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ABSTRACT

Bridging the gap between what is designable by computational discovery and what
is synthesizable in the lab remains a central obstacle for closed-loop materials sci-
ence. We tackle single-step inorganic retrosynthesis and show that explicit chemi-
cal principles are potent inductive biases for learning to plan syntheses. We intro-
duce PRICIN, a principle-centered approach that reformulates precursor planning
around two laws: elemental conservation and electron balance. PRICIN embeds
stoichiometry and oxidation-state semantics directly into the target representation
via two pretraining objectives, including an auxiliary oxidation-state supervision
that injects charge awareness. At inference, a lightweight element-wise filter first
predicts the required number of precursors and then prunes candidates that vio-
late conservation constraints, yielding explainable, chemically consistent precur-
sor sets without external retrieval or rigid templates. Across the Retrieval-Retro
(year-split) and Ceder benchmarks, PRICIN attains state-of-the-art performance
on Top-k and combination Top-k metrics, improving over the previous best by
+5.59 Top-1 and by up to +19.2 percentages on Top-k. Ablations confirm that
oxidation-state supervision and conservation-aware filtering are both necessary
and complementary, substantially reducing early-rank errors. The code will be
released upon acceptance.

 (b) Retrosynthesis process

 (a) Datasets extracted from science literatures
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Figure 1: The inorganic retrosynthesis task. (a) Prior work has focused on extracting synthe-
sis recipes from scientific literature, where the precursors and conditions for a known target are
documented. (b) In contrast, the retrosynthesis process inverts this problem: given a novel target
compound, the goal is to predict a set of viable precursors and synthesis conditions. This automated
synthesis planning is a key step toward the ultimate vision of using lab automation to accelerate the
discovery and synthesis of new materials.
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1 INTRODUCTION

The core objective of materials science is to discover and deploy new materials with superior prop-
erties for critical applications, including semiconductors Choubisa et al. (2023), energy storage Yao
et al. (2023) and bio-materials McDonald et al. (2023). While traditional materials exploration relies
heavily on trial and error, the advent of theoretical and first-principles calculations has significantly
accelerated the design phase. Systems like GNoME Merchant et al. (2023) and MatterGen Zeni
et al. (2023) can now efficiently generate promising compositions and structures from vast candi-
date spaces. However, with the rise of the closed-loop paradigms such as A-Lab Szymanski et al.
(2023b), the primary bottleneck in the full Design-Make-Analyze-Test (DMAT) cycle has become
increasingly apparent: many existing models excel at screening and design but struggle to provide
actionable synthesis routes, creating a significant gap between what is designable and what is syn-
thesizable.

Similar to organic chemistry, the synthesis of inorganic materials can be framed as a retrosynthesis
problem. However, the two fields have significant differences that make direct translation of meth-
ods unfeasible: (1) the lack of large-scale, standardized datasets comparable to the USPTO database
Somnath et al. (2021); (2) the greater difficulty in calculating the properties and structures of inor-
ganic crystals Ratcliff et al. (2017), which involve larger numbers of atoms and periodic boundary
conditions; (3) the critical role of stoichiometry in determining both the target crystal structure and
the feasible precursor combinations; and (4) the absence of universally transferable reaction centers
Lan et al. (2024) or transition state mechanisms Zhang et al. (2016); Ucak et al. (2022) in inorganic
solid-state synthesis, making data-driven modeling more challenging. Consequently, inorganic ret-
rosynthesis has emerged as a key unsolved problem for achieving closed-loop materials discovery.

In recent years, automated methods for inorganic retrosynthesis have begun to emerge.
Thermodynamics-based pathfinding approaches frame solid-state synthesis as a search for a fea-
sible path on a reaction network, where edge weights encode proxies for reaction energy and phase
competition, successfully reproducing literature routes and proposing candidates for new targets Mc-
Dermott et al. (2021); Miura et al. (2021). For precursor set generation, early work used text mining
and generative models to learn synthesis planning from literature Kim et al. (2020). More recent
methods like SynthesisSimilarity He et al. (2023) learn material similarity from historical recipes
to recommend precursors by analogy, ElementwiseRetro Kim et al. (2022) uses a template-based
GNN ranker, and RetrievalRetro Noh et al. (2024) incorporates a reaction energy-based retriever.
While these methods have advanced the field, they primarily rely on precedent-based learning, with
limited explicit modeling of chemical principles. This can lead to early-ranking errors, inflexibility
in handling multi-source precursors.

