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Abstract

Interpreting graph neural networks (GNNs) is difficult because message passing
mixes signals and internal channels rarely align with human concepts. We study
superposition, the sharing of directions by multiple features, directly in the latent
space of GNNs. Using controlled experiments with unambiguous graph concepts,
we extract features as (i) class-conditional centroids at the graph level and (ii) linear-
probe directions at the node level, and then analyze their geometry with simple
basis-invariant diagnostics. Across GCN/GIN/GAT we find: increasing width
produces a phase pattern in overlap; topology imprints overlap onto node-level
features that pooling partially remixes into task-aligned graph axes; sharper pooling
increases axis alignment and reduces channel sharing; and shallow models can
settle into metastable low-rank embeddings. These results connect representational
geometry with concrete design choices (width, pooling, and final-layer activations)
and suggest practical approaches for more interpretable GNNGs.

1 Introduction

Understanding what features a model represents and how they are arranged in latent space is central
to trustworthy ML. For graph neural networks (GNNs), this is unusually hard. Unlike pixels or
tokens, graphs do not offer a fixed coordinate system across inputs; receptive fields are relational
and variable; and many signals are structural (motifs, roles, spectral patterns) rather than obviously
human readable. As a result, most GNN interpretability work answer which nodes or edges mattered,
not what internal features the network formed or how those features are arranged [Ying et al.| 2019,
Luo et al., 2020, |Yuan et al.} 2022} |Kakkad et al., [2023]].

A key obstacle to interpretability is superposition: many features are packed in fewer directions,
creating polysemantic channels and entangled geometries [[Elhage et al.l 2022} Scherlis et al.| 2023].
Superposition has been studied in MLPs and transformers, but its behavior in GNNs, where message
passing and pooling constrain geometry, remains underexplored. This motivates the central theme
of our work, which asks: How does superposition arise in GNNs, how do architectural and graph-
structural choices modulate it, and what are the downstream consequences for interpretability?

To answer these questions, we build small, controllable datasets where the relevant graph concepts
are unambiguous (e.g., "two adjacent identical types" or "contains a triangle and a hexagon"), train
standard GNNSs, and look directly at the geometry of their internal representations — both at the node
level (before pooling) and at the graph level (after pooling). We then use two simple, basis-invariant
diagnostics: one that says "how many distinct axes are effectively used" and another that says "how
tightly packed the directions are compared with an ideal arrangement."

Our study yields several main findings:

* Width produces a phase pattern. As the final hidden layer widens, feature overlap first de-
creases, then briefly increases around the point where capacity matches the number of con-

*Equal contribution.
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cepts, then decreases again. At high width, graph-level features approach near-ideal packing,
but node-level concepts often remain entangled — evidence that readout layers can disentangle what
the message-passing stack keeps mixed.

* Pooling sharpness encourages axis alignment. Making pooling more "winner-take-all" (e.g.,
max pooling) increases alignment to coordinate axes and reduces node-level feature sharing. We
explain this with two complementary arguments: gradients concentrate on large coordinates, and
under noise the axis-aligned choice loses less information than an oblique one.

* Rank collapse can appear even in shallow GNNs. In some runs the numerical rank of the pooled
representation stays below the number of learned features while the accuracy remains high. We
link this to hard gating after aggregation (exactly zeroing channels) and to a loss-driven preference
for "mutually obtuse" class directions that resists activating new dimensions.

Contributions. (i) A representation-centric framework for analyzing superposition in GNNs that
works across architectures and layers; (ii) robust, simple diagnostics and feature extraction procedures
(centroids and probes) that avoid assumptions about neurons or coordinates; (iii) empirical maps of
how width, topology, and pooling shape superposition; and (iv) practical guidance — when to expect
entanglement, when pooling helps, and how to avoid low-rank traps.

2 Background

2.1 Superposition and the interpretability of internal representations

Classic unit analyses in CNNs found channels that act like concept detectors [Zeiler and Fergus| 2014}
Zhou et al.| 2014} Bau et al., 2017} |Olah et al., 2017]]; related work spans RNNs and transformers
[Karpathy et al.|[2015] [Strobelt et al., 2017, |Gurnee et al., [2023], 2024} |Geva et al.,|2020]], and early
GNN studies exist [Xuanyuan et al., 2023]]. However, concepts need not be axis-aligned: they can
correspond to arbitrary directions or nonlinear detectors. Directional tools (TCAYV, linear probes)
therefore treat a feature as a vector in latent space [Kim et al.|[2018| |Alain and Bengio, 2016]]; recent
sparse-autoencoder work aims to demix polysemantic units [Bricken et al., 2023} |Gao et al.,|[2024].

