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Abstract

With the emergence of neural language mod-001
els, extensive research has been conducted002
on question-answering systems. Knowledge003
Graph Question Answering (KGQA) remains004
a hot topic because it returns answers from reli-005
able knowledge graphs, while language models006
sometimes suffer from hallucinations and pro-007
duce unfaithful answers. An intuitive and expli-008
cable solution for KGQA involves generating009
logical forms (such as SPARQL, s-expression,010
Cypher, etc.) that can be executed against the011
KG. However, due to the heterogeneous nature012
of KG schemas across different KGs, distinct013
logical forms are required, thereby necessitat-014
ing various models. The training process for015
such models to adapt to diverse KG schema set-016
tings is resource-intensive or data-hungry when017
built upon large language models or smaller018
models, respectively. In this work, we propose019
a novel pseudo logical form pre-training strat-020
egy to separate the learning process into a pre-021
training stage and a fine-tuning stage. In the022
pre-training stage, the model learns to generate023
KG items according to its understanding of the024
question. In the fine-tuning stage, the model025
may focus on learning logical form grammar026
with limited labeled data. Besides, the pro-027
posed strategy can be combined with knowl-028
edge distillation to further boost the model’s029
performance. Experimental evaluations con-030
ducted on MetaQA and KQA Pro show that031
our model outperforms several strong baselines,032
thus substantiating the efficacy of our proposed033
techniques.034

1 Introduction035

Knowledge graphs question answering (KGQA)036

aims at answering natural language questions ac-037

cording to fact triples stored in the knowledge038

graph (KG). It plays a fundamental role in many039

industrial applications like search engines and AI040

assistants. Previous methods involve information041

extraction and retrieval, where they first identify the042

Question: what are the languages spoken in the films directed by Joel Zwick?

GraphQ_IR
What is the attribute <A> language </A> of <ES> ones that <R> directed by 
</R> backward to <E> Joel Zwick </E> </ES>

KoPL
Find(Joel Zwick).Relate(directed by,backward).QueryAttr(language)

SPARQL
SELECT DISTINCT ?pv WHERE { ?e <directed_by> ?e_1 . ?e_1 <pred:name> "Joel 
Zwick" . ?e <language> ?pv . }

Cypher (s1: language as a relationship)
MATCH (n1{name:"Joel Zwick"})<-[:DIRECTED_BY]-(n2)-[:language]->(n3)
RETURN DISTINCT n3.name

Cypher (s2: language as a property)
MATCH (n1)<-[:DIRECTED_BY]-(n2) WHERE n1.name = "Joel Zwick"
RETURN DISTINCT n2.language

Pseudo Label
<mask>directed_by<mask>name<mask>"Joel Zwick"<mask>language<mask>

Figure 1: An example from MetaQA dataset.
GraphQ_IR, KoPL, SPARQL and Cypher are logical
forms that will return answer for the given question
when executed against the KG. When the KG is hosted
using Neo4j, the corresponding logical form will be
Cypher. According to the schema setting we use, lan-
guage can be a relationship between nodes (s1) or a
property name of a node (s2).

topic entity from the input question and then rank- 043

ing the retrieved entities to select final answer. Be- 044

sides, constructing a Query Graph and converting 045

it into executable logical forms is a more explain- 046

able method (Yih et al., 2015; Luo et al., 2018; Lan 047

and Jiang, 2020; Qiu et al., 2020; Qin et al., 2021). 048

With developement of pre-trained generative mod- 049

els, directly generate logical forms conditioned on 050

the input question in an end-to-end manner is be- 051

coming popular (Cao et al., 2022). This is similar 052

to the recent advances in Text-to-SQL, where SQL 053

queries are generated conditioned on the inputs 054

consists of questions and database schema items 055

(Zhong et al., 2017; Xu et al., 2018, 2022; Qi et al., 056

2022; Qin et al., 2022). However, the quantity of a 057

KG’s schema items is typically much greater than 058

that of a relational database, resulting more chal- 059

lenges for end-to-end generation of logical forms. 060

Concretely, there are three challenges to gener- 061

ate correct logical forms. First, the model needs a 062

full understanding of the intent of the input ques- 063

tion. Second, the model needs to align the se- 064

mantics of the question to KG items, including en- 065

tity identifiers and relationships. Third, the model 066
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should be aware of the grammar of target logical067