In this work, we propose a principle-centered approach (PRICIN) to inorganic retrosynthesis. We re-
formulate the precursor planning task around two core chemical reaction laws: elemental conserva-
tion and electron balance (the total increase in oxidation numbers equals the total decrease). Instead
of relying solely on templates or retrieval, we design two tasks that embed elemental stoichiometry
and oxidation-state directly into the target material’s representation. One objective uses auxiliary
supervision on oxidation states to implicitly model valence changes during reaction, while the other
models compositional ratios to ensure elemental conservation. We also introduce a lightweight
element-wise filter that first predicts the required number of precursors and then filters out can-
didates that violate elemental conservation, ensuring that elements of every precursor are sourced
validly. Guided by these principles, PRICIN generates explainable and synthesizable precursor sets
without relying on external retrieval and significantly increases top-k accuracy.

We systematically evaluate our method on the Retrieval-Retro Noh et al. (2024) and Ceder Kononova
et al. (2019) benchmark datasets, with the former using a year-based split to test for temporal gen-
eralization. Our results demonstrate state-of-the-art performance across multiple metrics, validating
the effectiveness and practical potential of a principle-centered approach to inorganic retrosynthesis.

Our contributions are summarized as follows:

• Explicit Oxidation-State Supervision. To the best of our knowledge, we are the first to
propose that explicit oxidation-state supervision should be a core component of model-
ing inorganic retrosynthesis, providing a direct chemical signal that significantly improves
prediction accuracy.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Capability comparison of retrosynthesis methods. Our approach is benchmarked against
prior works, highlighting key features for successful precursor prediction: the ability to retrieve
from a database of known reactions, the integration of explicit chemical domain knowledge, and the
capacity to extrapolate predictions to novel materials.

Model
Retrieval
capability

Chemical domain
knowledge

Extrapolation
to new systems

ElemwiseRetro Kim et al. (2022) ✗ Low Medium
Synthesis Similarity He et al. (2023) ✓ Low Low
Retrieval-Retro Noh et al. (2024) ✓ Medium Medium
Retro-Rank-In Prein et al. (2025) ✗ Low High
Ours ✓ High High

• Principle-Centered Formulation. We develop a comprehensive modeling framework that
reconstructs the retrosynthesis task around two key chemical principles: elemental con-
servation and electron balance, integrating these rules into both the learning process and
inference constraints.

• Effective Element-Wise Filter. We employ a simple and highly efficient element-wise
filter at inference time that first predicts the number of precursors and then prunes ille-
gal candidates, leading to consistent and substantial accuracy improvements with minimal
computational overhead.

2 RELATED WORK

Literature mining and datasets. Recent literature-mining efforts have demonstrated that large-
scale, automated extraction of inorganic synthesis knowledge is feasible and directly enables recipe-
level datasets. (Kononova et al., 2019) builds a large-scale, automatically text-mined corpus of solid-
state synthesis “recipes” by scraping articles, detecting synthesis paragraphs and converting text into
structured JSON records that capture targets, precursors, operations. (Huo et al., 2019) uses semi-
supervised topic modeling to discover interpretable step-topics and classifies synthesis modalities
while reconstructing procedural order. (He et al., 2020) develops a two-step pipeline that masks
material mentions and infers roles with a BiLSTM-CRF, assembling a large corpus of precursors
and targets and proposing a precursor-similarity metric that supports reactant substitution. (Wang
et al., 2022b) extends mining to solution-based syntheses with a publisher-scale pipeline combin-
ing a BERT-based paragraph classifier. (Wang et al., 2022a) introduces a unified ontology (ULSA)
and a learned mapping from text to standardized action graphs, providing a common procedural
vocabulary, allowing operation prediction and full-step synthesis planning.

Precursor recommendation. (McDermott et al., 2021) cast solid-state synthesis planning as
pathfinding on a thermochemistry-derived reaction network whose edge weights encode thermo-
dynamic proxies, recovering literature routes (e.g., YMnO3, Y2Mn2O7, Fe2SiS4, YBa2Cu3O6.5) and
proposing routes to unseen targets. (Miura et al., 2021) recast ceramic synthesis as a sequence of
pairwise interfacial reactions, rank interface reactivity via ab-initio thermodynamics, and predict
the earliest nonequilibrium intermediates that steer phase evolution. (Kim et al., 2020) mine the
materials-science literature with an NLP pipeline (ELMo/FastText embeddings and NER) and train
an unsupervised conditional VAE to model synthesis actions and precursors conditioned on a target
compound, retrospectively proposing plausible precursors for unseen perovskites such as InWO3
and PbMoO3 while providing literature-trained representations that complement thermodynamic
checks. He et al. (2023) propose a data-driven strategy (SynthesisSimilarity) that learns a neural
notion of chemical similarity from 29,900 literature recipes to recommend precursor sets for novel
targets by analogy to historically synthesized materials. Kim et al. (2022) develop a graph neural
framework (ElementwiseRetro) that ranks precursor sets under a probabilistic template requiring
each target element be sourced from exactly one precursor, a constraint that can limit flexibility
for multi-source routes. Noh et al. (2024) introduce a retrieval-based approach (RetrievalRetro) that
implicitly extracts precursor information from reference materials and injects thermodynamic priors
via a Neural Reaction Energy retriever, yet can propagate early ranking errors to higher-k lists.

