiring
new skills from demonstrations: often a single
demonstration of the desired behavior and a few
trials of the task are sufficient to master it [1, 2,
3]. To allow for such efficient learning, we can
leverage a large number of previously learned
behaviors [2, 3]. Instead of imitating precisely
each of the demonstrated muscle movements,
humans can extract the performed skills and use
the rich repertoire of already acquired skills to
efficiently reproduce the desired behavior.

Demonstrations are also commonly used in re-
inforcement learning (RL) to guide exploration
and improve sample efficiency [4, 5, 6, 7, 8].
However, such demonstration-guided RL ap-
proaches attempt to learn tasks from scratch:
analogous to a human trying to imitate a com-
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Figure 1: We leverage large, task-agnostic datasets
collected across many different tasks for efficient
demonstration-guided reinforcement learning by
(1) acquiring a rich motor skill repertoire from such
offline data and (2) understanding and imitating
the demonstrations based on the skill repertoire.

pletely unseen behavior by following every demonstrated muscle movement, they try to imitate the
primitive actions performed in the provided demonstrations. As with humans, such step-by-step
imitation leads to brittle policies [9], and thus these approaches require many demonstrations and

environment interactions to learn a new task.
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We propose to improve the efficiency of demonstration-guided RL by leveraging prior experience
in the form of an offline “task-agnostic* experience dataset, collected not on one but across many
tasks (see Figure 1). Given such a dataset, our approach extracts reusable skills: robust short-horizon
behaviors that can be recombined to learn new tasks. Like a human imitating complex behaviors via
the chaining of known skills, we can use this repertoire of skills for efficient demonstration-guided
RL on a new task by guiding the policy using the demonstrated skills instead of the primitive actions.

Concretely, we propose Skill-based Learning with Demonstrations (SkiLLD), a demonstration-guided
RL algorithm that learns short-horizon skills from offline datasets and leverages them for following
demonstrations of a new task. Across challenging navigation and robotic manipulation tasks this
significantly improves the learning efficiency over prior demonstration-guided RL approaches.

In summary, the contributions of our work are threefold: (1) we introduce the problem of leveraging
task-agnostic offline datasets for accelerating demonstration-guided RL on unseen tasks, (2) we
propose SkiLLD, a skill-based algorithm for efficient demonstration-guided RL and (3) we show the
effectiveness of our approach on a maze navigation and two complex robotic manipulation tasks.

2 Related Work

Imitation learning. Learning from Demonstration, also known as imitation learning [10], is a
common approach for learning complex behaviors by leveraging a set of demonstrations. Most
prior approaches for imitation learning are either based on behavioral cloning (BC, [11]), which
uses supervised learning to mimic the demonstrated actions, or inverse reinforcement learning (IRL,
[12, 13]), which infers a reward from the demonstrations and then trains a policy to optimize it.
However, BC commonly suffers from distribution shift and struggles to learn robust policies [9],
while IRL’s joint optimization of reward and policy can result in unstable training.

Demonstration-guided RL. A number of prior works aim to mitigate these problems by combining
reinforcement learning with imitation learning. They can be categorized into three groups: (1) ap-
proaches that use BC to initialize and regularize policies during RL training [6, 7], (2) approaches that
place the demonstrations in the replay buffer of an off-policy RL algorithm [4, 5], and (3) approaches
that augment the environment rewards with rewards extracted from the demonstrations [8, 14, 15].
While these approaches improve the efficiency of RL, they treat each task as an independent learning
problem and thus require many demonstrations to learn effectively, which is especially expensive
since a new set of demonstrations needs to be collected for every new task.

Online RL with offline datasets. As an alternative to expensive task-specific demonstrations,
multiple recent works have proposed to accelerate reinforcement learning by leveraging task-agnostic
experience in the form of large datasets collected across many tasks [16, 17, 18, 19, 20, 21]. In
contrast to demonstrations, such task-agnostic datasets can be collected cheaply from a variety of
sources like autonomous exploration [22, 23] or human tele-operation [24, 25, 26], but will lead to
slower learning than demonstrations since the data is not specific to the downstream task.