Superposition is the phenomenon where models represent more features than available dimensions by
allowing features to share neurons/directions, producing polysemantic units and entangled directions
[Elhage et al.| [2022]. Both neuron-level and mechanistic analyses benefit from (approximate)
decomposability: having independently meaningful, linearly separable features. Superposition
violates this assumption, obscuring neuron-level semantics and complicating circuit reconstruction.
Methods that demix features (e.g., sparse autoencoders) can mitigate these issues [Bricken et al.|
2023} |Gao et al., [2024]).

2.2 Representations in GNNs

A message-passing layer aggregates neighbor information and applies a local transform,
H = o(Ace(HD, A), WD), )

with architecture-specific aggregation (e.g., normalized sum for GCN [Kipf and Welling, 2017]],
unnormalized sum + MLP for GIN [Xu et al., 2019], attention for GAT [VelickoviC et al.|[2018]]).
After L layers, node embeddings H(™) are pooled into a graph embedding hg = g(H) via
sum/mean/max.

Superposition pressure in GNNs. Message passing repeatedly mixes many neighbor features into
fixed-width hidden states. This creates capacity pressure that encourages superposition — multiple
features sharing the same channels — leading to polysemantic units and entangled directions. While
superposition has been analyzed in toy feedforward/transformer settings, to our knowledge there
is little analogous work for GNNs. This gap further complicates neuron-level semantics and the
reconstruction of GNN circuits.



3 Quantifying Superposition in Representations

3.1 Interpreting and extracting features

Prior work often reasons about superposition at the input to layers (e.g., pixels/tokens). For GNNs,
we study it where it matters for interpretability: in the latent spaces of nodes and graphs. We ask:
how many features are packed into how few directions, and how well are those directions separated?

Following [Alain and Bengiol, |2016, |[Kim et al., 2018} |Elhage et al., {2022} Bricken et al., 2023} Gao
et al.}[2024], we treat a feature as a direction in a model’s latent space that supports a prediction. For
a GNN with forward pass
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each ¢; is a message-passing block, H(Y) € R™*% are node embeddings, g is a graph-pool, and
hg €R? is the graph embedding. We interpret features in two complementary ways.

(1) Linear-probe features (model-decodable concepts). Linear probes are a well established
method for finding feature directions [[Akhondzadeh et al. [2023]. Given embeddings {hg}

(graph-level) or rows of H) (node-level) and binary targets 3, € {0, 1} for concept £, we fit a
logistic probe on a held-out split:

se=w,z+by, z¢€{hg}or {Hgl)}
The probe normal w, (unit-normalized) is taken as the feature direction for concept £. Since all our

geometry is directional, the intercept by is irrelevant.

(2) Class-conditional centroids (task-aligned concepts). On a held-out split, we form one-hot sets
using the ground truth y.

1
SST ={G :y(G) = e}, (TES 57 Z hg,
¢ 1 gesgr

and stack rows to obtain C' € R¥ <4 In the linear/LDA regime, discriminants align with class means
[Alain and Bengio, [2016]], so centroid directions approximate task-discriminative axes and aggregate
the combined effects of message passing and pooling.

Active features. Not all labels are reliably learned in every seed, thus including non-existent or
highly confused features would distort superposition measurements. We therefore define an active
feature ¢ using only the held-out split:

* Probes: a concept ¢ is active if AUC,; > 0.60.

¢ Centroids: class £ is active if in-class recall > 0.5 and all off-diagonal recalls < 0.5.
Let L, be the active set (|Lact| = ko). We form the feature matrix by stacking unit vectors: either
{Weteer,., (probes)or {¢p}ocr,., (centroids). In the main results we use class-conditional centroids

plus linear probes as complementary views: centroids assess task-aligned geometry, probes assess
model-decodable directions.