3
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Applications and LLMs. (Chen et al., 2024) formalizes a thermodynamic strategy for solid-
state synthesis and validates these principles robotically across hundreds of reactions with routinely
higher phase purity than traditional recipes. Song et al. (2025) introduces CSLLM, a domain-adapted
LLM that predicts synthesizability, methods, and precursors from a crystal-text representation and
a large curated corpus, though without explicitly enforcing charge balance. Several other domain-
specialized language models have been developed for materials science, such as MatBERT Walker
et al. (2021) and MatSciBERT Gupta et al. (2022). Szymanski et al. (2023a) presents A-Lab, a
closed-loop platform that fuses ab initio phase-stability priors, literature-trained recipe models,
robotics, ML-based XRD, and active learning to reliably realize computationally proposed oxides
and phosphates.

3 PRELIMINARY

We consider the single–step inorganic retrosynthesis problem: given a target compound x and syn-
thesis conditions (T ,P), predict a multiset of precursors C = {pi}mi=1 together with stoichio-
metric coefficients s = (s1, . . . , sm) and optional byproducts B = {bj}rj=1 with coefficients
t = (t1, . . . , tr) such that the reaction is chemically consistent and thermodynamically driven.

Elemental conservation. Let n(E, y) denote the count of element E in material y per formula
unit. Element balance requires that there exist non–negative integers {sx}, {si} and {tj} satisfying,
for all E in the element set E ,

m∑
i=1

si n(E, pi) = sx n(E, x) +

r∑
j=1

tj n(E, bj) . (1)

In practice, when multiple precursor sets may synthesize the same target, we relax per-atom balance
to the following element-level formulation: We write M(y) for “the set of elements that appear in
material y.” The coverage constraint is simply

m⋃
i=1

M(pi) = M(x) ∪
r⋃

j=1

M(bj). (2)

Electron balance. Let z(E, ·) denote admissible oxidation states. Chemical principles dictate
that each compound must be charge–neutral and that the overall reaction must be redox-balanced.
To formalize charge neutrality, we account for elements with multiple oxidation states by defining
the net charge of a compound y as a sum over its constituent species σ (element-oxidation pairs):
Q(y) =

∑
σ z(σ, y)n(σ, y), where z(σ, y) is the charge of species σ and n(σ, y) is its count. Con-

sequently, for any valid compound: Q(x) = 0, Q(pi) = 0, Q(bj) = 0. Beyond the neutrality of
individual compounds, a valid chemical reaction must also maintain redox balance. This principle
requires that the sum of oxidation state changes across all elements in the reaction be zero, meaning
any oxidation is precisely balanced by a reduction. Therefore, the valence states of the precursors
are fundamentally linked to those of the target material, motivating our subsequent use of precursor
oxidation states as an informative signal for our model.

Problem statement. Inorganic retrosynthesis seeks to find and rank precursor sets (C, s) (and
optional B, t) that satisfy elemental conservation and charge consistency. Downstream sections in-
stantiate this definition with learnable embeddings, retrieval evidence, and decision–time constraint
checks.

4 METHODS

Overview. Our proposed pipeline, illustrated in Figure 2, consists of a multitask training stage
followed by a constrained ranking stage. Given a target compound x, we first apply a fixed feature
extraction module h(·) to obtain its compositional representation, xfeat = h(x). This feature vector
is then passed to a trainable encoder fθ(·) to produce a chemically-aware target embedding in the
latent space, t = fθ(xfeat). This embedding is jointly optimized against three objectives using

4
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Figure 2: Overview of our chemical principle-centered pipeline. The model takes a target compo-
sition, extracts features, and encodes it into a fixed-dimensional target embedding. This embedding
is trained via three auxiliary tasks: (1) Chemical Formula Rebuild, where a decoder reconstructs
the elemental fractions of the target to preserve stoichiometric information; (2) Oxidation Number
Prediction, where the model learns to predict the distribution of oxidation states for each element by
comparing the target embedding to a species codebook, thereby injecting oxidation-awareness; and
(3) Precursor Prediction, where the target embedding is used to rank candidates from a precursor
codebook. In the final step, an Element-wise Filter is applied to the ranked precursor probabilities
to enforce elemental conservation, yielding a list of chemically coherent precursor sets.

two distinct learnable codebooks: an Oxidation State Codebook, Cox ∈ RNox×d, and a Precursor
Codebook, Cprec ∈ RNp×d. The objectives are: reconstructing the initial compositional features,
predicting oxidation states, and predicting the precursor set. Finally, the ranking stage uses the
optimized target embedding to generate precursor recommendations, which are refined by a element
wise filter that enforces elemental conservation.