Skill-based RL. One class of approaches for leveraging such offline datasets that is particularly
suited for learning long-horizon behaviors is skill-based RL [22, 27, 28, 29, 30, 31, 24, 32, 26, 33, 16].
These methods extract reusable skills from task-agnostic datasets and learn new tasks by recombining
them. Yet, such approaches perform reinforcement learning over the set of extracted skills to learn
the downstream task. Although being more efficient than RL over primitive actions, they still require
many environment interactions to learn long-horizon tasks. In our work we combine the best of both
worlds: by using large, task-agnostic datasets and a small number of task-specific demonstrations, we
accelerate the learning of long-horizon tasks while reducing the number of required demonstrations.

3 Approach

Our goal is to use skills extracted from task-agnostic prior experience data to improve the efficiency
of demonstration-guided RL on a new task. We aim to leverage a set of provided demonstrations
by following the performed skills as opposed to the primitive actions. Therefore, we need a model
that can (1) leverage prior data to learn a rich set of skills and (2) identify the skills performed in the
demonstrations in order to follow them. Next, we formally define our problem, summarize relevant
prior work on RL with learned skills and then describe our demonstration-guided RL approach.
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Figure 2: Our approach, SkiLD, combines task-agnostic experience and task-specific demonstrations
to efficiently learn target tasks in three steps: (1) extract skill representation from task-agnostic
offline data, (2) learn task-agnostic skill prior from task-agnostic data and task-specific skill posterior
from demonstrations, and (3) learn a high-level skill policy for the target task using prior knowledge
from both task-agnostic offline data and task-specific demonstrations. Left: Skill embedding model
with skill extractor ( ) and closed-loop skill policy (blue). Middle: Training of skill prior
(green) from task-agnostic data and skill posterior (purple) from demonstrations. Right: Training
of high-level skill policy (red) on a downstream task using the pre-trained skill representation and
regularization via the skill prior and posterior, mediated by the demonstration discriminator D(s).

3.1 Preliminaries

Problem Formulation We assume access to two types of datasets: a large task-agnostic offline
dataset and a small task-specific demonstration dataset. The task-agnostic dataset D = {s;, at, ...}
consists of trajectories of meaningful agent behaviors, but includes no demonstrations of the target
task. We only assume that its trajectories contain short-horizon behaviors that can be reused to solve
the target task. Such data can be collected without a particular task in mind using a mix of sources,
e.g., via human teleoperation, autonomous exploration, or through policies trained for other tasks.
Since it can be used to accelerate many downstream task that utilize similar short-term behaviors
we call it task-agnostic. In contrast, the task-specific data is a much smaller set of demonstration
trajectories Dyemo = {5¢, af, ...} that are specific to a single target task.

The downstream learning problem is formulated as a Markov decision process (MDP) defined by a
tuple (S, A, T, R, p,~y) of states, actions, transition probabilities, rewards, initial state distribution,
and discount factor. We aim to learn a policy 7y (a|s) with parameters § that maximizes the discounted

sum of rewards J(0) = E, | 31:_01 Ji] =Ex| ZtT:_Ol 7], where T is the episode horizon.

Skill Prior RL  Our goal is to extract skills from task-agnostic experience data and reuse them for
demonstration-guided RL. Prior work has investigated the reuse of learned skills for accelerating
RL [16]. In this section, we will briefly summarize their proposed approach Skill Prior RL (SPiRL)
and then describe how our approach improves upon it in the demonstration-guided RL setting.

