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G-Refer: Graph Retrieval-Augmented Large Language Model for
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ABSTRACT

Explainable recommendation has demonstrated significant advan-
tages in informing users about the logic behind recommendations,
thereby increasing system transparency, effectiveness, and trust-
worthiness. To provide personalized and interpretable explanations,
existing works often combine the generation capabilities of large
language models (LLMs) with collaborative filtering (CF) informa-
tion. CF information extracted from the user-item interaction graph
captures the user behaviors and preferences, which is crucial for
providing informative explanations. However, due to the complex-
ity of graph structure, effectively extracting the CF information
from graphs still remains a challenge. Moreover, existing methods
often struggle with the integration of extracted CF information
with LLMs due to its implicit representation and the modality gap
between graph structures and natural language explanations. To
address these challenges, we propose G-Refer, a framework us-
ing Graph Retrieval-augmented large language models (LLMs) for
explainable recommendation. Specifically, we first employ a hybrid
graph retrieval mechanism to retrieve explicit CF signals from both
structural and semantic perspectives. The retrieved CF informa-
tion is explicitly formulated as human-understandable text by the
proposed graph translation and accounts for the explanations gener-
ated by LLMs. To bridge the modality gap, we introduce knowledge
pruning and retrieval-augmented fine-tuning to enhance the abil-
ity of LLMs to process and utilize the retrieved CF information to
generate explanations. Extensive experiments show that G-Refer
achieves superior performance compared with existing methods
in both explainability and stability. Codes and data are available at
https://anonymous.4open.science/r/G-Refer.
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1 INTRODUCTION

Recommendation systems (RS) play an essential role in our daily
lives, as they affect how people navigate the vast amounts of prod-
ucts available in online services [21, 37, 56]. These systems have
the ability to predict whether a user is interested in an item, e.g.,
by clicking on it or making a purchase. Recently, explainable rec-
ommendation [45, 55, 70, 71] has attracted more attention and
demonstrated significant advantages in informing users about the
logic behind their received recommendation results, thereby in-
creasing system transparency, effectiveness, and trustworthiness.
Specifically, explainable recommendation aims to generate human-
understandable textual explanations for each user-item recommen-
dation. This enables us to understand the underlying reasons behind
each recommendation and develop accountable RS as a result [7].

Due to the impressive generative and reasoning capabilities of
large language models (LLMs) [74], existing explainable recommen-
dation methods [30, 31, 39] can now produce fluent and informative
explanations in natural language based on user and item profiles, as
well as their interactions. To provide more detailed and personalized
explanations, recent works [39] have utilized user-item interaction
graphs, which contain abundant collaborative filtering (CF) infor-
mation from graph structure. The CF information [22] reveals the
complex patterns between users and items, which can be used to
generate more accurate and informative explanations. Neverthe-
less, the graph structure is inherently noisy and complex, making it
challenging to effectively extract CF information for explanations.

In order to better model the CF information from graph structure
in RS, graph neural networks (GNNs) have been widely adopted
and demonstrated exceptional performance in recommendation
tasks [2, 20, 57]. GNNs capture CF information by learning hidden
representations of both users and items through an iterative pro-
cess of feature transformation and information aggregation from
neighboring nodes. While GNNs excel at capturing CF information
for recommendations, simply incorporating GNNs with LLM-based
RS such as XRec [39] still faces several challenges in producing
satisfactory explanations for recommendations: (C1) Implicit CF
signal. The CF signals are injected into LLMs by feeding user and
item embeddings generated by GNNs, where the CF signals are
represented as implicit node embeddings. Given the vagueness of
the explainability of GNNs themselves [65], it is difficult to interpret
the CF signals contained in these embeddings. Therefore, more ex-
plicit evidence constructed from the CF signals contained in graphs,
especially favored from the view of human-understandable text,
is eagerly needed. (C2) Modality gap. Since GNNs are primarily
used to capture structural information, the rich semantics within
user and item profiles are inevitably ignored. In addition, LLMs
struggle to directly understand the structured CF signals captured
by GNNs, because of their unstructured nature. This results in a
significant modality gap between structured representations and
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Figure 1: Our proposed pipeline G-Refer facilitates explainable recommendation with three key components: (1) Hybrid Graph
Retrieval employs multi-granularity retrievers to retrieve explicit CF signals and formulated as human-readable text by the
Graph Translation; (2) Knowledge Pruning eliminates noise and improves training efficiency; and (3) Retrieval-augmented
Fine-tuning instructs LLMs to leverage retrieved CF information in generating informative explanation.

natural language, making it difficult for LLMs to effectively leverage
graph-derived CF information when generating explanations.

Presented Work. Motivated by these challenges, in this work, we
propose G-Refer, a framework designed to use Graph Retrieval-
augmented LLMs for explainable recommendation. We aim to ad-
dress the limitations of existing methods and extract explicit, di-
verse, and semantically rich CF information to generate more accu-
rate and personalized explanations. As shown in Figure 1, given a
user-item recommendation to be explained, we leverage a hybrid
graph retrieval mechanism that combines multi-granularity retriev-
ers to extract explicit structural and semantic CF information from
the graphs (to address C1). Specifically, we employ a path-level re-
triever to capture structural CF information by identifying k paths
from graphs that account for recommendation. To utilize the rich
semantics within nodes, we also employ a node-level retriever to
retrieve semantic CF information from the graphs by finding the
most relevant nodes to the recommendation. The retrieved CF infor-
mation is then translated into human-understandable text with the
graph translation module to facilitate LLMs in generating explana-
tions. To bridge the modality gap and enhance the understanding of
LLMs (to address C2), we adopt a lightweight retrieval-augmented
fine-tuning (RAFT) approach to instruct LLMs in understanding the
retrieved CF information and generating explanations. To further
improve the training efficiency and reduce noise, we introduce a
knowledge pruning technique to filter out training samples with
less relevant CF information. After the training, LLMs exhibit a
greater ability to leverage both the retrieved CF information and
rich semantics in profiles to generate accurate and contextually
relevant explanations for recommendations.
Our main contributions can be summarized as follows:

o Comprehensive Analysis. We identify the challenges in ex-
isting explainable recommendation works, as GNNs struggle to
capture explicit and semantically rich CF information.

o Architecture Design. We propose G-Refer, a model leveraging
hybrid graph retrieval to capture both structural and semantic
CF signals from user-item interaction graphs. We also incorpo-
rate knowledge pruning and retrieval-augmented fine-tuning to
enhance LLMs’ ability to utilize retrieved knowledge.

e Superior Performance. Extensive experiments on public datasets
demonstrate the effectiveness of our proposed G-Refer, surpass-
ing a series of SOTA baselines by up to 8.67%.

