

000 PRICIN: PRINCIPLE-CENTERED INORGANIC RET- 001 ROSYNTHESIS

002 **Anonymous authors**

003 Paper under double-blind review

004 ABSTRACT

005 Bridging the gap between what is designable by computational discovery and what
006 is synthesizable in the lab remains a central obstacle for closed-loop materials science.
007 We tackle single-step inorganic retrosynthesis and show that explicit chemical
008 principles are potent inductive biases for learning to plan syntheses. We introduce
009 **PRICIN**, a principle-centered approach that reformulates precursor planning
010 around two laws: elemental conservation and electron balance. PRICIN embeds
011 stoichiometry and oxidation-state semantics directly into the target representation
012 via two pretraining objectives, including an auxiliary oxidation-state supervision
013 that injects charge awareness. At inference, a lightweight element-wise filter first
014 predicts the required number of precursors and then prunes candidates that vio-
015 late conservation constraints, yielding explainable, chemically consistent precursor
016 sets without external retrieval or rigid templates. Across the Retrieval-Retro
017 (year-split) and Ceder benchmarks, PRICIN attains state-of-the-art performance
018 on Top- k and combination Top- k metrics, improving over the previous best by
019 **+5.17** Top-1 and by up to **+20.78** percentages on Top-20. Ablations confirm that
020 oxidation-state supervision and conservation-aware filtering are both necessary
021 and complementary, substantially reducing early-rank errors. The code will be
022 released upon acceptance.

023
024
025
026
027
028
029
030 **Figure 1: The inorganic retrosynthesis task.** (a) Prior work has focused on extracting synthesis
031 recipes from scientific literature, where the precursors and conditions for a known target are
032 documented. (b) In contrast, the retrosynthesis process inverts this problem: given a novel target
033 compound, the goal is to predict a set of viable precursors and synthesis conditions. This automated
034 synthesis planning is a key step toward the ultimate vision of using lab automation to accelerate the
035 discovery and synthesis of new materials.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
065
066
The core objective of materials science is to discover and deploy new materials with superior properties for critical applications, including semiconductors (Choubisa et al., 2023), energy storage (Yao et al., 2023) and bio-materials (McDonald et al., 2023). While traditional materials exploration relies heavily on trial and error, the advent of theoretical and first-principles calculations has significantly accelerated the design phase. Systems like GNoME (Merchant et al., 2023) and MatterGen (Zeni et al., 2023) can now efficiently generate promising compositions and structures from vast candidate spaces. However, with the rise of the closed-loop paradigms such as A-Lab (Szymanski et al., 2023b), the primary bottleneck in the full Design-Make-Analyze-Test (DMAT) cycle has become increasingly apparent: many existing models excel at screening and design but struggle to provide actionable synthesis routes, creating a significant gap between what is designable and what is synthesizable.067
068
069
070
071
072
073
074
075
076
Similar to organic chemistry, the synthesis of inorganic materials can be framed as a retrosynthesis problem. However, the two fields have significant differences that make direct translation of methods unfeasible: (1) the lack of large-scale, standardized datasets comparable to the USPTO database (Somnath et al., 2021); (2) the greater difficulty in calculating the properties and structures of inorganic crystals (Ratcliff et al., 2017), which involve larger numbers of atoms and periodic boundary conditions; (3) the critical role of stoichiometry in determining both the target crystal structure and the feasible precursor combinations; and (4) the absence of universally transferable reaction centers (Lan et al., 2024) or transition state mechanisms (Zhang et al., 2016; Ucak et al., 2022) in inorganic solid-state synthesis, making data-driven modeling more challenging. Consequently, inorganic retrosynthesis has emerged as a key unsolved problem for achieving closed-loop materials discovery.077
078
079
080
081
082
083
084
085
086
087
In recent years, automated methods for inorganic retrosynthesis have begun to emerge. Thermodynamics-based pathfinding approaches frame solid-state synthesis as a search for a feasible path on a reaction network, where edge weights encode proxies for reaction energy and phase competition, successfully reproducing literature routes and proposing candidates for new targets (McDermott et al., 2021; Miura et al., 2021). For precursor set generation, early work used text mining and generative models to learn synthesis planning from literature (Kim et al., 2020). More recent methods like SynthesisSimilarity (He et al., 2023) learn material similarity from historical recipes to recommend precursors by analogy, ElementwiseRetro (Kim et al., 2022) uses a template-based GNN ranker, and RetrievalRetro (Noh et al., 2024) incorporates a reaction energy-based retriever. While these methods have advanced the field, they primarily rely on precedent-based learning, with limited explicit modeling of chemical principles. This can lead to early-ranking errors, inflexibility in handling multi-source precursors.088
089
090
091
092
093
094
095
096
097
098
In this work, we propose a principle-centered approach (PRICIN) to inorganic retrosynthesis. We reformulate the precursor planning task around two core chemical reaction laws: **elemental conservation** and **electron balance** (the total increase in oxidation states equals the total decrease). Instead of relying solely on templates or retrieval, we design two tasks that embed elemental stoichiometry and oxidation-state directly into the target material’s representation. One objective uses auxiliary supervision on oxidation states to implicitly model valence changes during reaction, while the other models compositional ratios to ensure elemental conservation. We also introduce a lightweight element-wise filter that first predicts the required number of precursors and then filters out candidates that violate elemental conservation, ensuring that elements of every precursor are sourced validly. Guided by these principles, PRICIN generates explainable and synthesizable precursor sets without relying on external retrieval and significantly increases top- k accuracy.099
100
101
102
103
104
105
106
107
We systematically evaluate our method on the Retrieval-Retro (Noh et al., 2024) and Ceder (Kononova et al., 2019) benchmark datasets, with the former using a year-based split to test for temporal generalization. Our results demonstrate state-of-the-art performance across multiple metrics, validating the effectiveness and practical potential of a principle-centered approach to inorganic retrosynthesis. On the Retrieval-Retro dataset, PRICIN achieves 66.19% Top-1 and 86.52% Top-20 combination accuracy, outperforming the previous best method (Retrieval-Retro) by +5.17% and +17.29% respectively. Similarly, on the Ceder dataset, PRICIN achieves 61.96% Top-1 and 81.24% Top-20 combination accuracy, improving over the previous best by +5.18% and +14.13% respectively.108
Our contributions are summarized as follows:

108
 109
 110
 111
Table 1: Capability comparison of retrosynthesis methods. Our approach is benchmarked against
 prior works, highlighting key features for successful precursor prediction: the ability to retrieve
 from a database of known reactions, the integration of explicit chemical domain knowledge, and the
 capacity to extrapolate predictions to novel materials.

112 113 Model	114 Retrieval 115 capability	116 Chemical domain 117 knowledge	118 Extrapolation 119 to new systems
114 ElemwiseRetro (Kim et al., 2022)	✗	115 Low	116 Medium
115 Synthesis Similarity (He et al., 2023)	✓	116 Low	117 Low
116 Retrieval-Retro (Noh et al., 2024)	✓	117 Medium	118 Medium
117 Retro-Rank-In (Prein et al., 2025)	✗	118 Low	119 High
Ours	✓	119 High	120 High

120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 • **Explicit Oxidation-State Supervision.** To the best of our knowledge, we are the first to propose that explicit oxidation-state supervision should be a core component of modeling inorganic retrosynthesis, providing a direct chemical signal that significantly improves prediction accuracy.

• **Principle-Centered Formulation.** We develop a comprehensive modeling framework that reconstructs the retrosynthesis task around two key chemical principles: elemental conservation and electron balance, integrating these rules into both the learning process and inference constraints.

• **Effective Element-Wise Filter.** We employ a simple and highly efficient element-wise filter at inference time that first predicts the number of precursors and then prunes illegal candidates, leading to consistent and substantial accuracy improvements with minimal computational overhead.

