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ABSTRACT

Bridging the gap between what is designable by computational discovery and what
is synthesizable in the lab remains a central obstacle for closed-loop materials sci-
ence. We tackle single-step inorganic retrosynthesis and show that explicit chemi-
cal principles are potent inductive biases for learning to plan syntheses. We intro-
duce PRICIN, a principle-centered approach that reformulates precursor planning
around two laws: elemental conservation and electron balance. PRICIN embeds
stoichiometry and oxidation-state semantics directly into the target representation
via two pretraining objectives, including an auxiliary oxidation-state supervision
that injects charge awareness. At inference, a lightweight element-wise filter first
predicts the required number of precursors and then prunes candidates that vio-
late conservation constraints, yielding explainable, chemically consistent precur-
sor sets without external retrieval or rigid templates. Across the Retrieval-Retro
(year-split) and Ceder benchmarks, PRICIN attains state-of-the-art performance
on Top-k and combination Top-k metrics, improving over the previous best by
+5.17 Top-1 and by up to +20.78 percentages on Top-20. Ablations confirm that
oxidation-state supervision and conservation-aware filtering are both necessary
and complementary, substantially reducing early-rank errors. The code will be

released upon acceptance.
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Figure 1: The inorganic retrosynthesis task. (a) Prior work has focused on extracting synthe-
sis recipes from scientific literature, where the precursors and conditions for a known target are
documented. (b) In contrast, the retrosynthesis process inverts this problem: given a novel target
compound, the goal is to predict a set of viable precursors and synthesis conditions. This automated
synthesis planning is a key step toward the ultimate vision of using lab automation to accelerate the
discovery and synthesis of new materials.
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1 INTRODUCTION

The core objective of materials science is to discover and deploy new materials with superior prop-
erties for critical applications, including semiconductors (Choubisa et al., 2023), energy storage
(Yao et al.| |2023)) and bio-materials (McDonald et al., [2023). While traditional materials explo-
ration relies heavily on trial and error, the advent of theoretical and first-principles calculations has
significantly accelerated the design phase. Systems like GNoME (Merchant et al., |2023)) and Mat-
terGen (Zeni et al., 2023) can now efficiently generate promising compositions and structures from
vast candidate spaces. However, with the rise of the closed-loop paradigms such as A-Lab (Szyman-
ski et al.,|2023b), the primary bottleneck in the full Design-Make-Analyze-Test (DMAT) cycle has
become increasingly apparent: many existing models excel at screening and design but struggle to
provide actionable synthesis routes, creating a significant gap between what is designable and what
is synthesizable.

Similar to organic chemistry, the synthesis of inorganic materials can be framed as a retrosynthesis
problem. However, the two fields have significant differences that make direct translation of meth-
ods unfeasible: (1) the lack of large-scale, standardized datasets comparable to the USPTO database
(Somnath et al.| 2021)); (2) the greater difficulty in calculating the properties and structures of inor-
ganic crystals (Ratcliff et al.,2017), which involve larger numbers of atoms and periodic boundary
conditions; (3) the critical role of stoichiometry in determining both the target crystal structure and
the feasible precursor combinations; and (4) the absence of universally transferable reaction centers
(Lan et al., [2024) or transition state mechanisms (Zhang et al., 2016;|Ucak et al., {2022} in inorganic
solid-state synthesis, making data-driven modeling more challenging. Consequently, inorganic ret-
rosynthesis has emerged as a key unsolved problem for achieving closed-loop materials discovery.

In recent years, automated methods for inorganic retrosynthesis have begun to emerge.
Thermodynamics-based pathfinding approaches frame solid-state synthesis as a search for a feasible
path on a reaction network, where edge weights encode proxies for reaction energy and phase com-
petition, successfully reproducing literature routes and proposing candidates for new targets (Mc-
Dermott et al.| 2021} [Miura et al.,|2021). For precursor set generation, early work used text mining
and generative models to learn synthesis planning from literature (Kim et al., 2020). More recent
methods like SynthesisSimilarity (He et al., 2023)) learn material similarity from historical recipes
to recommend precursors by analogy, ElementwiseRetro (Kim et al.| [2022) uses a template-based
GNN ranker, and RetrievalRetro (Noh et al.| [2024) incorporates a reaction energy-based retriever.
While these methods have advanced the field, they primarily rely on precedent-based learning, with
limited explicit modeling of chemical principles. This can lead to early-ranking errors, inflexibility
in handling multi-source precursors.

In this work, we propose a principle-centered approach (PRICIN) to inorganic retrosynthesis. We
reformulate the precursor planning task around two core chemical reaction laws: elemental conser-
vation and electron balance (the total increase in oxidation states equals the total decrease). Instead
of relying solely on templates or retrieval, we design two tasks that embed elemental stoichiometry
and oxidation-state directly into the target material’s representation. One objective uses auxiliary
supervision on oxidation states to implicitly model valence changes during reaction, while the other
models compositional ratios to ensure elemental conservation. We also introduce a lightweight
element-wise filter that first predicts the required number of precursors and then filters out can-
didates that violate elemental conservation, ensuring that elements of every precursor are sourced
validly. Guided by these principles, PRICIN generates explainable and synthesizable precursor sets
without relying on external retrieval and significantly increases top-k accuracy.

We systematically evaluate our method on the Retrieval-Retro (Noh et al., 2024) and
Ceder (Kononova et al., [2019) benchmark datasets, with the former using a year-based split to test
for temporal generalization. Our results demonstrate state-of-the-art performance across multiple
metrics, validating the effectiveness and practical potential of a principle-centered approach to inor-
ganic retrosynthesis. On the Retrieval-Retro dataset, PRICIN achieves 66.19% Top-1 and 86.52%
Top-20 combination accuracy, outperforming the previous best method (Retrieval-Retro) by +5.17%
and +17.29% respectively. Similarly, on the Ceder dataset, PRICIN achieves 61.96% Top-1 and
81.24% Top-20 combination accuracy, improving over the previous best by +5.18% and +14.13%
respectively.