2 PRELIMINARIES

2.1 Explainable Recommendation

The explainable recommendation aims to unveil the rationale be-
hind the recommendation results and provide human-understandable
textual explanations. In recommendation scenarios, the user-item
interactions can be represented by a bipartite graph G = {(u,i)|u €
U,i e T}, where U and T are the sets of users and items, respec-
tively. Each node in G is associated with textual information from
either the user profile set B or the item profile set C. Specifically,
each user u has a profile b, € B describing their preferences, and
each item i has a profile ¢; € C detailing attributes and descriptions.
Given a recommendation (u, i), which is a pair of user u and
recommended item i, the goal of an explainable recommendation
is to generate a clear textual explanation, which is formulated as:

explanation(u, i) = generator(u,i,G, B,C). (1)

The graph models abundant structural CF information beneficial for
explainable recommendations. Given the size of the entire graph, we
commonly utilize the subgraph G(u,i) € G as input [63, 67]. This
subgraph represents the L-hop edge-centered ego-graph around
the pair (u, i). It includes nodes that are at most L hops away from
either u or i, effectively capturing the local connectivity structure
for generating explanations.

2.2 Graph Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has achieved remarkable
success in enhancing Large Language Models (LLMs) by retrieving
external documents. However, existing RAGs fail to fully exploit
the structural information in the graph to augment LLMs. The
graph retrieval-augmented generation (GraphRAG), to address this
issue, leverages structural information to enable more precise re-
trieval and facilitate context-aware generation [46]. Given a query ¢,
GraphRAG aims to retrieve structural information from a graph G
and generate responses a conditioned by the retrieved information,
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which can be formulated as:

G = G-retriever(q, G), (2)
P(alg, G) = P(alg.G,0), ®3)

where 0 is the parameters of the LLMs, and G is the structural
information (e.g., nodes, paths, and subgraphs) retrieved by the
graph retriever.

3 METHODOLOGY

Our proposed G-Refer is designed to excavate the CF information
from the graph to enhance explainable recommendations. First, we
leverage a hybrid graph retrieval mechanism that combines multi-
granularity retrievers to extract both structural and semantic CF
information from the user-item interaction graph. In the second
part, we employ knowledge pruning to filter out less relevant or re-
dundant training samples, eliminating noise and improving training
efficiency. Finally, a lightweight retrieval-augmented fine-tuning is
conducted to bridge the modality gap, instructing LLMs to under-
stand retrieved knowledge and generate accurate and contextually
relevant explanations.

3.1 Hybrid Graph Retrieval

The user-item interaction graph encapsulates a wealth of knowl-
edge, including user behaviors, preferences, and relationships among
users and between items [56]. It can provide sufficient CF informa-
tion from different perspectives, such as structural and semantic
views, to explain the user behaviors, thereby enhancing the explain-
ability of recommendations. For example, as illustrated in Figure 1,
we can explain why user u; might be interested in item iy from
both structural and semantic perspectives. From the structural per-
spective, the path (u; — iy — up — iz) illustrates the potentially
shared preferences between user u; and uy, both of whom have
watched i, Iron Man, suggests that user 1 may also enjoy iz, Doctor
Strange, which user uy has watched, due to the overlapping Marvel
fandom. In addition, from the semantic view, retrieving items iz and
i3 could also lead to an explanation. Both items feature the same
leading actor, Benedict Cumberbatch. This commonality suggests
that user uj, having shown interest in related actors through their
viewing habits, might find i3, Sherlock, appealing as well.

According to [46], retrievers based on different levels of granu-
larity in the graph (e.g., nodes, paths, and subgraphs) have unique
strengths for addressing various aspects of retrieval scenarios. In-
spired by recent works [16, 38], we adopt a hybrid graph retrieval
strategy that employs both path-level and node-level retrievers to
respectively retrieve structural and semantic CF information from
the user-item interaction graph, which is composed of purchase his-
tories with enriched text attributes. The CF information retrieved
from both views is then translated into human-understandable text,
facilitating the generation of explanations.

3.1.1  Path-level Retriever. The path-level retriever aims to retrieve
the structural CF information from the graphs by identifying the
most k informative paths that connect users and items for inter-
pretable recommendations. Typically, recommendations on graphs
can be formalized as a link prediction (LP) problem, which predicts
the connections between user u and i based on the graph structure
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Figure 2: The illustration of path-level retriever.
[33]. This can be formulated as

i=f5(1.0), @)
where f; denotes a link prediction model parameterized by ¢. The

f¢ captures complex patterns between users and items in the graph
to provide the recommendation results.

Motivation. GNNs [58] have demonstrated exceptional perfor-
mance in capturing graph structures and are widely used in rec-
ommender systems [20, 57]. While GNNs excel at extracting CF
information for recommendations, they are often criticized for their
lack of interpretability. GNNs struggle to provide clear explanations
for their predictions [64], which significantly undermines trans-
parency. To address this issue, inspired by recent GNN explanation
methods [67], we propose a path-level retriever that generates
explanations for GNN predictions and reveals the structural CF
information captured by GNNs as interpretable paths, which is
illustrated in Figure 2.

GNN Training. To capture the structural CF information, we first
train a GNN to learn the user-item interactions in the graph for rec-
ommendations. We follow a standard two-step pipeline, which in-
volves obtaining user and item representations with an L-hop GNN
encoder and applying a prediction head to get a recommendation
prediction. We use R-GCN [49] as the GNN encoder to learn node
embeddings on user-item graphs, and an inner product is adopted
as the prediction head. We also explore other GNN variants, i.e.,
LightGCN [20], in our experiments (Section 4.3). The forward-pass
update of each user u in R-GCN is formalized as follows:

) _ T (-1 (I-1) (I-1)3. (I-1)
h)) = ReLU Z mwl h Ve w VRV )
i’eNy,

where h{") is the hidden state of user u in the I-th layer and N,
denotes the neighbors of u. The W(()l_l) and Wil_l) are learnable
weight matrices at layer [-1. Likewise, the item representation h;l)
can be obtained in a similar manner.

The m-core Pruning. To ensure concise and accurate explanations,
we aim to extract paths that are short in length and avoid containing
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high-degree nodes in the graph [67]. Given a prediction (u, i), the
corresponding L-hop edge-centered ego-graph is initially extracted,
which includes nodes that are at most L hops away from either u
or i. A m-core pruning process is then applied to remove spurious
neighbors and improve speed. Specifically, the m-core pruning is a
recursive algorithm that eliminates nodes with degrees less than
m, until only those with degrees > m remain, forming the m-core.

