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Abstract

Widespread poaching threatens many endangered species today, requiring
robust strategies to coordinate ranger patrols and effectively deter poachers
within protected areas. Recent research has modelled this problem as a
strategic game between rangers and poachers, resulting in anti-poaching
becoming a popular application domain within game theory and multi-
agent research communities. Unfortunately, the lack of a standard open-
source implementation of the anti-poaching game hinders the reproducibility
and advancement of current research in the field. This paper aims to
fill this gap by providing the first open-source standardised environment
for the anti-poaching game. Our contributions are as follows: (1) we
formalise anti-poaching as a Partially Observable Stochastic Game; (2) we
provide the Anti-Poaching Environment (APE), an open-source Python
implementation of a simulator for this game using the PettingZoo API,
which is compatible with many existing multi-agent reinforcement learning
(MARL) libraries; and (3) we illustrate how to apply deep reinforcement-
learning algorithms from the RLlib library, in order to compute cooperative
and cooperative-competitive equilibria of APE instances. Our project is
published at https://forgemia.inra.fr/chip-gt/antipoaching.

1 Introduction

In today’s world, endangered species are threatened by widespread poaching, requiring
intelligent land patrol strategies, the so-called anti-poaching strategies, to effectively detect
and prevent such activities [8]. In this paper we refer to anti-poaching strategies as the
problem1 of deciding where and when to send ranger squads within a protected area to
prevent poaching. Several recent works [19, 20, 22, 25] have applied game theory and
multi-agent reinforcement learning (MARL) to model and learn such anti-poaching strategies.
Unfortunately, despite anti-poaching being a popular application for game theory and
MARL, the lack of any standardized open-source implementation of the anti-poaching game
itself hinders research efforts, ultimately slowing the development of practical anti-poaching
solutions. Also, anti-poaching research faces a unique challenge in comparing with existing
work due to strict security and confidentiality constraints. Organizations cannot share patrol
data publicly, and research granted privileged access is often prohibited from disclosing it.
This raises a critical question: how can we establish a public research benchmark that remains

1Not to be confused with the patrol allocation problem, which instead involves determining the
starting patrolling points for the patrols.
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realistic under these confidentiality restrictions? In this work, we tackle this challenge by
proposing a public benchmark defined by a range of configurable parameters representing
the anti-poaching model. Importantly, the information needed to set these model parameters
in a realistic range is far less sensitive than requiring access to raw patrol data.
In the reinforcement learning (RL) community, the development of publicly available bench-
marks using standard APIs, namely Gymnasium [18] for the single-agent case (formerly Gym
[2]) and PettingZoo [16] for the multi-agent case, is known to have significantly contributed
to advance algorithmic developments in the field. The importance of having standarized
MARL benchmarks has been stated in several recent works [7, 13] that have proposed similar
frameworks yet for other domains, such as predator-prey and target coverage control. The
aim of this work is to extend the benefits of such standarised benchmarking to anti-poaching.
The main contributions of this paper are the following:

• A formalisation of anti-poaching as a partially observed stochastic game (POSG) in-
volving a team of cooperative rangers and several competitive independent poachers.

• A publicly available implementation of the anti-poaching game in python as a
PettingZoo environment: the Anti-Poaching Environment (APE).

• A comprehensive example of using RL algorithms from the RLlib library to compute
cooperative and cooperative-competitive equilibria for instances of the APE game.

This paper is structured as follows. Section 2 reviews related game models and MARL bench-
marks. Section 3 formalizes Anti-Poaching as a POSG. Section 4 details the implementation
of this game as a Pettingzoo compatible MARL environment and presents a comprehensive
example of use with the RLlib library. Section 5 showcases results from applying RLlib RL
algorithms in cooperative and cooperative-competitive APE scenarios. Section 6 summarizes
the key contributions, current limitations, and potential directions for future research.