3.2 Proposed Metrics

We propose metrics to measure superposition for a k, x d feature matrix C.

Effective rank (EffRank). With singular values o3 > o2 > -+ and p; = 0;/ ) ;T the
entropy-based effective rank is

EffRank(C) = exp(— Z p; log pi). 2)

It estimates the number of effectively used axes. For centroids we COM-center C° = C' — 1¢' with
c= ki > ¢ ¢¢ before computing EffRank, removing a global bias direction that no practitioner would
interpret as a mechanism. For probe normals we use the raw C'.



Superposition Index (SI). To express features per effective axis we use the absolute index
p— ka
~ EffRank(C)’

SI = 1 indicates no extra sharing beyond having %, independent directions; SI > 1 means multiple
features share axes (greater superposition). This avoids dependence on the ambient d.

SI 3

Welch-Normalized Overlap (WNO). While ST measures the mean number of features distributed
over each axis, it does not consider their angular geometryﬂ Therefore to complement SI, we

introduce an angular overlap metric called the Welch-normalized overlap: let C' be the matrix
obtained from C by normalizing each row to unit {5 norm and define

S 2 o
cos? = D) Z(ci,cj)Q.
alra i<j

We compare cos? to (i) the random baseline 1/d.g (independent unit vectors in Ré#r) and (ii) the

Welch lower bound p2 = max (0, %), and report
dlﬁ_ — cos?
WNO =1 - ﬁ s 4
off *

so WNO = 0 is Welch-optimal (least overlap), WNO = 1 is random, and WNO > 1 is
worse-than-random packing. Since ambient d can be much larger than the subspace actually used. We
therefore report intrinsic WNO: set r = [EffRank(CT)] (with CT = C° for centroids and CT = C
for probes), project C' to the top-r right-singular subspace to obtain C,., row-normalize, and take
det = 7 in (@). For centroids and graph-level probes we additionally remove a single shared offset
direction before the SVD (PC1 removal); for node-level probes we do not remove PC1 E]

Invariances and scope. EffRank and WNO are invariant to right-multiplication by orthogonal
matrices (basis changes) and to uniform rescaling of rows; they probe geometry intrinsic to the repre-
sentation rather than coordinate choices. SI quantifies features-per-axis pressure; WNO quantifies
how tightly those axes are packed relative to principled baselines.

4 Effects of Model Width and Graph Topology

4.1 Datasets

The PAIRWISE dataset. We introduce a dataset where graphs are equal length linear chains of 20
nodes. Each node has an n-dimensional one-hot/zero feature. Class k is active if two adjacent nodes
both activate dimension k, yielding sparse multi-class targets. The task is attribute driven: since each
class is associated with identical graph structure, we can probe for superposition whilst factoring out
the effects of varying topology. Sparsity is controlled by the activation probability p of a node having
a one-hot (non-zero) feature. Exact details for reproduction are included in Appendix [A.1]

The CONJUNCTION dataset. To isolate fopology—driven superposition from effects of extraneous
input attributes, we introduce a graph family in which all node features are initialized to the node’s
degree, and supervision otherwise depends only on the presence of simple cycles. Let Cy(G)
denote the indicator that graph G contains at least one simple cycle of length /. We instantiate four
motif detectors ¢ € {3,4,5,6} (triangles, squares, pentagons, hexagons) and define two labels by
conjunctions of cycles:

ya(G) = O(G)NCe(G) ), yB(G) = K Cu(G)ACs(G) )

All other graphs receive y4 = yp = 0. Thus the same lower-level motif concepts {C3, Cy, Cs5,Cs}
are re-used across the two tasks, but each label requires a distinct pair. This cleanly separates (i)

2For example, two different arrangements of packing 6 vectors into 2D: (i) arranged as a near-regular hexagon,
and (ii) arranged such that there are two antipodal clusters. Both have EffRank ~ 2.

3PC1 removal is appropriate when a single global bias dominates all classes (e.g., pooled magnitude);
removing it improves sensitivity to relative packing. For node probes this shared offset is not guaranteed and we
keep the raw geometry. If » < 1 or k, < 1, WNO is undefined and we report NA.



the formation of topological features from (ii) how a model combines them. A graph is formed
by sampling required counts for the four motifs according to the label pattern and then adding
Binomial(8, 0.5) extra copies of each motif. Exact details for reproduction are included in Appendix
[A2] Motif instances are placed on disjoint node sets and connected by random bridges to avoid trivial
overlaps. Because there are no informative node attributes, any successful solution must construct
the motif detectors purely via message passing.