Explanation Path Retrieval. We follow PaGE-Link [67] to per-
form mask learning on the learned GNN model to identify expla-
nation paths from the user-item interaction graph via learning a
mask over all edges, assigning high weights to important edges and
low weights to others. Based on the mask, we apply the Dijkstra’s
shortest path algorithm [13] to retrieve explanation paths.
Formally, let & denote all user-item interactions, 7(e) be the
type of the edge e, and M be learnable masks of all edge types. To
optimize M, the objective function £ that needs to be minimized
is composed of two loss terms, which can be formulated as follows:

LIM) = Lprea(M) + Lpgin(M). (6)

The first loss term £,,,4 is to learn to select crucial edges for model
prediction based on the perturbation-based explanation. Given a
connected pair (u, i), the loss can be defined as follows:

Lprea(M) = —logP(Y =1|G = (U, 1,8 0 c(M)), (w,1)), (7)

where o(+) is the sigmoid function, © is the element-wise product,
and Y is the original GNN prediction. Another loss term L4, is to
learn to select path-forming edges. We first use the following score
function to assign a score to each candidate path p in the graph,
prioritizing shorter paths and those without high-degree nodes:

Score(p) = [ | log o(M(e)) — log(deg(e)), (®)
eep

where M;(,) denotes the mask corresponding to the type of the
edge e and deg(e) is the degree of the target node of e. Using
Dijkstra’s shortest path algorithm, where path lengths are redefined
according to the score function, a set of candidate edges considered
concise and informative is selected, denoted by &,41,- Guided by
Eparn, we define L4y, accordingly:

-Epath(M) == Z( Z Mr(e) -

reR e€&parn

D M) O

e€&.e¢Eparn

Upon convergence of mask learning, we can run the Dijkstra’s
shortest path to generate up to k explanation paths based on M.

3.1.2 Node-level Retriever. The node-level retriever aims to retrieve
the semantic CF information from the graphs by selecting the k
most relevant user nodes and the k most relevant item nodes.

Motivation. Graphs are often known as noisy and incomplete, and
the structural information alone may not be sufficient to provide
accurate explanations. Additionally, graphs in recommendations
typically contain rich semantics within user and item nodes de-
rived from user interests and item properties. While the profiles
provide some information, using only individual profiles for ex-
planations may be inadequate, as it might not fully capture user
topics or item features. Thus, retrieving semantics from graphs is
crucial to uncovering latent connections and supplementing more
comprehensive explanations for recommendations. Our node-level
retriever incorporates a dense retrieval to calculate the semantic

Anon.

similarity between users and items to retrieve the most relevant
neighboring nodes for the current recommendation (u, i) to unveil
the semantic CF knowledge for explanations.

Dense Retrieval. We employ a dual-encoder-based retriever ar-
chitecture, which has demonstrated effectiveness across various
retrieval tasks [42] and efficiency at the inference stage [24, 27].
Given a user-item pair (u, i), a text encoder maps the user profile
by, to an embedding f(b,) € R%, and the same encoder maps each
item profile ¢; to an embedding f(c;) € RY, where d is the hidden
state dimension of the text encoder. The top-k relevant users are
retrieved based on the user-user semantic similarities, which are
computed via cosine similarity:

lf @)L Bur)II”

where N is the set of users connected to item i. We also retrieve top-
k items based on the item-item semantic similarities. The retriever is
training-free and a pre-trained language model specifically utilized
to generate high-quality sentence embeddings.

sim(u,u’) = u eN;, (10)

3.1.3  Graph Translation. After the hybrid retrieval, the complex
nature of graph-type knowledge, particularly the paths retrieved,
presents a challenge since it cannot be directly integrated with pro-
files of users and items for input into the LLMs [6, 53]. To address
this, it is necessary to employ graph translation techniques that
convert the graph-type knowledge into a format compatible with
LLMs, enabling LLMs to effectively process and utilize structured
information. Considering that instructions are typically presented
in natural language, we follow [52, 62] to adopt a flatten-based
method, which transforms retrieved paths and nodes into descrip-
tive, easily comprehensible language. For each user-item pair (u, i)
requiring an explanation, along with k retrieved paths, k user nodes,
and k item nodes, we design the instruction prompt as follows:

Given the item title, item profile, and user profile, please explain why
the user would enjoy this item. Item title: [Item title]. Item profile: [Item
summary]. User profile: [User summary]. For the user-item pair, here are
some related users and items. Users: [Top-k similar user profiles]. Items:
[Top-k similar item profiles]. For the given user-item pair, here are several
related paths connecting users and items through their interactions. [Top-
k explanation paths] (each formatted as "<User profile> -> buys -> <Item
profile> -> bought by -> <User profile> -> .."). Explanations:

3.1.4 Discussion of Retrieval Granularity. In G-Refer, we consider
node-level and path-level retrieval rather than subgraph-level based
on the following observations. Firstly, both nodes and paths have
a considerably smaller search space than subgraphs. As proven
in [67], compared to the expected number of edge-induced sub-
graphs, the expected number of candidate nodes and paths grows
strictly slower and becomes negligible. Therefore, such explana-
tions exclude many less-meaningful subgraph candidates, making
the explanation generation much more straightforward and accu-
rate. Secondly, subgraphs contain complex high-order information,
making it difficult to describe a retrieved subgraph with hundreds
or even thousands of nodes in a way that is easily understandable,
especially when all nodes have text attributes [36]. Consequently,
we implement hybrid graph retrieval in the path and node levels.
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3.2 Knowledge Pruning

Motivation. After graph retrieval, our goal is to enable LLMs to
effectively generate explanations based on the graph CF information
of varying granularities retrieved. However, it is noticed that for
some user-item pairs, a sufficient explanation can be derived solely
from their profiles, without the need for additional CF information.
For instance, if a user’s profile shows a preference for science fiction
and the recommended item is a popular sci-fi film, then explaining
this interaction might only require referencing these profile details.
In such cases, the retrieved knowledge is not only redundant but
employing such training samples could also weaken the LLM’s
ability to utilize CF information.