SPIiRL defines a skill as a sequence of H consecutive actions @ = {a, ..., atg—1}, where the skill
horizon H is a hyperparameter. It uses the task-agnostic data to jointly learn (1) a generative model
of skills p(a|z), that decodes latent skill embeddings = into executable action sequences a, and (2) a
state-conditioned prior distribution p(z|s) over skill embeddings. For learning a new downstream
task, SPiRL trains a high-level skill policy 7y (z|s) whose outputs get decoded into executable actions
using the pre-trained skill decoder. Crucially, the learned skill prior is used to guide the policy during
downstream RL by maximizing the following divergence-regularized RL objective:

T-1

J(0) =E,, {Z (8¢, 2¢) — aDKL(Wg(zt|st),p(zt\st)) . (D

t=0

Here, the KL-divergence term ensures that the policy remains close to the learned skill prior, guiding
exploration during RL. By combining this guided exploration with temporal abstraction via the
learned skills, SPiRL substantially improves the efficiency of RL on long-horizon tasks.



3.2 Skill Representation Learning

We leverage SPiRL’s skill embedding model for learning our skill representation. We follow prior
work on skill-based RL [26, 19] and increase the expressiveness of the skill representation by
replacing SPiRL'’s low-level skill decoder p(a|z) with a closed-loop skill policy 74(als, z) with
parameters ¢ that is conditioned on the current environment state. In our experiments we found this
closed-loop decoder to improve performance (see Section C for an empirical comparison).

Figure 2 (left) summarizes our skill learning model. It consists of two parts: the skill inference
network ¢, (2|s0:H—1, @0:H—2) With parameters w and the closed-loop skill policy my(a|se, z;).
Note that in contrast to SPiRL the skill inference network is state-conditioned to account for the
state-conditioned low-level policy. During training we randomly sample an H-step state-action
trajectory from the task-agnostic dataset and pass it to the skill inference network, which predicts
the low-dimensional skill embedding z. This skill embedding is then input into the low-level policy
me(at|st, z) for every input state. The policy is trained to imitate the given action sequence, thereby
learning to reproduce the behaviors encoded by the skill embedding z.

The latent skill representation is optimized using variational inference, which leads to the full skill
learning objective:

H-2
maxEq{ H log 7r¢(at|st7 z) _B(IOgQw(z|SO:H717a0:H72) - logp(z)) . (2

w
’ t=0

embedding regularization

behavioral cloning

We use a unit Gaussian prior p(z) and weight the embedding regularization term with a factor 5 [34].

3.3 Demonstration-Guided RL with Learned SKkills

To leverage the learned skills for accelerating Goal
demonstration-guided RL on a new task, we use a )
hierarchical policy learning scheme (see Figure 2, right): a

high-level policy 74 (z|s) outputs latent skill embeddings D]

z that get decoded into actions using the pre-trained | Datermo)
low-level skill policy. We freeze the weights of the skill Start '
policy during downstream training for simplicity. ( )

Our goal is to leverage the task-specific demonstrations
to guide learning of the high-level policy on the new task.
In Section 3.1, we showed how SPiRL [16] leverages a
learned skill prior p(z|s) to guide exploration. However,
this prior is task-agnostic, i.e., it encourages exploration of
all skills that are meaningful to be explored, independent
of which task the agent is trying to solve. Even though
SPiRL’s objective makes learning with a large number of
skills more efficient, it encourages the policy to explore
many skills that are not relevant to the downstream task.

Figure 3: We leverage prior experience
data D and demonstration data Dgeme-
Our policy is guided by the task-specific
skill posterior ¢;(z|s) within the support
of the demonstrations (green) and by the
task-agnostic skill prior pg(z|s) other-
wise (red). The agent also receives a

reward bonus for reaching states in the
In this work, we propose to extend the skill prior guided demonstration support.