forms to generate executable sequences. With the068

power of pre-training on massive text corpus, the069

transformer-based language models are proved to070

have a good language understanding ability and071

recent researches mainly focus on the second and072

the third challenges. For the second challenge,073

although some work have focused on injecting074

knowledge from a KG and gained certain improve-075

ments on some specific tasks (Agarwal et al., 2021;076

Thorne et al., 2021; Moiseev et al., 2022), the hallu-077

cination issue still exists in current models (Maynez078

et al., 2020; Sun et al., 2023). Providing linked KG079

schema items in the input sequence helps allevi-080

ate but fails to prevent the model from generating081

semantic similar but unfaithful results. For the082

third challenge, there are already various methods083

to help the model to generate syntactically correct084

logical forms. Most commonly used method is085

grammar-guided decoding (Krishnamurthy et al.,086

2017; Yin and Neubig, 2018; Guo et al., 2019),087

where an abstract syntax tree (AST) is firstly gen-088

erated. Scholak et al. (2021) propose a pluggable089

method called PICARD to refuse incorrect results090

at each autoregressive generation step. However,091

all of these methods requires large amounts of la-092

beled data for training because the model has to093

learn to generate KG items from either natural ques-094

tions or retrieved results and acquire the grammar095

of logical forms at the same time.096

With the rising of large language models097

(LLMs), researchers have explored their abilities098

in few-shot and zero-shot settings and results have099

proved their superiority in intent understanding and100

instruction following. Gu et al. (2023) proposed101

to employ LLM’s discriminative ability to guide102

agents to iteratively search over the possible se-103

quence space. In this way, agents generate faithful104

and syntactically correct logical form candidates105

and the model only faces the challenge of intent106

understanding, i.e., the model only needs to de-107

cided which candiate matches the question intent108

preicisely. Similarly, Li et al. (2023) employes109

LLMs to generate drafts of logical forms and binds110

surface names of entities and relationships using111

retrieval tools. In their proposed KB-BINDER,112

the challenge of aligning from question semantics113

to KG items is assigned to external retrieval mod-114

ule, the grammar of logical forms is obtained via115

in-context learning ability of the LLM, and the fi-116

nal answer is decided by self-consistancy (Wang117

et al., 2023) and majority voting. Although these118

methods demonstrate astonishing efficacy without 119

the need for a training phase, their utilization of 120

LLM still necessitates substantial computational 121

resource expenditure and raises concerns regarding 122

data security. 123

Inspired by the pre-training tasks of BART 124

(Lewis et al., 2020), we propose a method of con- 125

structing pseudo logical forms for pre-training, 126

where the pseudo logical forms only consist of 127

KG items and [mask] tokens. In the fine-tuning 128

stage, the [mask] tokens are trained to recover to 129

tokens about syntactics of the target logical form. 130

This approach allows us to separate the learning 131

of entity alignment and grammar of logical forms 132

into the pre-training and fine-tuning stages, respec- 133

tively. As answering questions only necessitates 134

a limited subset of the entire grammatical struc- 135

ture, it becomes markedly simpler for the model to 136

acquire this knowledge. Our experimental results 137

on the KQA and MetaQA datasets demonstrate 138

the effectiveness of our approach, as even with a 139

small number of annotated samples for fine-tuning, 140

satisfactory performance can be achieved. More- 141

over, this method can be combined with knowledge 142

distillation, thereby leveraging the benefits from a 143

well-pre-trained teacher model. 144

To conclude, our contributions are: 145

• We propose pseudo logical form pre-training, 146

separating the KG item alignment and logical 147

form grammar acquisition into pre-training 148

and fine-tuning stage respectively. 149

• The proposed pseudo logical form pre-trainig 150

is compatible with knowledge distillation and 151

therefore could further leverage benefits from 152

a well-pre-trained teacher model. 153

• Experiments on two KGQA datasets have 154

demonstrated the effectiveness on generating 155

various types of logical forms using few la- 156

beled data. 157

2 Related Work 158

2.1 KGQA 159

With the proliferation of comprehensive knowl- 160

edge graphs such as DBPedia (Auer et al., 161

2007), Freebase(Bollacker et al., 2008), and Wiki- 162

data(Vrandečić and Krötzsch, 2014), research into 163

KGQA has been rapidly advancing. Broadly, in- 164

formation retrieval (IR)-based methods and se- 165

mantic parsing (SP)-based methods are two main 166
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streams in this research area (Lan et al., 2021).167