4.1 TASK 1: CHEMICAL FORMULA REBUILD.

The goal of this task is to train the encoder fθ to produce a robust target embedding t that retains
the essential stoichiometric information of the original compound. To achieve this, we employ a
decoder, dϕ(·), which attempts to reconstruct the initial target feature vector from the embedding,
i.e., x̂feat = dϕ(t). This autoencoding structure ensures that the learned embedding is a compressed
but faithful representation of the compound’s composition. The reconstruction loss is formulated as
a binary cross-entropy between the original and reconstructed feature vectors:

Lfrac = −
|E|∑
i=1

[
xfeat,i log(x̂feat,i) + (1− xfeat,i) log(1− x̂feat,i)

]
, (3)

where xfeat is the ground-truth feature vector and x̂feat is the reconstructed vector. This task serves
as a regularization objective that enhances the stability and generalization of downstream tasks.

4.2 TASK 2: OXIDATION NUMBER PREDICTION.

Chemical reactions are governed by charge conservation, but the oxidation states in a novel target
compound are often unknown (e.g., Ba0.5Sr0.5CoxFe1 – xO3 –δ). We address this by predicting the
target’s oxidation state distribution, using the known states of its precursors as the ground truth.
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Specifically, we use the learned target embedding t to query a learnable Oxidation State Codebook
Cox ∈ R(Nelem×Nox states)×d. This codebook stores an embedding for each possible element-oxidation
state pair. We compute a logit for each pair via a matrix-vector product: zox = C⊤

oxt. The logits are
then passed through a sigmoid function to yield the predicted probability distribution, π̂ = σ(zox).
The model is trained to match this prediction to the ground-truth distribution π⋆, which is derived
from the aggregated oxidation states of the precursors. The loss is:

Lox = −
∑
E

∑
z

[
π⋆
E,z log(π̂E,z) + (1− π⋆

E,z) log(1− π̂E,z)
]
. (4)

This task injects charge awareness into the target embedding, encouraging a latent-space represen-
tation that reflects valence chemistry.

4.3 TASK 3: PRECURSOR PREDICTION

Limitations of implicit count prediction. A fundamental challenge in retrosynthesis is determin-
ing the number of precursors, m, required for a target material x. Prior methods often address this
implicitly, for instance, by applying a fixed threshold (e.g., 0.5) to a sigmoid output layer to select
a precursor set. This approach is suboptimal: if the number of precursors selected via thresholding
does not match the ground truth m, the model is trained on an incorrect premise, forcing it to merely
redistribute probabilities over an erroneously sized set rather than correcting the count itself.

Explicit count prediction as classification. A more principled approach is to first predict the
number of precursors m, and subsequently predict their identities. As illustrated in Figure 2 (Task 3),
we introduce a dedicated precursor count predictor. This module frames the task as a classification
problem, guided by the chemical heuristic that m often correlates with the number of non-metallic
elements, Enon, in the target (e.g., O, N, F, Cl, Br). Instead of predicting m directly, the classifier
learns to predict the deviation of m from Enon. Specifically, it outputs a value from the discrete
set {−2,−1, 0,+1,+2}, which represents the predicted difference m − Enon. This transforms the
prediction of an arbitrary integer into a constrained, chemically-informed classification problem,
allowing the model to learn a robust prior over the size of the precursor set.

Precursor prediction Loss. We use the target embedding t = fθ(xfeat) to predict the precursor
set. We compute a logit vector z ∈ RNp by taking a matrix-vector product between the target
embedding and the Precursor Codebook, zprec = C⊤

prect. The selection probabilities for all Np

library precursors are then obtained by an elementwise sigmoid function, ŷ = σ(zprec). Training
uses a multi-label binary cross-entropy over the full library:

Lprec = −
Np∑
i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]
, (5)

where yi = 1 if the i-th precursor is in the ground-truth set C, and yi = 0 otherwise.

Total objective. The final training loss is a weighted sum:
L = λfracLfrac + λoxLox + λprecLprec. (6)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on two corpora of inorganic solid-state synthesis datasets. (1) The large-
scale dataset from the Ceder group Kononova et al. (2019). We use a train/validation/test split of
44,736 / 2,254 / 2,934 recipes. (2) Following Noh et al. (2024), we adopt a chronological split by
publication year: training/validation ≤ 2017 and test ≥ 2018. In our experiments, we also enforce
a closed-vocabulary condition for evaluation by restricting the val/test set to precursors that appear
in the training set. The curated subset containing 33,343 recipes (train 24,034 / val 1,842 / test
2,558). We consider Retrieval-Retro dataset the more challenging and realistic benchmark because
it is smaller in size and uses a temporal split that mirrors how materials scientists propose new
syntheses from prior literature.
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Table 2: Performance comparison on Retrieval-Retro Dataset. Models are evaluated on two
metrics: (a) Top-k accuracy ↑ and (b) Combination Top-k accuracy ↑. Bold values indicate the best
performance and underline the second best. Results of ElemwiseRetro* and SynthesisSimilarity*
are copied from Retrieval-Retro Noh et al. (2024), and details of procesing Retrieval-Retro Dataset
can be found in Section 5.1.