approach and leverage target task demonstrations to addi-

tionally learn a fask-specific skill distribution, which we call skill posterior q¢(z|s) with parameters
¢ (in contrast to the skill prior it is conditioned on the target task, hence “posterior’”). We train this
skill posterior by using the pre-trained skill inference model q,(z|So.—1, Go.—2) to extract the
embeddings for the skills performed in the demonstration sequences (see Figure 2, middle):

mciﬂ E (5,0)~Daome DKL (@0 (2S0: 511, a0::1—2), q¢ (2] 50)) 3)

A naive approach for leveraging the skill posterior is to simply use it to replace the skill prior in
Equation 1, i.e., to regularize the policy to stay close to the skill posterior in every state. However,
the trained skill posterior is only accurate within the demonstration support | Dgemo |, because by
definition it was only trained on demonstration sequences. Since | Dgemo| < |D| (see Figure 3), the
skill posterior will often provide incorrect guidance in states outside the demonstrations’ support.



Instead, we propose to use a three-part objective that guides the policy to (1) follow the skill posterior
within the support of the demonstrations, (2) follow the skill prior outside the demonstration support,
and (3) reach states within the demonstration support. To determine whether a given state is within
the support of the demonstration data we train a learned discriminator D(s) as a binary classifier
using samples from the demonstration and task-agnostic datasets, respectively.

In summary, our algorithm pre-trains the following components: (1) the low-level skill policy
7y (als, ), (2) the task-agnostic skill prior p(z|s), (3) the task-specific skill posterior g¢(z|s) and
(4) the learned discriminator D(s). Only the latter two need to be re-trained for a new target task.

Once all components are pre-trained, we use the discriminator’s output to weight terms in our objective
that regularize the high-level policy my(z|s) towards the skill prior or posterior. Additionally, we

provide a reward bonus for reaching states which the discriminator classifies as being within the
demonstration support. This results in the following term J; for SkiLD’s full RL objective:

Jr = T(st, 2t) —aqDxr(mo(zt]st), qc(2tst)) - D(st) —aDxr(mo(2t]st), p(zt[st)) - (1 — D(st)),

posterior regularization prior regularization

with 7(s;, 2) = (1— &) - r(s¢,2) + k- [log D(s¢) —log (1 — D(sy))] . 4)

discriminator reward

The weighting factor « is a hyperparameter; « and «, are either constant or tuned automatically
via dual gradient descent [35]. The discriminator reward follows common formulations used in
adversarial imitation learning [36, 37, 8, 38].# Our formulation combines IRL-like and BC-like
objectives by using learned rewards and trying to match the demonstration’s skill distribution.

For policy optimization, we use a modified version of the SPiRL algorithm [16], which itself is based
on Soft Actor-Critic [39]. Concretely, we replace the environment reward with the discriminator-
augmented reward and all prior divergence terms with our new, weighted prior-posterior-divergence
terms from equation 4 (for the full algorithm see appendix, Section A).

4 Experiments

In this paper, we propose to leverage a large offline experience dataset for efficient demonstration-
guided RL. We aim to answer the following questions: (1) Can the use of task-agnostic prior
experience improve the efficiency of demonstration-guided RL? (2) Does the reuse of pre-trained
skills reduce the number of required target-specific demonstrations? (3) In what scenarios does the
combination of prior experience and demonstrations lead to the largest efficiency gains?

4.1 Experimental Setup and Comparisons

To evaluate whether our method SkiLLD can efficiently use task-agnostic data, we compare it to prior
demonstration-guided RL approaches on three complex, long-horizon tasks: a 2D maze navigation
task, a robotic kitchen manipulation task and a robotic office cleaning task (see Figure 4, left).

Maze Navigation. We adapt the maze navigation task from Pertsch et al. [16] and increase task
complexity by adding randomness to the agent’s initial position. The agent needs to navigate through
a maze for hundreds of time steps using planar velocity commands to receive a sparse binary reward
upon reaching a fixed goal position. We collect 3000 task-agnostic trajectories using a motion
planner that finds paths between randomly sampled start-goal pairs. For the target task we collect 5
demonstrations for an unseen start-goal pair.