2 Related Work

Game-theoretic approaches to anti-poaching Effective anti-poaching strategies rely
on a clear understanding of their impact on poaching activity [8]. However, simulation
and optimization frameworks from AI can significantly aid the design of such innovative
anti-poaching strategies. Some works [14, 1] have explored anti-poaching through patrol
allocation, often modelled as a Stackelberg Security Game (SSG) where a ranger team (the
leader) announces a (potentially stochastic) patrol allocation on a set of targets to deter
poachers. In contrast, our work focuses on defining patrolling strategies, where rangers and
poachers act simultaneously with no prior knowledge of each other’s strategies. Some prior
research proposed simpler models for patrolling considering a single defender, prioritizing
computational efficiency by using multi-armed bandits [23], two-player zero-sum games [24],
and single-team planning [3]. Our work aligns with research that leverages more complex
games, namely Partially Observable Stochastic Games (POSGs) or Extensive-Form Games
(EFGs), to represent real-world scenarios. [20] introduced a similar2 zero-sum EFG model,
albeit limited to a single defender and a single attacker. Closer to our approach, [19]
formulated a zero-sum POSG3 with multiple rangers and poachers. Both [20] and [19]
highlighted the limitations of traditional approaches to tackle such large, complex models and
used (deep) multi-agent reinforcement learning (MARL) to learn the patrolling equilibrium
strategies. Nevertheless, while such works highlighted the potential of anti-poaching games
as a MARL benchmark, their contribution was primarily algorithmic and lacked readily
available environments or open-source code. Our work bridges this gap by providing the
first standarised MARL benchmark for antipoaching.

Game-theoretic models in other domains. The Anti-Poaching game, as formalized in
Section 3, is related to Adversarial Team Markov Games (ATMG) [6], which feature a team

2Despite the number of agents, there are some other differences regarding the methods of prey
detection, trap removal processes and the consideration of footprints.

3There are some differences with our model regarding trap removal, the reward function, and
including drones with signaling capabilities.
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of cooperative agents competing against a single adversarial agent within a fully-observed
zero-sum stochastic game framework. Specifically, the Anti-Poaching game can be seen as
an instance of a generalisation of ATMG, with: (i) multiple non-cooperative adversaries, and
(ii) a partially observed environment.
Predator-prey games have also been extensively studied in game theory yet they exhibit very
different dynamics compared to APE. In predator-prey games, prey are directly captured,
often requiring the coordinated actions of multiple predators, leading to implicit collaboration
even if they are not part of a team. In contrast, in APE, prey are captured indirectly through
traps set by poachers and each ranger squad can capture a poacher if encountered without
the need of other rangers. Additionally, in most predator-prey games, the evaders follow
predefined policies rather than act as players in the game.

Multi-agent reinforcement learning benchmarks. There are no publicly available
MARL benchmarks for anti-poaching. Nevertheless, Table 1 compares existing benchmarks
from various MARL domains to APE. We focused our review on open-source standardized4

MARL benchmarks featuring two types of agents (referred to as Type A and Type B), which
allow for multiple agents of each type and whose interactions take place in a grid-based
environment. Also, agents in all these benchmarks partially observe the environment in
their neighbourhood. Some benchmarks, restricting learning to a single agent type, thereby
defining cooperative environments (e.g. [4]) have not been included.

Environment Domain Type A agents Type B agents A vs B
Cooperation Cooperation Competition

Simple-tag
(MPE) [11]

Predator-prey Fully-cooperative Fully-cooperative Zero-sum

Aquarium [7] Predator-prey Independent Independent General-sum
MATE [13] Target coverage Fully-cooperative Fully-cooperative Zero-sum
APE (ours) Anti-poaching Fully-cooperative Independent Zero-sum

Table 1: Comparison among relevant MARL environments.

[11] proposes relevant predator-prey environments that have been included in PettingZoo.
For example Simple-tag is a predator-prey environment in which a team of cooperative
predators compete with prey in a fully competitive (zero-sum) game. Aquarium [7] is a
recent framework which unifies existing predator-prey domains. Here, agents move in a
continuous space and the game is general sum.
The closest benchmark to APE is MATE, which simulates target coverage control problems
with two types of learning agents: cameras and targets. Like APE, the relation between
both types of agents is fully-competitive, resulting in a zero-sum game. Nevertheless, MATE
considers that agents of the same type are fully cooperative.