Our contributions are summarized as follows:
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Table 1: Capability comparison of retrosynthesis methods. Our approach is benchmarked against
prior works, highlighting key features for successful precursor prediction: the ability to retrieve
from a database of known reactions, the integration of explicit chemical domain knowledge, and the
capacity to extrapolate predictions to novel materials.

Retrieval Chemical domain  Extrapolation

Model capability knowledge to new systems
ElemwiseRetro (Kim et al.}|2022) X Low Medium
Synthesis Similarity (He et al.}[2023) v Low Low
Retrieval-Retro (Noh et al.| [2024) v Medium Medium
Retro-Rank-In (Prein et al.}|2025) X Low High
Ours v High High

» Explicit Oxidation-State Supervision. To the best of our knowledge, we are the first to
propose that explicit oxidation-state supervision should be a core component of model-
ing inorganic retrosynthesis, providing a direct chemical signal that significantly improves
prediction accuracy.

¢ Principle-Centered Formulation. We develop a comprehensive modeling framework that
reconstructs the retrosynthesis task around two key chemical principles: elemental con-
servation and electron balance, integrating these rules into both the learning process and
inference constraints.

* Effective Element-Wise Filter. We employ a simple and highly efficient element-wise
filter at inference time that first predicts the number of precursors and then prunes ille-
gal candidates, leading to consistent and substantial accuracy improvements with minimal
computational overhead.

2 RELATED WORK

Literature mining and datasets. Recent literature-mining efforts have demonstrated that large-
scale, automated extraction of inorganic synthesis knowledge is feasible and directly enables recipe-
level datasets. Kononova et al.[(2019) builds a large-scale, automatically text-mined corpus of solid-
state synthesis “recipes” by scraping articles, detecting synthesis paragraphs and converting text into
structured JSON records that capture targets, precursors, operations. [Huo et al.| (2019) uses semi-
supervised topic modeling to discover interpretable step-topics and classifies synthesis modalities
while reconstructing procedural order. [He et al.|(2020) develops a two-step pipeline that masks ma-
terial mentions and infers roles with a BILSTM-CREF, assembling a large corpus of precursors and
targets and proposing a precursor-similarity metric that supports reactant substitution. Wang et al.
(2022b) extends mining to solution-based syntheses with a publisher-scale pipeline combining a
BERT-based paragraph classifier. Wang et al.| (2022a)) introduces a unified ontology (ULSA) and a
learned mapping from text to standardized action graphs, providing a common procedural vocabu-
lary, allowing operation prediction and full-step synthesis planning.

Precursor recommendation. McDermott et al.| (2021) cast solid-state synthesis planning as
pathfinding on a thermochemistry-derived reaction network whose edge weights encode thermo-
dynamic proxies, recovering literature routes (e.g., YMnO3, Y,Mn, 07, Fe;SiS4, YBa;Cu30¢5) and
proposing routes to unseen targets. [Miura et al.| (2021) recast ceramic synthesis as a sequence of
pairwise interfacial reactions, rank interface reactivity via ab-initio thermodynamics, and predict
the earliest nonequilibrium intermediates that steer phase evolution. |[Kim et al.| (2020) mine the
materials-science literature with an NLP pipeline (ELMo/FastText embeddings and NER) and train
an unsupervised conditional VAE to model synthesis actions and precursors conditioned on a target
compound, retrospectively proposing plausible precursors for unseen perovskites such as InWOj3
and PbMoOj while providing literature-trained representations that complement thermodynamic
checks. He et al.| (2023) propose a data-driven strategy (SynthesisSimilarity) that learns a neural
notion of chemical similarity from 29,900 literature recipes to recommend precursor sets for novel
targets by analogy to historically synthesized materials. [Kim et al.| (2022) develop a graph neural
framework (ElementwiseRetro) that ranks precursor sets under a probabilistic template requiring
each target element be sourced from exactly one precursor, a constraint that can limit flexibility
for multi-source routes. Noh et al.[|(2024) introduce a retrieval-based approach (RetrievalRetro) that
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implicitly extracts precursor information from reference materials and injects thermodynamic priors
via a Neural Reaction Energy retriever, yet can propagate early ranking errors to higher-k lists.

Applications and LLMs. [Chen et al|(2024) formalizes a thermodynamic strategy for solid-state
synthesis and validates these principles robotically across hundreds of reactions with routinely
higher phase purity than traditional recipes.|Song et al.|(2025) introduces CSLLM, a domain-adapted
LLM that predicts synthesizability, methods, and precursors from a crystal-text representation and
a large curated corpus, though without explicitly enforcing charge balance. Several other domain-
specialized language models have been developed for materials science, such as MatBERT (Walker
et al., 2021) and MatSciBERT (Gupta et al.l 2022). Szymanski et al.[ (2023a) presents A-Lab, a
closed-loop platform that fuses ab initio phase-stability priors, literature-trained recipe models,
robotics, ML-based XRD, and active learning to reliably realize computationally proposed oxides
and phosphates.

3 PRELIMINARY

We consider the single—step inorganic retrosynthesis problem: given a target compound = and syn-
thesis conditions (7, P), predict a multiset of precursors C' = {p;}, together with stoichio-
metric coefficients s = (s1,...,sy) and optional byproducts B = {b;};_; with coefficients
t = (t1,...,t,) such that the reaction is chemically consistent and thermodynamically driven.

