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Abstract

Face recognition is essential for identity authentication, but the rich visual clues in
facial images pose significant privacy risks, highlighting the critical importance
of privacy-preserving solutions. For instance, numerous studies have shown that
generative models are capable of effectively performing reconstruction attacks
that result in the restoration of original visual clues. To mitigate this threat, we
introduce FracFace, a fractal-based privacy-preserving face recognition frame-
work. This approach effectively weakens the visual clues that can be exploited
by reconstruction attacks by disrupting the spatial structure in frequency domain
features, while retaining the vital visual clues required for identity recognition. To
achieve this, we craft a Frequency Channels Refining module that reduces sparsity
in the frequency domain. It suppresses visual clues that could be exploited by
reconstruction attacks, while preserving features indispensable for recognition,
thus making these attacks more challenging. More significantly, we design a Fre-
quency Fractal Mapping module that obfuscates deep representations by remapping
refined frequency channels into a fractal-based privacy structure. By leveraging
the self-similarity of fractals, this module enhances both recognition performance
and defense strength, thereby significantly improving the overall robustness of the
protection scheme. Experiments conducted on multiple public face recognition
benchmarks demonstrate that the proposed FracFace significantly reduces the vi-
sual recoverability of facial features, while maintaining high recognition accuracy,
as well as the superiorities over state-of-the-art privacy protection approaches.

1 Introduction

Face recognition (FR) leverages distinct facial features for biometric identification and is increasingly
integrated into security applications such as mobile unlocking, access control, and border security.
With the growing deployment of face recognition systems, privacy concerns have intensified, as
intricate visual details in facial images may serve as rich clues for potential attackers. To tackle
these issues, privacy-preserving face recognition (PPFR) has emerged as a solution. PPFR protects
personal data while retaining the essential functionality of recognition systems by modifying facial
data to prevent the reconstruction of the original image, thus balancing privacy with practical utility.

Existing PPFR schemes are generally classified into two categories: cryptographic approaches
[13, 19, 23, 25, 8, 52], and non-cryptographic approaches [43, 27, 3, 14, 42, 21]. Cryptographic
methods aim to secure facial data by encrypting features or performing recognition within the
encrypted data. While these methods have a solid theoretical foundation, they are often hindered
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by high computational costs, limited data usability, and challenges in scaling effectively for real-
world applications [44, 57]. Recent transformation-based, non-cryptographic PPFR methods achieve
low latency and computational efficiency by suppressing facial visual details [29]. However, the
inherent connection between identity and appearance features makes it challenging to balance
recognition accuracy with privacy protection, often leaving residual visual clues that can be exploited
in reconstruction attacks, with privacy risks remaining [15, 50]. To mitigate these issues, the precise
selection of frequency domain channels has become essential. Existing approaches typically retain
only those most strongly correlated with identity recognition, aiming to mitigate the suppression
of high-frequency features by low-frequency channels and to emphasize the contribution of high-
frequency components [28, 15]. However, we observe that the root of this issue lies in the inherent
sparsity of the frequency domain, where identity-related information appears only in a few dominant
components, sparsely scattered across both low and high frequency channels [20]. If this sparsity
is not adequately addressed, there remains a risk of inadvertently leaving behind exploitable visual
clues for potential attackers.

To overcome these challenges, we propose FracFace, a novel privacy-preserving face recognition
framework built on two core components designed to refine frequency domain processing and disrupt
potential visual cues. To address privacy issues arising from frequency domain sparsity and residual
visual cue leakage, we present the Frequency Channel Refining (FCR) module, which selectively
attenuates frequency bands to significantly diminish visual cues unrelated to identity while preserving
key features essential for recognition. Furthermore, to enhance defense against reconstruction attacks,
we propose the Frequency Fractal Mapping (FFM) module, which remaps the refined frequency
representation to a fractal structure space, disrupting the continuity between spatial and frequency
channels. By introducing structured perturbations rather than random noise, FFM fundamentally
obfuscates the visual cues. The combined effect of these two modules reduces visual sparsity and
enhances resilience against reconstruction attacks by generative networks, strengthening privacy
protection. This paper makes the following contributions:

• First, we propose a novel fractal based framework for privacy preserving face recognition
that disrupts spatial regularities in the frequency domain, thereby suppressing visual clues
that can be exploited by reconstruction attacks.

• Second, we present a systematic frequency channel refining method that reduces sparsity
and suppresses non-identity features, and introduce an innovative use of fractal structures to
disrupt frequency continuity and enhance reconstruction resistance.

• Third, FracFace improves attack resistance by 15% to 60% under both white box and black
box reconstruction scenarios compared to existing privacy preserving methods.

2 Related Works

Face Reconstruction Attacks. Face reconstruction attacks, especially those using deep learning,
present a significant privacy challenge. These attacks are typically classified into optimization-based
[36, 37], and deep learning-based methods[35, 34]. While optimization-based attacks iteratively
refine inputs using feedback from face recognition systems, deep learning-based attacks improve
efficiency by learning inverse mappings from facial features to images. U-Net [38] has become a
widely used model for image reconstruction, attributed to its effective encoder-decoder structure
and high reconstruction quality. Early studies by Zhmoginov et al. [56] and others utilized deep
neural networks to convert facial embeddings into high-quality images, while more recent approaches
like those by Cole et al. [4] and Dosovitskiy et al. [7] focused on generating images directly from
these embeddings. In deep learning-based attacks, StyleGAN [17, 18] with its stylized generator
architecture, enables precise control over facial feature reconstruction. StyleGAN’s ability to generate
face images nearly indistinguishable from the original poses significant privacy risks. Applications
like TediGAN [47] and LAFITE [58] further enhance face generation and editing by manipulating the
latent space, demonstrating high fidelity in reconstruction. Beyond GAN-based inversion, diffusion
models [49, 16] provide powerful priors that enable adversaries to plausibly recover identity-bearing
details. Specially, PGDiff [49] enforces high-quality structural and color priors during reverse
diffusion, enabling robust reconstructions under complex or composite corruptions and thereby
amplifying privacy risks. These advances highlight the growing efficiency of deep learning attacks
and the pressing need for stronger privacy protection solutions.
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Figure 1: Refining targeted frequency channels: An illustration