3 The Anti-Poaching Game

The Anti-Poaching game is a finite-horizon, grid-based game between rangers and poachers.
The rangers form a cooperative team, but do not communicate or share information. The
poachers are independent agents who can place traps inside the grid. The rangers try
to capture all the poachers in the grid, while the poachers try to evade detection and
recover captured animals from traps they have placed. Each agent has only local, partial
observation of her current cell, making this a challenging cooperative-competitive game
to solve. We formally define the game as a Partially Observed Stochastic Game (POSG)
(I, S, A, O, R, T, O, H) [26], where I is the set of players, S the set of states of the game, A
the set of joint actions of players, O comprises a set of observation sets (one for each player).
In addition R is a set of instant reward functions (one for each player), T is a stochastic
transition function between game states, O is a set of observation functions (one for each

4All the environments cited in Table 1 are PettingZoo compatible.
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player) Finally, the horizon H is the number of decision steps. Solving a POSG means
finding a Nash equilibrium joint policy for players, given an initial probability distribution
over states, denoted ρ.

3.1 Agents and game states

Rangers

p1

p2

p3

p4

r1 r2

r3 r4

Figure 1: Agents interaction
graph visualisation for an
Anti-Poaching Game with 4
rangers and 4 poachers.

The game is played between a team of cooperative rangers
R = {1, . . . , I} and some independent poachers P = {I +
1, . . . , I + J} (note that |R| = I and |P| = J) on a grid of size
ℓ × ℓ over a finite horizon [H] = {1 . . . , H}. The set of agents
is thus I = R ∪ P. The game state at time t ∈ [H] is a tuple
st = (σt, τ t), where σt is the state of all agents, and τ t is the
state of traps placed in the grid.

Agents A ranger’s state is simply his location in the grid,
defined as the tuple σt

i = (m, n), i ∈ R. For poachers, we must
also track the number of traps they are currently carrying,
ηtrap (i.e. not placed on the grid) and the number of animals
they have recovered from traps so far ηprey. Their state is
σt

j = (m, n, ηtrap, ηprey), j ∈ P. When a poacher is captured,
her state immediately becomes σt

j = (−1, −1, 0, 0) i.e. she is
moved out of the grid to cell (−1, −1), and no longer carries
any traps or prey. Rangers are active during the entire game.

Placed Traps Each poacher starts with a fixed number of
traps in each game instance. A trap placed in a cell can be
either full or empty. Therefore, the state of all placed traps
at time t is described as a 3D-array, capturing the number of
empty and full traps for all poachers j in each cell (m, n), as τ t

j,m,n = (ηE,j , ηF,j) ∈ N2. Here,
ηE,j counts the number of empty traps that agent j has in the cell (m, n), and ηF,j counts
the number of full traps5.

3.2 Actions

Each ranger i ∈ R can move or do nothing at each step. His action space is thus Ai = {∅, ↑
, ←, ↓, →}. A poacher j ∈ P can additionally place traps if she is carrying any, and thus has
action space Aj = {∅, ↑, ←, ↓, →, place − trap}. The joint action for each step is denoted as
at = (at

1, . . . , at
I+J ), at ∈ A. There is no action remove − trap in this game since we assume

that agents will automatically remove a trap if they detect it: A ranger is always interested
to remove a trap, while poachers need to inspect if a prey is caught inside.

3.3 Transition Model

Environment Transition Model

Receives
(at

i)i∈R∪P
Sends
(ot+1

i , Rt
i)i∈R∪PRangers

Move

Poachers
Move and
Detect
Traps

Rangers
Detect
Traps

Remaining
Traps
Capture
Prey

Rangers
Detect and
Capture
poachers

Remaining
Poachers
Place
Traps

Figure 2: Transition Model for the Anti-Poaching Game. At each step, only the state
variables of agents who apply or are affected by an action change value.

In a POSG, the environment receives the joint action at = (at
i)i∈R∪P , and carries out the

transition ⟨st, at, st+1⟩. Using a transition model, we can calculate the transition and its
5The total number of (carried and placed) traps of an agent can never increase through time and

is thus upper bounded by the number of traps they carried at time t = 0.
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associated probability T (st, at, st+1) = P(st+1|st, at). The proposed model groups agents by
action and uses a pre-defined action execution sequence. We assume that any object detected
by a ranger is immediately removed from the game. This resolves ambiguous situations
where a ranger and poacher detect the same trap. Under the current Anti-Poaching model,
a poacher detects (and thus removes) her trap before any ranger can detect it. The model
steps occur in the following order:

1. Rangers first transition deterministically to their new individual state.
2. Each poacher moves and reclaims only her traps from the new cell, if any.
3. All rangers now detect traps in their new cell. A ranger may detect each trap

independently with probability pDT .
4. Each remaining empty trap then captures an animal with probability pCA.
5. Rangers detect poachers in their new cell. A ranger detects a poacher with probability

pDP , and detected poachers are assigned the terminal state (−1, −1, 0, 0).
6. Finally, any remaining poacher who chose to place a trap does so.

