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Abstract

With the emergence of neural language mod-
els, extensive research has been conducted
on question-answering systems. Knowledge
Graph Question Answering (KGQA) remains
a hot topic because it returns answers from reli-
able knowledge graphs, while language models
sometimes suffer from hallucinations and pro-
duce unfaithful answers. An intuitive and expli-
cable solution for KGQA involves generating
logical forms (such as SPARQL, s-expression,
Cypher, etc.) that can be executed against the
KG. However, due to the heterogeneous nature
of KG schemas across different KGs, distinct
logical forms are required, thereby necessitat-
ing various models. The training process for
such models to adapt to diverse KG schema set-
tings is resource-intensive or data-hungry when
built upon large language models or smaller
models, respectively. In this work, we propose
a novel pseudo logical form pre-training strat-
egy to separate the learning process into a pre-
training stage and a fine-tuning stage. In the
pre-training stage, the model learns to generate
KG items according to its understanding of the
question. In the fine-tuning stage, the model
may focus on learning logical form grammar
with limited labeled data. Besides, the pro-
posed strategy can be combined with knowl-
edge distillation to further boost the model’s
performance. Experimental evaluations con-
ducted on MetaQA and KQA Pro show that
our model outperforms several strong baselines,
thus substantiating the efficacy of our proposed
techniques.

1 Introduction

Knowledge graphs question answering (KGQA)
aims at answering natural language questions ac-
cording to fact triples stored in the knowledge
graph (KG). It plays a fundamental role in many
industrial applications like search engines and Al
assistants. Previous methods involve information
extraction and retrieval, where they first identify the

| GraphQ_IR
H What is the attribute <A> language </A> of <ES> ones that <R> directed by
</R> backward to <E> Joel Zwick </E> </ES>
| KoPL
Find(Joel Zwick).Relate(directed by,backward).QueryAttr(language)
| SPARQL
SELECT DISTINCT ?pv WHERE { ?e <directed_by> ?e_1 .
: Zwick" . ?e <language> 7pv .
1 Cypher (sl: language as a relationship)
: MATCH (n1{name:"Joel Zwick"})<-[:DIRECTED_BY]-(n2)-[:language]l->(n3)
! RETURN DISTINCT n3.name
i Cypher (s2: language as a property)
MATCH (n1)<-[:DIRECTED_BY]-(n2) WHERE nl.name = "Joel Zwick"
RETURN DISTINCT n2.language

?e_1 <pred:name> "Joel
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Figure 1: An example from MetaQA dataset.
GraphQ_IR, KoPL, SPARQL and Cypher are logical
forms that will return answer for the given question
when executed against the KG. When the KG is hosted
using Neo4j, the corresponding logical form will be
Cypher. According to the schema setting we use, lan-
guage can be a relationship between nodes (s1) or a
property name of a node (s2).

topic entity from the input question and then rank-
ing the retrieved entities to select final answer. Be-
sides, constructing a Query Graph and converting
it into executable logical forms is a more explain-
able method (Yih et al., 2015; Luo et al., 2018; Lan
and Jiang, 2020; Qiu et al., 2020; Qin et al., 2021).
With developement of pre-trained generative mod-
els, directly generate logical forms conditioned on
the input question in an end-to-end manner is be-
coming popular (Cao et al., 2022). This is similar
to the recent advances in Text-to-SQL, where SQL
queries are generated conditioned on the inputs
consists of questions and database schema items
(Zhong et al., 2017; Xu et al., 2018, 2022; Qi et al.,
2022; Qin et al., 2022). However, the quantity of a
KG’s schema items is typically much greater than
that of a relational database, resulting more chal-
lenges for end-to-end generation of logical forms.

Concretely, there are three challenges to gener-
ate correct logical forms. First, the model needs a
full understanding of the intent of the input ques-
tion. Second, the model needs to align the se-
mantics of the question to KG items, including en-
tity identifiers and relationships. Third, the model



should be aware of the grammar of target logical
forms to generate executable sequences. With the
power of pre-training on massive text corpus, the
transformer-based language models are proved to
have a good language understanding ability and
recent researches mainly focus on the second and
the third challenges. For the second challenge,
although some work have focused on injecting
knowledge from a KG and gained certain improve-
ments on some specific tasks (Agarwal et al., 2021;
Thorne et al., 2021; Moiseev et al., 2022), the hallu-
cination issue still exists in current models (Maynez
et al., 2020; Sun et al., 2023). Providing linked KG
schema items in the input sequence helps allevi-
ate but fails to prevent the model from generating
semantic similar but unfaithful results. For the
third challenge, there are already various methods
to help the model to generate syntactically correct
logical forms. Most commonly used method is
grammar-guided decoding (Krishnamurthy et al.,
2017; Yin and Neubig, 2018; Guo et al., 2019),
where an abstract syntax tree (AST) is firstly gen-
erated. Scholak et al. (2021) propose a pluggable
method called PICARD to refuse incorrect results
at each autoregressive generation step. However,
all of these methods requires large amounts of la-
beled data for training because the model has to
learn to generate KG items from either natural ques-
tions or retrieved results and acquire the grammar
of logical forms at the same time.