4.2 Width-induced superposition

We study how width d affects superposition on PAIRWISE (k = 16) on 16 seeds. The first hidden
layer is set to the input width (k) and the second layer to d, inducing a bottleneck when d < k.
We measure (a) class-conditional centroids in the graph space and (b) node-level concepts Is; and
NextTo; via linear probes on the last pre-pooling layer: let x; € {e1, ..., e} be the one-hot node
type and V; the neighbors of . For type ¢,

Is (¢) := 1{z; = et} NextToy (i) :=1{3j € N; : z; = e}
We keep only active features: centroids with in-class recall > 0.5 and off-class recall < 0.5, and
probes with AUROC > 0.6. We report intrinsic WNO (computed in the EffRank-selected subspace).
Centroids are COM-centered for EffRank; probe normals are not. Optimizer and training details for
this experiment and subsequent ones are given in[B.T}
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(a) Class-conditional centroids of the graph embeddings.
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(b) Linear probe features of the NextTo concept family after the second message-passing layer.
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(c) Linear probe features of the Is concept family after the second message-passing layer.

Figure 1: Superposition effects across bottleneck dimensions d. A dashed line corresponds to k = d.
Shaded regions show uncertainty as mean +1.96¢ //R where R = 16 is the number of seeds.

We observe a consistent three-phase transition with increasing d for both graph centroids and node
concepts (GCN/GIN/GAT): an initial improvement in packing (SI), WNOJ), a reversal near d~k
(SIT, WNOT), and a final decay back to good packing. The effect is stronger for node features:
centroids approach Welch-optimal geometry (WNO— 0, SI— 1), whereas node probes often stabilize
around random or worse packing (WNO > 1). This suggests that superposition is largely resolved by
the readout but not eliminated at the last node layer.

Architecture trends follow inductive bias. For GIN, the post-aggregation MLP tends to funnel many
labels into shared axes ("generic neighbor/type pressure + small residuals"), which the readout later



separates by sign/magnitude at the graph level. GAT shows peaks that are present but typically
smaller; attention can separate channels earlier, while GCN produces smoother, less volatile curves.

The WNO/SI peak typically coincides with saturation of the number of active features/probes and
the onset of a flat test loss. This aligns with two competing effects of more width: feature formation
(easier to instantiate additional task-useful directions) versus packing efficiency (easier to spread
existing directions). Early on, packing dominates; around d =~ k capacity is spent on forming new
directions (SI/WNO rise); once formation saturates, packing dominates again and SI/WNO drop.
Centroids are tied directly to the BCE objective, so their feature formation saturates earlier, explaining
the shorter first phase.

4.3 Topology-induced superposition

On CONJUNCTION we train 3-layer GCN, GIN, and GATV2 models (16 channels per layer),
apply a global mean pool followed by a ReLU, and fit a two-logit readout (ya,yg). For each
architecture we repeat training over 250 seeds. We use probes to study two feature families: (i)
node-level Inside, (%) on the last pre-pooling layer, which activates if node 4 is part of an ¢-cycle, and
(ii) graph-level Hasy(G) on the post-pooling representation, which activates if the graph G contains
any (-cycle.

GAT

[ R S o 1 3 3
WNO
Figure 2: ST and WNO measured on GNNs trained on CONJUNCTION. Red highlighted data-points
indicate models with perfect test accuracy.

Despite d > k, superposition remains large. With k=4 motifs and width d=16, independent axes
would yield SI =~ 1 and WNO = 0. Instead, Fig. [2| shows clusters at SI > 1 and WNO > 0, i.e.,
above random overlap. In most runs, at least one motif pair has | cos| > 0.9 (Table , most often
(C3,C4) or (Cs,Cs); in rare cases (~1% in GIN) all four are nearly collinear, consistent with an
emergent lever of “cycleness’. High accuracy can still be achieved, suggesting that the pooling /
reading takes advantage of residual multicoordinate structure or magnitude even when node-level
directions coalesce.