Re-ranking. To enhance LLMs’ focus on CF information, we pro-
pose knowledge pruning to filter out less relevant or redundant
training samples [46], building on the inherent ability of LLMs to
generate explanations by understanding user and item profiles. It
also improves training efficiency through reduced data volume,
particularly beneficial for large graphs as indicated in Table 1. To be
specific, we use a re-ranking method that sorts all training samples
based on their reliance on CF information for explanation, priori-
tizing those that require more additional knowledge. We measure
such reliance via the semantic similarity between the profiles and
the ground truth explanations, which is defined as follows:

fbu ®ci) - f(Explain, ;))
1 (b ® Ol (Bxplain )T

where @ represents the concatenation and Explain ,, ;) is the ground
truth explanation for (u, i). We introduce a pruning ratio ¢, which
determines the portion of the total training data D to be filtered
after re-ranking. The top “(1 —t) - |D|” training samples are pre-
served, ensuring that samples that are most likely to benefit from
CF-based explanations are prioritized, thereby improving the over-
all efficiency and effectiveness of the training process.

sim((u, i), Explain ,, ;) = (11)

3.3 Retrieval-Augmented Fine-Tuning

Motivation. To improve the LLM’s capacity for generating bet-
ter explanations using retrieved CF information, we fine-tune it
with a parameter-efficient pre-training strategy, i.e., LoRA [23],
on the pruned training set with in-context retrieval augmenta-
tion. Integrating retrieval results during fine-tuning offers two key
advantages. (1) It adapts the LLM to better utilize retrieved CF infor-
mation to generate explanation, especially for the requirement of
domain-specific knowledge it has never seen before. (2) Even state-
of-the-art retrievers can falter and return inaccurate results [35]. By
training the LLM to generate ground-truth responses even when
irrelevant CF information is given, we enable the LLM to ignore
misleading retrieval content and lean into its internal knowledge
to reduce hallucination.

Fine-tuning. We employ retrieval-augmented fine-tuning (RAFT)
with a conventional language modeling loss [69]. The model is
trained to process input consisting of a user-item pair (u, i) with
profiles by, and c;, its associated retrieved knowledge K, ;), and a
corresponding prompt question Q to generate textual explanations
E as outputs. The RAFT loss is computed based on the discrepancy
between the model’s predicted explanations and the ground truth
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Table 1: Statistics of the experimental datasets.

# Train  # Test

Dataset # Users #Items # Interactions . .
(u-i) (u-i)
Amazon-books 15349 15,247 360,839 95,841 3,000
Yelp 15,942 14,085 393,680 74,212 3,000
Google-reviews 22,582 16,557 411,840 94,663 3,000

explanations in the dataset. Formally, the loss is defined as follows:

LrarT = - Z

(ui)e Dpxune

log P(Explain(u’i) |bu, ci, ‘K(u,l-), Q;0),

(12)
where Dprune represents the pruned training set and 0 is the pa-
rameters associated with the LoRA model.

4 EXPERIMENTS

We evaluate our model on real-world datasets to assess its perfor-
mance in enhancing explainable recommendations. In particular,
we aim to answer the following research questions: Q1: How effec-
tive is G-Refer compared with state-of-the-art models? Q2: How do
the main components of our model impact the performance? Q3:
What is the impact of hyper-parameters? Q4: How does G-Refer’s
training efficiency compare to state-of-the-art methods?

4.1 Experimental Protocols

4.1.1 Datasets. We evaluate G-Refer and leverage three prominent
public datasets that offer distinct perspectives on user-item inter-
actions, including Amazon-books [41], Yelp [39], and Google-
reviews [28, 60]. Table 1 lists the statistics of three datasets. More
details of datasets can be found in Appendix A.1.

4.1.2  Metrics. We follow XRec [39] to utilize a suite of metrics
aimed at assessing the semantic explainability and stability of
the generated explanations. Traditional n-gram-based metrics like
BLEU [44] and ROUGE [34] are not adequate for this purpose due
to their inability to fully capture semantic meaning. Specifically, we
use GPTycore [54], BERTscore [68], BARTscore [66], BLEURT [50],
and USR [30] to measure the explainability. Notably, BERTscore
comprises the Recall score, which measures the completeness and
quality of the retrieved CF information, allowing us to evaluate the
performance of our graph retriever. More details of the used metrics
can be found in Appendix A.2. To evaluate quality consistency, we
also report the standard deviations of these metrics. Lower standard
deviation values indicate more stable performance.

4.1.3 Baselines. We introduce five state-of-the-art baselines, in-
cluding NRT [32], Att2Seq [14], PETER [30], PEPLER [31], and
XRec [39]. These models are based on representative language
models, such as GRU [10], LSTM [19], GPT, and LLaMA. More
details of the compared baselines can be found in Appendix A.3.

4.1.4 Implementation Details. For path-level retrieval, we set the
node embedding dimension to 128, the maximum retrieved path
length to 5, and m is set to 2 for m-core pruning. We initialize
the encoders in both the node-level retriever and the re-ranking
mechanism with SentenceBERT [47]. The number of retrieved paths,
as well as the number of retrieved nodes (including users and items),
is set to 2, and the pruning ratio t is set to 70% across all datasets.
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Table 2: Overall comparison in terms of Explainability and Stability. Superscripts “P”, “R”, and “F1” denote Precision, Recall,
and F1-Score, respectively. The subscript “std” indicates the standard deviation of each metric. Bold indicates the best results,
while underlined denotes the second-best. “7B” and “8B” denote LLaMA 2-7B and LLaMA 3-8B, respectively.

Models ‘ Explainability T ‘ Stability |
P R F P R F
| GPTscore BERThgre  BERTR,  BERTR.  BARTsore BLEURT ~USR | GPTyq BERT', BERTR, BERTS, BARTyq BLEURTyq
Amazon-books
NRT 75.63 0.3444 0.3440 0.3443 -3.9806  -0.4073 05413 | 1282 01804  0.1035 01321 05101 0.3104
Att2Seq 76.08 0.3746 0.3624 0.3687 -3.9440  -0.3302 07757 | 1256  0.1691  0.1051  0.1275  0.5080 0.2990
PETER 77.65 0.4279 0.3799 0.4043 -3.8968  -0.2937  0.8480 | 11.21  0.I1334  0.1035  0.1098  0.5144 0.2667
PEPLER 78.77 0.3506 0.3569 0.3543 -3.9142  -0.2950  0.9563 | 11.38  0.1105  0.0935  0.0893  0.5064 0.2195
XRec 82.57 0.4193 0.4038 0.4122 -3.8035  -0.1061 10000 | 9.60  0.0836  0.0920  0.0800  0.4832 0.1780
G-Refer (7B) | 82.70 0.4076 0.4476 0.4282 24772 -0.1246 10000 | 9.04  0.0937  0.0845  0.0820  0.2769 0.1893
G-Refer (8B) 82.82 0.4073 0.4494 (+156%) 0.4289 (+1.67%) -2.4699 -0.1203  1.0000 8.95 0.0945 0.0855 0.0825 0.2791 0.1912
Yelp
NRT 61.94 0.0795 0.2225 0.1495 -46142  -0.7913 02677 | 1681 02293  0.1134  0.1581  0.5612 0.2728
Att2Seq 63.91 0.2099 0.2658 0.2379 -4.5316  -0.6707 07583 | 1562  0.1583  0.1074  0.1147  0.5616 0.2470
PETER 67.00 0.2102 0.2983 0.2513 -4.4100  -0.5816  0.8750 | 15.57  0.3315  0.1298  0.2230  0.5800 0.3555
PEPLER 67.54 0.2920 0.3183 0.3052 -4.4563  -0.3354 09143 | 1418  0.1476  0.1044  0.1050  0.5777 0.2524
XRec 74.53 0.3946 0.3506 0.3730 -43911  -0.2287 10000 | 1145  0.0969  0.1045  0.0852  0.5770 0.2322
G-Refer (7B) | 74.91 0.3573 0.4264 03922 -2.8716  -0.1451 1.0000 | 10.88  0.1050  0.0952  0.0862  0.3571 0.2197
G-Refer (8B) | 75.16 03620  0.4373 ¢serm) 04003 273  -2.8717  -0.1335 1.0000 | 10.76  0.1068  0.0995  0.0885  0.3534  0.2182
Google-reviews