(a) Top-k accuracy ↑ (b) Combination Top-k accuracy ↑
Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

Matminer (Magpie) (Ward et al., 2018) 33.58 35.54 49.57 68.92 82.06 33.58 46.17 51.02 58.21 64.11
Roost Bartel et al. (2020) 44.53 45.82 56.41 70.37 81.94 44.53 54.81 57.51 63.45 67.32
CrabNet Wang et al. (2021) 57.47 57.58 62.39 78.54 85.89 57.47 60.13 62.59 67.24 71.93
ElemwiseRetro* Kim et al. (2022) - - - - - 53.45 57.07 58.19 60.84 -
SynthesisSimilarity* He et al. (2023) - - - - - 45.03 48.02 49.11 51.09 -
Retrieval-Retro Noh et al. (2024) 61.02 61.77 66.30 70.72 72.87 61.02 64.82 65.83 67.20 69.23

Ours (Precursor Number Not Given) 66.61 67.86 76.09 85.84 89.14 66.61 74.50 76.62 81.06 83.45
Ours 68.65 69.94 78.42 88.47 91.87 68.65 76.78 78.97 83.54 86.00

Baseline Methods. We fist compare against three popular composition-only baselines: Mat-
miner Ward et al. (2018) constructs fixed-length composition-based feature vectors from elemental
attributes (e.g., atomic number, electronegativity, covalent radius) using the featurization toolkit.
Roost Bartel et al. (2020) treats a chemical formula as a fully connected graph whose nodes are
elements and whose weights reflect stoichiometric fractions. Learned element embeddings with
attention-based message passing enable end-to-end inference of composition descriptors without
structural inputs. CrabNet Wang et al. (2021). CrabNet is a transformer-style architecture that ap-
plies compositionally restricted self-attention over element tokens to model inter-element context
and predict material properties from composition alone.

Beyond composition-only models, we also compare against methods tailored for precursor recom-
mendation. ElemwiseRetro Kim et al. (2022) represents a target composition via a fully connected
graph over its constituent elements and infers precursor candidates through element-level interac-
tions. Its element-wise matching scheme encourages near one-to-one correspondences between ele-
ments and selected precursors. SynthesisSimilarity He et al. (2023) introduces a masked precursor
completion to improve supervision for precursor selection. By expressing target materials in the
space of precursor tokens, the model naturally supports retrieval-augmented inference from a pre-
cursor library. Retrieval-Retro Noh et al. (2024) combines a learned retriever informed by reaction
energetics with a graph-based encoder for composition, yielding a retrieval-augmented pipeline that
improves the top-k accuracy and ranking of plausible precursors.

Metrics. We report two complementary metrics in this work:(a) Top-k accuracy: For each target
material, we rank precursor candidates by the model’s scores. If all ground-truth precursors appear
within the top k candidates, we count a hit. (b) Combination Top-k accuracy For each target, we first
take the top 20 precursors by predicted probability. Given the known number of true precursors (n),
we consider all size-n combinations from these 20 candidates and rank the combinations by their
joint probability. If the ground-truth set appears among the top k combinations, we count a hit.

5.2 IMPLEMENTATION DETAILS

Our model is trained using the AdamW Loshchilov & Hutter (2019) optimizer with a learning rate
of 1e-2, with a decay weight of 1e-5. The weights for the multi-task loss function were set to
λfrac = 0.1, λox = 0.1, and λprec = 1.0. The model is trained for a maximum of 2000 epochs,
employing an early stopping mechanism that halts training if the validation loss fails to improve for
100 consecutive iterations. All experiments were conducted on a single NVIDIA RTX 5090 GPU.

5.3 QUANTITATIVE RESULTS

Among three prior systems tailored to inorganic retrosynthesis (ElemwiseRetro, SynthesisSimilarity
and Retrieval-Retro), the masked precursor completion paradigm yields weak SynthesisSimilarity.
Early retrieval-based approaches improved by modeling inter-reaction relations but did not suffi-
ciently encode intra-reaction structure. Retrieval-Retro strengthened inter-reaction similarities and
added a neural reaction-energy module, setting the previous state of the art. Compared to Retrieval-
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Table 3: Performance comparison on Ceder Dataset. Models are evaluated on two metrics: (a)
Top-k accuracy ↑ and (b) Combination Top-k accuracy ↑. Bold values indicate the best performance
and underline the second best.