Privacy-preserving Face Recognition. FR has become a predominant biometric modality for identity
authentication. While state-of-the-art methods [48, 6, 40] achieve remarkable accuracy, the increasing
risk of privacy leakage has brought growing attention to privacy-preserving face recognition [28].
The development of deep neural networks [30] and generative adversarial models [7] has greatly
exacerbated the risk of reconstruction attacks. Recent advances in PPFR have shown promising
progress, with existing methods broadly categorized into cryptographic and non-cryptographic
approaches. 1) Cryptographic techniques, such as homomorphic encryption (HE) [12], differential
privacy (DP) [33], secure multi-party computation (MPC) [1], and cancelable biometrics (CB) [5]
offer robust theoretical privacy guarantees. However, their real-world applicability is hindered
by substantial computational overheads, particularly when deployed on resource-constrained edge
devices [27]. The substantial computational demands of these methods introduce significant delays,
rendering them impractical for real-time face recognition systems where both speed and efficiency
are critical [15]. Consequently, while these cryptographic solutions promise strong privacy protection,
their practicality and scalability in real-world applications remain a significant challenge. 2) Non-
cryptographic approaches, especially transformation-based techniques, have been actively explored
as lightweight alternatives to cryptographic schemes. These methods apply deliberate transformations
in the image or feature domain to obscure sensitive attributes while preserving cues that are essential
for distinguishing identities. To achieve privacy protection, Wang et al. [43] employed a channel-wise
shuffling and mixing strategy in the frequency domain. Mi et al. [27] extended this view, emphasizing
the complementary role of diverse frequency bands and advocating their joint use. Building on this,
Mi et al. [28] randomly selected and filtered a subset of frequency-domain channels to reduce visual
cues. Later, they proposed a subtraction-based method [29], which generates privacy-preserving face
images by reconstructing frequency features from the residual between the original and generated
frequency domains. Ji et al. [14] introduced a learnable privacy budget for adaptive trade-offs
between privacy and utility, while Yuan et al. [50] devised an obfuscation method operating in
the frequency domain that balances attribute suppression and visual interpretability. Most recently,
Jin et al. [15] retained two key frequency channels and employed gradient-based reconstruction to
synthesize structurally complex features resistant to inversion.

Nevertheless, despite their practical effectiveness, these methods remain vulnerable to advanced
reconstruction attacks. Zhang et al. [51] suggested that many approaches rely on unrealistic privacy
assumptions, which compromise their reliability. Shahreza et al. [32] further demonstrated that
generative models can learn mappings from facial templates to latent spaces of pretrained generators,
enabling high-resolution face reconstruction. In addition to this, our evaluations show that models
like U-Net [38] and StyleGAN [18] can still recover realistic images even with partial frequency
corruption (see Sec. 4.3 for more details). This stems from a core issue: although visual cues can
be explicitly suppressed, the inherent sparsity of frequency-domain features often preserves global
structures and local consistencies, allowing generative models to reconstruct the obscured content by
exploiting residual information and frequency patterns (see Fig. 1 and Sec. 4.3 for more details).

3 Methodology

This section presents the technical design of FracFace, that fundamentally reduce privacy leakage in
frequency-based face representations by targeting not only visual cues but also the structured patterns
embedded in frequency embeddings. The overall pipeline is illustrated in Fig. 2.

3



6

05

7

1

8

34 2

Online Face Images 𝑰𝒊

Transform

Frequency Representation

𝑺

𝑭𝒉

𝑭𝒍

Refined Frequency Component

Fractal Kernel 𝑴𝟎

Fractal Lattice 𝑳𝟎

Database

Model Training

Frequency Projection
Identity Privacy 

Preservation

…

…
3 4

05

6 7 4

1

8

34 2

78

42 24

89

41

55 63 77

37 27 23

61 89

75

43 25

8

4

17

31

67 56

60 69

65 74

51

47

6

2 11

15

202938

62

78

71

67

80

76

13

53

49

44

40

35 26

22

54 68 64 72 73

9105464550 14 10

1918283236

70

66

16

12

7

3

52

48

39 30

34

21

33

Fractal Grid

Retain Discriminative Identity Features

Fractal Structural 

Privacy Map

Fractal Identity Tokens

Frequency Fractal Mapping

Frequency Channels Refining

Refined Frequency Channel 𝑺′

𝑆(1) 𝑆(2)

𝑆(2)

…
Frequency Band Attenuation

𝑷2

𝑷3

𝑷1

Pruning Space 𝑷

Figure 2: The pipeline of proposed FracFace. FracFace first projects input face images [3,H,W]
into a frequency domain representation [192,H,W] via BDCT. Subsequently, band attenuation is
applied to selectively suppress redundant frequency channels, obtaining the shape of [162, H, W].
These features are then refined through FCR to extract a privacy-protected subset of shape [81, H,
W]. FFM is subsequently applied to disrupt spatial regularities, generating fractal identity tokens that
are stored for recognition while enhancing resistance to reconstruction attacks.

3.1 Overview

Unlike previous work that mainly suppresses raw facial visual cues, FracFace introduces a novel
transformation perspective that disrupts spatial regularities while preserving identity discriminative
features. Such structural-level protection maintains reliable recognition performance and substantially
mitigates the risk of visual reconstruction, thus achieving a strong balance between privacy preser-
vation and recognition accuracy. We present two core modules. FCR employs a refined selection
of frequency domain channels to reduce feature sparsity and mitigate visual cue leakage, while
preserving identity-discriminative information. FFM transforms frequency domain features into
a fractal space characterized by self-similarity and local chaos, enhancing irreversibility without
compromising recognizability. These modules operate at two levels, channel selection and structural
mapping, embedding frequency-domain features into a fractal-based framework to strike an optimal
balance between privacy preservation and recognition accuracy under constrained channel conditions.

3.2 Frequency Projection

Given an input facial image I ∈ R3×H×W , we first normalize it into the [0, 1] range and apply
an upsampling operation with a scaling factor r to obtain I ′. The upsampled image I ′ is then
transformed into the YCbCr color space, yielding Y ∈ R3×rH×rW , which better separates luminance
and chrominance information. Next, Y is partitioned into non-overlapping 8 × 8 blocks, and a
Block-based Discrete Cosine Transform (BDCT) is independently applied to each block, resulting
in a localized frequency representation S ∈ R3×64× rH

8 × rW
8 . This transformation decomposes local

spatial structures into 64 orthogonal frequency components, ordered from low to high frequency. For
each channel, we denote the set of low-frequency components as Fl ⊂ S and the high-frequency
components as Fh ⊂ S, where Fl ∪ Fh = S and Fl ∩ Fh = ∅. This decomposition into refined
frequency bands lays the groundwork for subsequent privacy-preserving mechanisms.