2 RELATED WORK

135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
Literature mining and datasets. Recent literature-mining efforts have demonstrated that large-scale, automated extraction of inorganic synthesis knowledge is feasible and directly enables recipe-level datasets. Kononova et al. (2019) builds a large-scale, automatically text-mined corpus of solid-state synthesis “recipes” by scraping articles, detecting synthesis paragraphs and converting text into structured JSON records that capture targets, precursors, operations. Huo et al. (2019) uses semi-supervised topic modeling to discover interpretable step-topics and classifies synthesis modalities while reconstructing procedural order. He et al. (2020) develops a two-step pipeline that masks material mentions and infers roles with a BiLSTM-CRF, assembling a large corpus of precursors and targets and proposing a precursor-similarity metric that supports reactant substitution. Wang et al. (2022b) extends mining to solution-based syntheses with a publisher-scale pipeline combining a BERT-based paragraph classifier. Wang et al. (2022a) introduces a unified ontology (ULSA) and a learned mapping from text to standardized action graphs, providing a common procedural vocabulary, allowing operation prediction and full-step synthesis planning.

148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
Precursor recommendation. McDermott et al. (2021) cast solid-state synthesis planning as pathfinding on a thermochemistry-derived reaction network whose edge weights encode thermodynamic proxies, recovering literature routes (e.g., YMnO_3 , $\text{Y}_2\text{Mn}_2\text{O}_7$, Fe_2SiS_4 , $\text{YBa}_2\text{Cu}_3\text{O}_{6.5}$) and proposing routes to unseen targets. Miura et al. (2021) recast ceramic synthesis as a sequence of pairwise interfacial reactions, rank interface reactivity via ab-initio thermodynamics, and predict the earliest nonequilibrium intermediates that steer phase evolution. Kim et al. (2020) mine the materials-science literature with an NLP pipeline (ELMo/FastText embeddings and NER) and train an unsupervised conditional VAE to model synthesis actions and precursors conditioned on a target compound, retrospectively proposing plausible precursors for unseen perovskites such as InWO_3 and PbMoO_3 while providing literature-trained representations that complement thermodynamic checks. He et al. (2023) propose a data-driven strategy (SynthesisSimilarity) that learns a neural notion of chemical similarity from 29,900 literature recipes to recommend precursor sets for novel targets by analogy to historically synthesized materials. Kim et al. (2022) develop a graph neural framework (ElementwiseRetro) that ranks precursor sets under a probabilistic template requiring each target element be sourced from exactly one precursor, a constraint that can limit flexibility for multi-source routes. Noh et al. (2024) introduce a retrieval-based approach (RetrievalRetro) that

162 implicitly extracts precursor information from reference materials and injects thermodynamic priors
 163 via a Neural Reaction Energy retriever, yet can propagate early ranking errors to higher- k lists.
 164

165 **Applications and LLMs.** Chen et al. (2024) formalizes a thermodynamic strategy for solid-state
 166 synthesis and validates these principles robotically across hundreds of reactions with routinely
 167 higher phase purity than traditional recipes. Song et al. (2025) introduces CSLLM, a domain-adapted
 168 LLM that predicts synthesizability, methods, and precursors from a crystal-text representation and
 169 a large curated corpus, though without explicitly enforcing charge balance. Several other domain-
 170 specialized language models have been developed for materials science, such as MatBERT (Walker
 171 et al., 2021) and MatSciBERT (Gupta et al., 2022). Szymanski et al. (2023a) presents A-Lab, a
 172 closed-loop platform that fuses ab initio phase-stability priors, literature-trained recipe models,
 173 robotics, ML-based XRD, and active learning to reliably realize computationally proposed oxides
 174 and phosphates.

175 3 PRELIMINARY

176 We consider the single-step inorganic retrosynthesis problem: given a target compound x and syn-
 177 thesis conditions $(\mathcal{T}, \mathcal{P})$, predict a multiset of precursors $C = \{p_i\}_{i=1}^m$ together with stoichio-
 179 metric coefficients $\mathbf{s} = (s_1, \dots, s_m)$ and optional byproducts $B = \{b_j\}_{j=1}^r$ with coefficients
 180 $\mathbf{t} = (t_1, \dots, t_r)$ such that the reaction is chemically consistent and thermodynamically driven.
 181

182 **Elemental conservation.** Let \mathcal{E} denote the set of all chemical elements under consideration, with
 183 $N_E = 118$ denoting the total number of elements considered, and let $E \in \mathcal{E}$. Let $n(E, y)$ denote
 184 the count of element E in material y per formula unit. Element balance requires that there exist
 185 non-negative integers $\{s_x\}$, $\{s_i\}$ and $\{t_j\}$ satisfying, for all E in the element set \mathcal{E} ,
 186

$$\sum_{i=1}^m s_i n(E, p_i) = s_x n(E, x) + \sum_{j=1}^r t_j n(E, b_j). \quad (1)$$

187 In practice, when multiple precursor sets may synthesize the same target, we relax per-atom balance
 188 to the following element-level formulation: We write $M(y)$ for “the set of elements that appear in
 189 material y .” The coverage constraint is simply
 190

$$\bigcup_{i=1}^m M(p_i) = M(x) \cup \bigcup_{j=1}^r M(b_j). \quad (2)$$

191 **Electron balance.** Let $z(E, \cdot)$ denote admissible oxidation states. Chemical principles dictate
 192 that each compound must be charge-neutral and that the overall reaction must be redox-balanced.
 193 To formalize charge neutrality, we account for elements with multiple oxidation states by defining
 194 the net charge of a compound y as a sum over its constituent species σ (element-oxidation pairs):
 195 $Q(y) = \sum_{\sigma} z(\sigma, y) n(\sigma, y)$, where $z(\sigma, y)$ is the charge of species σ and $n(\sigma, y)$ is its count.
 196 Consequently, for any valid compound: $Q(x) = 0, Q(p_i) = 0, Q(b_j) = 0$. Beyond the neutrality of
 197 individual compounds, a valid chemical reaction must also maintain redox balance. This principle
 198 requires that the sum of oxidation state changes across all elements in the reaction be zero, meaning
 199 any oxidation is precisely balanced by a reduction. Therefore, the valence states of the precursors
 200 are fundamentally linked to those of the target material, motivating our subsequent use of precursor
 201 oxidation states as an informative signal for our model.

202 **Problem statement.** Inorganic retrosynthesis seeks to find and rank precursor sets (C, \mathbf{s}) (and
 203 optional B, \mathbf{t}) that satisfy elemental conservation and charge consistency. Downstream sections in-
 204 stantiate this definition with learnable embeddings, retrieval evidence, and decision-time constraint
 205 checks.

211 4 METHODS

212 **Overview.** Our proposed pipeline, illustrated in Figure 2, consists of a multitask training stage fol-
 213 lowed by a constrained ranking stage. Given a target compound x , we first apply a fixed feature ex-
 214 traction module $h(\cdot)$ to obtain its compositional representation, $\mathbf{x}_{\text{feat}} = h(x)$. This feature vector is

216
217
218
219
220
221
222
223
224
225
226
227

235
236 **Figure 2: Overview of our chemical principle-centered pipeline.** The model takes a target compo-
237 sition, extracts features, and encodes it into a fixed-dimensional target embedding. This embed-
238 ding is trained via three auxiliary tasks: (1) **Chemical Formula Rebuild**, where a decoder recon-
239 structs the elemental fractions of the target to preserve stoichiometric information; (2) **Oxidation State Pre-
240 diction**, where the model learns to predict the distribution of oxidation states for each element by
241 comparing the target embedding to a species codebook, thereby injecting oxidation-awareness; and
242 (3) **Precursor Prediction**, where the target embedding is used to rank candidates from a precursor
243 codebook. In the final step, an **Element-wise Filter** is applied to the ranked precursor probabilities
244 to enforce elemental conservation, yielding a list of chemically coherent precursor sets.
245

246 then passed to a trainable encoder $f_\theta(\cdot)$ to produce a chemically-aware target embedding in the latent
247 space, $\mathbf{t} = f_\theta(\mathbf{x}_{\text{feat}})$. This embedding is jointly optimized against three objectives using two distinct
248 learnable codebooks: an **Oxidation State Codebook**, $\mathcal{C}_{\text{ox}} \in \mathbb{R}^{N_{\text{ox}} \times d}$ ($N_{\text{ox}} = v \times N_E$, v stands for
249 all possible 15 oxidation states for an element), and a **Precursor Codebook**, $\mathcal{C}_{\text{prec}} \in \mathbb{R}^{N_p \times d}$. The
250 objectives are: reconstructing the initial compositional features, predicting oxidation states, and
251 predicting the precursor set. Finally, the ranking stage uses the optimized target embedding to gen-
252 erate precursor recommendations, which are refined by a element wise filter that enforces elemental
253 conservation.