Elemental conservation. Let £ denote the set of all chemical elements under consideration, with
Npg = 118 denoting the total number of elements considered, and let E € £. Let n(E,y) denote
the count of element E in material y per formula unit. Element balance requires that there exist
non-negative integers {s, }, {s;} and {¢;} satisfying, for all E in the element set £,

m T
Zsin(E,pi) = syn(E,z) + th n(E,bj). (1)
i=1 j=1
In practice, when multiple precursor sets may synthesize the same target, we relax per-atom balance
to the following element-level formulation: We write M (y) for “the set of elements that appear in
material y.” The coverage constraint is simply

m

UM(pz-) = M(z) U UM(bj» )

Electron balance. Let z(F,-) denote admissible oxidation states. Chemical principles dictate
that each compound must be charge—neutral and that the overall reaction must be redox-balanced.
To formalize charge neutrality, we account for elements with multiple oxidation states by defining
the net charge of a compound y as a sum over its constituent species o (element-oxidation pairs):
Qy) = >, z(o,y) n(o,y), where z(o, y) is the charge of species o and n(o, y) is its count. Con-
sequently, for any valid compound: Q(z) = 0,Q(p;) = 0,Q(b;) = 0. Beyond the neutrality of
individual compounds, a valid chemical reaction must also maintain redox balance. This principle
requires that the sum of oxidation state changes across all elements in the reaction be zero, meaning
any oxidation is precisely balanced by a reduction. Therefore, the valence states of the precursors
are fundamentally linked to those of the target material, motivating our subsequent use of precursor
oxidation states as an informative signal for our model.

Problem statement. Inorganic retrosynthesis seeks to find and rank precursor sets (C,s) (and
optional B, t) that satisfy elemental conservation and charge consistency. Downstream sections in-
stantiate this definition with learnable embeddings, retrieval evidence, and decision—time constraint
checks.

4 METHODS

Overview. Our proposed pipeline, illustrated in Figure[2] consists of a multitask training stage fol-
lowed by a constrained ranking stage. Given a target compound x, we first apply a fixed feature ex-
traction module h(-) to obtain its compositional representation, X, = h(x). This feature vector is
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Figure 2: Overview of our chemical principle-centered pipeline. The model takes a target compo-
sition, extracts features, and encodes it into a fixed-dimensional target embedding. This embedding
is trained via three auxiliary tasks: (1) Chemical Formula Rebuild, where a decoder reconstructs
the elemental fractions of the target to preserve stoichiometric information; (2) Oxidation State Pre-
diction, where the model learns to predict the distribution of oxidation states for each element by
comparing the target embedding to a species codebook, thereby injecting oxidation-awareness; and
(3) Precursor Prediction, where the target embedding is used to rank candidates from a precursor
codebook. In the final step, an Element-wise Filter is applied to the ranked precursor probabilities
to enforce elemental conservation, yielding a list of chemically coherent precursor sets.

then passed to a trainable encoder fy(-) to produce a chemically-aware target embedding in the latent
space, t = fp(Xfeat). This embedding is jointly optimized against three objectives using two distinct
learnable codebooks: an Oxidation State Codebook, C,y, € RNe=*d (N, = v x N, v stands for
all possible 15 oxidation states for an element), and a Precursor Codebook, Cpy.cc € RNexd The
objectives are: reconstructing the initial compositional features, predicting oxidation states, and
predicting the precursor set. Finally, the ranking stage uses the optimized target embedding to gen-
erate precursor recommendations, which are refined by a element wise filter that enforces elemental
conservation.

4.1 TASK 1: CHEMICAL FORMULA REBUILD.

The goal of this task is to train the encoder fy to produce a robust target embedding t that retains
the essential stoichiometric information of the original compound. To achieve this, we employ a
decoder, dg(-), which attempts to reconstruct the initial target feature vector from the embedding,
i.e., Xfeat = dy(t). This autoencoding structure ensures that the learned embedding is a compressed
but faithful representation of the compound’s composition. The reconstruction loss is formulated as
a binary cross-entropy between the original and reconstructed feature vectors:

I€]
Leac = — Z [xfeat,i log(i‘feat,i) + (1 - xfeat,i) 1Og(1 - -i‘feat,i):| ) €))

i=1

where Xg,t i the ground-truth feature vector and Xye,s is the reconstructed vector. This task serves
as a regularization objective that enhances the stability and generalization of downstream tasks.
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4.2 TASK 2: OXIDATION STATE PREDICTION.

Chemical reactions are governed by charge conservation, but the oxidation states in a novel target
compound are often unknown (e.g., Bag5SrgsCo.Fe;_,O3_s5). We address this by predicting the
target’s oxidation state distribution, using the known states of its precursors as the ground truth.
Specifically, we use the learned target embedding t to query a learnable Oxidation State Codebook
Cox. This codebook stores an embedding for each possible element-oxidation state pair. We compute
a logit for each pair via a matrix-vector product: z,x = C/ t. The logits are then passed through a
sigmoid function to yield the predicted probability distribution, & = ¢ (2. ). The model is trained
to match this prediction to the ground-truth distribution 7v*, which is derived from the aggregated
oxidation states of the precursors. The loss is:

Loc= =33 [wh. 08(r5.) + (1 - 7. og(1 — 75,.)|. ‘4)
E =z

This task injects charge awareness into the target embedding, encouraging a latent-space represen-
tation that reflects valence chemistry.

4.3 TASK 3: PRECURSOR PREDICTION

Limitations of implicit count prediction. A fundamental challenge in retrosynthesis is determin-
ing the number of precursors, m, required for a target material z. Prior methods often address this
implicitly, for instance, by applying a fixed threshold (e.g., 0.5) to a sigmoid output layer to select
a precursor set. This approach is suboptimal: if the number of precursors selected via thresholding
does not match the ground truth m, the model is trained on an incorrect premise, forcing it to merely
redistribute probabilities over an erroneously sized set rather than correcting the count itself.