(a) Top-k accuracy ↑ (b) Combination Top-k accuracy ↑
Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

Matminer (Magpie) (Ward et al., 2018) 30.64 32.58 46.11 65.78 79.75 30.64 42.91 49.18 55.15 61.42
Roost Bartel et al. (2020) 51.87 53.14 62.27 76.11 82.89 51.87 61.11 64.18 67.79 73.35
CrabNet Wang et al. (2021) 61.86 63.02 69.70 79.31 85.38 61.86 68.64 70.86 73.93 76.96
Retrieval-Retro Noh et al. (2024) 56.78 57.16 62.58 68.34 70.11 56.78 61.35 62.54 65.24 67.11

Ours (Precursor Number Not Given) 61.87 62.90 71.46 81.34 84.98 61.87 70.22 72.17 75.86 78.96
Ours 65.03 66.12 75.12 85.51 89.33 65.03 73.82 75.87 79.75 83.00

Table 4: Ablation on chemical constraints. We toggle Rebuild evidence, oxidation-state constraint,
and element-wise filtering.

Setting Rebuild Oxidation-state Filter Top-K accuracy ↑ Combination Top-K accuracy ↑
Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

Base ✗ ✗ ✗ 61.7 63.1 73.7 84.2 90.5 61.7 72.3 75.2 79.8 83.3
+ Rebuild ✓ ✗ ✗ 61.5 62.8 73.7 84.4 90.7 61.5 72.2 75.3 79.7 83.3
+ Oxidation ✗ ✓ ✗ 61.8 62.9 73.5 84.4 90.3 61.8 72.1 75.3 80.2 82.8
+ Oxidation & Rebuild ✓ ✓ ✗ 64.0 65.1 75.7 85.8 91.0 64.0 73.9 76.7 81.2 84.2
Ours (Full) ✓ ✓ ✓ 68.6 69.9 78.4 88.5 91.9 68.6 76.8 79.0 83.5 86.0

Retro, our model lifts Top-1 accuracy by +5.59, which means our model jointly captures inter-
reaction relations via a precursor codebook that conditions on the product/target, and intra-reaction
constraints via atom and charge conservation. This combination delivers substantial, consistent
gains in both Top-k and Combination Top-k accuracy over all baselines on both datasets. Despite
the harder setting, our model improves over Retrieval-Retro by +8.3 / +9.0 / +12.5 / +17.2 / +19.2
percentage on Top-k.

Effective inorganic retrosynthesis planning benefits from modeling both relations across reactions
and physical conservation within reactions. In contrast, formula-level enhancements alone are insuf-
ficient, and naively scaling data without addressing stoichiometry redundancy can hurt performance.

5.4 ABLATION STUDY

We analyze the impact of three key components of our model: (i) the element-wise filter (Filter), (ii)
the oxidation-state prediction task (Oxidation-state), and (iii) the compositional fraction reconstruc-
tion task, which provides rebuild evidence (Rebuild). The results of this ablation study are presented
in Table 4.

Our base model, with all three components disabled, establishes a solid performance baseline. How-
ever, the results show that adding either the + Rebuild evidence or the + Oxidation constraint in
isolation yields only marginal improvements. This indicates that neither task alone is sufficient to
substantially enhance the model’s predictive power. A significant performance gain is observed
when the + Oxidation & Rebuild tasks are combined. This synergistic effect, which boosts Top-1
accuracy from 61.7 to 64.0, underscores the importance of learning representations that are concur-
rently aware of both chemical valence and compositional integrity.

Finally, the Ours (Full) model, which applies the element-wise Filter on top of the combined tasks,
achieves the best performance across all metrics by a significant margin (e.g., a leap to 68.6 in Top-1
accuracy). This demonstrates that while the learned representations are powerful, the constraint-
based filter is crucial for pruning chemically implausible candidates and refining the final predictions
to a state-of-the-art level.

5.5 CASE STUDY

Case Study I: Element-wise Filter The element-wise filter is a critical component for en-
suring chemical plausibility by enforcing elemental conservation. As illustrated in Figure 3(a),
the filter prunes the list of initial precursor candidates by removing any that contain ele-
ments not present in the target compound. For instance, in predicting precursors for the com-
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Figure 3: (a) Illustration of the Element-wise Filter. For two distinct targets, an oxide and a nitride
(both with doping elements), the filter correctly rejects wrong precursor candidates that introduce
extraneous elements not present in the target, such as Cr2O3 for the oxide target and Li3N for the
nitride target. (b) Case study of the oxidation state prediction task. For a target requiring Co2+, a
baseline model (left) might propose common precursors like Co3O4 or Co2O3 where cobalt is in a
+3 state. Our model, guided by the oxidation state auxiliary task, correctly identifies CoO as the
appropriate precursor that provides the required Co2+ valence state (right).

plex oxide target Ca0.6(Li0.5Bi0.5−xPrx)0.4Bi2Nb2O9, the filter correctly identifies and discards
Cr2O3 because Chromium (Cr) is an extraneous element. Similarly, for the nitride target
Ca0.99−xSrxAlSiN3:0.01Ce3+, a candidate like Li3N is rejected because Lithium (Li) is not a con-
stituent of the target. This simple yet effective screening step significantly reduces the search space,
allowing the downstream ranking model to focus only on stoichiometrically valid candidates.