With the rising of large language models
(LLMs), researchers have explored their abilities
in few-shot and zero-shot settings and results have
proved their superiority in intent understanding and
instruction following. Gu et al. (2023) proposed
to employ LLM’s discriminative ability to guide
agents to iteratively search over the possible se-
quence space. In this way, agents generate faithful
and syntactically correct logical form candidates
and the model only faces the challenge of intent
understanding, i.e., the model only needs to de-
cided which candiate matches the question intent
preicisely. Similarly, Li et al. (2023) employes
LLMs to generate drafts of logical forms and binds
surface names of entities and relationships using
retrieval tools. In their proposed KB-BINDER,
the challenge of aligning from question semantics
to KG items is assigned to external retrieval mod-
ule, the grammar of logical forms is obtained via
in-context learning ability of the LLM, and the fi-
nal answer is decided by self-consistancy (Wang
et al., 2023) and majority voting. Although these

methods demonstrate astonishing efficacy without
the need for a training phase, their utilization of
LLM still necessitates substantial computational
resource expenditure and raises concerns regarding
data security.

Inspired by the pre-training tasks of BART
(Lewis et al., 2020), we propose a method of con-
structing pseudo logical forms for pre-training,
where the pseudo logical forms only consist of
KG items and [mask] tokens. In the fine-tuning
stage, the [mask] tokens are trained to recover to
tokens about syntactics of the target logical form.
This approach allows us to separate the learning
of entity alignment and grammar of logical forms
into the pre-training and fine-tuning stages, respec-
tively. As answering questions only necessitates
a limited subset of the entire grammatical struc-
ture, it becomes markedly simpler for the model to
acquire this knowledge. Our experimental results
on the KQA and MetaQA datasets demonstrate
the effectiveness of our approach, as even with a
small number of annotated samples for fine-tuning,
satisfactory performance can be achieved. More-
over, this method can be combined with knowledge
distillation, thereby leveraging the benefits from a
well-pre-trained teacher model.

To conclude, our contributions are:

* We propose pseudo logical form pre-training,
separating the KG item alignment and logical
form grammar acquisition into pre-training
and fine-tuning stage respectively.

* The proposed pseudo logical form pre-trainig
is compatible with knowledge distillation and
therefore could further leverage benefits from
a well-pre-trained teacher model.

* Experiments on two KGQA datasets have
demonstrated the effectiveness on generating
various types of logical forms using few la-
beled data.

2 Related Work
2.1 KGQA

With the proliferation of comprehensive knowl-
edge graphs such as DBPedia (Auer et al.,
2007), Freebase(Bollacker et al., 2008), and Wiki-
data(Vrandeci¢ and Krotzsch, 2014), research into
KGQA has been rapidly advancing. Broadly, in-
formation retrieval (IR)-based methods and se-
mantic parsing (SP)-based methods are two main



streams in this research area (Lan et al., 2021).
SP-based methods, which are gaining popularity
due to their superior interpretability compared to
IR-based methods, frame KGQA as the challenge
of transforming natural language queries into exe-
cutable logical forms. In early researches, Query
Graphs are built and converted into logical forms.
Bornea et al. (2021) and Kapanipathi et al. (2021)
utilize intermediate forms like AMR to help the
generation of target logical forms. With the ad-
vance of PTMs like BART (Lewis et al., 2020),
Cao et al. (2022) directly generates logical forms
from natural questions .

To address the challenges of generating logical
forms, retrieval is commonly used to provide faith-
ful context for generation models (Ye et al., 2022;
Gu and Su, 2022; Hu et al., 2022). Shu et al. (2022)
employ multi-grained retrieval to provide seman-
tic and syntactic context to ease the generation.
They also constrain the decoding process by con-
structing trie (prefix tree) of KG items. Yu et al.
(2022) combine the generation of logical forms and
direct generation of the answer, achieving impres-
sive results on several datasets. Nie et al. (2022)
proposes a new intermediate representation which
is more close to natural language than traditional
logical forms. With the rising of LLMs, Gu et al.
(2023) propose to use LLMs to discriminate can-
diate logical forms generated by interacting with
real-world environment and achieve promising re-
sults on several KGQA datasets. KB-Binder works
in a few-shot in-context learning paradigm to gener-
ate logical forms with the power of LLMs (Li et al.,
2023). However, it involves a complex pipeline
to generate hunderds of candiates thus results in
high computational costs. In this work, we aim at
developing an end-to-end logical form generation
model with less computational resources.

2.2 Knowledge Distillation

Since when knowledge distillation is proposed, it
has been extensively studied to perform model
compression or domain migration via effective
knowledge transfer (Hinton et al., 2015). Previ-
ous works have studied the potential of distill-
ing BERT (Devlin et al., 2019) for text genera-
tion (Chen et al., 2020) . Many neural machine
translation researches towards low-resource lan-
guages also have explored the utilization of knowl-
edge distillation (Ansell et al., 2023; Wang et al.,
2020). There are two major categories of knowl-
edge distillation methods used for text generation:

word-level and sequence-level (Kim and Rush,
2016). In this work, we designed an optional knowl-
edge distillation method that can be integrated with
proposed pseudo logical form pre-training to fur-
ther augment model’s ability in question under-
standing and KG item alignment. Through knowl-
edge distillation, intricate features and representa-
tions learned by the comprehensive teacher model
are effectively transferred to the student model. In
doing so, the student model inherits the teacher’s
capability to understand natural language questions,
leveraging the dark knowledge encapsulated in soft
labels to refine its own acknowledgment of the KG
contents.