NRT 58.27 0.3509 0.3495 0.3496 -4.2915  -0.4838 02533 | 196 02176  0.1267  0.1571  0.6620 03118
Att2Seq 61.31 0.3619 0.3653 0.3636 -4.2627  -0.4671 05070 | 17.47  0.1855  0.1247  0.1403  0.6663 0.3198
PETER 65.16 0.3892 0.3905 0.3881 -41527  -0.3375 04757 | 17.00  0.2819  0.1356  0.2005  0.6701 03272
PEPLER 61.58 0.3373 0.3711 0.3546 -41744  -0.2892  0.8660 | 1717  0.113¢  0.1161  0.0999  0.6752 0.2484
XRec 69.12 0.4546 0.4069 0.4311 -4.1647  -0.2437 09993 | 1424  0.0972  0.1163  0.0938  0.6591 0.2452
G-Refer (7B) 71.47 0.4253 0.4873 0.4566 -2.6013 -0.1561  1.0000 | 13.46 0.1184 0.0872 0.0921 0.4004 0.2415
G-Refer (8B) | 71.73 04245  0.4935 (7.9 04592 ¢2s19)  -2.6117  -0.1517 1.0000 | 13.23  0.1175  0.0920  0.0916  0.3921 0.2511

e 18% 14% which uses GNNs to implicitly capture CF information, our model
< 0 . . . .
E w EAkE shows improvements in BERTEL . across three datasets, with in-
% creases of 1.67%, 2.73%, and 2.81% respectively. This indicates that
s 00 . . . . . .
g the explicit CF information retrieved by our hybrid graph retriever
2 86% : 1s
g" 69% gL ° is more accurate and better utilizes both structures and seman-
g tics of user-item interaction graphs compared to the implicit CF
= XRec G-Refer information captured by XRec. In addition, graph translation en-

Amazon-books Yelp Google-reviews ables the adapter-free RAFT, allowing LLMs to better comprehend

Figure 3: Human evaluation comparing XRec and G-Refer.

For retrieval-augmented fine-tuning, we use the models from the
open-source LLaMA family. Specifically, for a fair comparison, we
utilize the same model, i.e., LLaMA 2-7B adopted by baselines [39].
We also report results based on the advanced LLaMA 3-8B model.
We set the learning rate, epochs, and max length as 2e-5, 2, and
2048 for RAFT, which is trained on 8 NVIDIA A100 GPUs. The total
batch sizes are set to 32 and 16, respectively, for the 7B and 8B
models. The rank of the LoRA adapter is set to 8. For inference, we
set the temperature as 0 and the maximum output tokens as 256,
ensuring a stable and reasonable generation. In addition, we employ
the GPT-3.5-turbo model for computing the GPTScore metric.

4.2 Model Performance (RQ1)

4.2.1 Overall Performance. We first compare the quality of gener-
ated explanations against baselines across three datasets, the results
are summarized in Table 2. It is observed that G-Refer demonstrates
superior performance in both explainability and stability, outper-
forming baselines across semantic evaluators such as GPT, BERT,
and BART. Compared to the most powerful baseline, XRec [39],

the structural inputs and leverage their powerful capabilities to
generate human-understandable explanations. Notably, G-Refer
significantly outperforms all baselines in BERTR. .., with increases
of 4.56%, 8.67%, and 7.48% across the three datasets, while slightly
decreasing in BERTL, .. The retrieved CF information enables gen-
erated explanations to include more key information (e.g., user topic
modeling and interaction history). Although introducing retrieved
knowledge inevitably introduces some noise, reducing the precision
slightly, we consider this trade-off beneficial, as the completeness of
explanations is crucial for user understanding compared to accurate
but less informative expressions. Finally, we notice that G-Refer’s
performance improvement on Amazon is relatively modest com-
pared to other datasets. This can be attributed to the sparsity of its
user-item interaction graph, particularly in the test set where the
average node degree is only 2.76. In such cases, even with retrieval,
the effectiveness of CF information from the graph is limited.

4.2.2 Human Evaluation. The ultimate goal of model explanation
is to aid human understanding and decision-making. Human eval-
uation is thus the best way to evaluate the effectiveness of an
explainer, which has been widely used in previous works [18, 48].
We conduct a human evaluation by randomly selecting 20 user-item
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Table 3: Ablation study for G-Refer, with the best results
highlighted red and the worst in blue for the component.

Datasets ‘ Yelp ‘
| BERTF1 1 | BERTq | | BERT'1 7 | BERT 4!

Google-reviews

Ablations

Variants on graph retriever:

w/o path-level 0.3927 0.0868 0.4560 0.0924
w/o node-level 0.3966 0.0894 0.4544 0.0922
w/o GraphRAG 0.3880 0.0896 0.4468 0.0940
Variants on link prediction model:
w/ LightGCN 0.3941 0.0870 0.4589 0.0922
w/ R-GCN 0.4003 0.0885 0.4592 0.0916
Variants on LLMs with different scales:
w/ Qwen-0.5B 0.3201 0.6530 0.4129 0.2171
w/ Qwen-1.5B 0.3557 0.3940 0.4451 0.0940
w/ Qwen-3B 0.3994 0.0861 0.4602 0.0903
w/ Qwen-7B 0.3991 0.0851 0.4582 0.0914
Knowledge pruning v.s. full training set:
w/o0 pruning 0.4002 0.0892 0.4605 0.0909
G-Refer 0.4003 0.0885 0.4592 0.0916

pairs from the test set of each dataset and generating explanations
for each sample using XRec [39] and G-Refer. We designed a sur-
vey with single-choice questions and distributed it to five senior
researchers, asking them to select the best explanations. As shown
in Figure 3, explanations generated by G-Refer were consistently
favored across all datasets, especially for Yelp and Google-reviews,
where our explanations were chosen in over 80% of cases.