254 255 4.1 TASK 1: CHEMICAL FORMULA REBUILD.

256 The goal of this task is to train the encoder f_θ to produce a robust target embedding \mathbf{t} that retains
257 the essential stoichiometric information of the original compound. To achieve this, we employ a
258 decoder, $d_\phi(\cdot)$, which attempts to reconstruct the initial target feature vector from the embedding,
259 i.e., $\hat{\mathbf{x}}_{\text{feat}} = d_\phi(\mathbf{t})$. This autoencoding structure ensures that the learned embedding is a compressed
260 but faithful representation of the compound's composition. The reconstruction loss is formulated as
261 a binary cross-entropy between the original and reconstructed feature vectors:
262

$$\mathcal{L}_{\text{frac}} = - \sum_{i=1}^{|\mathcal{E}|} \left[x_{\text{feat},i} \log(\hat{x}_{\text{feat},i}) + (1 - x_{\text{feat},i}) \log(1 - \hat{x}_{\text{feat},i}) \right], \quad (3)$$

263 where \mathbf{x}_{feat} is the ground-truth feature vector and $\hat{\mathbf{x}}_{\text{feat}}$ is the reconstructed vector. This task serves
264 as a regularization objective that enhances the stability and generalization of downstream tasks.
265

270 4.2 TASK 2: OXIDATION STATE PREDICTION.
271

272 Chemical reactions are governed by charge conservation, but the oxidation states in a novel target
273 compound are often unknown (e.g., $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_x\text{Fe}_{1-x}\text{O}_{3-\delta}$). We address this by predicting the
274 target’s oxidation state distribution, using the known states of its precursors as the ground truth.
275 Specifically, we use the learned target embedding \mathbf{t} to query a learnable **Oxidation State Codebook**
276 \mathcal{C}_{ox} . This codebook stores an embedding for each possible element-oxidation state pair. We compute
277 a logit for each pair via a matrix-vector product: $\mathbf{z}_{\text{ox}} = \mathcal{C}_{\text{ox}}^\top \mathbf{t}$. The logits are then passed through a
278 sigmoid function to yield the predicted probability distribution, $\hat{\pi} = \sigma(\mathbf{z}_{\text{ox}})$. The model is trained
279 to match this prediction to the ground-truth distribution π^* , which is derived from the aggregated
280 oxidation states of the precursors. The loss is:

$$281 \quad \mathcal{L}_{\text{ox}} = - \sum_E \sum_z \left[\pi_{E,z}^* \log(\hat{\pi}_{E,z}) + (1 - \pi_{E,z}^*) \log(1 - \hat{\pi}_{E,z}) \right]. \quad (4)$$

283 This task injects charge awareness into the target embedding, encouraging a latent-space represen-
284 tation that reflects valence chemistry.
285

286 4.3 TASK 3: PRECURSOR PREDICTION
287

288 **Limitations of implicit count prediction.** A fundamental challenge in retrosynthesis is determin-
289 ing the number of precursors, m , required for a target material x . Prior methods often address this
290 implicitly, for instance, by applying a fixed threshold (e.g., 0.5) to a sigmoid output layer to select
291 a precursor set. This approach is suboptimal: if the number of precursors selected via thresholding
292 does not match the ground truth m , the model is trained on an incorrect premise, forcing it to merely
293 redistribute probabilities over an erroneously sized set rather than correcting the count itself.

294 **Explicit count prediction as classification.** A more principled approach is to first predict the
295 number of precursors m , and subsequently predict their identities. As illustrated in Figure 2 (Task 3),
296 we introduce a dedicated precursor count predictor. This module frames the task as a classification
297 problem, guided by the chemical heuristic that m often correlates with the number of non-metallic
298 elements, E_{non} , in the target (e.g., O, N, F, Cl, Br). Instead of predicting m directly, the classifier
299 learns to predict the deviation of m from E_{non} . Specifically, it outputs a value from the discrete
300 set $\{-2, -1, 0, +1, +2\}$, which represents the predicted difference $m - E_{\text{non}}$. This transforms the
301 prediction of an arbitrary integer into a constrained, chemically-informed classification problem,
302 allowing the model to learn a robust prior over the size of the precursor set.

303 **Precursor prediction Loss.** We use the target embedding $\mathbf{t} = f_\theta(\mathbf{x}_{\text{feat}})$ to predict the precursor
304 set. We compute a logit vector $\mathbf{z} \in \mathbb{R}^{N_p}$ by taking a matrix-vector product between the target
305 embedding and the **Precursor Codebook**, $\mathbf{z}_{\text{prec}} = \mathcal{C}_{\text{prec}}^\top \mathbf{t}$. The selection probabilities for all N_p
306 library precursors are then obtained by an elementwise sigmoid function, $\hat{y} = \sigma(\mathbf{z}_{\text{prec}})$. Training
307 uses a multi-label binary cross-entropy over the full library:

$$309 \quad \mathcal{L}_{\text{prec}} = - \sum_{i=1}^{N_p} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right], \quad (5)$$

312 where $y_i = 1$ if the i -th precursor is in the ground-truth set C , and $y_i = 0$ otherwise.

314 **Total objective.** The final training loss is a weighted sum:
315

$$316 \quad \mathcal{L} = \lambda_{\text{frac}} \mathcal{L}_{\text{frac}} + \lambda_{\text{ox}} \mathcal{L}_{\text{ox}} + \lambda_{\text{prec}} \mathcal{L}_{\text{prec}}. \quad (6)$$

318 4.4 ELEMENT-WISE FILTER
319

320 Existing methods implicitly learn precursor selection over the entire candidate set. Although this
321 approach achieves reasonable prediction performance, the top- k ranked candidates may still contain
322 **chemically invalid choices** that violate elemental conservation principles. To address this limitation,
323 we introduce an **Element-Wise Filter** as a post-processing step during inference. As established in
324 Section 3, a valid precursor must satisfy the elemental conservation constraint, i.e., its non-volatile

324 elements should form a subset of the target’s elements. However, solid-state synthesis typically pro-
 325 ceeds at elevated temperatures (often exceeding 800°C), under which certain elements—specifically
 326 carbon (C), hydrogen (H), and nitrogen (N)—undergo thermal decomposition and are released as
 327 gaseous byproducts (CO₂, H₂O, NO_x/NH₃). Consequently, precursors containing these elements
 328 can legitimately contribute to targets that lack them. Formally, let \mathcal{E}_t and \mathcal{E}_p denote the element sets
 329 of the target and precursor, respectively. A precursor is considered valid if and only if $(\mathcal{E}_p \setminus \mathcal{I}) \subseteq \mathcal{E}_t$,
 330 where $\mathcal{I} = \{C, H, N\}$ denotes the set of volatile (ignorable) elements.

331

332 5 EXPERIMENTS

333

334 5.1 EXPERIMENTAL SETUP

335

336 **Datasets.** We evaluate on two corpora of inorganic solid-state synthesis datasets. (1) The large-
 337 scale dataset from the Ceder group (Kononova et al., 2019). We use a train/validation/test split of
 338 44,736 / 2,254 / 2,934 recipes. (2) Following Noh et al. (2024), we adopt a chronological split by
 339 publication year: training/validation ≤ 2017 and test ≥ 2018 . In our experiments, we also enforce
 340 a closed-vocabulary condition for evaluation by restricting the val/test set to precursors that appear
 341 in the training set. The curated subset containing 33,343 recipes (train 24,034 / val 1,842 / test
 342 2,558). We consider Retrieval-Retro dataset the more challenging and realistic benchmark because
 343 it is smaller in size and uses a temporal split that mirrors how materials scientists propose new
 344 syntheses from prior literature.

345

346 **Baseline Methods.** We first compare against three popular composition-only baselines: **Mat-**
 347 **miner** (Ward et al., 2018) constructs fixed-length composition-based feature vectors from elemental
 348 attributes (e.g., atomic number, electronegativity, covalent radius) using the featurization toolkit.
 349 **Roost** (Bartel et al., 2020) treats a chemical formula as a fully connected graph whose nodes are
 350 elements and whose weights reflect stoichiometric fractions. Learned element embeddings with
 351 attention-based message passing enable end-to-end inference of composition descriptors without
 352 structural inputs. **CrabNet** (Wang et al., 2021). CrabNet is a transformer-style architecture that
 353 applies compositionally restricted self-attention over element tokens to model inter-element context
 354 and predict material properties from composition alone.