3 Task Definition

3.1 Knowledge Graph

Knowledge graph is a special knowledge base that
stores knowledge in graph structure. A typical
knowledge base consists of an ontology O and a
model M (Gu et al., 2022) . M is data model
representing facts and O is the ontology contain-
ing schema configurations. Schema configurations
includes property, relationships and their intercon-
nectivity between different types of nodes. For
example, different schema settings results in differ-
ent Cypher queries as shown in Figure 1.

For RDF data model, M C (EUR) x R x (CU
EUYV), where £ is a set of entities, R is a set of bi-
nary relations, C is a set of classes, and V is a set of
literal values. For Neo4j’s labeled property graph
model , M C N x R x P x L, where N is a set
of nodes, R is a set of directed relations, P is a set
of properties, and L is a set of labels. Both nodes
and relationships possess distinctive identifiers and
can store properties represented as key—value pairs.
Nodes can be labeled to be grouped. The edges
in LPG representing the relationships always have
a start node and an end node, making the graph a
directed graph.

3.2 Task Formulation

Given G = {O, M} and a natural language ques-
tion ¢ = {x1, z2, ..., x, }, the task is to generate a
logical form I = {y, yo, ..., y¢} that is executable
against G and returns an answer a to the question.
This procedure is formulated as:

l
P(l) = Hp(yi|qaylay27"'7yifl) (1)

a=¢ (ga C) (2)



Question:what are the languages spoken
in the films directed by Joel Zwick?

<mask>directed_by<mask>name<mask>"Joel Zwick'"<mask>language<mask>
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Figure 2: The overview of the proposed method. We take BART as the base model. The teacher model is a proficient
logical form generation model whose input is natural questions.There is no restriction to the architecture of the
teacher model, both seq2seq models and causal models will fit.

where 7 is the question length , ¢ is the target log-
ical form length, and ¢ is the execution function
against G. The answer a can be a node, a relation-
ship, a number or a boolean value.

3.3 Logical Forms

In this work, we investigate four kinds of logical
forms: SPARQL , Cypher, GraphQ_IR and KoPL.
SPARQL SPARQL is the query language for
RDF data (Consortium et al., 2014). A target graph
pattern is usually delineated in a where clause,
wherein variables (which start with a question
mark), relationships, and literal values combine
to form triple sequences. SPARQL is the most
commonly used logical form in KGQA tasks be-
cause RDF is the most popular data format of KG
triple storage (Gu et al., 2022).

Cypher Cypher is the graph query language
of Neo4j and a logical form for KGQA. A
typical CQL statement commences with the
keyword MATCH, which is then succeeded
by a graph pattern expression. In the graph
pattern expression, parentheses are used to
represent a node, and square brackets are used
to represent an edge. Take the Cypher query
in Figure 1 for example, (n1{name:"Joel
Zwick"})<-[:DIRECTED_BY]-(n2) represents
node n2 has a relationship :DIRECTED_BY directed
to node n1. The arrow near the node n1 indicates
the direction of the relationship.

KoPL KoPL is first introduced in Cao et al.
(2022). It is designed to describe the explicit
reasoning processes for complex questions over
knowledge bases. There are 27 functions in the
KoPL library, providing an explicit modeling of
the reasoning steps.

GraphQ IR To mitigate the discrepancy between

traditional logical forms and natural language utter-
ances, Nie et al. (2022) have designed GraphQ IR
(graph query intermediate representation) which
has natural-language-like expression and formally
defined syntax. It cannot be executed directly but
can be transpiled into logical forms such as KoPL
and SPARQL!.

4 Methodology
4.1 Pseudo Logical Form

To generate correct logical forms end-to-end, the
model needs two abilities: generate KG items con-
ditioned on input question and generate grammati-
cally correct logical forms. The first one requires
awareness of KG contents and mapping knowledge
from question semantics to KG items, where KG
items (i.e., entity names and relationships) are dif-
ferent from entity mentions in the question or are
implicitly embeded in the question. The second
one is commonly learned during traing process and
extra grammar module will help in the decoding
process. Previous methods, whether aided with
extra retrieval modules, train the model to acquire
such abilities at the same time, therefore increaing
the demand for labeled data. We notice that KG
items in the logical forms are invariant when the
question and the KG are fixed, where other tokens
in the logical forms vary conditioned on question
intents and grammar of logical forms. For example,
entity "Joel Zwick" and relationships directed_by,
name and language will always appear in logical
forms as shown in Figure 1.

Inspired by the pre-train task of BART, where
[mask] tokens are trained to reconstruct text spans,

'The transpile process involves rule-based transpilers,

which are schema-specific, and implementing such transpilers
requires expertise in professional tools.



we propose to build pseudo logical forms that only
consists of KG items and [mask] tokens to be the
pre-training labels. Formally, the pseudo logical
form p for question q is defined as:

p - {p17p27 ;pm}apm 6 {[maSk] U ylnv} (3)
yinv = Mnl (4)

where m is the length of the pseudo logical form
and each token of the invariant KG items, noted
as y; € y™, is surrounded by [mask] tokens.
We construct pseudo logical forms as target labels
for every question in the training set and pre-train
the model to maximize P(p|q). Through pseudo
pre-training, the model acquires the knowledge of
mapping between natural question semantics and
KG items. In the subsequent fine-tuning stage, the
model can only focus on generating tokens that are
associated with logical form grammar by filling
[mask] tokens.