Cosine geometry reveals a cyclic structure. Figure[3|reports mean cosine similarity matrices. At
the node level, the lengths of the nearby cycles align (for example, C'3 with Cy, Cs with Cg) while
distant pairs are weakly aligned or slightly antialigned. From the standard spectral view, a depth-L
message-passing GNN implements a low-degree polynomial filter in the normalized adjacency matrix
A [Defferrard et al., 2016 Kipf and Welling| |2017|: ignoring nonlinearities one can write

L
H ~ Z AFXO,
k=0

where X € R™*% are the input node features, H(X) € R™*%u are the layer-L node embeddings,
and each O € R% *dou j5 a learnable coefficient matrix specifying how information arriving via

k-step walks is mixed across feature channels. The power A* encodes k-step walks on the graph, and

its diagonal entries (Ak)” correspond to closed walks of length & at node i. Detectors for Cfs, ..., Cq
therefore necessarily reuse many of the same short closed-walk monomials, which naturally makes
nearby cycle lengths more aligned in representation space. After pooling, geometry re-mixes toward
the task: the post-pool ReLU and linear readout learn graph-level axes that are linear combinations of
node-level detectors (e.g., in GIN with mean-pool, C5 aligns with Cg while Cy opposes C'5, which
helps reject single-motif false positives).
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Figure 3: Mean cosine similarities for the node features Table 1: Percentage of instances above
(top) and graph features (bottom) on CONJUNCTION. 0.9 absolute cosine similarity.

Max pooling reduces lever sharing. Since a linear probe’s sign can flip with an equivalent boundary,
we track | cos| to detect shared levers. Switching from mean to max pooling reduces node-level
alignment across all architectures: both the fraction of runs with any | cos | > 0.9 pair and with all
pairs > 0.9 drop (Table[I). Intuitively, a per-channel max cannot encode a conjunction on a single
channel — one large activation would mask the other—so the model is pressured to place motifs on
distinct channels, lowering | cos |. The ordering in Table [1| (GCN > GAT > GIN in lever sharing)
aligns with each layer’s mixing bias. GCN’s degree normalized sum acts as a low-pass smoother,
concentrating signals into a few graph-harmonic axes and driving different motifs to share directions.
GAT’s learned attention reduces indiscriminate mixing and yields moderate de-alignment, but a single
head offers limited selectivity. GIN’s unnormalized sum plus post aggregation MLP provides the
most expressive channel rotation and gating, producing more specialized directions and the lowest
node and graph level alignment.

Discussion. Even with generous width, semantically different topology features occupy similar
node-space directions. Max pooling alleviates but does not eliminate this, probably reflecting
message-passing inductive biases. Note that many high-accuracy models sit at SI > 1 and WNO > 0
(Fig.[2), indicating that accurate solutions often rely on node-level lever sharing with disentanglement
deferred to the graph-level readout — superposition here is not merely a symptom of under-capacity.

S Pooling-Induced Axis Alignment of Graph Representations

Metric and preprocessing. We measure axis preference with the Alignment Index (Al) computed on
any set of feature directions {c, € R%} ?:1 (node-level probe normals or graph-level class features):

1 <~ max; |(co);]
Al = =y /20T
k; l[eell2

Thus, AT ~ 1/+/d for random orientations and AT — 1 when each feature is concentrated on a
coordinate axis. We always use row-unit directions; for centroids we COM-center across classes
before normalizing (to remove the shared offset), while probes use the raw fitted normals.

Global and local pooling conditions. For the graph readout we use the signed power-mean family
(details in Appendix@ that interpolates mean (p = 1) and max (p — co):
N
ya = sgn(sa) N~P [sql'/7, Sd = ngn(%’d) |zial”.
i=1
To isolate local effects, we also replace the last message-passing aggregator by the same power-mean
operator while holding the global readout at mean pooling.