3.3 Frequency Channels Refining

Frequency Band Attenuation After mapping the image to the frequency domain, the image features
exhibit significant sparsity. As illustrated in Fig. 1a, the low-frequency channels contain the majority
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of the energy and visual information. However, this also results in components associated with low
frequencies retaining substantial characteristics of the lower frequency bands, thereby suppressing
the contribution of channels in the higher frequency range, as shown in Fig. 1b. To address this
issue, we propose the Frequency Band Attenuation (FBA) mechanism, which selectively weakens
the contribution of channels corresponding to low frequencies and reshapes the frequency features
to better balance privacy protection and identity representation. Specifically, we adopt a three level
pruning strategy, where frequency channels are grouped into sets P1, P2, P3, each corresponding to a
distinct frequency range. The final pruning space is defined as P = P1 ∪ P2 ∪ P3. Next, we perform
the channel removal operation on the frequency domain feature S, resulting in a refined frequency
channel set S′ = Prune(S, P ), where S′ ∈ R3×162× rH

8 × rW
8 represents the feature tensor after

frequency band attenuation, with redundant frequency components removed, effectively reducing
the risk of privacy leakage. The channel selection removes those associated with sensitive visual
information, such as skin color, lighting, and expressions, while retaining those crucial for identity
recognition with low visual sensitivity to ensure accuracy. After applying the FCR mechanism, as
shown in Fig. 1c, the refined low-frequency channels no longer suppress high-frequency contributions,
and instead, as seen in Fig. 1d, each channel independently highlights its unique contribution, leading
to a more balanced and robust feature representation. We also utilize t-SNE [24] to evaluate the
sparsity of frequency domain channels (see detailed analysis refer to Appendix A.1). Unlike Mi
et al.’s PartialFace [28], our frequency band attenuation strategy balances identity recognizability
and privacy protection, addressing frequency sparsity and weakening visual cues exploitable by
reconstruction attacks.

Retain Discriminative Identity Features To further refine the frequency band structure, the at-
tenuated frequency domain channels are partitioned into two groups: (S(1), S(2)) = index(S′),
where S(1), S(2) ∈ R3×81× rH

8 × rW
8 . This strategy allows the assignment of different priorities to the

frequency bands, enabling more granular privacy control (see Algorithm 1 for details).

3.4 Frequency Fractal Mapping

In our proposed FFM mechanism, the fractal kernel M0 and the fractal lattice L0 are randomly
initialized, serving as the foundational components for subsequent fractal transformations. The
fractal kernel M0 and the fractal lattice L0, both of size m × n, are initialized such that M0 is
populated with random integers drawn from the range [1,m× n], introducing structural diversity,
while L0 defines the relative indexing order of the elements within the fractal kernel M0. The initial
fractal grid F0 is directly set as M0, thus initializing the fractal mapping. The fractal transformation
proceeds iteratively, where at each step, a new fractal mapping Fk is constructed by combining
the previous mapping Fk−1 with the foundational mapping M0, scaled by a factor βk = 32k. This
scaling factor controls the expansion of sub-blocks within the fractal structure, and each element of
the new mapping is updated as:

Fk[i, j] = (M0[i, j]− 1) · βk + Fk−1[i, j], (1)

where i and j index the mapping elements. This iterative process progressively refines the fractal
structure, with each layer increasing in both size and complexity. To maintain structural coherence
across scales, a correction Fk = Fk − 1 is applied at certain layers to mitigate misalignments
introduced by scaling. The process continues for a predefined number of iterations, ultimately
yielding a set of fractal mappings F = [F0,F1, . . . ,Fn−1]. The FFM constructs a multi-layered
and complex fractal structure that effectively mitigates sparsity while preserving essential identity
information. Building upon the recursive fractal construction, the proposed FFM forms a non-
invertible, nonlinear index transformation through iterative integer-based perturbations, as formally
defined below. Let M0 ∈ Zn×n denote the initial index matrix. We define the k-th layer fractal
mapping recursively as:

F [k] =M0 +

k∑
i=1

(bi − 1) · βi, βi =

i−1∏
j=1

bj , β1 = 1, (2)

where bi is the expansion factor at the i-th fractal layer, and F [k] denotes the positional encoding
mapping for channel reordering. This recursive structure highlights the layered composition of
FFM, in which discrete integer perturbations are progressively accumulated in a nonlinear fashion

5



Table 1: The performance of privacy protection methods in terms of face recognition accuracy. The
space-time domain is denoted by S, the frequency domain by F1, and the fractal domain by F2,
respectively. Green indicates the proportion at the given privacy-protection level (see Appendix A.3).

Method
LFW CelebA AgeDB CFP-FP CALFW CPLFW IJB-B IJB-C

Domain Protection Venue
(%) (%) (%) (%) (%) (%) 1e-4 1e-5 1e-4 1e-5

Arcface [6] 99.73 95.35 97.99 96.83 95.89 94.59 94.81 91.98 93.69 92.41 S 0% CVPR-2019

Arcface-FD [48] 99.81 96.45 98.27 97.18 94.69 95.03 93.68 90.53 95.89 94.92 S 0% CVPR-2020

PPFR-FD [43] 99.39 93.49 97.99 95.53 95.69 90.62 93.67 91.12 94.73 92.49 F1
43% AAAI-2022

Duetface [27] 99.81 92.13 96.17 93.24 95.18 92.19 92.63 90.32 95.28 94.16 F1
45% ACMMM-2022

PartialFace [28] 99.82 95.64 95.03 98.10 94.83 95.61 92.48 91.59 93.85 93.96 F1
68% ICCV-2023

Minusface [29] 99.79 95.89 96.03 96.94 95.93 92.89 93.89 93.51 95.91 94.96 F1
85% CVPR-2024

PRO-Face C [50] 99.29 91.69 93.79 95.63 89.44 90.65 88.38 83.27 90.89 89.94 F1
40% IEEE TIFS-2024

FaceObfuscator [15] 99.70 94.36 96.79 98.82 94.84 95.42 92.90 92.18 94.43 93.58 F1
87% USENIX-2024

FracFace (ours) 99.69 95.91 97.76 96.14 93.92 93.16 92.42 90.73 94.09 92.26 S → F1 → F2
100% NeruIPS-2025

through scaling and base multiplication. To establish the nonlinearity of the FFM transformation, we
demonstrate in Appendix A.2 that it does not satisfy the fundamental properties of linearity, namely
homogeneity and additivity, and the irreversibility. (see the Algorithm 2 for implementation details).

3.5 Identity Privacy Preservation

We present a privacy-preserving identity recognition framework where facial images are first pro-
cessed through FFM and uploaded as irreversible obfuscated features. These features are structured
via candidate feature sets to ensure uniqueness and non-replicability. While retaining sufficient
identity-related cues for recognition, they are mathematically and structurally resistant to inversion,
thus preventing facial image reconstruction even under full adversarial access. This design balances
high recognition accuracy with strong privacy guarantees.

4 Experiments

4.1 Experimental Setup

Models and Datasets To evaluate the FracFace1 framework, we utilize various models and datasets.
For recognition, we adopt the IR-50 [10] backbone, which offers a favorable trade-off between
compactness and accuracy. The model is trained on the MS1Mv2 [9] dataset, which is widespread
adoption as a standard benchmark in face recognition ensures fair and consistent comparisons with
prior work [27], [29], [28]. To assess privacy robustness, we employ three of the deep learning-based
adversaries: a lightweight U-Net [38] autoencoder for reconstruction-based attacks, a StyleGAN
[18] generator for generative attacks, and a PGDiff[49] generator based on reverse diffusion process.
These attackers rigorously test the irreversibility and security of FracFace transformations. We
evaluate on standard benchmarks, including LFW [11], CelebA [22], AgeDB [31], CFP-FP [39],
CALFW [55], CPLFW [54], IJB-B [46], and IJB-C [26].