4.2 Knowledge Distillation

Assuming the presence of a proficient question-
to-logical-form model 8;, the suggested approach
of incorporating pseudo logical form pre-training
could potentially yield advantages when coupled
with a knowledge distillation strategy utilizing 6,
as the teacher model.

Similar to previous formulation, the
teacher model 6; generates logical form
' = {y1,92, ...,y } conditioned on input question
q. Since the teacher model is trained on complete
logical forms, its knowledge about KG items is
more comprehensive compared to the student
model trained using pseudo-labels. Therefore, we
combine the pre-training of the student model
with knowledge distillation from the teacher
model by pushing the token logits of 4" to the
teacher model’s outputs. The loss functions for
pre-training and knowledge distillation are as
follows:

1 S
= —— logPy (p; 5
Lium 5;09 5 (Di) (5)
1k
Lrkp = > KL(Pa,(pilq)l|Po, (pilg)) (6)
pieyinv
L=Lry+LxD (7

where p; are tokens from p, k is the number of KG
related tokens, @ is the student model and 6 is
the teacher model.

S Experiments

5.1 Datasets

MetaQA MetaQA (Zhang et al., 2018) is derived
from the WikiMovies and contains over 400k an-
notated question answer pairs in different levels of
difficulty. It is a domain specific dataset, where
number of entities and relationships is limited as
shown in Table 8. In this paper, we use the version
provided by Nie et al. (2022), where GraphQ_IR,
KoPL, SPARQL and Cypher annoations are avail-
able. For the few-shot setting, we also following
Nie et al. (2022) to sample k£ € 1, 3, 5 examples for
each question type as shown in Table 7.

KQA Pro KQA Pro is currently the largest KGQA
dataset for complex questions, providing more
than 100k question-answer pairs with KoPL and
SPARQL annoations. It is based on a delicate
database which is a Wikidata subset customized
with FB15K-237 (Toutanova et al., 2015). Accord-
ing to the KoPL annotation in KQA Pro, there are
12 types of questions. As the annotation for the test
set of KQA Pro is not publicly available, we ran-
domly selected 3,000 samples from the validation
set while keeping the distribution of the 12 types of
questions. The remaining 8,797 samples in the vali-
dation set are treated as the test set, see Table 7. To
simulate practical low-resource scenario, we ran-
domly sample 50, 100, and 200 training samples
from the train set for the experiments.

5.2 Baselines

Seq2seq Models Following the original KQA Pro
paper (Cao et al., 2022), we take BART (Lewis
et al., 2020) as our seq2seq baseline. TS is also a
popular seq2seq model and has similar pre-training
tasks to BART. However, the curly brackets ({ and
}) which is a key element in logical forms like
SPARQL and Cypher are not included in the vo-
cabulary of the TS5 series models. We skip TS se-
ries because it is not a key point to compare be-
tween pre-trained models 2. Transfer Learning
(TL) is a classic method for low-resource trans-
lation, which is similar to our task. We implement
BART+TL by initializing from a model? trained on
NL-SPARQL pairs and fine-tuning on NL-Cypher
pairs. SKILL (Moiseev et al., 2022) infuses KG

20ur method can be applied T5 by modifying the vocab-
ulary or replace curly brackets in logical forms using other
tokens like < (b > and < b >.

3Take from Cao et al. (2022), also used as the teacher
model for KD



Model #Samples 50 #Samples 100 #Samples 200
BLEU-4 ER Acc BLEU-4 ER Acc BLEU-4 ER Acc
KvMemNet (Miller et al., 2016) - - 1.64 - - 6.25 - - 4.22
RGCN (Schlichtkrull et al., 2018) - - 423 - - 9.71 - - 10.56
ChatGPTRrand 56.35 9490  14.50 54.64 93.60  13.90 54.28 9430  14.50
ChatGPT B amr25 72.78 96.60  34.10 75.26 96.60  37.70 78.46 9770  41.40
GPT2 large (Radford et al., 2019)° ~ ~ ~ 48.08° ~ 9038~ 508 | 5317 = 9745 ~ 674 | 5508 9237 1144
LLaMA 7B (Touvron et al., 2023a) 55.28 89.16 7.37 63.38 91.35 11.67 74.89 93.04 31.70
LLaMA?2 7B (Touvron et al., 2023b) 65.08 80.00 17.54 68.59 85.12  19.85 73.38 86.19  25.59
BART base (Cao et al., 2022) 63.66 72.25 10.19 66.77 7774 14.82 78.47 9091  23.51
BART+SKILL* (Moiseev et al., 2022) 59.29 71.96 9.95 67.23 81.37 15.12 74.86 88.41  26.69
BART+GraphQ IR (Nie et al., 2022) - - 21.00 - - 24.07 - - 31.98
BART+TL (Zoph et al., 2016) 70.96 49.31 9.31 78.63 7093 3292 86.94 8136 50.20
Ours 72.87 76.66  23.98 84.27 83.97  40.68 90.16 89.54  52.12

Table 1: The performances on KQA Pro trained with different numbers of data samples. BART-TL stands for
transfer training. For ChatGPT results, we use a five-shot in-context learning setting, where ChatGPT g, 4 randomly
samples five exemplars and ChatGPT g /25 uses the top five exemplars returned from a BM25 retriever.

knowledge into language models via direct pre-
training on serialized KG triples. We implement
BART+SKILL* by convert triples into Cypher pat-
terns, e.g., <House, has_genre,Horror> is format-
ted as (:Entity{name: "House"”})-[:R{name:"
has_genre"}]-(:Entity{name: "Horror"}).
Causal Models For decoder-only causal lan-
guage models, we have selected GPT2 (Radford
et al.) and the recently released LLaMA (Touvron
et al., 2023a) to compare in the fine-tuning set-
ting. We further explored the capabilities of Chat-
GPT* to generate Cypher via an in-context learning
paradigm. To eliminate any randomness introduced
by sampling, we set the temperature parameter T
to zero in the API request.