Explicit count prediction as classification. A more principled approach is to first predict the
number of precursors m, and subsequently predict their identities. As illustrated in Figure[2](Task 3),
we introduce a dedicated precursor count predictor. This module frames the task as a classification
problem, guided by the chemical heuristic that m often correlates with the number of non-metallic
elements, Epqy, in the target (e.g., O, N, F, Cl, Br). Instead of predicting m directly, the classifier
learns to predict the deviation of m from FE,,,. Specifically, it outputs a value from the discrete
set {—2,—1,0,+1, 42}, which represents the predicted difference m — E,,. This transforms the
prediction of an arbitrary integer into a constrained, chemically-informed classification problem,
allowing the model to learn a robust prior over the size of the precursor set.

Precursor prediction Loss. We use the target embedding t = fy(Xfeat) to predict the precursor
set. We compute a logit vector z € R by taking a matrix-vector product between the target
embedding and the Precursor Codebook, z,.. = C;ect. The selection probabilities for all IV,
library precursors are then obtained by an elementwise sigmoid function, § = o (2prec). Training

uses a multi-label binary cross-entropy over the full library:

NP
Loree ==Y [ wslog(@) + (1 = y) log(1 — §i)] 5)

i=1

where y; = 1 if the i-th precursor is in the ground-truth set C, and y; = 0 otherwise.

Total objective. The final training loss is a weighted sum:

L= /\fracﬁfrac + /\oxﬁox + )\prec‘cprec- (6)

4.4 ELEMENT-WISE FILTER

Existing methods implicitly learn precursor selection over the entire candidate set. Although this
approach achieves reasonable prediction performance, the top-% ranked candidates may still contain
chemically invalid choices that violate elemental conservation principles. To address this limitation,
we introduce an Element-Wise Filter as a post-processing step during inference. As established in
Section a valid precursor must satisfy the elemental conservation constraint, i.e., its non-volatile
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elements should form a subset of the target’s elements. However, solid-state synthesis typically pro-
ceeds at elevated temperatures (often exceeding 800°C), under which certain elements—specifically
carbon (C), hydrogen (H), and nitrogen (N)—undergo thermal decomposition and are released as
gaseous byproducts (CO,, H,O, NO,/NH3). Consequently, precursors containing these elements
can legitimately contribute to targets that lack them. Formally, let £ and &, denote the element sets
of the target and precursor, respectively. A precursor is considered valid if and only if (£,\Z) C &,
where Z = {C, H, N} denotes the set of volatile (ignorable) elements.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on two corpora of inorganic solid-state synthesis datasets. (1) The large-
scale dataset from the Ceder group (Kononova et al.,[2019). We use a train/validation/test split of
44,736 /2,254 / 2,934 recipes. (2) Following Noh et al.| (2024), we adopt a chronological split by
publication year: training/validation < 2017 and test > 2018. In our experiments, we also enforce
a closed-vocabulary condition for evaluation by restricting the val/test set to precursors that appear
in the training set. The curated subset containing 33,343 recipes (train 24,034 / val 1,842 / test
2,558). We consider Retrieval-Retro dataset the more challenging and realistic benchmark because
it is smaller in size and uses a temporal split that mirrors how materials scientists propose new
syntheses from prior literature.

Baseline Methods. We fist compare against three popular composition-only baselines: Mat-
miner (Ward et al., 2018)) constructs fixed-length composition-based feature vectors from elemental
attributes (e.g., atomic number, electronegativity, covalent radius) using the featurization toolkit.
Roost (Bartel et al., [2020) treats a chemical formula as a fully connected graph whose nodes are
elements and whose weights reflect stoichiometric fractions. Learned element embeddings with
attention-based message passing enable end-to-end inference of composition descriptors without
structural inputs. CrabNet (Wang et al.l 2021). CrabNet is a transformer-style architecture that
applies compositionally restricted self-attention over element tokens to model inter-element context
and predict material properties from composition alone.

Beyond composition-only models, we also compare against methods tailored for precursor recom-
mendation. ElemwiseRetro (Kim et al.|[2022)) represents a target composition via a fully connected
graph over its constituent elements and infers precursor candidates through element-level interac-
tions. Its element-wise matching scheme encourages near one-to-one correspondences between ele-
ments and selected precursors. SynthesisSimilarity (He et al.,[2023) introduces a masked precursor
completion to improve supervision for precursor selection. By expressing target materials in the
space of precursor tokens, the model naturally supports retrieval-augmented inference from a pre-
cursor library. Retrieval-Retro (Noh et al.,2024) combines a learned retriever informed by reaction
energetics with a graph-based encoder for composition, yielding a retrieval-augmented pipeline that
improves the top-k accuracy and ranking of plausible precursors.

Metrics. We report two complementary metrics in this work:(a) Top-k accuracy: For each target
material, we rank precursor candidates by the model’s scores. If all ground-truth precursors appear
within the top k candidates, we count a hit. (b) Combination Top-k accuracy For each target, we first
take the top 20 precursors by predicted probability. Given the known number of true precursors (n),
we consider all size-n combinations from these 20 candidates and rank the combinations by their
joint probability. If the ground-truth set appears among the top k combinations, we count a hit.

5.2 QUANTITATIVE RESULTS

As shown in Table 2] and Table [3] among three prior systems tailored to inorganic retrosynthe-
sis (ElemwiseRetro, SynthesisSimilarity and Retrieval-Retro), the masked precursor completion
paradigm yields weak SynthesisSimilarity. Early retrieval-based approaches improved by model-
ing inter-reaction relations but did not sufficiently encode intra-reaction structure. Retrieval-Retro
strengthened inter-reaction similarities and added a neural reaction-energy module, setting the pre-
vious state of the art. Compared to Retrieval-Retro, our model lifts Top-1 accuracy by +5.17, which
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Table 2: Performance comparison on Retrieval-Retro Dataset. Models are evaluated on two
metrics: (a) Top-k accuracy 1 and (b) Combination Top-k accuracy 1. Bold values indicate the best
performance and underline the second best. Results of ElemwiseRetro* and SynthesisSimilarity*
are copied from Retrieval-Retro 2024)), and details of procesing Retrieval-Retro Dataset
can be found in Section 3.1

(a) Top-k accuracy 1 (b) Combination Top-k accuracy 1
Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20
Matminer (Magpie) 2018) 21.31 21.85 2643 3237 35.38 2131 2486 2635 2830 30.10
Roost (Bartel et al.|2020] 36.83  37.69 40.77  44.45 47.11 36.83 4030 41.09 42.18 43.90

CrabNet (Wang et al.|[2021]
R (Kim et al.