Evaluation Metrics To evaluate the privacy-utility trade-off of FracFace, we employ five metrics.
Pixel-level differences between reconstructed and original images are quantified by SSIM [45],
MSE, PSNR, LPIPS [53], and IDS [41] where lower SSIM, higher MSE, higher LPIPS, and lower
IDS indicate stronger privacy protection.These metrics comprehensively assess the effectiveness of
FracFace in safeguarding privacy while maintaining utility. In addition, refer to Appendix A.7 for
more details on the experiment.

4.2 Recognition Accuracy

We evaluate FracFace in comparison with two widely adopted baselines, ArcFace[6] and ArcFace-
FD[48] (both without privacy protection), as well as six representative privacy-preserving methods.
Despite introducing privacy protection, FracFace achieves recognition accuracy comparable to the
baselines while significantly enhancing identity security. Tab. 1 reveal that while frequency domain
methods like PPFR-FD and DuetFace incur 3% - 5% accuracy loss, approaches such as MinusFace,
FaceObfuscator, and PartialFace still retain 13%, 15%, and 32% identity information, indicating
notable privacy risks (refer to Sec. 4.3 for more details). In contrast, FracFace employs FCR and FFM

1Code is available at https://github.com/Fracbeautyface/FracFace.
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Figure 3: Evaluation of facial reconstruction vulnerabilities under U-Net and StyleGAN attacks.

(a) Target (b) G 1 (c) G 2 (d) G 3 (e) G 4 (f) G 5 (g) G 6 (h) G 7 (i) G 8

Figure 4: Comparative attack results on CelebA targets with StyleGAN. (a) shows the target image of
the adversary attack; (b)-(i) shows the attack outputs.

to restructure the feature space, effectively suppressing low-frequency dominance while promoting
the contribution of high-frequency components to identity representation. This design delivers
strong privacy protection with only a marginal drop in accuracy compared to ArcFace-FD, achieving
state-of-the-art privacy performance and an optimal trade-off between utility and security.

4.3 Empirical Evaluation of Privacy Protection

4.3.1 Effectiveness

Reconstruction Vulnerability Assessment In practical attacks, facial data leakage typically enables
two reconstruction paths: (1) mapping protected features to original images via models like U-Net
when identity embeddings are exposed; (2) leveraging generative models (e.g., StyleGAN and PGDiff)
to reconstruct identities from intercepted features without requiring an explicit degradation model.
We evaluate the robustness of FracFace against reconstruction attacks on six benchmark datasets and
compare its performance with several representative privacy-preserving methods. As illustrated in
Fig. 3, most existing approaches exhibit limited resistance to reconstruction attacks. For instance,
PPFR-FD, Pro-Face, and DuetFace lack dedicated defense mechanisms, allowing adversaries to
recover significant facial details from identity tokens. We further employ StyleGAN to reconstruct
faces from these identity features and observe that PPFR-FD and Pro-Face C tend to preserve
visually identifiable traits like hairstyle, while DuetFace enables more accurate reconstruction of
facial geometry. Although PartialFace, MinusFace, and FaceObfuscator demonstrate stronger privacy
protection, StyleGAN is still able to extract structural cues, resulting in reconstructions that retain
notable similarity to the original identities in terms of facial proportions. In contrast, reconstructions
from FracFace-preserved representations exhibit no clear identity similarity. Building on FCR, this
outcome benefits from the local obfuscation introduced by FFM. It is further supported by quantitative
results from our subsequent privacy reconstruction evaluation (see Tab. 2 for more details).

Robustness to StyleGAN We evaluate the reconstruction robustness of FracFace under adversarial
attacks driven by StyleGAN, as illustrated in Fig. 4 and Fig. 5. Given limited identity tokens (Fig. 4a),
the attacker employs StyleGAN to synthesize candidate faces (Fig. 4b–Fig. 4i), selecting the most
similar ones as style vectors to enhance further attempts. Fig. 5 details the reconstruction process.
While StyleGAN can reconstruct global attributes such as pose, hairstyle, and beard, it fails to
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Table 2: Benchmarking the privacy utility tradeoff under U-Net and StyleGAN based reconstruction
attacks, evaluated by SSIM, LPIPS, MSE, PSNR, and IDS across two leakage scenarios.

Metric Method
U-Net-based Face Reconstruction Attack StyleGAN-based Face Reconstruction Attack

LFW CelebA AgeDB CFP-FP CALFW CPLFW LFW CelebA AgeDB CFP-FP CALFW CPLFW

SSIM ↓

Arcface 0.9642 0.9883 0.9436 0.9351 0.9555 0.9188 0.9906 0.9827 0.9548 0.9820 0.9408 0.9307
Arcface-FD 0.9623 0.9097 0.9242 0.9172 0.9544 0.9021 0.9761 0.9438 0.9342 0.9411 0.9618 0.9461
PPFR-FD 0.4231 0.1488 0.3079 0.3720 0.3557 0.5204 0.3116 0.2681 0.2404 0.3523 0.3323 0.1696
Duetface 0.4963 0.2570 0.4280 0.4965 0.5158 0.4249 0.3367 0.2303 0.2873 0.2397 0.3245 0.1663

PartialFace 0.4953 0.2927 0.2404 0.3592 0.3715 0.4423 0.2845 0.2683 0.2544 0.3314 0.2487 0.1729
Minusface 0.3864 0.1461 0.2319 0.3407 0.2878 0.3263 0.3421 0.2266 0.2409 0.2962 0.2587 0.1699

PRO-Face C 0.5517 0.3684 0.5135 0.4737 0.4665 0.4685 0.3535 0.2676 0.2339 0.3217 0.2946 0.1656
FaceObfuscator 0.3771 0.1984 0.3477 0.3428 0.3468 0.3189 0.3654 0.2585 0.2882 0.2960 0.2595 0.1395
FracFace (ours) 0.3997 0.2195 0.2045 0.2749 0.3317 0.4357 0.2836 0.2019 0.2278 0.2264 0.2305 0.1045

LPIPS ↑

Arcface 0.0141 0.0708 0.0436 0.0330 0.0301 0.0824 0.0163 0.0192 0.0139 0.0117 0.0131 0.0167
Arcface-FD 0.0175 0.0676 0.0418 0.0487 0.0312 0.0831 0.0180 0.0127 0.0133 0.0128 0.0133 0.0172
PPFR-FD 0.5433 0.4522 0.5198 0.5430 0.6683 0.5059 0.7206 0.5443 0.6596 0.6022 0.5910 0.6916
Duetface 0.5264 0.4350 0.3328 0.3442 0.3458 0.4249 0.7378 0.5461 0.6842 0.6007 0.6412 0.6208

PartialFace 0.5197 0.5056 0.6536 0.5592 0.6952 0.6502 0.7558 0.5652 0.6733 0.5715 0.6604 0.6911
Minusface 0.6809 0.6790 0.6607 0.6720 0.6305 0.6675 0.7313 0.5894 0.6732 0.6322 0.7253 0.6768