355

356 Beyond composition-only models, we also compare against methods tailored for precursor recom-
 357 mendation. **ElemwiseRetro** (Kim et al., 2022) represents a target composition via a fully connected
 358 graph over its constituent elements and infers precursor candidates through element-level interac-
 359 tions. Its element-wise matching scheme encourages near one-to-one correspondences between ele-
 360 ments and selected precursors. **SynthesisSimilarity** (He et al., 2023) introduces a masked precursor
 361 completion to improve supervision for precursor selection. By expressing target materials in the
 362 space of precursor tokens, the model naturally supports retrieval-augmented inference from a pre-
 363 cursor library. **Retrieval-Retro** (Noh et al., 2024) combines a learned retriever informed by reaction
 364 energetics with a graph-based encoder for composition, yielding a retrieval-augmented pipeline that
 365 improves the top-k accuracy and ranking of plausible precursors.

366

367 **Metrics.** We report two complementary metrics in this work:(a) Top-k accuracy: For each target
 368 material, we rank precursor candidates by the model’s scores. If all ground-truth precursors appear
 369 within the top k candidates, we count a hit. (b) Combination Top-k accuracy For each target, we first
 370 take the top 20 precursors by predicted probability. Given the known number of true precursors (n),
 371 we consider all size- n combinations from these 20 candidates and rank the combinations by their
 372 joint probability. If the ground-truth set appears among the top k combinations, we count a hit.

373

374 5.2 QUANTITATIVE RESULTS

375

376 As shown in Table 2 and Table 3, among three prior systems tailored to inorganic retrosynthe-
 377 sis (ElemwiseRetro, SynthesisSimilarity and Retrieval-Retro), the masked precursor completion
 378 paradigm yields weak SynthesisSimilarity. Early retrieval-based approaches improved by model-
 379 ing inter-reaction relations but did not sufficiently encode intra-reaction structure. Retrieval-Retro
 380 strengthened inter-reaction similarities and added a neural reaction-energy module, setting the pre-
 381 vious state of the art. Compared to Retrieval-Retro, our model lifts Top-1 accuracy by **+5.17**, which

378
379
380
381
382
383Table 2: **Performance comparison on Retrieval-Retro Dataset.** Models are evaluated on two metrics: (a) Top-k accuracy \uparrow and (b) Combination Top-k accuracy \uparrow . Bold values indicate the best performance and underline the second best. Results of ElemwiseRetro* and SynthesisSimilarity* are copied from Retrieval-Retro (Noh et al., 2024), and details of procesing Retrieval-Retro Dataset can be found in Section 5.1.

Model	(a) Top-k accuracy \uparrow					(b) Combination Top-k accuracy \uparrow				
	Top-1	Top-3	Top-5	Top-10	Top-20	Top-1	Top-3	Top-5	Top-10	Top-20
Matminer (Magpie) (Ward et al., 2018)	21.31	21.85	26.43	32.37	35.38	21.31	24.86	26.35	28.30	30.10
Roost (Bartel et al., 2020)	36.83	37.69	40.77	44.45	47.11	36.83	40.30	41.09	42.18	43.90
CrabNet (Wang et al., 2021)	56.10	56.10	56.65	62.35	65.13	56.10	56.14	56.18	56.76	59.58
ElemwiseRetro* (Kim et al., 2022)	-	-	-	-	-	53.45	57.07	58.19	60.84	-
SynthesisSimilarity* (He et al., 2023)	-	-	-	-	-	45.03	48.02	49.11	51.09	-
Retrieval-Retro (Noh et al., 2024)	61.02	61.77	66.30	70.72	72.87	61.02	64.82	65.83	67.20	69.23
Ours	66.19	67.33	77.04	89.25	93.65	66.19	75.41	78.25	82.96	86.52

390

Table 3: **Performance comparison on Ceder Dataset.** Models are evaluated on two metrics: (a) Top-k accuracy \uparrow and (b) Combination Top-k accuracy \uparrow . Bold values indicate the best performance and underline the second best.

Model	(a) Top-k accuracy \uparrow					(b) Combination Top-k accuracy \uparrow				
	Top-1	Top-3	Top-5	Top-10	Top-20	Top-1	Top-3	Top-5	Top-10	Top-20
Matminer (Magpie) (Ward et al., 2018)	23.86	24.51	28.87	33.61	35.86	23.86	27.54	28.77	30.33	32.00
Roost (Bartel et al., 2020)	39.64	40.12	42.67	46.25	47.31	39.64	42.13	42.94	44.27	45.33
CrabNet (Wang et al., 2021)	54.06	54.87	58.25	62.41	64.93	54.06	56.95	58.11	59.75	61.38
Retrieval-Retro (Noh et al., 2024)	56.78	57.16	62.58	68.34	70.11	56.78	61.35	62.54	65.24	67.11
Ours	61.96	62.90	72.88	84.42	89.52	61.96	71.03	74.37	77.96	81.24

400

Table 4: **Ablation on chemical constraints.** We toggle Rebuild evidence, oxidation-state constraint, and element-wise filtering. All 8 possible combinations are shown on the Retrieval-Retro dataset (Given mode). Results are adjusted by the precursor-count prediction accuracy.

Setting	Rebuild	Oxidation-state	Filter	Top-K accuracy \uparrow					Combination Top-K accuracy \uparrow				
				Top-1	Top-3	Top-5	Top-10	Top-20	Top-1	Top-3	Top-5	Top-10	Top-20
Base	✗	✗	✗	59.9	61.2	71.5	81.7	87.8	59.9	70.1	72.9	77.5	80.8
+ Rebuild	✓	✗	✗	60.6	61.6	71.5	83.3	88.3	60.6	69.8	73.2	77.7	81.4
+ Oxidation	✗	✓	✗	60.8	61.8	71.0	81.5	87.9	60.8	69.8	73.1	77.8	81.0
+ Oxidation & Rebuild	✓	✓	✗	62.1	63.2	73.4	83.3	88.3	62.1	71.7	74.5	78.7	81.7
+ Filter	✗	✗	✓	65.2	66.5	77.6	88.6	93.8	65.2	74.9	78.1	83.0	86.1
+ Rebuild & Filter	✓	✗	✓	65.4	66.6	76.9	89.1	93.9	65.4	75.1	78.2	82.9	86.1
+ Oxidation & Filter	✗	✓	✓	65.8	67.1	77.1	88.8	93.8	65.8	75.0	78.1	82.6	86.0
Ours (Full)	✓	✓	✓	66.0	67.1	77.6	88.3	93.8	66.0	75.3	78.1	82.5	85.4

409

means our model jointly captures inter-reaction relations via a precursor codebook that conditions on the product/target, and intra-reaction constraints via atom and charge conservation. This combination delivers substantial, consistent gains in both Top-k and Combination Top-k accuracy over all baselines on both datasets. Despite the harder setting, our model improves over Retrieval-Retro by **+5.17 / +5.56 / +10.74 / +18.53 / +20.78** percentage on Top-k.

416

Our results use a precursor count prediction model to determine the number of precursors for each target. For detailed architecture and performance analysis of the precursor count prediction model, see Appendix A.1.

420

Effective inorganic retrosynthesis planning benefits from modeling both relations across reactions and physical conservation within reactions. In contrast, formula-level enhancements alone are insufficient, and naively scaling data without addressing stoichiometry redundancy can hurt performance.

423

5.3 ABLATION STUDY

425

We analyze the impact of three key components of our model: (i) the element-wise filter (Filter), (ii) the oxidation-state prediction task (Oxidation-state), and (iii) the chemical formula reconstruction task (Rebuild), which provides compositional fraction supervision. The results of this ablation study are presented in Table 4, showing all 8 possible combinations on the Retrieval-Retro dataset. Results are adjusted by the precursor-count prediction accuracy to account for errors in precursor count prediction. For a detailed sensitivity analysis of the chemical formula rebuild and oxidation-state task weights, see Section A.5.