Note that since each ranger searches a cell independently, the trap and agent detection
probabilities improve with the number of rangers in a cell (Refer Sections A.3.2 and A.3.3).
This incentivises rangers to coordinate between searching particular cells and grid exploration.

3.4 Observations

Observations are computed after each transition ⟨st, at, st+1⟩. Each agent i ∈ R ∪ P receives
observation ot+1

i ∈ Oi, which is emitted by the system with probability Oi(ot+1
i |st, at, st+1).

In the Anti-Poaching game, rangers and poachers receive only their own partial observations
which may differ from others’. There is no communication since poachers are independent,
while rangers avoid any communication which can be intercepted by poachers.
Ranger i observes oi =

�
trem, σt+1

i , sR, ηP , ηcapt, ηcell

�
where trem is the remaining time till

the end of the episode, σt+1
i is her new state at time t + 1, sR = {i′ ∈ R, σt+1

i′ = σt+1
i } lists

all the rangers located in ranger i’s new cell and ηP counts the poachers captured in this
cell at t + 1. Lastly, the tuple ηcapt =

�
ηE

capt, ηF
capt

�
counts the number of Empty and Full

traps recovered from these captured poachers, while the tuple ηcell =
�
ηE

cell, ηF
cell

�
gives the

number of Empty and Full traps removed from i’s new cell.
Poacher j observes oj =

�
trem, σt+1

j , ηR, ηP

�
. (ηR, ηP ) are the numbers of rangers and

poachers that she detects in her new cell. poachers are indifferent to the identities of other
agents since they do not interact with other poachers, and they do not care about the identity
of rangers they encounter.

3.5 Rewards

A poacher is rewarded with Rprey when she reclaims an animal from a trap. When captured,
she incurs a large penalty Crem as well as a penalty Cprey = −Rprey for each prey she is
currently carrying. She also incurs a penalty Ctrap whenever one of her traps is picked up
by a ranger. This can happen when she is captured, or when a ranger detects one of her
traps in a cell. The game is zero-sum in the sense that the rewards of the rangers’ team is
the opposite of the sum of the rewards of the poachers. Furthermore, we assume that the
rangers share their rewards equally. Mathematically:

∀(st, at, st+1) ∈ S × A × S, ∀i ∈ R, Ri(st, at, st+1) = − 1
|R|

X

j∈P
Rj(st, at, st+1) (1)

4 The Anti-Poaching Environment (APE) and RLlib integration

In order to use the anti-poaching game framework as a benchmark for multi-agent RL
algorithms, we provide an open-source easy to use environment for the PettingZoo API [16].
The environment is lightweight, written in pure Python and has limited dependencies.
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Environment Configuration APE is implemented using the PettingZoo API [16], which
is designed to simulate learning environments for Multi-Agent Reinforcement Learning
(MARL) applications. The Anti-Poaching environment is compatible with multiple MARL
libraries out of the box, notably RLlib [10] Stable Baselines-3 [15] and Tianshou [21]. An
example use case, where agents select their actions uniformly at random, is given in Listing
1. APE also allows the configuration of multiple parameters like grid size and the probability
of various events; the full list of configurable parameters is given in Table 2.