Alignment vs. pooling and regime. On PAIRWISE (k = 16) across both a bottleneck (d = 10) and a
wide (d = 22) regime, Al increases as p>1 (Fig.[). With global pooling the effect is clearest at the
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Figure 4: Alignment versus pooling parameter p across architectures on PAIRWISE (k = 16). Shaded
regions show uncertainty as mean +1.960/v/R where R = 16 is the number of seeds.

graph level (the nonlinearity acts after node mixing). With a local power-mean in the last layer, Al
increases at both node and graph levels because the winner-take-most bias precedes the final ReLU
and readout. Occasionally Al dips for p> 2 in the bottleneck regime; this coincides with less stable
training and noisier features. The trends persist when conditioning on high-accuracy runs. GATv2
tends to exhibit higher node-level Al even for modest pjoc, (attention already induces axis-selective
flows), whereas GCN'’s degree-normalized linear aggregation produces smoother trends.

From alignment to constrained superposition. Under mean pooling, strong bottlenecks yield large
SI due to shared directions, especially at the node level where separation is not directly optimized
by the loss. Increasing pioca reliably reduces Slhoqe (Fig. [)), effectively capping features-per-axis.
Raising pgiobar also lowers SIjqq. in the wide regime (consistent with ; in the bottleneck regime
the dimensional constraint dominates and this effect largely vanishes. Slgppn stays near-flat: in the
wide regime it is already close to optimal under mean pooling (§4.2), and in the bottleneck regime
additional alignment cannot overcome the shortage of dimensions.

Noise as the driver of axis alignment. Two complementary arguments explain why increasing p > 1
breaks rotational symmetry in favor of axis alignment. (i) Learning-dynamics view. Backpropagating
through generalized mean pooling (App. [C) yields, for each pooled feature hg;,

Ohq

1 1_ _
o = (el +2) " (al + )"

(a derivation is given in Appendix [D) where 5,4 is the mean of the transformed features and € > 0 is

1

the stabilizer. For fixed d and p, the prefactor % (|§d| + 5) »! is shared across nodes, so the relative
gradient magnitudes are controlled by (|z;4| + )P~ 1: with p = 1 we recover dhy/dz;q = 1/N (a
rotation-invariant Jacobian), whereas for p > 1 coordinates with larger |x;4| receive disproportionately
larger updates, steadily aligning features to coordinate axes. In the absence of noise all orientations
become equivalent once the model has recognized the features; in realistic graphs ubiquitous irrelevant
features inject noise and trigger the symmetry breaking. (ii) Geometric view. Under equal-energy
corruption, axis-aligned vectors lose less information than randomly oriented ones; in high dimensions
the components of a random unit vector scale like 1/ \V/d and are easily swamped by noise spikes.
Figure [3] visualizes this effect under max pooling. We numerically simulate the equal-energy
corruption under max pooling: for each (n, o) on a grid (dimensions n = 2...20, noise levels
o € [0.001,0.35]) we sample 100 random vectors v € R"™ (either uniform on the unit sphere or
one-hot), draw 20 i.i.d. Gaussian noise candidates per coordinate with variance o2, and replace each
coordinate by the candidate with largest absolute value whenever its magnitude exceeds |v;|.

Practical takeaways. For more axis-aligned graph features, prefer global pooling with pgigpar > 1.
To make node channels less polysemantic, consider a power-mean local aggregator in the final layer.

6 Rank collapse and metastable superposition

Our geometry metrics (SI/WNO) quantify how features pack inside the span of the learned repre-
sentations. They do not say how many dimensions that span actually occupies. Let H € RV*? stack
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Figure 5: Axes-aligned embedding vectors lose less information than arbitrary-angled vectors under
max pooling when both are corrupted by equal-energy noise.

pooled graph embeddings (rows are graphs) and let C € R« << stack the k, active class centroids.
Since centroids are linear averages of rows of H, C' = AT HR for suitable averaging/projection
matrices, hence

EffRank(C) < rank(C) < rank(H).

If the span of H is low-dimensional, superposition is inevitable: by pigeonhole, k, > rank(H)
forces multiple features to share axes. We formalize this with a numerical rank

rr(H) = #{i:0:(H)/o1(H) > T},

and call a run collapsed when r.(H) < kaﬂ This is the regime where high SI/WNO are not just a
matter of suboptimal packing but a hard capacity constraint from a thin span.