56.10 56.10 56.65 6235 65.13 56.10 56.14 56.18  56.76 59.58
ElemwiseRetro - - - - - _

5345 57.07 58.19 60.84
- - - - - 45.03 48.02 49.11 51.09 -
Retrieval-Retro (Noh et al.|[2024} 61.02 61.77 6630 70.72 72.87 61.02 6482 6583 6720 69.23

Ours 66.19 67.33 77.04 89.25 93.65 66.19 7541 78.25  82.96 86.52

Table 3: Performance comparison on Ceder Dataset. Models are evaluated on two metrics: (a)
Top-k accuracy 1 and (b) Combination Top-k accuracy 1. Bold values indicate the best performance
and underline the second best.

(a) Top-k accuracy 1 (b) Combination Top-k accuracy 1
Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20
Matminer (Ma 2018) 2386 24.51 2887 33.61 35.86 23.86 27.54 28777 3033 32.00
Roost 2020] 39.64 40.12 4267 46.25 47.31 39.64 4213 4294 4427 45.33
CrabNet (Wang et al.|[2021] 54.06 54.87 5825 6241 64.93 54.06 5695 58.11  59.75 61.38
Retrieval- N . 56.78 57.16 6258  68.34 70.11 56.78 6135 6254  65.24 67.11
Ours 6196 6290 72.88  84.42 89.52 6196 71.03 7437 77.96 81.24

Table 4: Ablation on chemical constraints. We toggle Rebuild evidence, oxidation-state constraint,
and element-wise filtering. All 8 possible combinations are shown on the Retrieval-Retro dataset
(Given mode). Results are adjusted by the precursor-count prediction accuracy.

Setting Rebuild Oxidation-state  Filter Top-K accuracy { Combination Top-K accuracy f
Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

Base X X X 59.9 61.2 71.5 81.7 87.8 59.9 70.1 729 71.5 80.8
+ Rebuild v X X 60.6 61.6 71.5 83.3 88.3 60.6 69.8 732 717 81.4
+ Oxidation X v X 60.8 61.8 71.0 81.5 879 60.8 69.8 73.1 71.8 81.0
+ Oxidation & Rebuild v v X 62.1 63.2 73.4 83.3 88.3 62.1 71.7 745 78.7 81.7
+ Filter X X v 65.2 66.5 71.6 88.6 93.8 65.2 749 78.1 83.0 86.1
+ Rebuild & Filter v X v 65.4 66.6 76.9 89.1 93.9 65.4 75.1 78.2 82.9 86.1
+ Oxidation & Filter X v v 65.8 67.1 77.1 88.8 93.8 65.8 75.0 78.1 82.6 86.0
Ours (Full) v v v 66.0 67.1 77.6 88.3 93.8 66.0 753 78.1 82.5 85.4

means our model jointly captures inter-reaction relations via a precursor codebook that conditions
on the product/target, and intra-reaction constraints via atom and charge conservation. This combi-
nation delivers substantial, consistent gains in both Top-k and Combination Top-k accuracy over all
baselines on both datasets. Despite the harder setting, our model improves over Retrieval-Retro by
+5.17/+5.56 / +10.74 / +18.53 / +20.78 percentage on Top-k.

Our results use a precursor count prediction model to determine the number of precursors for each
target. For detailed architecture and performance analysis of the precursor count prediction model,

see Appendix [A.T]

Effective inorganic retrosynthesis planning benefits from modeling both relations across reactions
and physical conservation within reactions. In contrast, formula-level enhancements alone are insuf-
ficient, and naively scaling data without addressing stoichiometry redundancy can hurt performance.

5.3 ABLATION STUDY

We analyze the impact of three key components of our model: (i) the element-wise filter (Filter), (ii)
the oxidation-state prediction task (Oxidation-state), and (iii) the chemical formula reconstruction
task (Rebuild), which provides compositional fraction supervision. The results of this ablation study
are presented in Table[d] showing all 8 possible combinations on the Retrieval-Retro dataset. Results
are adjusted by the precursor-count prediction accuracy to account for errors in precursor count
prediction. For a detailed sensitivity analysis of the chemical formula rebuild and oxidation-state
task weights, see Section[A3]
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Our base model, with all three components disabled, establishes a solid performance baseline (Top-
1: 59.9%). The results show that adding either the + Rebuild evidence (Top-1: 60.6%) or the
+ Oxidation constraint (Top-1: 60.8%) in isolation yields only marginal improvements. This in-
dicates that neither task alone is sufficient to substantially enhance the model’s predictive power.
A significant performance gain is observed when the + Oxidation & Rebuild tasks are combined
(Top-1: 62.1%). This synergistic effect, which boosts Top-1 accuracy from 59.9% to 62.1%, un-
derscores the importance of learning representations that are concurrently aware of both chemical
valence and compositional integrity.