Robot Kitchen Environment. We use the environment of Gupta et al. [24] in which a 7DOF robot
arm needs to perform a sequence of four subtasks, such as opening the microwave or switching on
the light, in the correct order. The agent observes a low-dimensional state representation and receives
a binary reward upon completion of each consecutive subtask. We use 603 teleoperated sequences
performing various subtask combinations (from Gupta et al. [24]) as task-agnostic experience D and

“We found that using the pre-trained discriminator weights led to stable training, but it is possible to perform
full adversarial training by finetuning D(s) with rollouts from the downstream task training. We report results
for initial experiments with discriminator finetuning in Section E and leave further investigation for future work.



separate a set of 20 demonstrations for one particular sequence of subtasks, which we define as our
target task (see Figure 4, middle).

Maze Navigation
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Environment steps (1M)

Robot Office Environment. A 5 DOF robot
arm needs to clean an office environment by
placing objects in their target bins or putting
them in a drawer. It observes the poses of its
end-effector and all objects in the scene and re-
ceives binary rewards for the completion of each
subtask. We collect 2400 training trajectories
by perturbing the objects initial positions and
performing random subtasks using scripted poli-
cies. We also collect 50 demonstrations for the
unseen target task with unseen object locations
and subtask sequence.
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We compare our approach to multiple prior
demonstration-guided RL approaches that rep-
resent the different classes of existing algo-
rithms introduced in Section 2. In contrast to
SkiLD, these approaches are not designed to
leverage task-agnostic prior experience: BC +
RL initializes a policy with behavioral cloning
of the demonstrations, then continues to apply
BC loss while finetuning the policy with Soft
Actor-Critic (SAC, [39]), representative of [6, 7].
GAIL + RL [8] combines rewards from the [ SKILD (Ours) = SPIRL === Skill BC+RL ]
environment and adversarial imitation learning =@~ Replay BCHRL  +4-GAIL+RL  -©-SAC
(GAIL, [13]), and optimizes the policy using . .

PPO [40]. Demo Replay initializes the replay [igure 4: Left: Test environments, top to bot-
buffer of an SAC agent with the demonstrations ~t0m: 2D maze navigation, robotic k1tc‘:hen manip-
and uses them with prioritized replay during up- ulation and robotic ofﬁce; cleaning. Right: Target
dates, representative of [4]. We also compare task performance VS. environment steps. By using
our approach to RL-only methods to show the tas}(-agnostlc experience, our app.roach more .ef—
benefit of using demonstration data: SAC [39] ficiently leyerageg the demonstrations than prior
is a state-of-the-art model-free RL algorithm, demonstratlon-gu}ded RL gpproaches across all
it neither uses offline experience nor demon- task;. Thf? comparison t.o SPiRL shgws that demon-
strations. SPiRL [16] extracts skills from task- Strations improve efficiency even if the agent has
agnostic experience and performs prior-guided ~6Cess to large amounts of prior experience.

RL on the target task (see Section 3.1)°. Finally, Skill BC+RL combines skills learned from task-
agnostic data with target task demonstrations: it encodes the demonstrations with the pre-trained skill
encoder and runs BC for the high-level skill policy, then finetunes on the target task using SAC. For
further details on the environments, data collection, and implementation, see appendix Section B.
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4.2 Demonstration-Guided RL with Learned SKkills

Maze Navigation. Prior demonstration-guided RL approaches struggle on the task (see Figure 4,
right) since rewards are sparse and only five demonstrations are provided. With such small coverage,
behavioral cloning of the demonstrations’ primitive actions leads to brittle policies which are hard
to finetune. The Replay agent improves over SAC without demonstrations and partly succeeds at
the task, but learning is slow. The GAIL+RL approach is able to follow part of the demonstrated
behavior, but fails to reach the final goal (see Figure 8 for qualitative results). SPiRL and Skill BC+RL
leverage task-agnostic data to learn to occasionally solve the task, but train slowly: SPiRL’s learned,
task-agnostic skill prior and Skill BC+RL’s uniform skill prior during SAC finetuning encourage
the exploration of many task-irrlevant skills®. In contrast, our approach SkiLD leverages the task-