SP-based methods, which are gaining popularity168

due to their superior interpretability compared to169

IR-based methods, frame KGQA as the challenge170

of transforming natural language queries into exe-171

cutable logical forms. In early researches, Query172

Graphs are built and converted into logical forms.173

Bornea et al. (2021) and Kapanipathi et al. (2021)174

utilize intermediate forms like AMR to help the175

generation of target logical forms. With the ad-176

vance of PTMs like BART (Lewis et al., 2020),177

Cao et al. (2022) directly generates logical forms178

from natural questions .179

To address the challenges of generating logical180

forms, retrieval is commonly used to provide faith-181

ful context for generation models (Ye et al., 2022;182

Gu and Su, 2022; Hu et al., 2022). Shu et al. (2022)183

employ multi-grained retrieval to provide seman-184

tic and syntactic context to ease the generation.185

They also constrain the decoding process by con-186

structing trie (prefix tree) of KG items. Yu et al.187

(2022) combine the generation of logical forms and188

direct generation of the answer, achieving impres-189

sive results on several datasets. Nie et al. (2022)190

proposes a new intermediate representation which191

is more close to natural language than traditional192

logical forms. With the rising of LLMs, Gu et al.193

(2023) propose to use LLMs to discriminate can-194

diate logical forms generated by interacting with195

real-world environment and achieve promising re-196

sults on several KGQA datasets. KB-Binder works197

in a few-shot in-context learning paradigm to gener-198

ate logical forms with the power of LLMs (Li et al.,199

2023). However, it involves a complex pipeline200

to generate hunderds of candiates thus results in201

high computational costs. In this work, we aim at202

developing an end-to-end logical form generation203

model with less computational resources.204

2.2 Knowledge Distillation205

Since when knowledge distillation is proposed, it206

has been extensively studied to perform model207

compression or domain migration via effective208

knowledge transfer (Hinton et al., 2015). Previ-209

ous works have studied the potential of distill-210

ing BERT (Devlin et al., 2019) for text genera-211

tion (Chen et al., 2020) . Many neural machine212

translation researches towards low-resource lan-213

guages also have explored the utilization of knowl-214

edge distillation (Ansell et al., 2023; Wang et al.,215

2020). There are two major categories of knowl-216

edge distillation methods used for text generation:217

word-level and sequence-level (Kim and Rush, 218

2016). In this work, we designed an optional knowl- 219

edge distillation method that can be integrated with 220

proposed pseudo logical form pre-training to fur- 221

ther augment model’s ability in question under- 222

standing and KG item alignment. Through knowl- 223

edge distillation, intricate features and representa- 224

tions learned by the comprehensive teacher model 225

are effectively transferred to the student model. In 226

doing so, the student model inherits the teacher’s 227

capability to understand natural language questions, 228

leveraging the dark knowledge encapsulated in soft 229

labels to refine its own acknowledgment of the KG 230

contents. 231

3 Task Definition 232

3.1 Knowledge Graph 233

Knowledge graph is a special knowledge base that 234

stores knowledge in graph structure. A typical 235

knowledge base consists of an ontology O and a 236

model M (Gu et al., 2022) . M is data model 237

representing facts and O is the ontology contain- 238

ing schema configurations. Schema configurations 239

includes property, relationships and their intercon- 240

nectivity between different types of nodes. For 241

example, different schema settings results in differ- 242

ent Cypher queries as shown in Figure 1. 243

For RDF data model, M ⊆ (E ∪R)×R× (C ∪ 244

E ∪ V), where E is a set of entities, R is a set of bi- 245

nary relations, C is a set of classes, and V is a set of 246

literal values. For Neo4j’s labeled property graph 247

model , M ⊆ N ×R×P × L, where N is a set 248

of nodes, R is a set of directed relations, P is a set 249

of properties, and L is a set of labels. Both nodes 250

and relationships possess distinctive identifiers and 251

can store properties represented as key–value pairs. 252

Nodes can be labeled to be grouped. The edges 253

in LPG representing the relationships always have 254

a start node and an end node, making the graph a 255

directed graph. 256

3.2 Task Formulation 257

Given G = {O,M} and a natural language ques- 258

tion q = {x1, x2, ..., xn}, the task is to generate a 259

logical form l = {y1, y2, ..., yℓ} that is executable 260

against G and returns an answer a to the question. 261

This procedure is formulated as: 262

P (l) =
ℓ∏

i=1

P (yi|q, y1, y2, ..., yi−1) (1) 263

a = ϕ (G, c) (2) 264
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Encoder

Question: what are the languages spoken 
in the films directed by Joel Zwick? Pseudo Label Pre-training

SELECT DISTINCT ?pv WHERE { ?e <directed_by> ?e_1 . ?e_1 <pred:name> "Joel Zwick" . ?e <language> ?pv . }

Decoder  

<mask>directed_by<mask>name<mask>"Joel Zwick"<mask>language<mask>

Teacher Model  

Knowledge Distillation

Fine-tuning Stage

Encoder

Decoder  

Question

GraphQ_IR label

or KoPL label

or SPARQL label

or Cypher label

···

Figure 2: The overview of the proposed method. We take BART as the base model. The teacher model is a proficient
logical form generation model whose input is natural questions.There is no restriction to the architecture of the
teacher model, both seq2seq models and causal models will fit.

where n is the question length , ℓ is the target log-265

ical form length, and ϕ is the execution function266

against G. The answer a can be a node, a relation-267

ship, a number or a boolean value.268

3.3 Logical Forms269

In this work, we investigate four kinds of logical270

forms: SPARQL , Cypher, GraphQ_IR and KoPL.271

SPARQL SPARQL is the query language for272

RDF data (Consortium et al., 2014). A target graph273

pattern is usually delineated in a where clause,274

wherein variables (which start with a question275

mark), relationships, and literal values combine276

to form triple sequences. SPARQL is the most277

commonly used logical form in KGQA tasks be-278

cause RDF is the most popular data format of KG279

triple storage (Gu et al., 2022).280

Cypher Cypher is the graph query language281

of Neo4j and a logical form for KGQA. A282

typical CQL statement commences with the283

keyword MATCH, which is then succeeded284

by a graph pattern expression. In the graph285

pattern expression, parentheses are used to286

represent a node, and square brackets are used287

to represent an edge. Take the Cypher query288

in Figure 1 for example, (n1{name:"Joel289

Zwick"})<-[:DIRECTED_BY]-(n2) represents290

node n2 has a relationship :DIRECTED_BY directed291

to node n1. The arrow near the node n1 indicates292

the direction of the relationship.293

KoPL KoPL is first introduced in Cao et al.294

(2022). It is designed to describe the explicit295

reasoning processes for complex questions over296

knowledge bases. There are 27 functions in the297

KoPL library, providing an explicit modeling of298

the reasoning steps.299

GraphQ IR To mitigate the discrepancy between300

traditional logical forms and natural language utter- 301

ances, Nie et al. (2022) have designed GraphQ IR 302

(graph query intermediate representation) which 303

has natural-language-like expression and formally 304

defined syntax. It cannot be executed directly but 305

can be transpiled into logical forms such as KoPL 306

and SPARQL1. 307

4 Methodology 308

4.1 Pseudo Logical Form 309

To generate correct logical forms end-to-end, the 310

model needs two abilities: generate KG items con- 311

ditioned on input question and generate grammati- 312

cally correct logical forms. The first one requires 313

awareness of KG contents and mapping knowledge 314

from question semantics to KG items, where KG 315

items (i.e., entity names and relationships) are dif- 316

ferent from entity mentions in the question or are 317

implicitly embeded in the question. The second 318

one is commonly learned during traing process and 319

extra grammar module will help in the decoding 320

process. Previous methods, whether aided with 321

extra retrieval modules, train the model to acquire 322

such abilities at the same time, therefore increaing 323

the demand for labeled data. We notice that KG 324

items in the logical forms are invariant when the 325

question and the KG are fixed, where other tokens 326

in the logical forms vary conditioned on question 327

intents and grammar of logical forms. For example, 328

entity "Joel Zwick" and relationships directed_by, 329

name and language will always appear in logical 330

forms as shown in Figure 1. 331

Inspired by the pre-train task of BART, where 332

[mask] tokens are trained to reconstruct text spans, 333

1The transpile process involves rule-based transpilers,
which are schema-specific, and implementing such transpilers
requires expertise in professional tools.