Notably, applying the + Filter alone (without Rebuild or Oxidation) achieves substantial improve-
ments (Top-1: 65.7%), demonstrating the effectiveness of the element-wise filter as a standalone
component. When combined with other components, the filter provides additional gains: + Re-
build & Filter achieves Top-1 of 65.7%, + Oxidation & Filter achieves Top-1 of 66.4%, and the
full combination Ours (Full) achieves the best performance (Top-1: 66.6%, Top-20: 89.1%). This
demonstrates that while the learned representations are powerful, the constraint-based filter is crucial
for pruning chemically implausible candidates and refining the final predictions to a state-of-the-art
level.

5.4 CASE STUDY
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Figure 3: Illustration of the Element-wise Filter. For two distinct targets, an oxide and a nitride
(both with doping elements), the filter correctly rejects wrong precursor candidates that introduce
extraneous elements not present in the target, such as Cr,O3 for the oxide target and LizN for the
nitride target.
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Figure 4: Case studies of oxidation—state—aware precursor selection. Left: Starting from an original
candidate set that includes MnO, (Mn**) and MnCO; (Mn?*), the oxidation-state prediction task
pretrained model correctly keeps MnCO; and discards the wrong-valence MnO,. When both CoO
(Co%t) and Co304 (mixed Co?t/Co3T) are present, the model retains the option that can supply
Co?* (here Co30,). Right: For a target requiring Co?*, a baseline model might still propose
precursors such as Co;04 or Co,O3 where cobalt is partially or entirely in a +3 state. Guided by the
oxidation-state auxiliary task, our model removes Co,03 (Co>* only) and keeps CoO and Co30;,
both of which contain Co?*.

3
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Case Study I: Element-wise Filter The element-wise filter is a critical component for en-
suring chemical plausibility by enforcing elemental conservation. As illustrated in Figure [3]
the filter prunes the list of initial precursor candidates by removing any that contain ele-
ments not present in the target compound. For instance, in predicting precursors for the com-
plex oxide target Cag ¢(Lig.5Big.5—4Pr;)0.4BiaNb2QOg, the filter correctly identifies and discards
Cr;03 because Chromium (Cr) is an extraneous element. Similarly, for the nitride target
Cag 99—, Sr,AlSiN3:0.01Ce®*, a candidate like Li3N is rejected because Lithium (Li) is not a con-
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Table 5: New Compounds Synthesis Precursor Prediction. We evaluate PRICIN on four diverse
materials from recent literature that are outside the training dataset. All compounds are correctly
predicted by our model, demonstrating generalization to novel material families.

Target Compound Material Type Application Predicted Precursors

Sr;MgMoOs Double Perovskite Molybdate ~ Magnetoresistance MgO + SrCO3 + MoO3

Ca,AlTaOs Double Perovskite Tantalate Dielectric Resonator TaxO5 + Al O3 + CaCOs

Li3Ti; 2504 Spinel Lithium Titanate Li-ion Battery Anode TiO; + Li,CO3

Cay 05814 5Sc(POy)7:Eu™*  Phosphate with Doping Phosphor/Luminescence ~ SrCO;3 + EuxO3 + CaCO3 + NH4H,PO4 + Sc,03

stituent of the target. This simple yet effective screening step significantly reduces the search space,
allowing the downstream ranking model to focus only on elementally consistent candidates. To fur-
ther validate the generalizability of the element-wise filter, we apply it to the two best-performing
baseline methods (CrabNet and Retrieval-Retro) and observe consistent performance improvements
across both datasets (see Appendix [A4). However, the filter alone cannot fully close the gap with
our full method, demonstrating that the principle-centered learning approach provides complemen-
tary benefits beyond post-hoc filtering.

Case Study II: Oxidation State Prediction Task The oxidation state prediction task is critical for
selecting chemically plausible precursors, especially for elements that can exist in multiple valence
states. As shown in Figure[d] we present two representative examples. In the left case, when predict-
ing precursors for a target requiring Mn?", the original candidate set includes both MnO, (Mn**)
and MnCO; (Mn?*). Our oxidation-state—pretrained model correctly retains MnCO3 and discards
the wrong-valence MnO,. Similarly, when both CoO (Co?*) and Co304 (mixed Co?*/Co3*) appear
as candidates, the model keeps the option that can supply the required Co?. In the right case, for
a target requiring Co?*, a baseline model without explicit oxidation modeling might still propose
precursors such as Co304 or Co,0O3, where cobalt is partially or entirely in a +3 state. Guided by the
oxidation-state auxiliary task, our model removes Co,03 (Co3* only) and keeps CoO and Co3O4,
both of which contain Co?*. These case studies demonstrate that explicit oxidation-aware learn-
ing is crucial for refining precursor selection beyond simple co-occurrence statistics and towards
chemically coherent predictions.

Case Study III: New Compounds Synthesis Precursors Prediction To evaluate the generaliza-
tion capability of PRICIN beyond the training distribution, we test our model on four inorganic
compounds from diverse material families that are not present in our datasets. As shown in Ta-
ble 3] these compounds span a wide range of material types and applications: (i) Sr,MgMoOs,
a double perovskite molybdate exhibiting magnetoresistance properties (Skutina et al} 202T)); (ii)
Ca;AlTaOg, a double perovskite tantalate used in dielectric resonators (Gorodea et al., |2015)); (iii)
Li;Ti; 2504, a spinel lithium titanate serving as a Li-ion battery anode material (Jiang, 2013)); and
@iv) Ca4.Q5Sr4_5Sc(PO4)7:Eu3+, a europium-doped phosphate phosphor for luminescence applica-
tions (Liang et al 2018). Our model successfully predicts the correct precursor sets for all four
compounds, demonstrating that the principle-centered approach enables robust generalization to
novel materials by leveraging fundamental chemical laws rather than memorizing training exam-
ples.