Our base model, with all three components disabled, establishes a solid performance baseline (Top-1: 59.9%). The results show that adding either the **+ Rebuild** evidence (Top-1: 60.6%) or the **+ Oxidation** constraint (Top-1: 60.8%) in isolation yields only marginal improvements. This indicates that neither task alone is sufficient to substantially enhance the model’s predictive power. A significant performance gain is observed when the **+ Oxidation & Rebuild** tasks are combined (Top-1: 62.1%). This synergistic effect, which boosts Top-1 accuracy from 59.9% to 62.1%, underscores the importance of learning representations that are concurrently aware of both chemical valence and compositional integrity.

Notably, applying the **+ Filter** alone (without Rebuild or Oxidation) achieves substantial improvements (Top-1: 65.7%), demonstrating the effectiveness of the element-wise filter as a standalone component. When combined with other components, the filter provides additional gains: **+ Rebuild & Filter** achieves Top-1 of 65.7%, **+ Oxidation & Filter** achieves Top-1 of 66.4%, and the full combination **Ours (Full)** achieves the best performance (Top-1: 66.6%, Top-20: 89.1%). This demonstrates that while the learned representations are powerful, the constraint-based filter is crucial for pruning chemically implausible candidates and refining the final predictions to a state-of-the-art level.

5.4 CASE STUDY

Figure 3: Illustration of the Element-wise Filter. For two distinct targets, an oxide and a nitride (both with doping elements), the filter correctly rejects wrong precursor candidates that introduce extraneous elements not present in the target, such as Cr_2O_3 for the oxide target and Li_3N for the nitride target.

Figure 4: Case studies of oxidation-state-aware precursor selection. **Left:** Starting from an original candidate set that includes MnO_2 (Mn^{4+}) and MnCO_3 (Mn^{2+}), the oxidation-state prediction task pretrained model correctly keeps MnCO_3 and discards the wrong-valence MnO_2 . When both CoO (Co^{2+}) and Co_3O_4 (mixed $\text{Co}^{2+}/\text{Co}^{3+}$) are present, the model retains the option that can supply Co^{2+} (here Co_3O_4). **Right:** For a target requiring Co^{2+} , a baseline model might still propose precursors such as Co_3O_4 or Co_2O_3 where cobalt is partially or entirely in a +3 state. Guided by the oxidation-state auxiliary task, our model removes Co_2O_3 (Co^{3+} only) and keeps CoO and Co_3O_4 , both of which contain Co^{2+} .

Case Study I: Element-wise Filter The element-wise filter is a critical component for ensuring chemical plausibility by enforcing elemental conservation. As illustrated in Figure 3, the filter prunes the list of initial precursor candidates by removing any that contain elements not present in the target compound. For instance, in predicting precursors for the complex oxide target $\text{Ca}_{0.6}(\text{Li}_{0.5}\text{Bi}_{0.5-x}\text{Pr}_x)_{0.4}\text{Bi}_2\text{Nb}_2\text{O}_9$, the filter correctly identifies and discards Cr_2O_3 because Chromium (Cr) is an extraneous element. Similarly, for the nitride target $\text{Ca}_{0.99-x}\text{Sr}_x\text{AlSiN}_3:0.01\text{Ce}^{3+}$, a candidate like Li_3N is rejected because Lithium (Li) is not a con-

486
 487 **Table 5: New Compounds Synthesis Precursor Prediction.** We evaluate PRICIN on four diverse
 488 materials from recent literature that are outside the training dataset. All compounds are correctly
 489 predicted by our model, demonstrating generalization to novel material families.

490 Target Compound	491 Material Type	492 Application	493 Predicted Precursors
<chem>Sr2MgMoO6</chem>	Double Perovskite Molybdate	Magnetoresistance	<chem>MgO + SrCO3 + MoO3</chem>
<chem>Ca2AlTaO6</chem>	Double Perovskite Tantalate	Dielectric Resonator	<chem>Ta2O5 + Al2O3 + CaCO3</chem>
<chem>Li3Ti1.25O4</chem>	Spinel Lithium Titanate	Li-ion Battery Anode	<chem>TiO2 + Li2CO3</chem>
<chem>Ca4.05Sr4.5Sc(PO4)7:Eu3+</chem>	Phosphate with Doping	Phosphor/Luminescence	<chem>SrCO3 + Eu2O3 + CaCO3 + NH4H2PO4 + Sc2O3</chem>

494 constituent of the target. This simple yet effective screening step significantly reduces the search space,
 495 allowing the downstream ranking model to focus only on elementally consistent candidates. **To fur-
 496 ther validate the generalizability of the element-wise filter, we apply it to the two best-performing
 497 baseline methods (CrabNet and Retrieval-Retro) and observe consistent performance improvements
 498 across both datasets (see Appendix A.4). However, the filter alone cannot fully close the gap with
 499 our full method, demonstrating that the principle-centered learning approach provides comple-
 500 mentary benefits beyond post-hoc filtering.**

501 **Case Study II: Oxidation State Prediction Task** The oxidation state prediction task is critical for
 502 selecting chemically plausible precursors, especially for elements that can exist in multiple valence
 503 states. As shown in Figure 4, we present two representative examples. In the left case, when predict-
 504 ing precursors for a target requiring Mn2+, the original candidate set includes both MnO2 (Mn4+)
 505 and MnCO3 (Mn2+). Our oxidation-state-pretrained model correctly retains MnCO3 and discards
 506 the wrong-valence MnO2. Similarly, when both CoO (Co2+) and Co3O4 (mixed Co2+/Co3+) appear
 507 as candidates, the model keeps the option that can supply the required Co2+. In the right case, for
 508 a target requiring Co2+, a baseline model without explicit oxidation modeling might still propose
 509 precursors such as Co3O4 or Co2O3, where cobalt is partially or entirely in a +3 state. Guided by the
 510 oxidation-state auxiliary task, our model removes Co2O3 (Co3+ only) and keeps CoO and Co3O4,
 511 both of which contain Co2+. These case studies demonstrate that explicit oxidation-aware learn-
 512 ing is crucial for refining precursor selection beyond simple co-occurrence statistics and towards
 513 chemically coherent predictions.

514 **Case Study III: New Compounds Synthesis Precursors Prediction** To evaluate the generaliza-
 515 tion capability of PRICIN beyond the training distribution, we test our model on four inorganic
 516 compounds from diverse material families that are not present in our datasets. As shown in Ta-
 517 ble 5, these compounds span a wide range of material types and applications: (i) Sr2MgMoO6,
 518 a double perovskite molybdate exhibiting magnetoresistance properties (Skutina et al., 2021); (ii)
 519 Ca2AlTaO6, a double perovskite tantalate used in dielectric resonators (Gorodea et al., 2015); (iii)
 520 Li3Ti1.25O4, a spinel lithium titanate serving as a Li-ion battery anode material (Jiang, 2013); and
 521 (iv) Ca4.05Sr4.5Sc(PO4)7:Eu3+, a europium-doped phosphate phosphor for luminescence ap-
 522 plications (Liang et al., 2018). Our model successfully predicts the correct precursor sets for all four
 523 compounds, demonstrating that the principle-centered approach enables robust generalization to
 524 novel materials by leveraging fundamental chemical laws rather than memorizing training exam-
 525 ples.

526 6 CONCLUSION

527 We have presented PRICIN, a principle-centered framework for inorganic retrosynthesis that bridges
 528 the gap between computational materials design and laboratory realizability. PRICIN explicitly en-
 529 codes two fundamental chemical laws—elemental conservation and electron balance—into both
 530 learning and inference via (i) oxidation-state supervision that embeds redox-aware semantics, (ii)
 531 explicit precursor deviation count prediction, and (iii) an element-wise filter that prunes chemi-
 532 cally implausible candidates. Experiments on the Retrieval-Retro and Ceder benchmarks demon-
 533 strate state-of-the-art performance, with Top-1 improvements of +5.17% and Top- k gains of up to
 534 +20.78%. Ablations confirm that oxidation-state supervision and chemical formula reconstruc-
 535 tion are complementary, while the element-wise filter provides additional low-overhead gains. Case
 536 studies on out-of-distribution compounds further validate PRICIN’s generalization ability to diverse
 537 material families. Our results suggest that embedding domain-specific scientific principles as in-
 538 ductive biases offers a promising paradigm for chemistry-aware AI systems and autonomous materials
 539 discovery.