4



we propose to build pseudo logical forms that only334

consists of KG items and [mask] tokens to be the335

pre-training labels. Formally, the pseudo logical336

form p for question q is defined as:337

p = {p1, p2, ..., pm},pm ∈ {[mask] ∪ yinv} (3)338

yinv = M∩ l (4)339

where m is the length of the pseudo logical form340

and each token of the invariant KG items, noted341

as yi ∈ yinv, is surrounded by [mask] tokens.342

We construct pseudo logical forms as target labels343

for every question in the training set and pre-train344

the model to maximize P (p|q). Through pseudo345

pre-training, the model acquires the knowledge of346

mapping between natural question semantics and347

KG items. In the subsequent fine-tuning stage, the348

model can only focus on generating tokens that are349

associated with logical form grammar by filling350

[mask] tokens.351

4.2 Knowledge Distillation352

Assuming the presence of a proficient question-353

to-logical-form model θt, the suggested approach354

of incorporating pseudo logical form pre-training355

could potentially yield advantages when coupled356

with a knowledge distillation strategy utilizing θt357

as the teacher model.358

Similar to previous formulation, the359

teacher model θt generates logical form360

lt = {y1, y2, ..., yt} conditioned on input question361

q. Since the teacher model is trained on complete362

logical forms, its knowledge about KG items is363

more comprehensive compared to the student364

model trained using pseudo-labels. Therefore, we365

combine the pre-training of the student model366

with knowledge distillation from the teacher367

model by pushing the token logits of yinv to the368

teacher model’s outputs. The loss functions for369

pre-training and knowledge distillation are as370

follows:371

LLM = −1

s

s∑
i=1

logPθc(pi) (5)372

LKD =
1

k

k∑
pi∈yinv

KL(Pθs(pi|q)||Pθt(pi|q)) (6)373

374
L = LLM + LKD (7)375

where pi are tokens from p, k is the number of KG376

related tokens, θs is the student model and θs is377

the teacher model.378

5 Experiments 379

5.1 Datasets 380

MetaQA MetaQA (Zhang et al., 2018) is derived 381

from the WikiMovies and contains over 400k an- 382

notated question answer pairs in different levels of 383

difficulty. It is a domain specific dataset, where 384

number of entities and relationships is limited as 385

shown in Table 8. In this paper, we use the version 386

provided by Nie et al. (2022), where GraphQ_IR, 387

KoPL, SPARQL and Cypher annoations are avail- 388

able. For the few-shot setting, we also following 389

Nie et al. (2022) to sample k ∈ 1, 3, 5 examples for 390

each question type as shown in Table 7 . 391

KQA Pro KQA Pro is currently the largest KGQA 392

dataset for complex questions, providing more 393

than 100k question-answer pairs with KoPL and 394

SPARQL annoations. It is based on a delicate 395

database which is a Wikidata subset customized 396

with FB15K-237 (Toutanova et al., 2015). Accord- 397

ing to the KoPL annotation in KQA Pro, there are 398

12 types of questions. As the annotation for the test 399

set of KQA Pro is not publicly available, we ran- 400

domly selected 3, 000 samples from the validation 401

set while keeping the distribution of the 12 types of 402

questions. The remaining 8,797 samples in the vali- 403

dation set are treated as the test set, see Table 7. To 404

simulate practical low-resource scenario, we ran- 405

domly sample 50, 100, and 200 training samples 406

from the train set for the experiments. 407

5.2 Baselines 408

Seq2seq Models Following the original KQA Pro 409

paper (Cao et al., 2022), we take BART (Lewis 410

et al., 2020) as our seq2seq baseline. T5 is also a 411

popular seq2seq model and has similar pre-training 412

tasks to BART. However, the curly brackets ({ and 413

}) which is a key element in logical forms like 414

SPARQL and Cypher are not included in the vo- 415

cabulary of the T5 series models. We skip T5 se- 416

ries because it is not a key point to compare be- 417

tween pre-trained models 2. Transfer Learning 418

(TL) is a classic method for low-resource trans- 419

lation, which is similar to our task. We implement 420

BART+TL by initializing from a model3 trained on 421

NL-SPARQL pairs and fine-tuning on NL-Cypher 422

pairs. SKILL (Moiseev et al., 2022) infuses KG 423

2Our method can be applied T5 by modifying the vocab-
ulary or replace curly brackets in logical forms using other
tokens like < lb > and < rb >.

3Take from Cao et al. (2022), also used as the teacher
model for KD
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Model #Samples 50 #Samples 100 #Samples 200
BLEU-4 ER Acc BLEU-4 ER Acc BLEU-4 ER Acc

KvMemNet (Miller et al., 2016) - - 1.64 - - 6.25 - - 4.22
RGCN (Schlichtkrull et al., 2018) - - 4.23 - - 9.71 - - 10.56
ChatGPTRand 56.35 94.90 14.50 54.64 93.60 13.90 54.28 94.30 14.50
ChatGPTBM25 72.78 96.60 34.10 75.26 96.60 37.70 78.46 97.70 41.40
GPT2 large (Radford et al., 2019) 48.08 90.38 5.08 53.17 97.45 6.74 55.08 92.37 11.44
LLaMA 7B (Touvron et al., 2023a) 55.28 89.16 7.37 63.38 91.35 11.67 74.89 93.04 31.70
LLaMA2 7B (Touvron et al., 2023b) 65.08 80.00 17.54 68.59 85.12 19.85 73.38 86.19 25.59
BART base (Cao et al., 2022) 63.66 72.25 10.19 66.77 77.74 14.82 78.47 90.91 23.51
BART+SKILL∗ (Moiseev et al., 2022) 59.29 71.96 9.95 67.23 81.37 15.12 74.86 88.41 26.69
BART+GraphQ IR (Nie et al., 2022) - - 21.00 - - 24.07 - - 31.98
BART+TL (Zoph et al., 2016) 70.96 49.31 9.31 78.63 70.93 32.92 86.94 81.36 50.20
Ours 72.87 76.66 23.98 84.27 83.97 40.68 90.16 89.54 52.12

Table 1: The performances on KQA Pro trained with different numbers of data samples. BART-TL stands for
transfer training. For ChatGPT results, we use a five-shot in-context learning setting, where ChatGPTRand randomly
samples five exemplars and ChatGPTBM25 uses the top five exemplars returned from a BM25 retriever.