PRO-Face C 0.5018 0.4341 0.4173 0.4812 0.4645 0.5403 0.7091 0.6004 0.6522 0.5749 0.6335 0.6719
FaceObfuscator 0.6512 0.6289 0.5790 0.6332 0.6364 0.6012 0.7419 0.5320 0.6891 0.6218 0.6614 0.6535
FracFace (ours) 0.6907 0.6834 0.7389 0.7796 0.6958 0.6990 0.8307 0.6354 0.6935 0.6412 0.6655 0.6935

MSE ↑

Arcface 0.0002 0.0058 0.0001 0.0015 0.0012 0.0021 0.0011 0.0018 0.0021 0.0029 0.0016 0.0014
Arcface-FD 0.0002 0.0054 0.001 0.0030 0.0012 0.0024 0.0014 0.0024 0.0025 0.0023 0.0019 0.0021
PPFR-FD 0.0170 0.0453 0.0390 0.0475 0.0372 0.0164 0.0514 0.0466 0.0340 0.0613 0.0686 0.0462
Duetface 0.0249 0.0474 0.0253 0.0235 0.0224 0.0263 0.0621 0.0583 0.0452 0.0645 0.0631 0.0728

PartialFace 0.0251 0.0415 0.0872 0.0389 0.0532 0.042 0.0156 0.0613 0.0695 0.0637 0.0793 0.0405
Minusface 0.0619 0.0425 0.0754 0.0549 0.0537 0.0418 0.0729 0.0675 0.0711 0.0646 0.0593 0.0637

PRO-Face C 0.0018 0.0256 0.0127 0.0209 0.0149 0.0171 0.0567 0.0480 0.0633 0.0583 0.0635 0.0495
FaceObfuscator 0.0418 0.0466 0.0578 0.0512 0.0409 0.0545 0.0769 0.0795 0.0635 0.0698 0.0646 0.0794
FracFace (ours) 0.0921 0.0839 0.1694 0.0855 0.0591 0.0643 0.0869 0.0993 0.0909 0.0750 0.0753 0.0831

PSNR ↓

Arcface 28.3762 26.3394 28.0351 28.1658 28.9046 26.6827 27.3627 23.9351 29.9237 26.5816 20.3843 25.7364
Arcface-FD 26.1864 26.5831 28.5249 27.9832 25.1352 26.1258 28.2943 25.1971 29.5851 27.6278 23.4935 27.1539
PPFR-FD 16.6922 15.2175 14.0937 13.2350 14.3056 17.8451 10.6539 13.3151 10.7322 11.4767 11.6374 10.3582
Duetface 16.0382 14.2463 13.1962 16.2930 16.1359 15.7981 10.3639 11.0696 10.0926 10.7314 11.9891 11.6206

PartialFace 13.0542 10.9401 10.5918 12.9035 12.7318 13.7378 9.9318 12.1278 10.1875 11.9616 11.3478 10.5448
Minusface 11.2158 9.3362 11.2309 12.0672 11.9623 13.7816 11.3744 11.7088 11.4857 10.7283 12.2753 10.1364

PRO-Face C 17.8753 15.9239 18.9573 16.7931 16.2451 16.7569 10.1446 11.6173 11.4588 10.9503 11.9773 11.3907
FaceObfuscator 10.3351 10.9748 12.3641 10.6841 10.7845 12.6315 10.6150 10.7325 10.1433 10.6668 11.9029 10.9551
FracFace (ours) 8.6099 9.9682 9.5171 10.0953 11.7843 10.0827 9.7742 10.0369 10.0421 10.0562 10.9270 10.1239

IDS ↓

Arcface 0.9932 0.9966 0.9989 0.9904 0.9928 0.9991 0.9968 0.9834 0.9910 0.8973 0.9627 0.9624
Arcface-FD 0.9927 0.9939 0.9969 0.9918 0.9919 0.9982 0.9915 0.9620 0.9837 0.8993 0.9639 0.9728
PPFR-FD 0.5699 0.6549 0.8402 0.8829 0.7968 0.6982 0.7587 0.8319 0.6915 0.6512 0.8250 0.6983
Duetface 0.5830 0.6172 0.7921 0.8786 0.6217 0.6826 0.7388 0.8239 0.6074 0.6288 0.8116 0.6799

PartialFace 0.4670 0.4572 0.7308 0.6353 0.5384 0.5204 0.7317 0.8043 0.6391 0.5962 0.7298 0.6194
Minusface 0.3946 0.4007 0.4147 0.5428 0.4218 0.2600 0.7267 0.8062 0.5950 0.5649 0.7329 0.5481

PRO-Face C 0.4124 0.5028 0.7978 0.7548 0.8325 0.7271 0.8299 0.8501 0.7064 0.6294 0.8562 0.7158
FaceObfuscator 0.3830 0.4094 0.4972 0.4565 0.46247 0.3412 0.7187 0.7374 0.5785 0.6218 0.7253 0.6101
FracFace (ours) 0.0057 0.0081 0.0003 0.0011 0.0018 0.0024 0.6705 0.7334 0.5242 0.5239 0.6150 0.5458

faithfully recover fine grained structures like the eyes, nose, and mouth, leading to perceptible
distortions in identity. This confirms that FracFace effectively disrupts the coherence of identity-
critical features through FFM, offering strong resistance to clue and style-based inversion attacks.
A more detailed analysis of how FCR and FFM influence the visualization of frequency domain
channels is provided in Appendix A.4.

Robustness to Diffusion Model We evaluate FracFace under an adaptive white-box threat model
against diffusion-based reconstruction (Fig. 6). Using a PGDiff model pretrained on the public
CelebA dataset, the reconstructions in Figs. 6b to 6i recover only coarse attributes (e.g., pose,
hairstyle) while failing to reproduce identity-critical details (eyes, nose, mouth) and they exhibit
noticeable texture artifacts. These results indicate that the FCR module disperses energy and reduces
sparsity in low-frequency channels, whereas FFM introduces localized perturbations that confound
mid/high-frequency cues. Consequently, FracFace impedes faithful inversion, retaining only coarse
attributes and thereby enhancing privacy.

Quantitative Comparison To comprehensively evaluate the privacy-utility tradeoff of our method
under strong reconstruction threats, we conducted experiments on six public face recognition bench-
marks, as summarized in Tab. 2. FracFace was compared with six state-of-the-art face privacy
protection methods under two representative reconstruction attacks: a discriminative model based on
U-Net and a generative model based on StyleGAN. Evaluation was conducted using SSIM, LPIPS,
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Figure 5: Visual analysis of StyleGAN vulnerabilities.

(a) Target (b) D1 (c) D2 (d) D3 (e) D4 (f) D5 (g) D6 (h) D7 (i) D8

Figure 6: Comparative reconstruction results on CelebA targets with PGDiff. (a) shows the target
image of the adversary attack; (b)-(i) shows the reconstruction outputs.