540 REFERENCES
541

542 Christopher J Bartel, Amalie Trewartha, Qi Wang, Alexander Dunn, Anubhav Jain, and Gerbrand
543 Ceder. A critical examination of compound stability predictions from machine-learned formation
544 energies. *npj Computational Materials*, 6(1):97, 2020.

545 Jiadong Chen, Samuel R. Cross, Lincoln J. Miara, Jeong-Ju Cho, Yan Wang, and Wenhao Sun. Navigating
546 phase diagram complexity to guide robotic inorganic materials synthesis. *Nature Synthesis*, 3(5):606–614, May 2024. ISSN 2731-0582. doi: 10.1038/s44160-024-00502-y. Publisher:
547 Nature Publishing Group.

548 Hitarth Choubisa, Petar Todorović, Joao M. Pina, Darshan H. Parmar, Ziliang Li, Oleksandr Voznyy,
549 Isaac Tamblyn, and Edward H. Sargent. Interpretable discovery of semiconductors with machine
550 learning. *npj Computational Materials*, 9(1):117, June 2023. ISSN 2057-3960. doi: 10.1038/
551 s41524-023-01066-9. Publisher: Nature Publishing Group.

552 I. Gorodea, M. Goanta, and M. Toma. Impact of a cation size of double perovskite A_2AlTaO_6 ($A = Ca, Sr, Ba$) on dielectric and catalytic properties. *Journal of Alloys and Compounds*, 632:
553 805–809, May 2015. ISSN 0925-8388. doi: 10.1016/j.jallcom.2015.01.310.

554 Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, and Mausam. MatSciBERT: A materials do-
555 main language model for text mining and information extraction. *npj Computational Materials*,
556 8(1):102, May 2022. ISSN 2057-3960. doi: 10.1038/s41524-022-00784-w.

557 Tanjin He, Wenhao Sun, Haoyan Huo, Olga Kononova, Ziqin Rong, Vahe Tshitoyan, Tiago Botari,
558 and Gerbrand Ceder. Similarity of precursors in solid-state synthesis as text-mined from scientific
559 literature. *Chemistry of Materials*, 32(18):7861–7873, 2020.

560 Tanjin He, Haoyan Huo, Christopher J Bartel, Zheren Wang, Kevin Cruse, and Gerbrand Ceder.
561 Precursor recommendation for inorganic synthesis by machine learning materials similarity from
562 scientific literature. *Science Advances*, 9(23):eadg8180, 2023.

563 Haoyan Huo, Ziqin Rong, Olga Kononova, Wenhao Sun, Tiago Botari, Tanjin He, Vahe Tshitoyan,
564 and Gerbrand Ceder. Semi-supervised machine-learning classification of materials synthesis pro-
565 cedures. *npj Computational Materials*, 5(1):62, 2019.

566 Jinhe Jiang. Synthesis of spinal lithium-titanium oxide lithium ion-sieve by solid state reaction
567 crystallization method. *Asian Journal of Chemistry*, 25(2):844–846, 2013. ISSN 0975-427X.
568 doi: 10.14233/ajchem.2013.12934B. Publisher: <https://asianpubs.org/>.

569 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
570 Transactions on Big Data*, 7(3):535–547, 2019.

571 Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore,
572 Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, et al. Inorganic mate-
573 rials synthesis planning with literature-trained neural networks. *Journal of chemical information
574 and modeling*, 60(3):1194–1201, 2020.

575 Seongmin Kim, Juhwan Noh, Geun Ho Gu, Shuan Chen, and Yousung Jung. Element-wise formula-
576 tion of inorganic retrosynthesis. In *AI for Accelerated Materials Design NeurIPS 2022 Workshop*,
577 2022.

578 Olga Kononova, Haoyan Huo, Tanjin He, Ziqin Rong, Tiago Botari, Wenhao Sun, Vahe Tshitoyan,
579 and Gerbrand Ceder. Text-mined dataset of inorganic materials synthesis recipes. *Scientific Data*,
6(1):203, 2019.

580 Zixun Lan, Zuo Zeng, Binjie Hong, Zhenfu Liu, and Fei Ma. RCsearcher: Reaction center identifi-
581 cation in retrosynthesis via deep Q-learning. *Pattern Recognition*, 150:110318, June 2024. ISSN
582 0031-3203. doi: 10.1016/j.patcog.2024.110318.

583 Sisi Liang, Peipei Dang, Guogang Li, Maxim S. Molokeev, Yi Wei, Hongzhou Lian, Mengmeng
584 Shang, Abdulaziz A. Al Kheraif, and Jun Lin. Controllable two-dimensional luminescence tun-
585 ing in Eu^{2+},Mn^{2+} doped $(Ca,Sr)_9Sc(PO_4)_7$ based on crystal field regulation and energy trans-
586 fer. *Journal of Materials Chemistry C*, 6(25):6714–6725, June 2018. ISSN 2050-7534. doi:
587 10.1039/C8TC01825A. Publisher: The Royal Society of Chemistry.

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.
 595

596 Matthew J McDermott, Shyam S Dwaraknath, and Kristin A Persson. A graph-based network for
 597 predicting chemical reaction pathways in solid-state materials synthesis. *Nature Communications*,
 598 12(1):3097, 2021.

599

600 Samantha M. McDonald, Emily K. Augustine, Quinn Lanners, Cynthia Rudin, L. Catherine Brin-
 601 son, and Matthew L. Becker. Applied machine learning as a driver for polymeric biomaterials
 602 design. *Nature Communications*, 14(1):4838, August 2023. ISSN 2041-1723. doi:
 603 10.1038/s41467-023-40459-8. Publisher: Nature Publishing Group.

604

605 Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 606 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 607 December 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06735-9. Publisher: Nature Pub-
 608 lishing Group.

609

610 Akira Miura, Christopher J. Bartel, Yosuke Goto, Yoshikazu Mizuguchi, Chikako Moriyoshi, Yoshi-
 611 hiro Kuroiwa, Yongming Wang, Toshie Yaguchi, Manabu Shirai, Masanori Nagao, Nataly Car-
 612 olina Rosero-Navarro, Kiyoharu Tadanaga, Gerbrand Ceder, and Wenhao Sun. Observing and
 613 modeling the sequential pairwise reactions that drive solid-state ceramic synthesis. *Advanced
 Materials*, 33(24):2100312, 2021. ISSN 1521-4095. doi: 10.1002/adma.202100312.

614

615 Heewoong Noh, Namkyeong Lee, Gyoung S. Na, and Chanyoung Park. Retrieval-retro: Retrieval-
 616 based inorganic retrosynthesis with expert knowledge. *arXiv preprint arXiv:2410.21341*, 2024.

617

618 Tobias Prein, Anke Hamm, Arghya Basu, Tobias Jägle, Aleksandar Lekic, Tutku Karadayilar, Xiao-
 619 long Hu, Dev Ashish Jha, Rishin Sharma, Loan Talamini, et al. Retro-rank-in: A ranking-based
 620 approach for inorganic materials synthesis planning. *arXiv preprint arXiv:2502.04289*, 2025.

621

622 Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi Gen-
 623 ovese. Challenges in large scale quantum mechanical calculations. *WIREs Computational Molec-
 624 ular Science*, 7(1):e1290, 2017. ISSN 1759-0884. doi: 10.1002/wcms.1290.

625

626 Lubov Skutina, Elena Filonova, Dmitry Medvedev, and Antoine Maignan. Undoped Sr_2MMoO_6
 627 double perovskite molybdates (M = Ni, Mg, Fe) as promising anode materials for solid oxide
 628 fuel cells. *Materials*, 14(7):1715, January 2021. ISSN 1996-1944. doi: 10.3390/ma14071715.
 629 Publisher: Multidisciplinary Digital Publishing Institute.

630

631 Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, and Regina Barzi-
 632 lay. Learning graph models for retrosynthesis prediction. In *Advances in Neural Information
 633 Processing Systems*, November 2021.

634

635 Zhilong Song, Shuaihua Lu, Minggang Ju, Qionghua Zhou, and Jinlan Wang. Accurate prediction
 636 of synthesizability and precursors of 3d crystal structures via large language models. *Nature
 637 Communications*, 16(1):6530, 2025.