1 from anti_poaching . anti_poaching_game_v0 import anti_poaching
2
3 env = anti_poaching . para l l e l_env ( render_mode=" rgb " )
4 observat ions , i n f o s = env . r e s e t ( )
5 done = False
6 whi le not done :
7 action_mask = { agent : ob s e rva t i on s [ agent ] [ " action_mask " ]
8 f o r agent in env . agents }
9 a c t i o n s = {

10 agent : env . act ion_space ( agent ) . sample ( action_mask [ agent ] )
11 f o r agent in env . agents
12 }
13 observat ions , _, terminat ions , t runcat ions , _ = env . s tep ( a c t i o n s )
14 env . render ( )
15 done = a l l ( t e rminat i ons . va lue s ( ) or t r u n c a t i o n s . va lue s ( ) )

Listing 1: Example Use of the APE Environment

Training Configuration in RLlib APE’s tight integration with RLlib allows for a
large number of parameters to be defined for each training. This includes the environment
parameters. It also includes various parameters related to the training such as the algorithm
to use, the policies followed by rangers or poachers, whether the poachers (or rangers) learn,
and other parameters such as the resources allocated.

Training Scenarios The RLlib integration further allows two training scenarios by spec-
ifying the set of learning agents. In the Cooperative scenario, only rangers learn during
the training phase while poachers follow a heuristic policy. Currently, Random and Static
heuristics are provided. An agent using the Random heuristic chooses a legal move uniformly
at random at each time step. An agent using the Static heuristic randomly chooses target
cells before the game begins and continuously cycles between them by taking the shortest
path. Once at a target cell, she first recovers her trap (and thus any prey) if she has already
placed one, and then places a new one. In the Cooperative-Competitive scenario, all agents
concurrently learn their policies.

Calculating Exploitability Let I = R ∪ P and ht
i = (a0

i , o0
i , . . . , at−1

i , ot−1
i ) denote the

history of past observations and actions (h0
i =def ∅). A joint mixed strategy profile is

π = (πt
i)i∈I,t∈[H], where πt

i(ht
i) ∈ ∆(Ai) defines a probability distribution over actions. The

Exploitability metric measures the incentive for each player i to deviate[17]:

EXPL(π) = 1
|I|

X

i∈I

�
v(BR(π−i),π−i),i(h0

i ) − vπ,i(h0
i )

�
(2)

where π−i = (πj)j∈I\{i}. vπ,i(h0
i ) denotes the expected sum of rewards (till t = H) obtained

by agent i when the mixed joint strategy profile π is applied, starting from a random initial
state s0 ∼ ρ. BR(π−i) denotes the Best Response of player i against π−i. EXPL(π) = 0
if and only if π is a Nash equilibrium. Good policies have exploitability close to 0. Exact
calculations of BR(·) and EXPL(·) are difficult since they require solving (single-agent)
POMDPs. Approximate exploitability computation is implemented as a generic RLlib
callback which is called after each evaluation iteration of the main algorithm.
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5 Results

This section showcases results of applying RLLib RL algorithms to learn equilibrium strategies
for cooperative and cooperative-competitive APE scenarios.
We compare the Average Ranger Reward (ARR) over the Sampled Environment Timesteps
(SETs) for each algorithm. All algorithms are trained for 1 million SETs, and are periodically
evaluated every 100,000 SETs. Each evaluation measures each ranger’s Rewards per Episode
over 100 simulated episodes and reports their ARR. For the Competitive scenario, we also
compute the exploitability of the learned policies. Note that each ranger can gain − J

I Crem

points at most for capturing poachers6, which is 100 points per ranger for the default values.
To test the Cooperative training scenario, we use the Policy Gradient (IL-PG) and Proximal
Policy Optimization (IL-PPO) algorithms as Independent Learners, and QMIX for cooperative
learning. We do not test QMIX in the Competitive training scenario since it requires poachers
to be considered as a team for learning and not independent agents.

Episode Horizon (H) 200
Grid dimensions (ℓ × ℓ) 10 × 10
Number of rangers/poachers (N/M) 2 / 2
Probability of detection (pDP /pDT ) 0.2
Probability of animals appearing in a trap (pCA) 0.2
Poachers’ reward (Rprey/Ctrap/Crem) (1/-1/-100)
Poacher’s initial number of traps (ntraps) 3
Table 2: Default values of all configurable parameters for APE