Two training modes. On PAIRWISE we observe two characteristic dynamics (Fig. [6). In some
seeds 7, (H) rises to the layer width (d=16), with EffRank(H) tracking from below; S/WNO on
centroids drop accordingly. In other seeds r,(H ) remains strictly below d, sometimes far below
kq: S/WNO stay high and the smallest singular values show brief activation attempts (spikes) that
recede, indicating the optimizer returns to a low-rank basin. Interestingly, across models that exhibit
overfitting (such that the right model in Fig. [6) we observe sharp multi-phase transitions in SI and
WNO throughout training. A possible (non-rigorous) explanation is provided in Appendix [E]

102
1.00 Test 1.00 Test

Train 102 Train

Loss

0.50

1.40 e
51072 4 @ 1.40 A
10° 5 1.20

Singular values
SI
Singular values

10~ 4
0.75

Z 050 e
z
0.25

100 200 ' 100 200 100 200 100 200
Epochs Epochs

Figure 6: Examples showing the evolution of singular values of a GCN model (left) and GIN model

(right).

Why does the low-rank basin persist? Two effects make it metastable: (i) Global channel gating
by ReLU. If a channel is negative across the dataset just before the last nonlinearity, ReLLU zeros it
everywhere, so the corresponding column of H vanishes and algebraic rank drops exactly. Replacing
the final ReLU with LeakyReLU substantially reduces such dead columns (App.[E3). (i) Obtuseness
pressure under BCE. Before a separating hyperplane forms, last-layer directions {v;} tend to align
with their class weights {w; } and become mutually obtuse. Moving one feature into a fresh orthogonal

*We use 7=10""*; results are qualitatively unchanged for 7 € [10™°,10>]. An energy criterion r,,(H) =
min{r: Y, 07 > (1 —n)>, 07} gives the same conclusions.



dimension rotates it towards 90° against the others and increases the BCE loss. After the hyperplane
forms, the cross-class margins satisfy w;w < 0 (i # j), and perturbing vy, into a new dimension
makes those dots less negative, again increasing loss (Appendix [F). Hence gradients oppose escapes
until the accuracy gain from a new dimension outweighs the obtuseness penalty, explaining the
singular jump events.

When is collapse likely?

We see more collapse (i) with narrower last layers, (ii) in GIN (post-aggregation ReLUs) than GCN
(no ReLU after the final aggregation), and (iii) as the number of task features grows. This agrees
with the regime analysis in Appendix [} when &, <d + 1, mutually obtuse low-rank configurations
exist and can act as local minima; as k, approaches or exceeds 2d, such configurations become
geometrically impossible and 7. (H) tends to reach d.

Connection to oversmoothing. Classic oversmoothing is within-graph: node states become indistin-
guishable with depth. Here we see a cross-graph analogue: pooled graph embeddings concentrate in
a thin global subspace. Accurate models can then separate classes inside that span by sign/magnitude,
which explains why SI/WNO can be high at the node level yet acceptable in the graph space.

Discussion. The width-sweeps in showed SI/WNO can be high even when d > k; here we
identify a complementary mechanism: training can settle into thin-span solutions, so overlap is forced
(because k, > r,(H)) rather than just suboptimal packing within a rich span. This also clarifies
why node-level superposition can persist while graph-level centroids look well-packed: the readout
operates inside a low-dimensional subspace, separating classes by sign/magnitude without increasing
the span of H.

7 Conclusion

In this work, we provided, to the best of our knowledge, the first systematic study of superposition
in GNNs. Concretely, we introduced a representation-centric framework that quantifies feature
sharing in GNNs via class-conditional centroids and linear-probe directions. Across architectures,
width induces a three-phase trajectory in overlap; topology shapes node-level geometry that pooling
re-mixes toward the task; and sharper pooling drives axis alignment and reduces lever sharing. We also
observed metastable low-rank graph embeddings in shallow models. Practically, modest increases
in width, LeakyReLU in the final MLP, and sharper but stable pooling improve interpretability
without sacrificing accuracy. A key next step is to link superposition dynamics to over-smoothing and
over-squashing, integrating our geometric view with spectral, dynamical, and topological analyses.
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A Datasets

A.1 The PAIRWISE dataset

Graph structure and node features. The PAIRWISE dataset consists of graphs that are simple
chains of fixed length L = 20. We represent the chain as an undirected path on nodes {1, ..., L} with
edges (i, + 1) fori=1,...,L — 1, encoded as two directed edges (¢, + 1) and (i + 1,4); in our
experiments we do not add self-loops. Each node i carries a k-dimensional feature vector z; € {0, 1}¥,
where k is the number of categories (we denote the corresponding dataset by PAIRWISE). Node
features are sampled independently as follows: first draw an activation flag b; ~ Bernoulli(p) with
p = 0.9; if b; = 1, sample a category ¢; ~ Unif{1,...,k} and set (x;)., = 1 and all other entries to
0, while if b; = 0 we set «; = 0. Thus each node is either all-zero or one-hot, with a high expected
fraction p of active nodes. All random choices are made with a fixed seed (42) for reproducibility.