4.2.3 Case Study. To demonstrate the effectiveness of G-Refer and
show how retrieved CF signals benefit the generated explanations,
we provide several cases and give analysis in Appendix B.

4.3 Ablation Study (RQ2)

To investigate how each component affects the model performance,
we conduct the following ablation studies in Table 3.

4.3.1 The Effects of Hybrid Graph Retriever. From Table 3 we can
observe that both path-level and node-level retrievers contribute
to the final results, with their combination yielding the best per-
formance. We observe that semantic information is more crucial
for Yelp, while structural knowledge offers greater advantages for
Google-reviews. This suggests that the importance of retrievers
may differ based on dataset characteristics and highlights the com-
plementarity of the two retrievers.

4.3.2  The Effects of Various GNNs. The GNN encoder in our path-
retriever captures structural CF information and can be replaced
with any advanced GNN-based recommender model. We compare
LightGCN [20], which is one of the representative GNN models for
recommendation, with R-GCN [49] in the ablation study. The re-
sults show that both of the GNNs achieve competitive performance.
This demonstrates their effectiveness in capturing structural infor-
mation for recommendation and the flexibility of our path-level
retriever, which could adapt to different graphs and recommenda-
tion scenarios using different GNN architectures.

4.3.3 The Effects of Various LLMs with Different Scales. We in-
vestigate the impact of LLM scales on G-Refer’s performance by
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Figure 4: Performance of different retrieved number k.

comparing the advanced Qwen 2.5 family [61] of different scales.
Firstly, we observe a clear performance scaling from 0.5B to 3B
models. Interestingly, the 3B model achieves comparable results
to the 7B model, indicating that with the introduction of retrieved
knowledge, even a relatively smaller LLM can achieve impressive
results through RAFT. This also demonstrates the necessity of fine-
tuning with retrieved knowledge, which can significantly enhance
the model’s ability to generate high-quality explanations.

4.3.4 The Effects of Knowledge Pruning. Training with the full
dataset increases the number of samples by several times but does
not improve performance proportionally, and may even lead to
slight degradation (e.g., on Yelp). This is because some user-items
are self-explanatory, and additional CF information may introduce
noise. Thus, knowledge pruning is essential for removing these
samples from training and improving model performance.

4.4 Hyperparameter Study (RQ3)

We explore the variation of G-Refer’s performance with respect to
two hyperparameters: k (the number of retrieved elements, includ-
ing both paths and nodes) and t (the knowledge pruning ratio).

4.4.1 Retrieved Number k. Figure 4 illustrates the impact of k (rang-
ing from 1 to 5) on BERTscore precision and BERTcore recall (abbr.
precision and recall in the following). The best precision is achieved
at k=2, after which it decreases, showing that more retrieved paths
and nodes can introduce noise and deteriorate the performance.
Conversely, a low k (i.e., k=1) fails to provide sufficient CF infor-
mation, leading to lower results. We also notice that recall is not
sensitive to the increased k, suggesting that a modest k can effec-
tively retrieve essential information for generating explanations.

4.4.2  Pruning Ratiot. In Table 4, we report G-Refer’s explainability
and stability on three datasets with ¢ ranging from 90% to 50%. In
terms of explainability, both Amazon-books and Yelp perform best
at t = 70%, while Google-reviews at t = 50%. This suggests that a
low t value, which corresponds to retaining more training samples,
does not always lead to improved model performance, as irrelevant
samples can introduce noise. However, it generally enhances model
stability, indicating that fine-tuning with more data can enhance
the model’s ability to generate consistent explanations.

4.5 Efficiency Analysis (RQ4)
In Figure 5, we analyze the efficiency of our model, including the
time taken to train one epoch, performance results, and the number
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Table 4: Performance of different knowledge pruning ratio ¢.

Explainability T ‘ Stability |

BART BLEURT | BERT,q BARTyy BLEURTy

Ratio ‘
| BERTF!

Amazon-books

t=90% 0.4211 -2.5045 -0.1388 0.0817 0.2811 0.1905
t=80% 0.4253 -2.5051 -0.1339 0.0821 0.2803 0.1913
t=70% | 0.4289 -2.4799 -0.1203 0.0825 0.2791 0.1912
t=60% 0.4279 -2.4743 -0.1263 0.0830 0.2799 0.1910
t=50% 0.4255 -2.4900 -0.1326 0.0819 0.2744 0.1893
Yelp
t=90% 0.3974 -2.9125 -0.1455 0.0872 0.3724 0.2240
t=80% | 0.3961 -2.8893 -0.1458 0.0866 0.3591 0.2207
t=70% | 0.4003 -2.8717 -0.1335 0.0885 0.3534 0.2182
t=60% 0.3927 -2.8859 -0.1461 0.0856 0.3559 0.2178
t=50% | 0.3967 -2.8934 -0.1461 0.0856 0.3518 0.2164
Google-reviews
t=90% 0.4462 -2.6987 -0.1798 0.0919 0.4042 0.2437
t=80% 0.4518 -2.6202 -0.1645 0.0927 0.3912 0.2508
t=70% 0.4592 -2.6117 -0.1517 0.0916 0.3921 0.2511
t=60% 0.4583 -2.6169 -0.1465 0.0918 0.3908 0.2477
t=50% | 0.4606 -2.6073  -0.1459 0.0907 0.3852 0.2498

of parameters that require tuning for G-Refer, XRec [39], and full-
set training. For a fair comparison, all experiments were conducted
on a single GPU with a batch size of 1. Though requiring more
learnable parameters, G-Refer achieves faster training and better
performance compared to XRec. This can be attributed to (1) our
knowledge pruning which significantly reduces training data; (2)
XRec’s speed limitation due to adapter insertion. In addition, full-set
training reduces efficiency without performance gains, indicating
the necessity of knowledge pruning.