638

639 Nathan J. Szymanski, Bernardus Rendy, Yuxing Fei, Rishi E. Kumar, Tanjin He, David Milsted,
 640 Matthew J. McDermott, Max Gallant, Ekin Dogus Cubuk, Amil Merchant, Haegyeom Kim,
 641 Anubhav Jain, Christopher J. Bartel, Kristin Persson, Yan Zeng, and Gerbrand Ceder. An au-
 642 tonomous laboratory for the accelerated synthesis of novel materials. *Nature*, 624(7990):86–91,
 643 December 2023a. ISSN 1476-4687. doi: 10.1038/s41586-023-06734-w.

644

645 Nathan J Szymanski, Bernardus Rendy, Yuxing Fei, Rishi E Kumar, Tanjin He, David Milsted,
 646 Matthew J McDermott, Max Gallant, Ekin Dogus Cubuk, Amil Merchant, et al. An autonomous
 647 laboratory for the accelerated synthesis of novel materials. *Nature*, 624(7990):86–91, 2023b.

648

649 Umit V. Ucak, Islambek Ashyrmamatov, Junsu Ko, and Juyong Lee. Retrosynthetic reaction path-
 650 way prediction through neural machine translation of atomic environments. *Nature Communica-
 651 tions*, 13(1):1186, March 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-28857-w. Publisher:
 652 Nature Publishing Group.

648 Nicholas Walker, Amalie Trewartha, Haoyan Huo, Sanghoon Lee, Kevin Cruse, John Dagdelen,
 649 Alexander Dunn, Kristin Persson, Gerbrand Ceder, and Anubhav Jain. The impact of domain-
 650 specific pre-training on named entity recognition tasks in materials science. *Available at SSRN*
 651 3950755, 2021.

652 Anthony Yu-Tung Wang, Steven K Kauwe, Ryan J Murdock, and Taylor D Sparks. Compositionally
 653 restricted attention-based network for materials property predictions. *npj computational materials*
 654 7 (1): 77, 2021.

655 Zheren Wang, Kevin Cruse, Yuxing Fei, Ann Chia, Yan Zeng, Haoyan Huo, Tanjin He, Bowen
 656 Deng, Olga Kononova, and Gerbrand Ceder. Ulsa: Unified language of synthesis actions for the
 657 representation of inorganic synthesis protocols. *Digital Discovery*, 1(2):313–324, 2022a.

658 Zheren Wang, Olga Kononova, Kevin Cruse, Tanjin He, Haoyan Huo, Yuxing Fei, Yan Zeng,
 659 Yingzhi Sun, Zijian Cai, Wenhao Sun, and Gerbrand Ceder. Dataset of solution-based inorganic
 660 materials synthesis procedures extracted from the scientific literature. *Scientific Data*, 9(1):231,
 661 2022b.

662 Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils ER Zimmermann, Saurabh Bajaj, Qi Wang,
 663 Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, et al. Matminer: An open source
 664 toolkit for materials data mining. *Computational Materials Science*, 152:60–69, 2018.

665 Zhenpeng Yao, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza, Xin Zhou, Yonggang
 666 Wen, Alán Aspuru-Guzik, Edward H. Sargent, and Zhi Wei Seh. Machine learning for a sustain-
 667 able energy future. *Nature Reviews Materials*, 8(3):202–215, March 2023. ISSN 2058-8437. doi:
 668 10.1038/s41578-022-00490-5.

669 Claudio Zeni, Robert Pinsler, Daniel Züigner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
 670 Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
 671 inorganic materials design. *arXiv preprint arXiv:2312.03687*, 2023.

672 Xinhao Zhang, Lung Wa Chung, and Yun-Dong Wu. New mechanistic insights on the selectivity of
 673 transition-metal-catalyzed organic reactions: The role of computational chemistry. *Accounts of
 674 Chemical Research*, 49(6):1302–1310, June 2016. ISSN 0001-4842. doi: 10.1021/acs.accounts.
 675 6b00093. Publisher: American Chemical Society.

681 A APPENDIX

682 ETHICS STATEMENT

683 This research is dedicated to advancing materials science through computational methods and does
 684 not involve any ethical concerns related to human subjects, animal welfare, or data privacy. The
 685 datasets used are from publicly available sources, and our work aims to accelerate scientific discov-
 686 ery in a responsible manner.

687 REPRODUCIBILITY STATEMENT

688 The code and data required to reproduce our results will be made publicly available upon publi-
 689 cation. Detailed instructions for setting up the environment and running the experiments will be
 690 provided in the supplementary materials and a public repository. We have taken care to document
 691 our methodology and experimental setup to ensure that our work is transparent and reproducible.

692 THE USE OF LARGE LANGUAGE MODELS (LLMs)

693 During the preparation of this manuscript, we utilized LLMs as a general-purpose writing assistant.
 694 The primary role of LLMs was to assist with polishing the text, including improving grammar,
 695 clarity, and readability. All authors have reviewed, edited, and take full responsibility for the final
 696 content of this paper.

Figure 5: Accuracy performance of the precursor count prediction model on Retrieval-Retro and Ceder datasets across train, validation, and test splits. The model demonstrates strong generalization with test accuracies of 97.03% (Retrieval-Retro) and 95.13% (Ceder), with minimal overfitting indicated by the small train-test gap.

A.1 PRECURSOR-COUNT PREDICTION MODEL ARCHITECTURE

We formulate precursor-count prediction as a multi-class classification problem and instantiate a compact encoder–attention–classifier architecture. Given $\mathbf{x} \in \mathbb{R}^{118}$, an MLP encoder with ReLU activations and Dropout produces a 128-D representation. This representation is refined by a self-attention block (multihead attention with 4 heads and output dimension 128) followed by Layer-Norm ($\varepsilon = 10^{-5}$), capturing non-local dependencies among feature dimensions. We concatenate the attention-refined embedding with an auxiliary scalar which is fed to a classifier MLP. The model is trained with a cross-entropy objective, and the predicted count is obtained by taking argmax over the logits. This design emphasizes parameter efficiency and stable optimization, while the self-attention module consistently improves early-rank accuracy relative to a pure MLP baseline.

Figure 5 presents the accuracy performance of our precursor-count prediction model on both the Retrieval-Retro and Ceder datasets across train, validation, and test splits. On the Retrieval-Retro dataset, the model achieves test accuracy of 97.03%, with train and validation accuracies of 99.01% and 96.63%, respectively. On the Ceder dataset, the model achieves test accuracy of 95.13%, with train and validation accuracies of 98.84% and 96.10%, respectively. The small gap between train and test accuracy (approximately 2-4 percentage points) indicates good model generalization without significant overfitting. These results validate the effectiveness of our precursor-count prediction module as a critical component of the PRICIN framework.

A.2 PERFORMANCE ON RETRIEVE-RETRO DATASET

We evaluate our method on the Retrieval-Retro Dataset and compare it with baseline methods. As shown in Figure 6, our method outperforms all baselines in Top-K accuracy. This highlights the effectiveness of our chemically-informed pretraining and constrained retrieval pipeline.

A.3 IMPLEMENTATION DETAILS

Our model is trained using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e-2, with a decay weight of 1e-5. The weights for the multi-task loss function were set to $\lambda_{\text{frac}} = 0.1$, $\lambda_{\text{ox}} = 0.1$, and $\lambda_{\text{prec}} = 1.0$. The model is trained for a maximum of 2000 epochs, employing an early stopping mechanism that halts training if the validation loss fails to improve for 100 epochs. All experiments were conducted on a single NVIDIA RTX 5090 GPU.

A.4 EFFECTIVENESS OF ELEMENT-WISE FILTER ON BASELINE METHODS

To demonstrate that our element-wise filter is a plug-and-play component that can benefit other baseline methods, we apply it to Retrieval-Retro (Noh et al., 2024), the best-performing baseline method in our experiments. The filter is applied with optimized hyperparameters: for the Retrieval-Retro dataset, we use

Figure 6: **Comparison of Top-K accuracy on the Retrieval-Retro Dataset (Combination setting).** Our method outperforms all baselines in Top-K accuracy. This highlights the effectiveness of our chemically-informed pretraining and constrained retrieval pipeline.