Others KvMemNet (Miller et al., 2016) and
RGCN (Schlichtkrull et al., 2018) are two base-
lines for KQA Pro, we use the implementation of
Cao et al. (2022) and fine-tuning under our few-
shot setting.

5.3 Maetrics

The primary goal of KGQA is to obtain the cor-
rect response to the input question. Following Cao
et al. (2022), we adopt Answer Accuracy (Acc)
as the principal evaluation metric on KQA Pro.
Besides, we take the widely-used text-generation
metric, BLEU-4, to measure the similarity between
the generated logical forms and golden labels. To
measure models’ acquisition of the grammar, we
define the metric Executable Rate (ER) as the per-
centage of whether the generated logical form can
be parsed into a valid abstract syntax tree. Exact
Match (EM) of the prediction and reference is a

“The API used is gpt-3.5-turbo.

BLEU-4 ER EM

LLaMA?2 7B (Touvron et al., 2023b) 72.75 97.80 13.14
BART base (Cao et al., 2022) 89.81 98.29 62.55
BART+SKILL* (Moiseev et al., 2022) 89.36 99.74 59.15
BART+GraphQ IR (Nie et al., 2022) - - 67.46
Ours w/o KD - - 71.13

Table 2: Results on MetaQA under 1-shot setting.

substitution of answer accuracy. When the execu-
tion endpoint is absence, we use the exact match
score to replace answer accuracy because the an-
swer is assuredly correct if the generated logical
form matches the label.

5.4 Implementaion Detail

We use BART base as the base model and fine-tune
in half precision mode. In the pre-training stage,
we use AdamW optimizer with a learning rate of
5e-5, and train 10 epochs on the trainset where in-
put is the question and target label is the pseudo
logical form. For knowledge distillation, we use
temperature 7' = 5. In the fine-tuning stage, we
train the model for 10,000 steps and select check-
point according to the loss value on validation set.
All experiments are conducted on an RTX 3090.

5.5 Main Results

In Table 1, the models’ performances are compared
across three training sample sizes: 50, 100, and
200. The results show a general trend of improved
performance with an increase in the number of
training samples. This is evident across all models,
with notable improvements in BLEU-4, ER, and
Acc. Our model consistently achieves the highest
scores in both BLEU-4 and answer accuracy across
all training sample sizes, setting it apart as the best-



BLEU-4 ER Acc
Ours 84.27 83.97 40.68
w/o PT  81.62(-2.65)  74.79 (-9.18) 34.64 (-6.04)
w/o KD 73.01 (-11.26) 82.00(-1.97) 18.81 (-21.79)

Table 3: Ablation study on KQA Pro trained with 100
samples. PT and KD stands for pseudo label pre-training
and knowledge distillation, respectively.

performing model. Notably, GPT2 performs well
in ER with the worst BLEU-4 score. The reason
behind this phenomenon is that GPT2 tends to gen-
erate simple and short sequences, thus achieving
higher ER score. LLaMA?2 shows superiority with
50 and 100 training samples, while LLaMA per-
forms better with 200 training samples. LLaMA
models are comparable to BART+SKILL*, which
is infused with KG knowledge, highlighting the
power of pre-training and large parameter sizes.
For ChatGPT methods, BM25 (Robertson et al.,
2009) selects similar question and enable ChatGPT
to learn from corresponding logical forms that are
similar to the target logical form, resulting in rela-
tively high performance. However, ChatGPT fails
to get good results when provided with randomly
selected context. More discussion about ChatGPT
is in Appendix B.5. BART+SKILL* is slightly bet-
ter than BART base when the number of training
samples increases. GraphQ IR generates intermedi-
ate representations (IR) similar to natural language,
and the IRs are transpiled into other logical forms
to get the answer. It yields the best performance
model without aid from a teacher model. Although
BART+TL showed superiority in BLEU-4 and Acc,
it was the worst-performing model in terms of ex-
ecutable rate because it sometimes generates se-
quences with mixed logical form syntax(E.g., half
SPARQL and half Cypher). Our model absorbs
knowledge from pseudo labels and a well-trained
teacher model and is free from the teacher’s stereo-
type of SPARQL syntax; thus, it learns well in
both syntax and semantics and achieves the highest
answer accuracy.

Resutls for MetaQA are shown in Table 2. We
have no execution endpoint so the EM score is
used to replace Acc. Compared with directly
fine-tuning with GraphQ IR, our pseudo label pre-
trained model achieves certain improvements. The
KD method is not applied on this dataset because

5The BLEU-4 and ER score is not reported because the
transpiler of GraphQ IRs handles errors and always generates
syntax-correct SPARQL queries.