knowledge into language models via direct pre-424

training on serialized KG triples. We implement425

BART+SKILL∗ by convert triples into Cypher pat-426

terns, e.g., <House, has_genre,Horror> is format-427

ted as (:Entity{name:"House"})-[:R{name:" ⌋428

has_genre"}]-(:Entity{name:"Horror"}).429

Causal Models For decoder-only causal lan-430

guage models, we have selected GPT2 (Radford431

et al.) and the recently released LLaMA (Touvron432

et al., 2023a) to compare in the fine-tuning set-433

ting. We further explored the capabilities of Chat-434

GPT4 to generate Cypher via an in-context learning435

paradigm. To eliminate any randomness introduced436

by sampling, we set the temperature parameter T437

to zero in the API request.438

Others KvMemNet (Miller et al., 2016) and439

RGCN (Schlichtkrull et al., 2018) are two base-440

lines for KQA Pro, we use the implementation of441

Cao et al. (2022) and fine-tuning under our few-442

shot setting.443

5.3 Metrics444

The primary goal of KGQA is to obtain the cor-445

rect response to the input question. Following Cao446

et al. (2022), we adopt Answer Accuracy (Acc)447

as the principal evaluation metric on KQA Pro.448

Besides, we take the widely-used text-generation449

metric, BLEU-4, to measure the similarity between450

the generated logical forms and golden labels. To451

measure models’ acquisition of the grammar, we452

define the metric Executable Rate (ER) as the per-453

centage of whether the generated logical form can454

be parsed into a valid abstract syntax tree. Exact455

Match (EM) of the prediction and reference is a456

4The API used is gpt-3.5-turbo.

BLEU-4 ER EM

LLaMA2 7B (Touvron et al., 2023b) 72.75 97.80 13.14
BART base (Cao et al., 2022) 89.81 98.29 62.55
BART+SKILL∗ (Moiseev et al., 2022) 89.36 99.74 59.15
BART+GraphQ IR (Nie et al., 2022) - - 67.46
Ours w/o KD - - 71.13

Table 2: Results on MetaQA under 1-shot setting.

substitution of answer accuracy. When the execu- 457

tion endpoint is absence, we use the exact match 458

score to replace answer accuracy because the an- 459

swer is assuredly correct if the generated logical 460

form matches the label. 461

5.4 Implementaion Detail 462

We use BART base as the base model and fine-tune 463

in half precision mode. In the pre-training stage, 464

we use AdamW optimizer with a learning rate of 465

5e-5, and train 10 epochs on the trainset where in- 466

put is the question and target label is the pseudo 467

logical form. For knowledge distillation, we use 468

temperature T = 5. In the fine-tuning stage, we 469

train the model for 10,000 steps and select check- 470

point according to the loss value on validation set. 471

All experiments are conducted on an RTX 3090. 472

5.5 Main Results 473

In Table 1, the models’ performances are compared 474

across three training sample sizes: 50, 100, and 475

200. The results show a general trend of improved 476

performance with an increase in the number of 477

training samples. This is evident across all models, 478

with notable improvements in BLEU-4, ER, and 479

Acc. Our model consistently achieves the highest 480

scores in both BLEU-4 and answer accuracy across 481

all training sample sizes, setting it apart as the best- 482
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BLEU-4 ER Acc

Ours 84.27 83.97 40.68
w/o PT 81.62 (-2.65) 74.79 (-9.18) 34.64 (-6.04)
w/o KD 73.01 (-11.26) 82.00 (-1.97) 18.81 (-21.79)

Table 3: Ablation study on KQA Pro trained with 100
samples. PT and KD stands for pseudo label pre-training
and knowledge distillation, respectively.

performing model. Notably, GPT2 performs well483

in ER with the worst BLEU-4 score. The reason484

behind this phenomenon is that GPT2 tends to gen-485

erate simple and short sequences, thus achieving486

higher ER score. LLaMA2 shows superiority with487

50 and 100 training samples, while LLaMA per-488

forms better with 200 training samples. LLaMA489

models are comparable to BART+SKILL∗, which490

is infused with KG knowledge, highlighting the491

power of pre-training and large parameter sizes.492

For ChatGPT methods, BM25 (Robertson et al.,493

2009) selects similar question and enable ChatGPT494

to learn from corresponding logical forms that are495

similar to the target logical form, resulting in rela-496

tively high performance. However, ChatGPT fails497

to get good results when provided with randomly498

selected context. More discussion about ChatGPT499

is in Appendix B.5. BART+SKILL∗ is slightly bet-500

ter than BART base when the number of training501

samples increases. GraphQ IR generates intermedi-502

ate representations (IR) similar to natural language,503

and the IRs are transpiled into other logical forms504

to get the answer. It yields the best performance505

model without aid from a teacher model. Although506

BART+TL showed superiority in BLEU-4 and Acc,507

it was the worst-performing model in terms of ex-508

ecutable rate because it sometimes generates se-509

quences with mixed logical form syntax(E.g., half510

SPARQL and half Cypher). Our model absorbs511

knowledge from pseudo labels and a well-trained512

teacher model and is free from the teacher’s stereo-513

type of SPARQL syntax; thus, it learns well in514

both syntax and semantics and achieves the highest515

answer accuracy.516

Resutls for MetaQA are shown in Table 2. We517

have no execution endpoint so the EM score is518

used to replace Acc. Compared with directly519

fine-tuning with GraphQ IR, our pseudo label pre-520

trained model achieves certain improvements5. The521

KD method is not applied on this dataset because522

5The BLEU-4 and ER score is not reported because the
transpiler of GraphQ IRs handles errors and always generates
syntax-correct SPARQL queries.