5 RELATED WORKS

5.1 Explainable Recommendation

Explainable recommendation [45, 70, 71] has demonstrated signifi-
cant advantages in informing users about the logic behind recom-
mendations, thereby increasing system transparency, effectiveness,
and trustworthiness. Early works focus on generating explanations
with predefined templates [29] or extracting logic reasoning rules
from recommendation models [5, 51, 75]. To provide more detailed
and personalized explanations, recent works have explored gener-
ating explanations from graph structure, which contains abundant
collaborative information (CF) for providing explanations [1, 15, 59].
For example, PGPR [59] proposes a reinforcement learning-based
method to find a path in the graph to explain the recommendation.
However, the graph structure is often complex and hard for users to
understand. To address this issue, some works have explored gener-
ating explanations in natural language [4, 8, 9, 11, 14, 30-32, 32, 39].
With the advance of large language models (LLMs), like ChatGPT
[43], they can generate more fluent and informative explanations
based on user’s and item’s profile [31]. Recently, researchers have
tried to combine the advantages of graphs to enhance the explana-
tion generated by LLMs. XRec [39] adopts a graph neural network
(GNN) to model the graph structure and generate embeddings.
Then, the embeddings are fed into LLMs to generate explanations.
This approach allows LLMs to produce more informative explana-
tions by considering CF information within the graph structure.
However, XRec represents CF information as hidden embeddings,
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Figure 5: Efficiency Analysis of G-Refer.

leaving it unclear what specific CF information is considered when
generating explanations. This ambiguity makes it difficult to verify
the explanations generated by LLMs, which suffer from severe hal-
lucination issues [72] and further diminishes the trustworthiness
of the explainable recommendation.

5.2 Graph Retrieval-Augmented Generation

Although retrieval-augmented generation (RAG) has been widely
used to enhance the LLMs by incorporating external knowledge [17],
it has shown limitations in considering the graph structure. To ad-
dress this issue, graph retrieval-augmented generation (GraphRAG)
has been proposed to effectively incorporate graph information
into the LLM generation process [46]. The GraphRAG typically
involves two processes: graph retrieval and graph-augmented gen-
eration. In graph retrieval, we need to design a retrieval model
to retrieve relevant graph information for the given query, which
can be some simple non-parametric retrievers like L-hop neigh-
bors. To better consider the graph structure, GNN-based retrievers
have been proposed. For example, GNN-RAG [40] first encodes the
graph, assigns a score to each entity, and retrieves entities relevant
to the query. Instead of GNNs, RoG [38] proposes an LLM-based
graph retriever by planning, retrieving, and reasoning on graphs.
In the graph-augmented generation, the retrieved graph informa-
tion is used to enhance the generation process of LLMs. Due to
the unstructured nature of the LLMs, some works introduce an
adapter layer to bridge the modality gap. GraphLLM [3] first en-
codes the graph as embeddings and then feeds them into LLMs with
a graph adapter layer. However, the hidden embeddings used by
these methods are difficult to interpret and understand. To improve
the interpretability, recent research adopts some graph description
language to translate the graph structure into natural language,
such as edge list, node list, and syntax tree [25, 73]. In this way,
the graph structure can be understood by both LLMs and humans.
Thus, we adopt a simple prompt to describe the graph structure for
the explainable recommendation.

6 CONCLUSION

We systematically analyze the limitations of existing explainable
recommendation methods and introduce G-Refer, a novel model
to address these challenges. The key design of our model involves
leveraging a hybrid graph retrieval to extract explicit CF signals,
employing knowledge pruning to filter out less relevant samples,
and utilizing retrieval-augmented fine-tuning to integrate retrieved
knowledge into explanation generation. Comprehensive experi-
ments validate the effectiveness of our model. G-Refer reveals great
potential for graph retrieval-augmented generation in recommen-
dation scenarios. Future work includes exploring fully training-free
retrievers and investigating the transferability to other tasks.
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G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation

A MORE EXPERIMENT DETAILS
A.1 Details of Datasets

e Amazon-books [41] is a subset of the Amazon review dataset,
specifically focused on book recommendations. This dataset en-
compasses user-book interactions, including both numerical rat-
ings and textual reviews submitted by users after their purchases.

o Yelp [39] is a widely used dataset derived from Yelp!, where local
businesses such as restaurants and bars are considered items. It
provides rich information about local businesses, including user
reviews and ratings across various categories.

o Google-reviews [28, 60] comprises restaurant reviews collected
from Google Local?. This dataset incorporates both business
metadata and user feedback, offering a broad perspective on
dining establishments globally.

A.2 Details of Metrics

® GPTscore [54] leverages large language models to evaluate text
quality, providing a context-aware assessment.

o BERT;core [68] computes the similarity between reference and
generated texts using contextual embeddings from BERT [12].
Given a reference sentence x = (x1, X, ..., Xp) and a generated
sentence X = (X1, X2, ..., Xm), A sequence of word embeddings
are first generated using BERT:

BERT({x1, X2, ..., Xn)) = (X1, X2, ...
BERT({x1, X2, ..., Xm)) = (X1, X2, ..

,Xn)

»Xm)

(13)

The similarity between two individual embeddings (x;j, %;) is mea-
sured using cosine similarity, which simply reduces to xiT %;j since
both embeddings are pre-normalized. With these definitions, the
Precision, Recall, and F1-score are calculated as follows:

cosine similarity

1
P _ Tg.
BERT ore = EP max X; Xj (14)
XjEX
greedy matching
cosine similarity
1
BERTECore = — max xiT )?j (15)
|x| Lo xex
[ S —
greedy matching
F1 BERTEcore X BERTEcore
BERT ope = 2 X (16)

BERTECO]’C + BERTECOYC

o BARTcore [66] conceptualizes the evaluation as a text genera-
tion task, assigning scores based on the probability of regenerat-
ing reference texts using the BART model [26].

e BLEURT [50] employs a novel language model pre-trained with
synthetic data to assess the similarity between the generated and
reference texts.

o USR [30] assesses the uniqueness of generated explanations by
calculating the ratio of unique sentences to total sentences.

https://www.yelp.com/dataset/
Zhttps://www.google.com/maps
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A.3 Details of Baselines

e NRT [32] employs multi-task learning to predict ratings and
generate tips for recommendations simultaneously based on
user and item IDs. The generation component is a GRU [10].

o Att2Seq [14] implements an attention-based attribute-to-sequence
model that generates reviews by leveraging attribute information.
The generation component is a two-layer LSTM [19].

e PETER [30] is a personalized Transformer model that maps user
and item IDs to generated explanations. It bridges IDs and words
through a "context prediction” task. PETER is used instead of
PETER+ due to the absence of word features in the datasets.

o PEPLER [31] proposes sequential tuning and recommendation
as regularization strategies to bridge the gap between prompts
(incorporating user and item ID vectors) and the pre-trained
transformer model for generating explanations.

e XRec [39] utilizes the encoded user/item embeddings from GNNs
as implicit collaborative signals, which are then integrated into
each layer of LLMs, enabling the generation of explanations.

B CASE STUDY

We present two cases in Table 5 and Table 6 to demonstrate the
effectiveness of G-Refer and illustrate how retrieved CF signals
benefit the generated explanations. All retrieved knowledge is pre-
sented as human-readable text after graph translation for better
user understanding. We also provide the ground truth explanations
and explanations generated by XRec [39] for comparison.