MSE, PSNR, and identity similarity. FracFace consistently demonstrates stronger robustness across
both attack types. It achieves significantly lower SSIM values, indicating reduced structural similarity
between protected and reconstructed faces. Under StyleGAN attacks, FracFace attains SSIM scores
as low as 0.2264 on CFP-FP and 0.1045 on CPLFW, suggesting the original structure is effectively
obfuscated. In terms of perceptual dissimilarity, FracFace achieves the highest LPIPS scores, reaching
0.8307 on LFW and 0.7389 on AgeDB. Compared to structurally-aware baselines such as Partial-
Face, FaceObfuscator, and MinusFace, FracFace achieves superior performance, particularly under
challenging generative attacks that often exploit residual structural cues. This strength stems from the
synergy between our FCR and FFM modules, which jointly mitigate frequency domain sparsity and
limit the reconstructive capacity of generative models.

4.4 Ablation Study

4.4.1 Effectiveness of FCR and FFM

This section conducts ablation studies on the FCR and FFM modules in FracFace to evaluate their
respective and combined impacts on recognition accuracy and privacy preservation. As shown in
Fig. 7, when the two modules exist independently (as shown in Fig. 7b, Fig.7c, Fig. 7f and Fig. 7g),
the obtained frequency histogram shows obvious sparsity, which exposes the system to potential
statistical attacks. Introducing either FCR or FFM alone fails to sufficiently mitigate this sparsity, as
the histograms still reveal distinct, reconstructable patterns. By contrast, integrating both modules
leads to a significantly more compact and uniform frequency distribution, effectively reducing
statistical leakage and enhancing privacy robustness, see Fig. 7d and Fig. 7h. As shown in Tab. 3,
while applying no module or only FFM preserves high recognition accuracy, it offers little privacy
protection due to insufficient disruption of frequency channels. FCR alone enhances privacy but
degrades accuracy. It is the joint application of FCR and FFM that ensures both improved recognition
performance and robust privacy protection, achieving a balanced compromise between accuracy and
security. This indicates that FCR and FFM are capable of jointly resisting reconstruction attacks,
while leveraging fractal self similarity and local confusion to preserve features relevant to identity.
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4.4.2 Effectiveness of Fractal Depth k

To examine how the fractal depth k in FFM af-
fects privacy and recognition accuracy, we per-
formed a systematic ablation across varying k val-
ues. As shown in Tab. 4 (in Appendix A.9), larger
k values lead to sustained and empirically consis-
tent privacy gains (LPIPS rising from 0.5291 to
0.8357 and SSIM falling from 0.5227 to 0.2580),
consistent with stronger obfuscation; however,
recognition accuracy progressively deteriorates
beyond k = 2. In particular, k = 2 emerges as
the optimal operating point, achieving a 20% im-
provement in LPIPS relative to k = 1 with only a
0.02% loss in accuracy, thereby preserving near-
perfect recognition while materially strengthen-
ing privacy. Accordingly, we employ k = 2 by
default and view it as the sweet spot, beyond
which the incremental privacy improvement is
minor relative to the escalating drop in utility.

4.4.3 The Sensitivity of FBA Strength

(a) w/o R&F (b) w/ R (c) w/ F (d) w/ R&F

(e) w/o R&F (f) w/ R (g) w/ F (h) w/ R&F

Figure 7: Visual comparisons on the impact of
modules FCR (R) and FFM (F).

Table 3: Ablation study on the joint effect of FCR
and FFM on recognition accuracy

Method
LFW AgeDB

FCR FFM Protection
✗ ✗ ⃝ 99.71 97.72
✗ ✓ ⃝ 99.30 97.28
✓ ✗ 84.53 76.84
✓ ✓ 99.59 96.35

We quantified how frequency-domain attenuation shapes the privacy–utility trade-off by performing a
sensitivity analysis on the FBA attenuation strength (see Tab. 5 in Appendix A.9). We observe that
as refinement strength increases, with more channels removed, privacy consistently improves (e.g.,
LPIPS: 0.32→ 0.86), whereas recognition utility declines, with a pronounced drop beyond 50%.
Notably, 50% pruning yields the best balance, increasing LPIPS by 35% over the 20% case while
maintaining near-perfect recognition accuracy. Beyond that point, privacy remains approximately
constant, whereas accuracy continues to decrease. These results indicate that moderate refining
(40-50%) constitutes an effective operating range, improving privacy with minimal impact on utility.

5 Conclusion

This work introduces FracFace, a novel privacy preserving face recognition framework designed to
combat the critical threat of reconstruction attacks by targeting the vulnerability of visual cues in
the frequency domain. Specifically, FCR disrupts spatial continuity (sparsity) and selectively refines
identity relevant frequency channels, allowing FracFace to effectively reduce visual cues susceptible
to reconstruction. Additionally, the FFM remaps optimized frequency features into a complex fractal
structure space, substantially complicating reverse recovery. By decoupling identity from easily
exploitable structural cues, FracFace weakens the implicit mapping between visual information
and identity that many attacks rely on. Extensive evaluations on public benchmarks demonstrate
that FracFace not only disrupts visual recoverability but also maintains high recognition accuracy,
establishing it as an effective and secure solution for privacy sensitive face recognition applications.
These findings suggest that fractal-guided frequency transformation may offer a viable path toward
reconciling security with interpretability in future face recognition systems.

6 Broader Impacts

Notably, none of the datasets used in this work involve private or non-consented data collection.
Licensing terms and access conditions for each dataset are documented in [2] (please refer to this
Supplementary Material for details). Our work centers on privacy-preserving face recognition: we
transform face images into frequency-domain representations that are not trivially invertible and
empirically reduce identity leakage. Therefore, the proposed method does not target or infer sensitive
attributes, and we are aware of no negative societal impacts within the scope of this research.
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A Appendix

A.1 Sparsity Analysis in Frequency Domain

(a) Frequency Channel Interference (b) Refined Frequency Channel

Figure 8: Analyzing the sparsity of frequency domain channels through t-SNE.

As shown in Fig. 8a, low frequency channels still exert a strong influence on their high frequency
counterparts. When low frequency components are fully expressed, the interclass distances increase,
resulting in a sparser overall distribution. In contrast, Fig. 8b illustrates the refined frequency channels,
where the contribution of high frequency components becomes more prominent. This leads to a more
uniform distribution and a noticeable reduction in sparsity. These observations further highlight the
necessity of regulating sparsity in the frequency domain by refining frequency channels to encourage
more compact and balanced distributions, ultimately improving representation quality.

A.2 Nonlinearity Proof of FFM

We aim to demonstrate that the Fractal Feature Mapping (FFM) is nonlinear, by showing that it
violates both homogeneity and additivity, the two essential conditions for linearity.