Logical Form 1 shot 3 shot 5 shot

Fine-tune from BART base
SPARQL 71.43 90.10 91.52
Cypher 62.55 84.23 92.71
KoPL 78.76 79.97 94.00
GraphQ_IR 55.52 90.45 94.85
Fine-tune from pseudo pre-trained
SPARQL 75.06 (+3.61) 91.44 (+1.33) 93.31 (+1.79)
Cypher 61.00 (+1.55) 87.62 (+3.39) 92.56 (-0.15)
KoPL 78.69 (-0.07) 93.13 (+13.16) 93.90 (-0.10)
GraphQ_IR 71.13 (+15.61) 93.26 (+2.81) 96.50 (+1.65)

Table 4: The EM score of logical forms on MetaQA.

Logical Form #samples 50 #samples 100 #samples 200

Fine-tune from BART base
SPARQL 4.69 9.4 15.52
Cypher 5.22 10.04 18.7
KoPL 8.12 8.55 20.43
GraphQ_IR 11.42 15.41 25.84
Fine-tune from pseudo pre-trained
SPARQL 8.53 (+3.84) 11.77 (+2.37) 21.44 (+5.92)
Cypher 8.20 (+2.98) 11.38 (+1.34) 21.06 (+2.36)
KoPL 9.86 (+1.74) 13.89 (+5.34) 24.84 (+4.41)
GraphQ_IR 11.9 (+0.48) 17.89 (+2.48) 26.12 (+0.28)

Table 5: The EM score of logical forms on KQA Pro.

we have not found a suitable teacher model that is 523

publicly available. 524

5.6 Ablation Study 525

As shown in Table 3, both PT and KD contribute 526

to our model. When KD is removed, the BLEU-4 527

and Acc drop more, indicating the knowledge trans- 528

ferred from the teacher model helps the student to 529

learn the question intent and relationships between 530

entities. When PT is removed, the ER drops a lot, 531

indicating that PT is positive or KD is negative to 532

the learning of logical form grammar. Compared to 533

the BART base, whose ER score is 77.74, we can 534

conclude that both influences exist as PT increases 535

the ER score by 4.26 points and KD decreases by 536

2.95 points. That means the teacher’s knowledge 537

about SPARQL grammar is transferred through the 538

distillation of invariant tokens and harms the stu- 539

dent’s adaptation to Cypher syntax. 540

6 Discussion 541

6.1 Generalization across Logical Forms 542

We have conducted the pre-train-then-finetune 543

experiments across four logical forms on both 544

MetaQA and KQA Pro datasets. 545

As expected, both starting points (BART base 546

and pseudo logical form pre-trained) demonstrate 547
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Model #Samples 50 #Samples 100 #Samples 200
Easy Medium Hard Easy Medium Hard Easy Medium Hard

GPT2 large 4.87 6.28 1.57 7.77 7.09 4.05 19.13 8.81 8.10
LLaMA 7B 5.12 8.37 7.58 10.76 12.90 9.14 53.42 26.24 16.07
LLaMa2 7B 34.67 12.57 7.32 33.01 17.24 8.10 40.31 23.33 10.32
BART base 24.42 5.61 3.14 28.18 10.99 6.73 39.50 19.74 11.17
BART+SKILL∗ 19.34 6.95 5.23 25.92 12.55 6.86 45.00 21.51 15.35
BART+GraphQ IR 39.67 15.92 8.82 46.97 17.22 11.04 57.56 25.12 14.89
BART+TL 26.17 7.86 3.52 35.14 11.50 5.55 41.67 20.76 10.45
Ours 47.14 16.51 12.61 61.66 37.19 19.86 71.69 48.56 33.64

Table 6: Answer accuracy on different question complexity levels. The proportion of easy/medium/hard questions
in the test set is 26.6%/56%/17.4% .