From Table 5, we can observe that the user profile contains no ex-
plicit drinking interests. However, node-level CF signals reveal that
other users who have similar interests to the current user show a
preference for drinking. This allows G-Refer to infer that the current
user might appreciate this restaurant specializing in “crafted beers”.
In contrast, XRec’s explanation is notably generic, which relies on
common phrases like “delicious food” and “great service”, missing
the key recommendation reasons, thus leading to a low Recall score.
Table 6 provides another case that leverages path-level retrieved CF
information for more comprehensive explanations. While the user
profile only indicates general preferences for comfort food and effi-
cient services, path-level CF signals uncover broader connections
between the current user and other users/items. Users along the re-
trieved path have an interest in “frozen yogurt”, allowing us to infer
that the current user might be interested in this restaurant due to its
frozen yogurt offerings. In contrast, XRec incorrectly explains that
the user might choose this restaurant for its Thai food, failing to
capture the user’s true interests. These cases show that node-level
and path-level CF signals are complementary. While not equally
effective in every situation, gathered CF signals can contribute to
generating more accurate explanations in recommendation scenar-
ios. The better explanations demonstrate G-Refer has the ability to
effectively retrieve, understand, and utilize such knowledge.
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1277 Table 5: A case from Yelp, which shows how G-Refer primarily leverages node-level retrieved CF information to generate better 1335
1278 explanations. 1336
1279 1337
1280 Inputs 1338
1281 . - - - - B - 1339
o User Profile The user is likely to enjoy Mexican restaurants with a focus on burritos and tacos, as well as baseball games at scenic locations and )
1282 coffee shops for cozy work or socializing. 1240
1283 1341
1284 Item Profile Beer enthusiasts looking for a laid-back atmosphere with a variety of craft beers and casual dining options, including dog owners 1342
1285 seeking a pet-friendly environment, would enjoy this business. 14
1286 Node-level CF For the user-item pair, here are some related users and items: Users: The user is likely to enjoy businesses with unique decor, 1344
1287 traditional family recipes, craft beers, outdoor dining, gourmet wood-fired entrees, live music, and waterfront locations., The user is 1345
1288 likely to enjoy fine dining experiences, laid-back accommodations with resort amenities, American pub fare with craft beer, and 1346
1289 relaxed atmospheres with delicious comfort food and craft beer selections. Items: Coffee enthusiasts looking for a cozy atmosphere 1347
1200 with delicious pastries and brunch options would enjoy Lulu Carpenter’s., Food enthusiasts who appreciate classic Italian cuisine Jaas
and casual dining experiences would enjoy Joe’s Pizza & Subs.
1291 1349
1292 Explanations 1350
1293 Ground Truth The user would enjoy the business for its awesome selection of beers and ciders, great outdoor spaces, and the option to order bar 1351
1294 food from Carpos, even though it predominantly focuses on beer. 1352
1295 XRec The user would enjoy the business because of its delicious food, great service, and cozy atmosphere, making it a great place to relax 1353
1296 and enjoy a good meal. 1354
1297 - - - - - - 1355
1208 G-Refer (ours) The user would enjoy the business because of the great selection of beers, friendly staff, and the opportunity to try new and unique 156
brews like the hazy IPA. N
1299 1357
1300 1358
1501 Table 6: A case from Google-review, which shows how G-Refer primarily leverages path-level retrieved CF information to 1359
1302 Senerate better explanations. 1360
1303 1361
1304 Inputs 1362
1305 - - - - - - - - - - - . - 1363
User Profile This user is likely to enjoy businesses that offer comfort food with unique twists, efficient waxing services with minimal pain,
1306 upscale dining with stunning views and impressive service, and flavorful Asian cuisine with fast service in Philadelphia. 1364
1307 1365
1308 Item Profile Fans of frozen yogurt with a wide variety of flavors and toppings, in a vibrant and welcoming setting in Philadelphia, would enjoy 1366
1500 Berry Sweet Frozen Yogurt. Ideal for those who appreciate a fun atmosphere, quality treats, and convenient location on South Street. 1367
1310 Path-level CF For the given user-item pair, here are several related paths connecting users and items through their interactions: 1. User (Profile: 1368
1311 This user is likely to enjoy businesses that offer comfort food with unique twists, efficient waxing services with minimal pain, 1369
512 upscale dining with stunning views and impressive service, and flavorful Asian cuisine with fast service in Philadelphia.) -> buys 1370
1513 -> Item (Profile: Users who appreciate high-quality skincare products, attentive customer service, and are willing to splurge for o

) effective beauty items would enjoy Kiehl’s in Philadelphia.) -> bought by -> User (Profile: This user is likely to enjoy businesses o
e offering high-quality food and attentive service in cozy settings, such as restaurants like Kanella, Village Whiskey, and Cheu Noodle 172

1315 Bar. They appreciate flavorful meals, knowledgeable staff, and unique dining experiences.) -> buys -> Item (Profile: Users who 1973
1316 appreciate creative and high-quality vegan options, a personalized dining experience with small restaurant owners, unique and 1374
1317 experimental dishes with varied influences, and a great wine and cocktail selection would enjoy Meritage in Philadelphia.) -> bought 1375
1318 by -> User (Profile: The user is likely to enjoy upscale dining with Latin American and Mexican cuisine, diverse frozen yogurt flavors 1376
1319 with unique bubble tea options, good food in a low-key ambiance, and authentic spicy Indian cuisine despite some reservations 1377
1320 about service and chicken quality.) -> buys -> Item (Profile: Fans of frozen yogurt with a wide variety of flavors and toppings, in 1378
1321 a vibrant and welcoming setting in Philadelphia, would enjoy Berry Sweet Frozen Yogurt. Ideal for those who appreciate a fun 1379
1322 atmosphere, quality treats, and convenient location on South Street.) 1350
1323 Explanations 1381
1324 Ground Truth The user would enjoy Berry Sweet because of its delicious frozen yogurt, friendly staff, variety of toppings, and fun atmosphere that 1382
1325 makes it a great place to hang out with friends on South Street. 1383
Ej: XRec You would enjoy the business because it offers delicious, authentic Thai food with a variety of dishes to choose from, including :::
1o spicy and non-spicy options, as well as a cozy atmosphere with friendly service. s
1329 G-Refer (ours) The user would enjoy Berry Sweet because of the wide variety of flavors and the opportunity to mix and match them, making it a 1387
1530 fun for yogurt lovers seeking a customizable and fun experience. 1388
1331 1389
1332 1390
1333 1391

1334 12 1392
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