Case Study II: Oxidation State Embedding The oxidation state prediction task is critical for
selecting chemically plausible precursors, especially for elements that can exist in multiple valence
states. We examine the synthesis of a complex oxide target containing Strontium (Sr2+), Titanium
(Ti4+), Iron (Fe3+), and Cobalt (Co2+). While precursors for Sr, Ti, and Fe are relatively straight-
forward (SrCO3, TiO2, Fe2O3), selecting the correct cobalt source is challenging.

As shown in Figure 3, a model without explicit oxidation modeling may propose common cobalt
oxides like Co3O4 or Co2O3 based on their frequency in the training data. However, these precursors
primarily contain Co3+, which is inconsistent with the target’s requirement for Co2+. Our model,
equipped with the oxidation state auxiliary task, learns to correlate the required valence state in the
target with the valence state in the precursors. Consequently, it correctly upweights CoO, which
provides the necessary Co2+, and downweights the incorrect alternatives. This case study demon-
strates that explicit oxidation-aware learning is crucial for refining precursor selection beyond simple
co-occurrence statistics and towards chemically coherent predictions.

6 CONCLUSION

We addressed the gap between compositional design and actionable synthesis by reformulating in-
organic retrosynthesis around two chemical reaction rules: elemental conservation and electron bal-
ance. Our principle–centered framework, PRICIN, injects these chemical laws into both learning
and inference via (i) explicit oxidation–state supervision that embeds redox semantics into the target
representation, and (ii) a lightweight element–wise filter that predicts precursor count and prunes
candidates violating conservation. Comprehensive experiments on the Ceder corpus and the more
realistic, temporally split Retrieval–Retro benchmark demonstrate consistent state-of-the-art per-
formance, including substantial gains in Top-k and combination Top-k accuracy. Ablations show
that oxidation–state supervision and the composition rebuild objective are complementary: together
they markedly reduce early-rank errors, while the inference-time element filter delivers additional,
low-cost improvements by enforcing feasibility. These capabilities hold the potential to advance
closed-loop scientific discovery and self-driven laboratories in inorganic materials design.
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Tobias Prein, Anke Hamm, Arghya Basu, Tobias Jägle, Aleksandar Lekic, Tutku Karadayilar, Xiao-
long Hu, Dev Ashish Jha, Rishin Sharma, Loan Talamini, et al. Retro-rank-in: A ranking-based
approach for inorganic materials synthesis planning. arXiv preprint arXiv:2502.04289, 2025.

Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi Gen-
ovese. Challenges in large scale quantum mechanical calculations. WIREs Computational
Molecular Science, 7(1):e1290, 2017. ISSN 1759-0884. doi: 10.1002/wcms.1290. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1290. eprint:
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1290.

Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, and Regina Barzi-
lay. Learning graph models for retrosynthesis prediction. November 2021. URL https:
//openreview.net/forum?id=SnONpXZ_uQ_.

Zhilong Song, Shuaihua Lu, Minggang Ju, Qionghua Zhou, and Jinlan Wang. Accurate prediction
of synthesizability and precursors of 3d crystal structures via large language models. Nature
Communications, 16(1):6530, 2025.

Nathan J. Szymanski, Bernardus Rendy, Yuxing Fei, Rishi E. Kumar, Tanjin He, David Milsted,
Matthew J. McDermott, Max Gallant, Ekin Dogus Cubuk, Amil Merchant, Haegyeom Kim,
Anubhav Jain, Christopher J. Bartel, Kristin Persson, Yan Zeng, and Gerbrand Ceder. An au-
tonomous laboratory for the accelerated synthesis of novel materials. Nature, 624(7990):86–
91, December 2023a. ISSN 1476-4687. doi: 10.1038/s41586-023-06734-w. URL https:
//www.nature.com/articles/s41586-023-06734-w.

Nathan J Szymanski, Bernardus Rendy, Yuxing Fei, Rishi E Kumar, Tanjin He, David Milsted,
Matthew J McDermott, Max Gallant, Ekin Dogus Cubuk, Amil Merchant, et al. An autonomous
laboratory for the accelerated synthesis of novel materials. Nature, 624(7990):86–91, 2023b.

Umit V. Ucak, Islambek Ashyrmamatov, Junsu Ko, and Juyong Lee. Retrosynthetic reaction path-
way prediction through neural machine translation of atomic environments. Nature Communica-
tions, 13(1):1186, March 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-28857-w. URL
https://www.nature.com/articles/s41467-022-28857-w. Publisher: Nature
Publishing Group.