Logical Form 1 shot 3 shot 5 shot
Fine-tune from BART base
SPARQL 71.43 90.10 91.52
Cypher 62.55 84.23 92.71
KoPL 78.76 79.97 94.00
GraphQ_IR  55.52 90.45 94.85

Fine-tune from pseudo pre-trained

SPARQL 75.06 (+3.61)  91.44 (+1.33)  93.31 (+1.79)
Cypher 61.00 (+1.55)  87.62 (+3.39)  92.56 (-0.15)
KoPL 78.69 (-0.07)  93.13 (+13.16) 93.90 (-0.10)
GraphQ_IR  71.13 (+15.61) 93.26 (+2.81)  96.50 (+1.65)

Table 4: The EM score of logical forms on MetaQA.

Logical Form #samples 50 #samples 100 #samples 200
Fine-tune from BART base

SPARQL 4.69 9.4 15.52
Cypher 5.22 10.04 18.7

KoPL 8.12 8.55 20.43
GraphQ_IR 11.42 15.41 25.84
Fine-tune from pseudo pre-trained

SPARQL 8.53 (+3.84) 11.77 (+2.37) 21.44 (+5.92)
Cypher 8.20 (+2.98) 11.38 (+1.34) 21.06 (+2.36)
KoPL 9.86 (+1.74) 13.89 (+5.34) 24.84 (+4.41)
GraphQ_IR 11.9 (+0.48) 17.89 (+2.48) 26.12 (+0.28)

Table 5: The EM score of logical forms on KQA Pro.

we have not found a suitable teacher model that is
publicly available.

5.6 Ablation Study

As shown in Table 3, both PT and KD contribute
to our model. When KD is removed, the BLEU-4
and Acc drop more, indicating the knowledge trans-
ferred from the teacher model helps the student to
learn the question intent and relationships between
entities. When PT is removed, the ER drops a lot,
indicating that PT is positive or KD is negative to
the learning of logical form grammar. Compared to
the BART base, whose ER score is 77.74, we can
conclude that both influences exist as PT increases
the ER score by 4.26 points and KD decreases by
2.95 points. That means the teacher’s knowledge
about SPARQL grammar is transferred through the
distillation of invariant tokens and harms the stu-
dent’s adaptation to Cypher syntax.

6 Discussion

6.1 Generalization across Logical Forms

We have conducted the pre-train-then-finetune
experiments across four logical forms on both
MetaQA and KQA Pro datasets.

As expected, both starting points (BART base
and pseudo logical form pre-trained) demonstrate



Model #Samples 50 #Samples 100 #Samples 200

Easy Medium  Hard Easy Medium  Hard Easy Medium  Hard
GPT?2 large 4.87 6.28 1.57 7.77 7.09 4.05 19.13 8.81 8.10
LLaMA 7B 5.12 8.37 7.58 10.76 12.90 9.14 53.42 26.24 16.07
LLaMa2 7B 34.67 12.57 7.32 33.01 17.24 8.10 40.31 23.33 10.32
BART base 24.42 5.61 3.14 28.18 10.99 6.73 39.50 19.74 11.17
BART+SKILL* 19.34 6.95 5.23 25.92 12.55 6.86 45.00 21.51 15.35
BART+GraphQ IR  39.67 15.92 8.82 46.97 17.22 11.04 | 57.56 25.12 14.89
BART+TL 26.17 7.86 3.52 35.14 11.50 5.55 41.67 20.76 10.45
Ours 47.14 16.51 12.61 | 61.66 37.19 19.86 | 71.69 48.56 33.64

Table 6: Answer accuracy on different question complexity levels. The proportion of easy/medium/hard questions

in the test set is 26.6%/56%/17.4% .

an improvement in performance with an increase in
the number of shots. This reaffirms the common un-
derstanding that more training data typically yields
better model performance. However, the crux of
the analysis revolves around the difference between
the BART base and the pseudo pre-trained models.

On MetaQA, as shown in Table 4, the pseudo
logical form pre-training strategy, on the whole,
outperforms the BART base, especially in 1-shot
GraphQ_IR and 3-shot KoPL tasks, with improve-
ments of +15.61% and +13.16% respectively.
These significant boosts suggest that this strategy
has a pronounced effect on these specific logical
forms. On the other hand, while there are instances
where the pseudo pre-trained model marginally un-
derperforms compared to the BART base, these
deviations are minimal (around 0.1%).

Different from MetaQA, KQA Pro is an open-
domain dataset with complex questions that require
multiple reasoning steps to answer. As shown in
Table 5, the proposed pseudo label training strategy
is also effective on this dataset, resulting in 0.28%
to 5.92% certain improvements on various settings.

6.2 Question Complexity

We define three question complexity levels accord-
ing to the length of annotated KoPL provided in the
original KQA Pro. Questions that can be solved in
fewer than four function steps are defined as easy
level, questions that require more than six function
steps to solve are defined as hard level, while the re-
maining questions are grouped as medium level. As
shown in Table 6, all of the models perform badly
when trained with only 50 samples. It is noteworthy
that the LLaMA series and GraphQ IR show strong
performance on easy questions and have a gener-
alization ability to longer questions compared to
other models, revealing the power of unsupervised

pre-training on the massive corpus. Our model
achieves the best performance due to its explicit
acquisition of relationships and entity knowledge
and implicit forward-looking knowledge from the
teacher model regarding the generation of complete
logical forms. It is particularly evident when fac-
ing hard questions that have many more reasoning
steps and involve more entities and relationships.