Default Parameters and Hyperparameters Tuning The configurable parameters
for an APE instance are given in Table 2, along with their default values. Due to obvious
concerns about security, the majority of papers reviewed in anti-poaching do not make any
real data public. However, [5] suggests that the probability of trap detection, pDT , in a
tropical forest landscape over a 0.25/km2 area, after 60 minutes of search effort, is 0.20 (95%
coefficient interval ± 15-25%) irrespective of season, habitat or team. [12] also estimated
that in the Nyungwe National Park, the probability of detecting poacher activity during a
complete patrol (pDP is "per cell"), was 0.1. To improve the quality of the learned policies, we
perform hyper-parameter tuning for each algorithm in each scenario. To tune an algorithm,
we launch 100 trials with randomly chosen hyperparameters from a chosen parameter space.
Each trial trains an algorithm instance for 250,000 SETs and performs an evaluation iteration
at the end. The set of chosen hyperparameters values is provided in the Appendix. For the
Cooperative scenario, the quality of a solution is evaluated using ARR. For the Competitive
scenario, the trial that minimises the Exploitability metric is considered the best.

Cooperative Training We compare the performance of Independent learners (PPO and
PG) and a cooperative algorithm (QMIX) on default APE instances over grids of size ℓ = 5
and ℓ = 10 and for Random and Static poacher heuristics. The change in poacher policies is
significant; the variance in ARR is much lower when learning against Random agents than
against Static agents. This indicates that it is more difficult to learn against Static agents.
Note also the effect of the grid size. 2 ranger teams learn to patrol efficiently on the small
grid even under partial observations, capturing both poachers most of the time. However,
they fail to find more than 1 poacher on average for the larger grid.

Cooperative-competitive Training Each algorithm is again trained for 1 million SETs
and evaluated every 100,000 SETs to calculate the ARR. We also calculate the Approx-
imate Exploitability of the joint policy at the end of each evaluation iteration using
ExploitabilityCallback. We only compare Independent Learner algorithms here since all
agents learn concurrently. As before, rangers learn to effectively patrol the smaller grid using

6The total reward for capturing all J poachers is J × Crem, shared equally by the I rangers.
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Figure 3: Comparison of Algorithm Performance in the Cooperative Training Scenario over
5 × 5 and 10 × 10 grids. The black line represents the reward for capturing all poachers.

Figure 4: Comparison of Algorithm Performance in the Mixed Training Scenario over 5 × 5
and 10 × 10 grids. The black line represents the reward for capturing all poachers.
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both IL-PPO and IL-PG, while they find 1 poacher on average on the larger grid. It is
interesting to note that the Exploitability is small in both cases (∼ 5% to ∼ 10%), suggesting
that the learned policies are robust even against adaptive poachers.

6 Conclusions

This paper introduces APE, the first standardised MARL environment for Anti-Poaching.
Anti-poaching is first formalised as a partially observed stochastic game in which a team
of rangers are in competition with a set of independent poachers. APE is a PettingZoo-
compatible open-source Python implementation of a MARL environment for this game,
offering a seamlessly integration with main existing RL libraries. APE is a novel contribution
alongside other recent works (e.g. [7, 13]) that have recently proposed similar frameworks in
other domains. To demonstrate APE’s potential, we provide tests over example scenarios
using PPO, PG and QMIX algorithm implementations from the RLlib library.
APE can be extended, in particular in the way partial observability is modelled. As can be
seen from the tests, state-of-the-art RL algorithms seem not to improve their performance
much through interactions with the environment (except in the 10×10 competitive scenario).
Longer training periods did not significantly improve the learned policies either. Since the
exploitability of the learned approximate equilibria is small, it looks like the variability of
long term reward is small, whatever the rangers’ policies. Likely, current observations are
highly local and noisy, and thus do not contain enough information on poachers’ behaviour
and trajectories to allow the rangers to improve their policies through learning. Therefore, we
will equip APE with various observation wrappers, so as to provide a means to study the role
of observations in learning. We will provide a wrapper to make the problem a fully-observed
cooperative-competitive stochastic game, for which equilibrium computation algorithms
with guaranteed performance may be developed (e.g. [6] for non-RL approach and a single
adversary). We also intend to provide wrappers to model intermediate forms of observability,
between the current model and full observability, in order to improve the realism of our case
study. Such models could include footstep observations [20], or different kinds of rangers
with different observation and action capabilities (i.e. UAV agents [1, 19, 14]).
Acknowledgements This work was funded by the French National Research Agency (ANR),
grant ANR-22-CE92-0011-01.
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