Nicholas Walker, Amalie Trewartha, Haoyan Huo, Sanghoon Lee, Kevin Cruse, John Dagdelen,
Alexander Dunn, Kristin Persson, Gerbrand Ceder, and Anubhav Jain. The impact of domain-
specific pre-training on named entity recognition tasks in materials science. Available at SSRN
3950755, 2021.

Anthony Yu-Tung Wang, Steven K Kauwe, Ryan J Murdock, and Taylor D Sparks. Compositionally
restricted attention-based network for materials property predictions. npj computational materials
7 (1): 77, 2021.

Zheren Wang, Kevin Cruse, Yuxing Fei, Ann Chia, Yan Zeng, Haoyan Huo, Tanjin He, Bowen
Deng, Olga Kononova, and Gerbrand Ceder. Ulsa: Unified language of synthesis actions for the
representation of inorganic synthesis protocols. Digital Discovery, 1(2):313–324, 2022a.

11

https://www.nature.com/articles/s41586-023-06735-9
https://www.nature.com/articles/s41586-023-06735-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202100312
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1290
https://openreview.net/forum?id=SnONpXZ_uQ_
https://openreview.net/forum?id=SnONpXZ_uQ_
https://www.nature.com/articles/s41586-023-06734-w
https://www.nature.com/articles/s41586-023-06734-w
https://www.nature.com/articles/s41467-022-28857-w


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zheren Wang, Olga Kononova, Kevin Cruse, Tanjin He, Haoyan Huo, Yuxing Fei, Yan Zeng,
Yingzhi Sun, Zijian Cai, Wenhao Sun, and Gerbrand Ceder. Dataset of solution-based inorganic
materials synthesis procedures extracted from the scientific literature. Scientific Data, 9(1):231,
2022b.

Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils ER Zimmermann, Saurabh Bajaj, Qi Wang,
Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, et al. Matminer: An open source
toolkit for materials data mining. Computational Materials Science, 152:60–69, 2018.

Zhenpeng Yao, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza, Xin Zhou, Yong-
gang Wen, Alán Aspuru-Guzik, Edward H. Sargent, and Zhi Wei Seh. Machine learning for a
sustainable energy future. Nature Reviews Materials, 8(3):202–215, March 2023. ISSN 2058-
8437. doi: 10.1038/s41578-022-00490-5. URL https://www.nature.com/articles/
s41578-022-00490-5.
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A APPENDIX

ETHICS STATEMENT

This research is dedicated to advancing materials science through computational methods and does
not involve any ethical concerns related to human subjects, animal welfare, or data privacy. The
datasets used are from publicly available sources, and our work aims to accelerate scientific discov-
ery in a responsible manner.

REPRODUCIBILITY STATEMENT

The code and data required to reproduce our results will be made publicly available upon publi-
cation. Detailed instructions for setting up the environment and running the experiments will be
provided in the supplementary materials and a public repository. We have taken care to document
our methodology and experimental setup to ensure that our work is transparent and reproducible.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs as a general-purpose writing assistant.
The primary role of LLMs was to assist with polishing the text, including improving grammar,
clarity, and readability. All authors have reviewed, edited, and take full responsibility for the final
content of this paper.

A.1 PRECURSOR-COUNT PREDICTION MODEL ARCHITECTURE

We formulate precursor-count prediction as a multi-class classification problem and instantiate a
compact encoder–attention–classifier architecture. Given x ∈ R118, an MLP encoder with ReLU
activations and Dropout produces a 128-D representation. This representation is refined by a self-
attention block (multihead attention with 4 heads and output dimension 128) followed by Layer-
Norm (ε = 10−5), capturing non-local dependencies among feature dimensions. We concatenate
the attention-refined embedding with an auxiliary scalar which is fed to a classifier MLP. The model
is trained with a cross-entropy objective, and the predicted count is obtained by taking argmax
over the logits. This design emphasizes parameter efficiency and stable optimization, while the
self-attention module consistently improves early-rank accuracy relative to a pure MLP baseline.
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A.2 PERFORMANCE ON RETRIEVE-RETRO DATASET
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Figure 4: Comparison of Top-K accuracy on the Retrieval-Retro Dataset (Combination set-
ting). Our method outperforms all baselines in Top-K accuracy, with only our approach and a few
others achieving Top-20 results. This highlights the effectiveness of our chemically-informed pre-
training and constrained retrieval pipeline.
A.3 LIMITATIONS AND FUTURE WORK

Our study focuses on inorganic retrosynthesis planning under two datasets and does not model
operating conditions or kinetics explicitly. Extending PRICIN to (i) multi-step planning with by-
products, (ii) joint prediction of temperature, atmosphere, and time, and (iii) calibrated uncertainty
for active learning in autonomous labs are promising directions.

In summary, enforcing chemical constraints provides a robust inductive bias for inorganic retrosyn-
thesis, advancing the DMAT loop toward reliable, closed-loop materials discovery.
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