7 Conclusion

In this work, we introduced a novel pseudo-logical
form pre-training approach that splits the learning
process of logical form generation models into a
pre-training and a fine-tuning phase. During pre-
training, the model gains the capability to gener-
ate KG items based on its interpretation of a given
question. Fine-tuning then emphasizes logical form
grammar learning, where the model learns to fill
mask tokens with minimal training data. We experi-
ment with golden pseudo labels and noisy ones that
are automatically generated via in-context learning
of LLLMs, and the results have demonstrated the
effectiveness of the proposed method to boost few-
shot performances in generating multiple kinds of
logical forms. Besides, we also propose a knowl-
edge distillation method that can further improve
model performances when proficient teacher mod-
els are available. Our model outperforms several
strong baselines in various experimental settings,
demonstrating the effectiveness of the proposed
methods. The proposed methods facilitate seam-
less transitions of KGQA systems across differ-
ent schema settings, such as moving from an RDF
database to a Neo4j backend and switching from
SPARQL to Cypher. In the future, we will ex-
plore the utilization of LLM capabilities to provide
guidance for smaller models due to the scarcity of
proficient teachers in most scenarios.



8 Limitation

Our method is inspired by the pre-training task "cor-
rupt text span” of seq2seq language models like TS
and Bart. The [mask]| token in our pseudo label
will be filled with an indeterminate number of to-
kens in the subsequent fine-tuning phase. However,
based on some experimental results with causal
models (GPT, Llama), the absence of the mask to-
ken significantly impacts the performance of our
method. Nonetheless, according to our experi-
ments, small seq2seq models like BART base can
surpass the performance of causal models which
is much larger in parameter size. It does not ap-
pear to be a substantial limitation as seq2seq model
represents a superior option in terms of both per-
formance and computational cost.
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A Experiment Data
A.1 Dataset split

Train Validation  Test
MetaQA 1-shot 49 4,900 39,093
MetaQA 3-shot 147 4,900 39,093
MetaQA 5-shot 240 4,800 4,800
KQA Pro #50 50 3,000 8,797
KQA Pro #100 100 3,000 8,797
KQA Pro #200 200 3,000 8,797

Table 7: Data splits for the experiments.

B Experiments Details

B.1 Full Ablation Study

We have also conducted ablation study with 50 and
200 training samples as shown in Table 9 .

Dataset #Entity #Relationship Max Hops
MetaQA 43,234 9 3
KQA Pro 829,351 1,101 14

Table 8: Statistics of experiment datasets.

B.2 Pre-training on Noisy Pseudo Label

In our experimental settings, we construct pseudo
logical forms from annotated logical forms. How-
ever, the golden annotation for questions is expen-
sive in practical situations. We attempt to leverage
the in-context learning (ICL) capability of LLMs to
aid the construction of pseudo logical forms. Due
to the limitation of computational resources, we
only conduct noisy pseudo logical form construc-
tion on the MetaQA dataset, where logical forms
are much shorter than that of KQA Pro. We set
up an LLM 9 locally for this process. For the ICL
instruction, we describe the task and list all nine re-
lationships. Followed by the instruction are several
manually annotated questions and pseudo logical
form pairs. During the inference, we only change
the question appended to the prompt. Token <e> is
used to inform the model when to stop, and we dis-
card generation results that do not end with <e>. It
takes over 50 hours to obtain noisy pseudo logical
forms for questions of the MetaQA train set. The
prompt that we use for the construction of noisy
pseudo logical forms is shown in Figure 3.

After pre-training on the obtained noisy pseudo
labels, the fine-tuned results are listed in Table 13.
It is impressive to observe that the proposed pre-
training strategy can still effectively enhance the
performance of the model in a few-shot setting,
even when trained with data containing significant
amounts of noise. However, there is one exception,
which is the 5-shot Cypher generation. Upon exam-
ining the prediction results, we discovered that the
majority of errors stem from superfluous whites-
pace appearing before the generated literal values,
for instance, n2.name = " claude berri” instead
of correct version n2.name = "claude berri”.
This error may have been caused by the overfit-
ting of certain tokens when the noisy sequences are
tokenized.

The prompt we use to construct noisy pseudo
logical forms consists of several manually anno-
tated (question, pseudo label) pairs. Since MetaQA
involves only nine relationships, we are able to put

®https://huggingface.co/baichuan-inc/Baichuan-13B-
Chat
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Model #Samples 50 #Samples 100 #Samples 200
¢l BLEU-4 ER Acc BLEU4 ER Acc BLEU-4 ER  Acc
Ours 7548 7159 2347 | 85.06 8622 4138 | 9025 9045 52.60
wioKD 6840 7710 1464 | 73.01 8200 1881 | 7584  89.03 2230
wioPT 7192 5336 1477 | 81.62 7479 3464 | 89.10 8290 49.93

Table 9: Full ablation study

$question_to_predict

Figure 3: The prompt we have used to construct noisy pseudo logical forms via in-context learning.