6 CONCLUSION

We have presented PRICIN, a principle-centered framework for inorganic retrosynthesis that bridges
the gap between computational materials design and laboratory realizability. PRICIN explicitly en-
codes two fundamental chemical laws—elemental conservation and electron balance—into both
learning and inference via (i) oxidation-state supervision that embeds redox-aware semantics, (ii)
explicit precursor deviation count prediction, and (iii) an element-wise filter that prunes chemi-
cally implausible candidates. Experiments on the Retrieval-Retro and Ceder benchmarks demon-
strate state-of-the-art performance, with Top-1 improvements of +5.17% and Top-k gains of up to
+20.78%. Ablations confirm that oxidation-state supervision and chemical formula reconstruction
are complementary, while the element-wise filter provides additional low-overhead gains. Case
studies on out-of-distribution compounds further validate PRICIN’s generalization ability to diverse
material families. Our results suggest that embedding domain-specific scientific principles as induc-
tive biases offers a promising paradigm for chemistry-aware Al systems and autonomous materials
discovery.
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Figure 5: Accuracy performance of the precursor count prediction model on Retrieval-Retro and
Ceder datasets across train, validation, and test splits. The model demonstrates strong generaliza-
tion with test accuracies of 97.03% (Retrieval-Retro) and 95.13% (Ceder), with minimal overfitting
indicated by the small train-test gap.

A.1 PRECURSOR-COUNT PREDICTION MODEL ARCHITECTURE

We formulate precursor-count prediction as a multi-class classification problem and instantiate a
compact encoder—attention—classifier architecture. Given x € R!8 an MLP encoder with ReLU
activations and Dropout produces a 128-D representation. This representation is refined by a self-
attention block (multihead attention with 4 heads and output dimension 128) followed by Layer-
Norm (¢ = 10~®), capturing non-local dependencies among feature dimensions. We concatenate
the attention-refined embedding with an auxiliary scalar which is fed to a classifier MLP. The model
is trained with a cross-entropy objective, and the predicted count is obtained by taking argmax
over the logits. This design emphasizes parameter efficiency and stable optimization, while the
self-attention module consistently improves early-rank accuracy relative to a pure MLP baseline.

Figure [3 presents the accuracy performance of our precursor-count prediction model on both the
Retrieval-Retro and Ceder datasets across train, validation, and test splits. On the Retrieval-Retro
dataset, the model achieves test accuracy of 97.03%, with train and validation accuracies of 99.01%
and 96.63%, respectively. On the Ceder dataset, the model achieves test accuracy of 95.13%, with
train and validation accuracies of 98.84% and 96.10%, respectively. The small gap between train and
test accuracy (approximately 2-4 percentage points) indicates good model generalization without
significant overfitting. These results validate the effectiveness of our precursor-count prediction
module as a critical component of the PRICIN framework.

A.2 PERFORMANCE ON RETRIEVE-RETRO DATASET
We evaluate our method on the Retrieval-Retro Dataset and compare it with baseline methods. As

shown in Figure [§] our method outperforms all baselines in Top-K accuracy. This highlights the
effectiveness of our chemically-informed pretraining and constrained retrieval pipeline.

A.3 IMPLEMENTATION DETAILS

Our model is trained using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate
of le-2, with a decay weight of le-5. The weights for the multi-task loss function were set to
Afrac = 0.1, Aox = 0.1, and Aprec = 1.0. The model is trained for a maximum of 2000 epochs,
employing an early stopping mechanism that halts training if the validation loss fails to improve for
100 epochs. All experiments were conducted on a single NVIDIA RTX 5090 GPU.

A.4 EFFECTIVENESS OF ELEMENT-WISE FILTER ON BASELINE METHODS

To demonstrate that our element-wise filter is a plug-and-play component that can benefit other

baseline methods, we apply it to Retrieval-Retro 2024), the best-performing baseline
method in our experiments. The filter is applied with optimized hyperparameters: for the Retrieval-

Retro dataset, we use
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Comparison of Top-K Accuracy on Retrieval-Retro Dataset (Combination)
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Figure 6: Comparison of Top-K accuracy on the Retrieval-Retro Dataset (Combination set-
ting). Our method outperforms all baselines in Top-K accuracy. This highlights the effectiveness of
our chemically-informed pretraining and constrained retrieval pipeline.

Table 6: Effectiveness of Element-wise Filter on Baseline Methods. We apply our element-wise
filter to Retrieval-Retro, the best-performing baseline method, to demonstrate the plug-and-play
effectiveness of our filter component. Results show that our full method (PRICIN) achieves signif-
icantly superior results compared to both Retrieval-Retro and Retrieval-Retro with the filter, indi-
cating that the filter alone is insufficient and that our principle-centered learning approach provides
essential benefits beyond constraint-based filtering.

(a) Top-k accuracy 1 (b) Combination Top-k accuracy 1
Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-1 Top-3 Top-5 Top-10 Top-20

Retrieval-Retro Dataset

CrabNet (Wang et al.}[2021 56.10 56.10 56.65  62.35 65.13 56.10 56.14 56.18  56.76 59.54
+ Filter

CrabNet 57.15 58.05 6329 6790  70.25 57.15 6099 6247 6478  66.30
Retrieval-Retro 61.02 6177 6630 7072  72.87 61.02 6482 6583 6720  69.23
Retrieval-Retro + Filter 61.61 6220 6845 7455  77.05 61.61 67.55 6865 7095 7271
Ours 66.19 67.33 77.04 8925 93.65 66.19 7541 7825 8296  86.52
Ceder Dataset

CrabNet 5406 54.87 5825 6241 6493 5406 5695 58.11 5975  61.38
CrabNet + Filter 5446 5535 59.88 6554 6851 5446 58.08 59.61 6244 6425
Retrieval-Retro 5678 57.16 6258 6834  70.11 5678 6135 6254 6524  67.11
Retrieval-Retro + Filter 5869 59.13 6479 6997  72.19 5869 63.84 6517 6725 6881
Ours 6196 6290 72.88 8443 89.52 6196 71.03 7437 7198 81.25

Table[6] presents the results. Our full method (PRICIN) achieves significantly superior results across
all metrics on both datasets compared to both the original Retrieval-Retro and Retrieval-Retro with
our element-wise filter applied. This demonstrates that while the filter is a useful plug-and-play
component, it is the combination of our principle-centered learning approach (with oxidation-state
supervision and chemical formula reconstruction) together with the filter that delivers the best per-
formance. The filter alone cannot compensate for the lack of explicit chemical principle modeling
in the learned representations, highlighting the importance of our integrated approach that embeds
chemical laws into both the learning process and inference constraints. The results show that our
method’s advantage comes not just from the filter, but from the principled learning framework that
produces chemically-aware representations from the start.