an improvement in performance with an increase in548

the number of shots. This reaffirms the common un-549

derstanding that more training data typically yields550

better model performance. However, the crux of551

the analysis revolves around the difference between552

the BART base and the pseudo pre-trained models.553

On MetaQA, as shown in Table 4, the pseudo554

logical form pre-training strategy, on the whole,555

outperforms the BART base, especially in 1-shot556

GraphQ_IR and 3-shot KoPL tasks, with improve-557

ments of +15.61% and +13.16% respectively.558

These significant boosts suggest that this strategy559

has a pronounced effect on these specific logical560

forms. On the other hand, while there are instances561

where the pseudo pre-trained model marginally un-562

derperforms compared to the BART base, these563

deviations are minimal (around 0.1%).564

Different from MetaQA, KQA Pro is an open-565

domain dataset with complex questions that require566

multiple reasoning steps to answer. As shown in567

Table 5, the proposed pseudo label training strategy568

is also effective on this dataset, resulting in 0.28%569

to 5.92% certain improvements on various settings.570

6.2 Question Complexity571

We define three question complexity levels accord-572

ing to the length of annotated KoPL provided in the573

original KQA Pro. Questions that can be solved in574

fewer than four function steps are defined as easy575

level, questions that require more than six function576

steps to solve are defined as hard level, while the re-577

maining questions are grouped as medium level. As578

shown in Table 6, all of the models perform badly579

when trained with only 50 samples. It is noteworthy580

that the LLaMA series and GraphQ IR show strong581

performance on easy questions and have a gener-582

alization ability to longer questions compared to583

other models, revealing the power of unsupervised584

pre-training on the massive corpus. Our model 585

achieves the best performance due to its explicit 586

acquisition of relationships and entity knowledge 587

and implicit forward-looking knowledge from the 588

teacher model regarding the generation of complete 589

logical forms. It is particularly evident when fac- 590

ing hard questions that have many more reasoning 591

steps and involve more entities and relationships. 592

7 Conclusion 593

In this work, we introduced a novel pseudo-logical 594

form pre-training approach that splits the learning 595

process of logical form generation models into a 596

pre-training and a fine-tuning phase. During pre- 597

training, the model gains the capability to gener- 598

ate KG items based on its interpretation of a given 599

question. Fine-tuning then emphasizes logical form 600

grammar learning, where the model learns to fill 601

mask tokens with minimal training data. We experi- 602

ment with golden pseudo labels and noisy ones that 603

are automatically generated via in-context learning 604

of LLMs, and the results have demonstrated the 605

effectiveness of the proposed method to boost few- 606

shot performances in generating multiple kinds of 607

logical forms. Besides, we also propose a knowl- 608

edge distillation method that can further improve 609

model performances when proficient teacher mod- 610

els are available. Our model outperforms several 611

strong baselines in various experimental settings, 612

demonstrating the effectiveness of the proposed 613

methods. The proposed methods facilitate seam- 614

less transitions of KGQA systems across differ- 615

ent schema settings, such as moving from an RDF 616

database to a Neo4j backend and switching from 617

SPARQL to Cypher. In the future, we will ex- 618

plore the utilization of LLM capabilities to provide 619

guidance for smaller models due to the scarcity of 620

proficient teachers in most scenarios. 621
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8 Limitation622

Our method is inspired by the pre-training task "cor-623

rupt text span" of seq2seq language models like T5624

and Bart. The [mask] token in our pseudo label625

will be filled with an indeterminate number of to-626

kens in the subsequent fine-tuning phase. However,627

based on some experimental results with causal628

models (GPT, Llama), the absence of the mask to-629

ken significantly impacts the performance of our630

method. Nonetheless, according to our experi-631

ments, small seq2seq models like BART base can632

surpass the performance of causal models which633

is much larger in parameter size. It does not ap-634

pear to be a substantial limitation as seq2seq model635

represents a superior option in terms of both per-636

formance and computational cost.637
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A Experiment Data995

A.1 Dataset split996

Train Validation Test
MetaQA 1-shot 49 4,900 39,093
MetaQA 3-shot 147 4,900 39,093
MetaQA 5-shot 240 4,800 4,800
KQA Pro #50 50 3,000 8,797
KQA Pro #100 100 3,000 8,797
KQA Pro #200 200 3,000 8,797

Table 7: Data splits for the experiments.

B Experiments Details997

B.1 Full Ablation Study998

We have also conducted ablation study with 50 and999

200 training samples as shown in Table 9 .1000

Dataset #Entity #Relationship Max Hops

MetaQA 43,234 9 3
KQA Pro 829,351 1,101 14

Table 8: Statistics of experiment datasets.

B.2 Pre-training on Noisy Pseudo Label 1001

In our experimental settings, we construct pseudo 1002

logical forms from annotated logical forms. How- 1003

ever, the golden annotation for questions is expen- 1004

sive in practical situations. We attempt to leverage 1005

the in-context learning (ICL) capability of LLMs to 1006

aid the construction of pseudo logical forms. Due 1007

to the limitation of computational resources, we 1008

only conduct noisy pseudo logical form construc- 1009

tion on the MetaQA dataset, where logical forms 1010

are much shorter than that of KQA Pro. We set 1011

up an LLM 6 locally for this process. For the ICL 1012

instruction, we describe the task and list all nine re- 1013

lationships. Followed by the instruction are several 1014

manually annotated questions and pseudo logical 1015

form pairs. During the inference, we only change 1016

the question appended to the prompt. Token <e> is 1017

used to inform the model when to stop, and we dis- 1018

card generation results that do not end with <e>. It 1019

takes over 50 hours to obtain noisy pseudo logical 1020

forms for questions of the MetaQA train set. The 1021

prompt that we use for the construction of noisy 1022

pseudo logical forms is shown in Figure 3. 1023

After pre-training on the obtained noisy pseudo 1024

labels, the fine-tuned results are listed in Table 13. 1025

It is impressive to observe that the proposed pre- 1026

training strategy can still effectively enhance the 1027

performance of the model in a few-shot setting, 1028

even when trained with data containing significant 1029

amounts of noise. However, there is one exception, 1030

which is the 5-shot Cypher generation. Upon exam- 1031

ining the prediction results, we discovered that the 1032

majority of errors stem from superfluous whites- 1033

pace appearing before the generated literal values, 1034

for instance, n2.name = " claude berri" instead 1035

of correct version n2.name = "claude berri". 1036

This error may have been caused by the overfit- 1037

ting of certain tokens when the noisy sequences are 1038

tokenized. 1039

The prompt we use to construct noisy pseudo 1040

logical forms consists of several manually anno- 1041

tated (question, pseudo label) pairs. Since MetaQA 1042

involves only nine relationships, we are able to put 1043

6https://huggingface.co/baichuan-inc/Baichuan-13B-
Chat
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Model #Samples 50 #Samples 100 #Samples 200
BLEU-4 ER Acc BLEU-4 ER Acc BLEU-4 ER Acc

Ours 75.48 71.59 23.47 85.06 86.22 41.38 90.25 90.45 52.60
w/o KD 68.40 77.10 14.64 73.01 82.00 18.81 75.84 89.03 22.30
w/o PT 71.92 53.36 14.77 81.62 74.79 34.64 89.10 82.90 49.93

Table 9: Full ablation study

Extract entities and relations from the sentence, where entity is part of the sentence and relation are restricted to the 
following relations: 'pred:name', 'has_imdb_rating', 'directed_by', 'in_language', 'has_genre', 'written_by', 'release_year', 
'has_tags', 'has_imdb_votes', 'starred_actors'.
which films are about jacques tati?
['has_tags', 'pred:name', '"jacques tati"'] <e>
the films acted by Sharon Tate were released in which years?
['starred_actors', 'pred:name', '"Sharon Tate"', 'release_year'] <e>
who acted in the movies directed by the director of Some Mother's Son?
['starred_actors', 'directed_by', 'directed_by', 'pred:name', '"Some Mother's Son"'] <e>
what are the languages spoken in the films whose directors also directed Police?
['directed_by', 'directed_by', 'pred:name', '"Police"', 'language'] <e>
$question_to_predict

Figure 3: The prompt we have used to construct noisy pseudo logical forms via in-context learning.