Proof (Homogeneity). Let λ ∈ R be a scalar and let the FFM mapping be defined as:

f(M0) =M0 + C, (3)

where the constant offset C ∈ Rn×m is given by:

C =

k∑
i=1

(bi − 1) · βi. (4)

Then applying f to a scaled input yields:

f(λM0) = λM0 + C. (5)

However, if f were linear, we would expect:

f(λM0) = λf(M0) = λ(M0 + C) = λM0 + λC. (6)

Clearly, unless λ = 1 or C = 0, we have:

f(λM0) ̸= λf(M0). (7)

Since in practiceC ̸= 0 is intentionally introduced to enhance privacy by perturbing identity-irrelevant
components, and λ ̸= 1 holds for general scaling operations, the homogeneity condition is violated.
Thus, FFM is not a homogeneous transformation.

We further justify the validity of the conditions λ ̸= 1 and C ̸= 0 as follows:
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• The constant offset C is constructed to be non-zero in order to perturb identity-irrelevant
features and preserve privacy. If C = 0, the transformation degenerates to the identity map
f(M0) =M0, which provides no privacy protection.

• The scalar λ ̸= 1 represents any general scaling factor different from the identity scaling,
and is commonly used in evaluating homogeneity.

Hence, under typical and intended design conditions, FFM violates the homogeneity property,
confirming its nonlinear behavior.

Proof (Additivity). Let Ma,Mb ∈ Rn×m be two arbitrary inputs. The FFM mapping is defined as:

f(M) =M +

K∑
k=1

(βk(M)− 1) · γk, (8)

where βk(·) denotes a nonlinear feature mapping and γk ∈ Rn×m are fixed perturbation matrices.

Then,

f(Ma) =Ma +
K∑

k=1

(βk(Ma)− 1) · γk, f(Mb) =Mb +

K∑
k=1

(βk(Mb)− 1) · γk. (9)

If f were additive, we would have:

f(Ma +Mb) = f(Ma) + f(Mb). (10)

However,

f(Ma +Mb) =Ma +Mb +

K∑
k=1

(βk(Ma +Mb)− 1) · γk, (11)

while

f(Ma) + f(Mb) =Ma +Mb +

K∑
k=1

[(βk(Ma)− 1) + (βk(Mb)− 1)] · γk. (12)

These are not equal unless

βk(Ma +Mb) = βk(Ma) + βk(Mb), (13)

which is generally false due to the nonlinearity of βk(·). Therefore,

f(Ma +Mb) ̸= f(Ma) + f(Mb), (14)

proving that FFM does not satisfy additivity either.

In summary, the FFM transformation violates both homogeneity and additivity, it is not a linear
transformation. In fact, it is an affine mapping (due to the additive constant C), and its nonlinearity is
intentionally designed to obfuscate identity-irrelevant features and ensure privacy preservation.

Non-invertibility. We also consider a threat model where an adversary aims to reconstruct and
identify faces from obfuscated images, assuming knowledge of FracFace parameters (e.g., fractal
depth and expansion schedule). While visual cues cannot be fully removed due to recognition
needs, FracFace substantially reduces them compared to prior work. In detail, two components—the
initial fractal kernel M0 ∈ Zn×n and the index lattice L0 ∈ Zn×n—are secret and randomized per
deployment, ensuring unique, secure instances. In addition, the fractal index mapping is defined
recursively as

F [k][i, j] =M0[i, j] +

k∑
ℓ=1

(
bℓ − 1

)
· βℓ, β1 = 1, βℓ =

ℓ−1∏
s=1

bs. (15)

This is then projected modulo the channel dimension C:

ψ[i, j] = F [k][i, j] mod C. (16)
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(a) Vanilla Frequency
Domain Channel

Visualization

(b) Refined Frequency
Domain Channel

Visualization (Part 1)

(c) Filtered Frequency
Domain Channel

Visualization (Part 2)

(d) Fractal Frequency
Domain Channel

Visualization

Figure 9: Visual comparison of refined frequency domain channels.

Because F [k] grows exponentially with k, many different positions collide to the same index under ψ.

∃ (i1, j1) ̸= (i2, j2) s.t. ψ[i1, j1] = ψ[i2, j2], but F [k][i1, j1] ̸= F [k][i2, j2]. (17)

This shows that ψ is non-injective by design, and no inverse mapping exists. Even if the adversary
learns the full mapping rule ψ, they cannot resolve the original positions or channel correspondences
without knowing the randomized M0 and L0:

ψ−1 : ZC → Zn×n (18)

These design choices ensure that even subtle visual cues are unrecoverable under strong white-box
attacks. The non-invertibility of ψ and the randomness from M0 and L0 jointly establish a robust
privacy boundary, making FracFace highly resistant to reconstruction.

A.3 The Definition and Computation of Protection(%)

Definition Protection (%) represents the share of frequency-domain channels that are either (i)
filtered out by FCR or (ii) structurally disrupted by FFM, expressed as a percentage of the total
number of channels.

Protection (%) =
|Pmask|+ |Premap|

Ptotal
, (19)

where, Ptotalis the total number of DCT frequency channels (e.g., 192 for 12 × 16 DCT), Pmask is
the number of low-energy channels pruned by FCR, and Premap is the number of remaining channels
remapped by FFM.

A.4 Visual Privacy Protection in Face Features

We begin by visualizing the frequency domain distribution extracted from raw facial images, as
illustrated in Fig.9a. The distribution exhibits a clear dominance of low frequency components and
an overall sparse structure. These characteristics raise potential privacy risks: sparsity may allow
adversaries to reconstruct identity revealing features; meanwhile, the dominance of low frequency
components suppresses high frequency details, limiting the representational capacity of the frequency
space. To mitigate these risks, we apply FCR to perform band attenuation, as shown in Fig.9b. This
process selectively preserves features that are identity relevant yet privacy preserving, while filtering
out noisy frequency components (see Fig.9c). Then, a fractal frequency domain channel is generated
via FFM (Fig. 9d), mitigating sparsity and preserving self similarity for recognition, while its inherent
randomness obfuscates identity cues to reduce reconstruction risk and enhance privacy protection.
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A.5 The Algorithm of Refined Frequency Channels

Algorithm 1 Refined Frequency Channels

Require: Grid size M, N
Ensure: Two groups S1, and S2

1: F ← Create matrix (M,N)
2: freq_list← [ ]
3: for i← 0 to M − 1 do
4: row← F [i]
5: if i mod 2 = 0 then
6: Extend (freq_list, row)
7: else
8: Extend (freq_list, Reverse (row))
9: end if

10: end for
11: S1 ← freq_list[0:80]
12: S2 ← freq_list[80:161]
13: return S1, S2 =0

A.6 The Algorithm of FFM

Algorithm 2 Frequency Fractal Mapping (FFM)

Require: Number of iterations K, fractal kernel size m× n
Ensure: Fractal mappings F = [F0,F1, . . . ,FK−1]

1: Initialize M0 ∈ Zm×n with random integers in [1,m · n]
2: Initialize L0 ∈ Zm×n as indexing order
3: Set F0 =M0