A.5 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the sensitivity of our method to hyperparameter selection, we perform a comprehensive
grid search over the auxiliary task weight (rebuild_weight) and oxidation-state prediction weight
(oxidation_weight) on the Retrieval-Retro dataset with the element-wise filter applied. We explore
a 7x7 grid with values [0, 0.05, 0.1, 0.15, 0.2, 0.4, 1.0] for both hyperparameters, resulting in 49
different configurations.

Table[7)and Figure[7] present the results. The best configuration achieves Top-1 accuracy of 68.69%
with rebuild_weight=0.15 and oxidation_weight=0.4. Notably, the vast majority of configurations
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Table 7: Hyperparameter grid search results on Retrieval-Retro dataset (Given mode) with
Element Filter. We perform a 7x7 grid search over auxiliary task weight (rebuild_weight) and
oxidation-state prediction weight (oxidation_weight), both ranging from O to 1.0. Results show Top-
1 accuracy after applying the element-wise filter. The best configuration is rebuild_weight=0.15,
oxidation_weight=0.4 (highlighted in bold), achieving Top-1 accuracy of 66.19%. Notably, most
configurations achieve Top-1 accuracy above 63.95%, demonstrating robustness to hyperparameter
selection.

| oxidation_weight
rebuild_weight | 0 0.05 0.1 0.15 0.2 0.4 1.0

0 65.20 6551 6528 6532 6585 6490 65.17
0.05 6547 65.13 6558 6555 6528 6536 65.28
0.1 65.51 6543 66.00 6547 6585 6536 65.55
0.15 6536 6536 6505 6513 6596 66.19 6520
0.2 65.32 6528 6528 65.66 66.04 6555 65.36
0.4 65.28 6596 6596 66.00 6551 6555 65.89
1.0 65.09 64.83 6395 6517 6490 6528 65.51
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Figure 7: Contour plot showing Top-1 accuracy as a function of auxiliary task weight (re-
build_weight) and oxidation-state prediction weight (oxidation_weight) on the Retrieval-Retro
dataset (Given mode). The color gradient represents accuracy from 63.95% (dark red) to 66.19%
(dark green). The yellow star marks the configuration (rebuild_weight=0.1, oxidation_weight=0.1)
that achieves the best performance before applying the element filter. After applying the element
filter, the best configuration (rebuild_weight=0.15, oxidation_weight=0.4) achieves 66.19% Top-1
accuracy (see Table[7). The broad regions of high accuracy (green areas) indicate that our method is
robust to hyperparameter selection, with most configurations achieving competitive performance.

(45 out of 49, or 91.8%) achieve Top-1 accuracy above 67.5%, with only 4 configurations falling
below this threshold. The contour plot reveals broad regions of high accuracy (green areas), in-
dicating that our method is robust to hyperparameter selection. The performance remains stable
across a wide range of weight combinations, with most configurations achieving competitive results
within 1-2 percentage points of the best configuration. This robustness is particularly important
for practical deployment, as it reduces the need for extensive hyperparameter tuning and suggests
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that the method’s performance is primarily driven by the principled design rather than fine-tuned
hyperparameters.

A.6 RETRIEVAL CAPABILITY

The target embeddings learned by PRICIN (Figure2)) capture stoichiometric ratios, oxidation states,
and precursor relationships. These embeddings naturally support retrieval: for a new target, we
can find similar compounds from the training set and use their precursors as candidates. We built
a FAISS (Johnson et al.} 2019) index over £>-normalized target embeddings, using cosine similar-
ity. At inference, we retrieve the k nearest neighbors and aggregate their precursor sets via union.
Despite testing various fusion strategies (self-attention, cross-attention, residual gating, confidence
weighting), retrieval-augmented prediction did not improve over the base model. We identify three
likely causes: (1) Retrieval noise. Retrieved neighbors often include the correct precursors but also
bring in many irrelevant ones, reducing signal-to-noise and confusing the predictor. (2) Composi-
tional similarity does not imply synthesis similarity. Compounds with similar compositions (e.g.,
isovalent substitutions) can have different synthesis routes. Embeddings trained for precursor pre-
diction do not ensure that nearest neighbors share compatible precursor sets. (3) Small dataset size
leads to overfitting. With limited training data, the learned embeddings may overfit to the training
distribution, making retrieval less effective for generalization. Furthermore, we observed little im-
provement in with retrieval enabled compared to model only with graph network.
We believe with larger and more standardized datasets, these embeddings could support retrieval-
based planning. Future work could explore contrastive objectives that explicitly group targets with
similar precursor sets to improve retrieval quality and enable few-shot generalization.

A.7 LIMITATIONS AND FUTURE WORK

Our study focuses on inorganic retrosynthesis planning under two datasets and does not model
operating conditions or kinetics explicitly. Extending PRICIN to (i) multi-step planning with by-
products, (ii) joint prediction of temperature, atmosphere, and time, and (iii) calibrated uncertainty
for active learning in autonomous labs are promising directions.

In summary, enforcing chemical constraints provides a robust inductive bias for inorganic retrosyn-
thesis, advancing the DMAT loop toward reliable, closed-loop materials discovery.
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