Logical Form 1 shot 3 shot 5 shot Logical Form #samples 50 #samples 100 #samples 200

SPARQL 73.64 (+2.21) 93.39 (+3.29) 93.42 (+1.9) Fine-tune from BART base

Cypher 65.68 (+3.33) 88.15(+3.92) 87.73 (-4.98) SPARQL 60.80 70.76 76.78

KoPL 79.64 (+0.88) 93.15 (+13.18) 94.42 (+0.42) Cypher 54.65 60.65 73.32

GraphQ_IR 65.24 (+49.72) 93.66 (+3.21)  94.85 (+0.0) KoPL 62.43 62.21 76.55
GraphQ_IR 67.60 71.28 79.23

Table 10: Results of noisy pseudo label pre-training on Fine-tune from pseudo pre-trained

MetaQA. Improvements compared to BART base are in ~ SPARQL 67.46 (+6.66) 74.26 (+3.50)  81.66 (+4.88)

brackets. Cypher 61.93 (+7.28) 66.35 (+5.70)  75.87 (+2.55)
KoPL 63.17 (+0.74)  71.02 (+8.81)  79.57 (+3.02)
GraphQ_IR 71.81 (+4.21) 17.89 (+5.36) 79.64 (+0.34)

them in the prompt. For KGs that contain more
relationships, a retrieval module can be employed
to retrieve relevant relationships dynamically.

B.3 BLEU Scores across Logical Forms

Here we provide the BLEU-4 scores in addition
to EM scores for experiments on MetaQA and
KQA Pro. As shown in Table 11, 12 and 13, the
BLEU-4 scores have certain improvements across
all logical forms on both datasets. Significantly, the
progress made on the KQA Pro dataset stands out
more prominently because the dataset encompasses
a wider range of entities and relationships. Re-
garding the comparatively basic MetaQA dataset,
employing an LLM with 13 billion parameters
to autonomously generate pseudo-labels infused
with noise still leads to performance enhancements.
This demonstrates the ease of applying this method-
ology, as it requires minimal effort to achieve posi-
tive results.

B.4 Efficiency and Privacy

We have evaluated the generation efficiency of our
model compared to other large language models,
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Table 11: The BLEU-4 scores on KQA Pro.

Logical Form 1 shot 3 shot 5 shot
Fine-tune from BART base

SPARQL 94.39 98.34 98.88

Cypher 89.81 96.23 98.66

KoPL 95.23 96.30 98.55

GraphQ_IR 88.43 97.05 98.62

Fine-tune from pseudo pre-trained

SPARQL 95.84 (+1.45) 98.85 (+0.51) 99.15 (+0.27)
Cypher 90.20 (+0.39)  97.78 (+1.55) 98.89 (+0.23)
KoPL 94.83 (-0.40)  98.80 (+2.50) 98.89 (+0.34)
GraphQ_IR 92.11 (+3.68) 98.23 (+1.18) 99.13 (+0.51)

Table 12: The BLEU-4 scores on MetaQA.

such as LLaMA. Our base version of BART, which
has 216 million parameters, demonstrates that even
with significantly fewer parameters—over 30 times
less than LLaMA 7B’s—it can still deliver promis-
ing results. On identical hardware equipped with
an RTX 3090, our model’s inference speed is 36
times faster, taking only 2.5 minutes as opposed
to approximately 90 minutes to predict our test set
from KQA Pro. Hence, in scenarios requiring the



Logical Form 1 shot 3 shot 5 shot

SPARQL 96.71 (+2.32)  99.10 (+0.8)  99.03 (+0.15)
Cypher 93.80 (+3.99) 98.34 (+2.11) 98.27 (-0.39)
KoPL 95.08 (-0.15) 98.81 (+2.51) 98.93 (+0.38)
GraphQ_IR 90.39 (+1.96)  98.65 (+1.60) 98.21 (-0.41)

Table 13: BLEU-4 score results of noisy pseudo label
pre-training on MetaQA. Improvements compared to
BART base are in brackets.
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Figure 4: The ICL results of ChatGPT 95 with differ-
ent exemplars.

generation of logical forms with limited resources,
smaller models maintain high performance and ef-
ficiency, making them viable technical candidates.
Furthermore, while more powerful LLMs like Chat-
GPT can achieve impressive performance through
training-free in-context learning methods, this ap-
proach raises data privacy concerns due to the need
for processing data in the cloud. The method we
propose serves as a good precursor for building
low-resource KGQA systems locally.

B.5 More ChatGPT Results

The quantity of exemplars provided in the context
is an intuitive factor that affects the final perfor-
mance for in-context learning. In our research, we
retrieved the K most similar samples to the ques-
tion using the BM25 (Robertson et al., 2009) to
form context, where K ranges from 1 to 5. The
experimental results are illustrated in Figure 4. As
observed, ChatGPT achieved a high executable rate
in generating CQL with reference to contextual
demonstrations. However, there was a significant
gap between the accuracy rate of answers and the
executable rate, especially in the zero-shot setting.
When no exemplar provided, ChatGPT generates
syntax correct but unfaithful CQL, indicating that
ChatGPT is familiar with CQL grammar but has
little knowledge about the schema of specific KG.
Moreover, we note that result in Figure 4 retrieves
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relevant samples from 24,000 annotated logical
forms. Compared to results in Table 1, where only
hundreds of data were used to retrieve relevant sam-
ples, we can see a significant performance gap (i.e.,
the decrease of answer accuracy ranging from 19.0
to 26.3 points).
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