SWe train SPiRL with the closed-loop policy representation from Section 3.2 for fair comparison and better
performance. For an empirical comparison of open and closed-loop skill representations in SPiRL, see Section C.
SPerformance of SPiRL differs from Pertsch et al. [16] due to increased task complexity, see Section B.4.
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Figure 5: Visualization of our approach on the maze navigation task (visualization states collected
by rolling out the skill prior). Left: the given demonstration trajectories; Middle left: output of the
demonstration discriminator D(s) (the greener, the higher the predicted probability of a state to be
within demonstration support, red indicates low probability). Middle right: policy divergences to the
skill posterior and Right: divergence to the skill prior (blue indicates small and red high divergence).
The discriminator accurately infers the demonstration support, the policy successfully follows the
skill posterior only within the demonstration support and the skill prior otherwise.

specific skill posterior to quickly explore the relevant skills, leading to significant efficiency gains
(see Figure 5 for qualitative analysis and Figure 9 for a comparison of SkiLD vs. SPiRL exploration).

Robotic Manipulation. We show the performance comparison on the robotic manipulation tasks
in Figure 4 (right)’. Both tasks are more challenging since they require precise control of a high-DOF
manipulator. We find that approaches for demonstration-guided RL that do not leverage task-agnostic
experience struggle to learn either of the tasks since following the demonstrations step-by-step is
inefficient and prone to accumulating errors. SPiRL, in contrast, is able to learn meaningful skills
from the offline datasets, but struggles to explore the task-relevant skills and therefore learns slowly.
Worse yet, the uniform skill prior used in Skill BC+RL’s SAC finetuning is even less suited for the
target task and leads the policy to deviate from the BC initialization early on in training, preventing
the agent from learning the task altogether (for pure BC performance, see appendix, Figure 13). Our
approach, however, uses the learned skill posterior to guide the chaining of the extracted skills and
thereby learns to solve the tasks efficiently, showing how SkiL.D effectively combines task-agnostic
and task-specific data for demonstration-guided RL.

4.3 Ablation Studies

In Figure 6 (left) we test the robustness of our ap-
proach to the number of demonstrations in the
maze navigation task and compare to BC+RL,

which we found to work best across different

demonstration set sizes. Both approaches bene- Lo e
fit from more demonstrations, but our approach , BC+RL , —— no-post

is able to learn with much fewer demonstrations © Y yoemonsirations . Environment steps (M)
by using prior experience. While BC+RL learns
each low-level action from the demonstrations,
SkiLD merely learns to recombine skills it has
already mastered using the offline data, thus re-
quiring less dense supervision and fewer demon-
strations. We also ablate the components of
our RL objective on the kitchen task in Figure 6 (right). Removing the discriminator reward bonus
("no-GAIL") slows convergence since the agent lacks a dense reward signal. Naively replacing the
skill prior in the SPiRL objective of Equation 1 with the learned skill posterior ("post-only") fails
since the agent follows the skill posterior outside its support. Removing the skill posterior and
optimizing a discriminator bonus augmented reward using SPiRL ("no-post") fails because the agent
cannot efficiently explore the rich skill space. Finally, we show the efficacy of our approach in the
pure imitation setting, without environment rewards, in appendix, Section E.
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Figure 6: Ablation studies. We test the perfor-
mance of SkiLD for different sizes of the demon-
stration dataset | Dyemo| On the maze navigation task
(left) and ablate the components of our objective
on the kitchen manipulation task (right).