Table 6: **Effectiveness of Element-wise Filter on Baseline Methods.** We apply our element-wise filter to Retrieval-Retro, the best-performing baseline method, to demonstrate the plug-and-play effectiveness of our filter component. Results show that our full method (PRICIN) achieves significantly superior results compared to both Retrieval-Retro and Retrieval-Retro with the filter, indicating that the filter alone is insufficient and that our principle-centered learning approach provides essential benefits beyond constraint-based filtering.

Model	(a) Top-k accuracy ↑					(b) Combination Top-k accuracy ↑				
	Top-1	Top-3	Top-5	Top-10	Top-20	Top-1	Top-3	Top-5	Top-10	Top-20
Retrieval-Retro Dataset										
CrabNet (Wang et al., 2021)	56.10	56.10	56.65	62.35	65.13	56.10	56.14	56.18	56.76	59.54
CrabNet + Filter	57.15	58.05	63.29	67.90	70.25	57.15	60.99	62.47	64.78	66.30
Retrieval-Retro (Noh et al., 2024)	61.02	61.77	66.30	70.72	72.87	61.02	64.82	65.83	67.20	69.23
Retrieval-Retro + Filter	61.61	62.20	68.45	74.55	77.05	61.61	67.55	68.65	70.95	72.71
Ours	66.19	67.33	77.04	89.25	93.65	66.19	75.41	78.25	82.96	86.52
Ceder Dataset										
CrabNet (Wang et al., 2021)	54.06	54.87	58.25	62.41	64.93	54.06	56.95	58.11	59.75	61.38
CrabNet + Filter	54.46	55.35	59.88	65.54	68.51	54.46	58.08	59.61	62.44	64.25
Retrieval-Retro (Noh et al., 2024)	56.78	57.16	62.58	68.34	70.11	56.78	61.35	62.54	65.24	67.11
Retrieval-Retro + Filter	58.69	59.13	64.79	69.97	72.19	58.69	63.84	65.17	67.25	68.81
Ours	61.96	62.90	72.88	84.43	89.52	61.96	71.03	74.37	77.98	81.25

Table 6 presents the results. Our full method (PRICIN) achieves significantly superior results across all metrics on both datasets compared to both the original Retrieval-Retro and Retrieval-Retro with our element-wise filter applied. This demonstrates that while the filter is a useful plug-and-play component, it is the combination of our principle-centered learning approach (with oxidation-state supervision and chemical formula reconstruction) together with the filter that delivers the best performance. The filter alone cannot compensate for the lack of explicit chemical principle modeling in the learned representations, highlighting the importance of our integrated approach that embeds chemical laws into both the learning process and inference constraints. The results show that our method’s advantage comes not just from the filter, but from the principled learning framework that produces chemically-aware representations from the start.

A.5 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the sensitivity of our method to hyperparameter selection, we perform a comprehensive grid search over the auxiliary task weight (rebuild_weight) and oxidation-state prediction weight (oxidation_weight) on the Retrieval-Retro dataset with the element-wise filter applied. We explore a 7×7 grid with values $[0, 0.05, 0.1, 0.15, 0.2, 0.4, 1.0]$ for both hyperparameters, resulting in 49 different configurations.

Table 7 and Figure 7 present the results. The best configuration achieves Top-1 accuracy of 68.69% with $\text{rebuild_weight}=0.15$ and $\text{oxidation_weight}=0.4$. Notably, the vast majority of configurations

Table 7: **Hyperparameter grid search results on Retrieval-Retro dataset (Given mode) with Element Filter.** We perform a 7×7 grid search over auxiliary task weight (rebuild_weight) and oxidation-state prediction weight (oxidation_weight), both ranging from 0 to 1.0. Results show Top-1 accuracy after applying the element-wise filter. The best configuration is $\text{rebuild_weight}=0.15$, $\text{oxidation_weight}=0.4$ (highlighted in bold), achieving Top-1 accuracy of 66.19%. Notably, most configurations achieve Top-1 accuracy above 63.95%, demonstrating robustness to hyperparameter selection.

rebuild_weight	oxidation_weight						
	0	0.05	0.1	0.15	0.2	0.4	1.0
0	65.20	65.51	65.28	65.32	65.85	64.90	65.17
0.05	65.47	65.13	65.58	65.55	65.28	65.36	65.28
0.1	65.51	65.43	66.00	65.47	65.85	65.36	65.55
0.15	65.36	65.36	65.05	65.13	65.96	66.19	65.20
0.2	65.32	65.28	65.28	65.66	66.04	65.55	65.36
0.4	65.28	65.96	65.96	66.00	65.51	65.55	65.89
1.0	65.09	64.83	63.95	65.17	64.90	65.28	65.51

Figure 7: Contour plot showing Top-1 accuracy as a function of auxiliary task weight (rebuild_weight) and oxidation-state prediction weight (oxidation_weight) on the Retrieval-Retro dataset (Given mode). The color gradient represents accuracy from 63.95% (dark red) to 66.291% (dark green). The yellow star marks the configuration (rebuild_weight=0.1, oxidation_weight=0.1) that achieves the best performance before applying the element filter. After applying the element filter, the best configuration (rebuild_weight=0.15, oxidation_weight=0.4) achieves 66.19% Top-1 accuracy (see Table 7). The broad regions of high accuracy (green areas) indicate that our method is robust to hyperparameter selection, with most configurations achieving competitive performance.

(45 out of 49, or 91.8%) achieve Top-1 accuracy above 67.5%, with only 4 configurations falling below this threshold. The contour plot reveals broad regions of high accuracy (green areas), indicating that our method is robust to hyperparameter selection. The performance remains stable across a wide range of weight combinations, with most configurations achieving competitive results within 1-2 percentage points of the best configuration. This robustness is particularly important for practical deployment, as it reduces the need for extensive hyperparameter tuning and suggests

864 that the method’s performance is primarily driven by the principled design rather than fine-tuned
 865 hyperparameters.
 866

867 **A.6 RETRIEVAL CAPABILITY**
 868

869 The target embeddings learned by PRICIN (Figure 2) capture stoichiometric ratios, oxidation states,
 870 and precursor relationships. These embeddings naturally support retrieval: for a new target, we
 871 can find similar compounds from the training set and use their precursors as candidates. We built
 872 a FAISS (Johnson et al., 2019) index over ℓ_2 -normalized target embeddings, using cosine similar-
 873 ity. At inference, we retrieve the k nearest neighbors and aggregate their precursor sets via union.
 874 Despite testing various fusion strategies (self-attention, cross-attention, residual gating, confidence
 875 weighting), retrieval-augmented prediction did not improve over the base model. We identify three
 876 likely causes: (1) **Retrieval noise**. Retrieved neighbors often include the correct precursors but also
 877 bring in many irrelevant ones, reducing signal-to-noise and confusing the predictor. (2) **Composi-**
 878 **tional similarity does not imply synthesis similarity**. Compounds with similar compositions (e.g.,
 879 isovalent substitutions) can have different synthesis routes. Embeddings trained for precursor pre-
 880 diction do not ensure that nearest neighbors share compatible precursor sets. (3) **Small dataset size**
 881 **leads to overfitting**. With limited training data, the learned embeddings may overfit to the training
 882 distribution, making retrieval less effective for generalization. Furthermore, we observed little im-
 883 provement in (Noh et al., 2024) with retrieval enabled compared to model only with graph network.
 884 We believe with larger and more standardized datasets, these embeddings could support retrieval-
 885 based planning. Future work could explore contrastive objectives that explicitly group targets with
 886 similar precursor sets to improve retrieval quality and enable few-shot generalization.
 887

888 **A.7 LIMITATIONS AND FUTURE WORK**
 889

890 Our study focuses on inorganic retrosynthesis planning under two datasets and does not model
 891 operating conditions or kinetics explicitly. Extending PRICIN to (i) multi-step planning with by-
 892 products, (ii) joint prediction of temperature, atmosphere, and time, and (iii) calibrated uncertainty
 893 for active learning in autonomous labs are promising directions.
 894

895 In summary, enforcing chemical constraints provides a robust inductive bias for inorganic retrosyn-
 896 thesis, advancing the DMAT loop toward reliable, closed-loop materials discovery.
 897