4: for k = 1 to K − 1 do
5: Compute scaling factor: βk = 32k

6: for i = 1 to m do
7: for j = 1 to n do
8: Fk[i, j] = (M0[i, j]− 1) · βk + Fk−1[i, j]
9: end for

10: end for
11: if correction required at layer k then
12: Fk = Fk − 1
13: end if
14: end for
15: return F =0

A.7 More Implementation Details

Data Preprocessing of Input Images All face images were first resized to 112×112 and normalized
as RGB tensors, then transformed into the frequency domain via BDCT. To retain identity-relevant
information while reducing redundancy, we applied Frequency Channels Refining (FCR) to extract
81 informative channels. These were further refined using Frequency Fractal Mapping (FFM),
which enhances feature consistency across both spatial and scale dimensions. The final 81-channel
representations were saved as .npy files. Throughout preprocessing, we ensured numerical stability by
checking for NaNs and infinities, and accelerated the pipeline using 8-worker parallel loading. This
procedure was uniformly applied across training and evaluation datasets, including MS1M-ArcFace,
LFW, and AgeDB.

Training Details We trained the FracFace model on the MS1Mv2 dataset using PyTorch with two
RTX 6000 GPUs (49 GB VRAM each). Training the FracFace model on MS1Mv2 took about 8 days
for a total of 50 epochs. During training, the peak memory usage per GPU was about 45GB. The
input comprised 81-channel feature maps produced by the FracFace pipeline, incorporating DCT
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Figure 10: Resilient identity learning despite frequency degradation

transformation, Frequency Channel Refinement (FCR), and Frequency Fractal Mapping (FFM). An
IR-50 backbone with ArcMargin loss was employed to enhance identity discrimination. Optimization
was performed using AdamW (lr=0.001, weight decay=1e-4) with a cosine annealing scheduler.
Training leveraged automatic mixed precision (AMP) and gradient clipping (max norm 5.0) for
stability. We monitored performance via TensorBoard and validated on a held-out set after each
epoch. Data loading was parallelized with 8 workers and prefetching, and all experiments used
torch.backends.cudnn.benchmark=True for optimal GPU performance.

A.8 Limitations

As described in Sec. 3, FracFace performs frequency channel refinement via the Frequency Channels
Refining (FCR) module after applying the BDCT transform. The retained identity-relevant frequency
components are then mapped into a fractal structural space through the Frequency Fractal Mapping
(FFM) process. As illustrated in Fig. 10, when the input images are of low resolution, the high-
frequency bands may carry limited or unstable identity cues, making it challenging for the model
to extract robust representations. This degradation is likely caused by the loss of discriminative
patterns in the high-frequency spectrum under adverse imaging conditions. Nonetheless, as shown in
Fig. 10, when the training data preserve sufficient frequency fidelity, FracFace can still effectively
learn identity-aware representations while maintaining strong privacy protection guarantees.

A.9 Ablation Study

Table 4: Fractal depth k

k Accuracy ↑ SSIM ↓ LPIPS ↑

1 99.71 0.5227 0.5291
2 99.69 0.4015 0.6353
3 96.46 0.3729 0.7925
4 92.13 0.2580 0.8357

Table 5: FBA pruning strength

Ratio Accuracy ↑ SSIM ↓ LPIPS ↑

20% 99.83 0.7857 0.3184
40% 99.71 0.6291 0.4833
50% 99.69 0.3012 0.6839
60% 89.26 0.3109 0.7294
80% 87.24 0.2793 0.8605
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and introduction accurately reflect
the paper’s core contributions and scope. The abstract and introduction provide a clear
overview of the proposed approach and its significance. The method is elaborated in detail
in Sec. 3, while Sec. 4.2, Sec. 4.3, and Sec. 4.4 present extensive experimental results and
ablation studies that substantiate the claims made earlier. In addition, we also mentioned the
novelty of our proposed solution in the key contribution section. Compared with other work
in related work, we proposed to use fractal to solve the current PPFR problem.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in Appendix A.8. In addition, we tested our proposed
FracFace on 6 different datasets, which contain facial images of different people (based
on public datasets). Due to page limitations, we have placed the relevant content in the
Appendix. However, if necessary, we will also accept placing it in the main text to explain
the issue.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical foundations of our approach are thoroughly established. All
relevant assumptions are explicitly presented, and Appendix A.2 contains the full and correct
proofs, ensuring the soundness and transparency of the theoretical claims. In addition, our
Sec. 3 also describes in great detail the calculation of each data and the flow of the algorithm,
and all steps are explained.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient information to enable reproduction of the main
experimental results that support the central claims. We include the core implementation
of the FracFace framework, along with access to the training dataset and code necessary
to replicate the training procedure. These materials are made available through the link
referenced in Sec. 4.1. In addition, we presents the essential pseudocode that demonstrates
how FracFace can be implemented (refer more for Algorithm. 2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper specifies all the necessary training and testing details. These
details are thoroughly outlined in Sec. 4.1 of the paper. Additionally, we provide
the core pseudocode of FracFace, offering a detailed implementation process. We
provide open access to both the data and the source code (Code is available at
https://anonymous.4open.science/r/FracFace) , along with comprehensive instructions to
ensure the faithful reproduction of the main experimental results. Detailed implementation
guidelines can be found in Appendix. A.7 of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The paper specifies all the necessary training and testing details. These details
are thoroughly outlined in Sec. 4.1 and Appendix A.7 of the paper. (Code is available at
https://anonymous.4open.science/r/FracFace)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We adhere to the established experimental protocols from prior PPFR works
and present the best achieved results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper offers comprehensive details regarding the computational resources
necessary for both training and inference. These specifications are meticulously outlined in
Appendix A.7, ensuring the full reproducibility of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research reported in this paper complies with the NeurIPS Code of Ethics
and adheres to all relevant guidelines and standards. All datasets used are publicly available;
their licensing terms and access conditions are summarized in Sec. 6.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in Sec. 6. FracFace aims to enhance facial
privacy protection while preserving identity information for secure face recognition, which
could have societal impacts in contexts such as privacy-preserving authentication, surveil-
lance minimization, and responsible biometric data usage (see Sec. 4.3 for more details).
The method may help mitigate risks of facial data misuse, especially in publicly deployed
face recognition systems. All experiments were conducted on publicly available datasets
strictly for academic research, and no personally identifiable data was used beyond the scope
of these datasets.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Reason: This paper does not have such risks. In addition, all the data sets used in our
experiments are public data sets. For an introduction to the data sets, please refer to Sec. 4.1
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in this work, including code, data, and models, are
properly credited, with their respective licenses and terms of use clearly acknowledged and
fully respected. All data and code employed in this paper were acquired with the required
legal permissions.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research involving human
subjects, therefore, such details are not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve the usage of Large Language Models (LLMs) as a
core component of the methodology. LLMs were not integral to the core scientific processes,
which did not affect the originality, rigor, or methodology of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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