"For qualitative robot manipulation videos, see https://sites.google.com/view/skill-demo-rl.
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4.4 Robustness to Partial Demonstrations

w

Most prior approaches that aim to follow demon-
strations of a target task, assume that these
demonstrations show the complete execution of
the task. However, we can often encounter sit-
uations in which the demonstrations only show

incomplete solutions, e.g. because the agent’s " Envionmentsteps (M) Environment steps (IM)
and demonstration’s initial states do not align or
because we only have access to demonstrations
for a subtask within a long-horizon task. Thus,
SkiL.D is designed to handle such partial demon-
strations: through the discriminator weighting it
relies on demonstrations only within their sup-
port and falls back to following the task-agnostic
skill prior otherwise. Thus it provides a ro-
bust framework that seamlessly integrates task-
specific and task-agnostic data sources. We test
this experimentally in the kitchen environment: we train SkiLD with partial demonstrations in which
we remove one of the subskills. The results in Figure 7 (left) show that “SkiLD-Partial” is able
to leverage the partial demonstrations to improve efficiency over SPiRL, which does not leverage
demonstrations. Expectedly, using the full demonstrations in the SkiLD framework (“SkiLLD-Full”)
leads to even higher learning efficiency.

== SKiLD - Full
SkiLD - Partial
— SPIRL

Completed Subtasks
~
Completed Subtasks

Figure 7: Left: Robustness to partial demonstra-
tions. SkiLD can leverage partial demonstrations
by seamlessly integrating task-agnostic and task-
specific datasets (see Section 4.4). Right: Analysis
of data vs. task alignment. The benefit of using
demonstrations in addition to prior experience di-
minishes if the prior experience is closely aligned
with the target task (solid), but gains are high when
data and task are not well-aligned (dashed).

4.5 Data Alignment Analysis

We aim to analyze in what scenarios the use of demonstrations in addition to task-agnostic experience
is most beneficial. In particular, we evaluate how the alignment between the distribution of observed
behaviors in the task-agnostic dataset and the target behaviors influences learning efficiency. We
choose two different target tasks in the kitchen environment, one with good and one with bad
alignment between the behavior distributions (see Section F), and compare our method, which uses
demonstrations, to SPiRL, which only relies on the task-agnostic data.

In the well-aligned case (Figure 7, right, solid lines), we find that both approaches learn the task
efficiently. Since the skill prior encourages effective exploration on the downstream task, the benefit
of the additional demonstrations leveraged in our method is marginal. In contrast, if task-agnostic data
and downstream task are not well-aligned (Figure 7, right, dashed), SPiRL struggles to learn the task
since it cannot maximize task reward and minimize divergence from the mis-aligned skill prior at the
same time. Our approach learns more reliably by encouraging the policy to reach demonstration-like
states and then follow the skill posterior, which by design is well-aligned with the target task.

In summary, our analysis finds that approaches which leverage both task-agnostic data and demon-
strations, improve over methods that use either of the data sources alone across all tested tasks. We
find that combining the data sources is particularly beneficial in two cases:

* Diverse Task-Agnostic Data. Demonstrations can focus exploration on task-relevant skills
if the task-agnostic skill prior explores a too large set of skills (see Section 4.2).

* Mis-Aligned Task-Agnostic Data. Demonstrations can compensate mis-alignment be-
tween task-agnostic data and target task by guiding exploration with the skill posterior
instead of the mis-aligned prior.

5 Conclusion

We proposed SkiLLD, an approach for demonstration-guided RL that is able to leverage task-agnostic
experience datasets and task-specific demonstrations for accelerated learning of unseen tasks. In three
challenging environments SkiLLD learns new tasks more efficiently than both, prior demonstration-
guided RL approaches that are unable to leverage task-agnostic data, as well as skill-based RL methods
that cannot effectively incorporate demonstrations. Future work should combine task-agnostic data
and demonstrations for efficient learning in the real world and investigate domain-agnostic measures
for data-task alignment to quantify the usefulness of prior experience for target tasks.
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