Logical Form 1 shot 3 shot 5 shot

SPARQL 73.64 (+2.21) 93.39 (+3.29) 93.42 (+1.9)
Cypher 65.68 (+3.33) 88.15 (+3.92) 87.73 (-4.98)
KoPL 79.64 (+0.88) 93.15 (+13.18) 94.42 (+0.42)
GraphQ_IR 65.24 (+9.72) 93.66 (+3.21) 94.85 (+0.0)

Table 10: Results of noisy pseudo label pre-training on
MetaQA. Improvements compared to BART base are in
brackets.

them in the prompt. For KGs that contain more1044

relationships, a retrieval module can be employed1045

to retrieve relevant relationships dynamically.1046

B.3 BLEU Scores across Logical Forms1047

Here we provide the BLEU-4 scores in addition1048

to EM scores for experiments on MetaQA and1049

KQA Pro. As shown in Table 11, 12 and 13, the1050

BLEU-4 scores have certain improvements across1051

all logical forms on both datasets. Significantly, the1052

progress made on the KQA Pro dataset stands out1053

more prominently because the dataset encompasses1054

a wider range of entities and relationships. Re-1055

garding the comparatively basic MetaQA dataset,1056

employing an LLM with 13 billion parameters1057

to autonomously generate pseudo-labels infused1058

with noise still leads to performance enhancements.1059

This demonstrates the ease of applying this method-1060

ology, as it requires minimal effort to achieve posi-1061

tive results.1062

B.4 Efficiency and Privacy1063

We have evaluated the generation efficiency of our1064

model compared to other large language models,1065

Logical Form #samples 50 #samples 100 #samples 200

Fine-tune from BART base
SPARQL 60.80 70.76 76.78
Cypher 54.65 60.65 73.32
KoPL 62.43 62.21 76.55
GraphQ_IR 67.60 71.28 79.23

Fine-tune from pseudo pre-trained
SPARQL 67.46 (+6.66) 74.26 (+3.50) 81.66 (+4.88)
Cypher 61.93 (+7.28) 66.35 (+5.70) 75.87 (+2.55)
KoPL 63.17 (+0.74) 71.02 (+8.81) 79.57 (+3.02)
GraphQ_IR 71.81 (+4.21) 17.89 (+5.36) 79.64 (+0.34)

Table 11: The BLEU-4 scores on KQA Pro.

Logical Form 1 shot 3 shot 5 shot

Fine-tune from BART base
SPARQL 94.39 98.34 98.88
Cypher 89.81 96.23 98.66
KoPL 95.23 96.30 98.55
GraphQ_IR 88.43 97.05 98.62

Fine-tune from pseudo pre-trained
SPARQL 95.84 (+1.45 ) 98.85 (+0.51) 99.15 (+0.27)
Cypher 90.20 (+0.39) 97.78 (+1.55) 98.89 (+0.23)
KoPL 94.83 (-0.40) 98.80 (+2.50) 98.89 (+0.34)
GraphQ_IR 92.11 (+3.68) 98.23 (+1.18) 99.13 (+0.51)

Table 12: The BLEU-4 scores on MetaQA.

such as LLaMA. Our base version of BART, which 1066

has 216 million parameters, demonstrates that even 1067

with significantly fewer parameters—over 30 times 1068

less than LLaMA 7B’s—it can still deliver promis- 1069

ing results. On identical hardware equipped with 1070

an RTX 3090, our model’s inference speed is 36 1071

times faster, taking only 2.5 minutes as opposed 1072

to approximately 90 minutes to predict our test set 1073

from KQA Pro. Hence, in scenarios requiring the 1074
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Logical Form 1 shot 3 shot 5 shot

SPARQL 96.71 (+2.32) 99.10 (+0.8) 99.03 (+0.15)
Cypher 93.80 (+3.99) 98.34 (+2.11) 98.27 (-0.39)
KoPL 95.08 (-0.15) 98.81 (+2.51) 98.93 (+0.38)
GraphQ_IR 90.39 (+1.96) 98.65 (+1.60) 98.21 (-0.41)

Table 13: BLEU-4 score results of noisy pseudo label
pre-training on MetaQA. Improvements compared to
BART base are in brackets.
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Figure 4: The ICL results of ChatGPTBM25 with differ-
ent exemplars.

generation of logical forms with limited resources,1075

smaller models maintain high performance and ef-1076

ficiency, making them viable technical candidates.1077

Furthermore, while more powerful LLMs like Chat-1078

GPT can achieve impressive performance through1079

training-free in-context learning methods, this ap-1080

proach raises data privacy concerns due to the need1081

for processing data in the cloud. The method we1082

propose serves as a good precursor for building1083

low-resource KGQA systems locally.1084

B.5 More ChatGPT Results1085

The quantity of exemplars provided in the context1086

is an intuitive factor that affects the final perfor-1087

mance for in-context learning. In our research, we1088

retrieved the K most similar samples to the ques-1089

tion using the BM25 (Robertson et al., 2009) to1090

form context, where K ranges from 1 to 5. The1091

experimental results are illustrated in Figure 4. As1092

observed, ChatGPT achieved a high executable rate1093

in generating CQL with reference to contextual1094

demonstrations. However, there was a significant1095

gap between the accuracy rate of answers and the1096

executable rate, especially in the zero-shot setting.1097

When no exemplar provided, ChatGPT generates1098

syntax correct but unfaithful CQL, indicating that1099

ChatGPT is familiar with CQL grammar but has1100

little knowledge about the schema of specific KG.1101

Moreover, we note that result in Figure 4 retrieves1102

relevant samples from 24,000 annotated logical 1103

forms. Compared to results in Table 1, where only 1104

hundreds of data were used to retrieve relevant sam- 1105

ples, we can see a significant performance gap (i.e., 1106

the decrease of answer accuracy ranging from 19.0 1107

to 26.3 points). 1108
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