Label definition, deduplication, and split. Given a feature matrix X € {0, 1}£** on the chain,
the multi-label target y € {0, 1}* is defined coordinate-wise by

Yo = 1{3(1,;) € B with (2;)c = (2)e = 1}, c=1,... .k

where E is the set of chain edges (self-loops, if present, are ignored when computing y). In words,
class cis active if and only if there exists at least one edge whose two endpoints both carry the one-hot
category c. To build the dataset, we repeatedly sample node features X as above, compute y, and
retain only unique graphs, where uniqueness is defined by the node-feature pattern: we hash X (after
casting to uint8) and reject duplicates until we have n,in + ntest = 3000 distinct samples. We
then randomly shuffle these 3000 graphs (using the same seed 42) and split them into n¢pa, = 2000
training and nesr = 1000 test graphs, corresponding to a test ratio of 1/3.

A.2 The CONJUNCTION dataset

Data generation. We instantiate the CONJUNCTION dataset by drawing nin = 3000 and ney =
1000 graphs with a fixed random seed of 42. For each graph we first sample a latent category
¢ € {none, A-only, B-only, both} from a categorical prior (0.25,0.25,0.25,0.25). Conditioned
on ¢, we specify the required counts 7, € {0,1} of cycles of lengths ¢ € {3,4,5,6} as follows.
For A-only we set (r3,r4,75,76) = (1,0,0,1); for B-only (0, 1,1,0); for both (1,1,1,1). For
the “none” category we sample uniformly from the four non-target pairs (1,0,1,0), (0,1,0,1),
(1,1,0,0), (0,0, 1,1), which guarantees that neither conjunction C3 A Cg nor Cy4 A Cs holds. Given
these required counts, we then draw independent extra copies e, ~ Binomial(8, 0.5) for each length
¢ with 7y = 1, and set the total motif counts to ny, = r; + ey; lengths with r;, = 0 remain absent. This
corresponds to a symmetric Bernoulli prior over up to eight additional copies per present motif. The
final labels are then computed deterministically from the counts as

ya(G)=1{n3 > 1Ang > 1}, yp(G) = 1{ngy > 1 Ang > 1},
so that the four categories correspond to (y4,ys) € {(0,0),(1,0),(0,1),(1,1)} as intended.

Graph construction. Given the counts (ng, n4, 15, ng), we materialize a concrete graph by placing
all motif instances on disjoint node sets. For each of the n, copies of a cycle of length ¢, we create
a simple cycle on ¢ new nodes and designate one “anchor” node on that cycle. To increase local
structural variety while preserving the core motifs, we attach “whisker” paths to each anchor: for
every anchor we sample a number of whiskers W ~ Unif{0, 1,2}, and for each whisker we sample a
length Lyy, ~ Unif{1, 2} and attach a simple path of length L, starting from the anchor. Letting A
denote the set of anchors of all motif instances, we then randomly permute .4 and connect consecutive
anchors by simple paths of length Ly, ~ Unif{1, 2}, ensuring that the overall graph is connected
while the cycles themselves remain node-disjoint. Node features are one-dimensional and equal to
the node degree (i.e., we use purely structural degree features with no learned or random attributes).

Deduplication and split. To avoid distributional artefacts from re-using the same graph topology,
we perform bucketed rejection sampling with Weisfeiler—Lehman (WL) deduplication. We maintain
four buckets (one per category) and generate candidate graphs as above until each bucket contains the
desired number of graphs implied by the class prior (subject to rounding), rejecting any candidate
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whose 1-WL hash (obtained from three iterations of 1-WL colour refinement on the undirected graph
and hashing the resulting colour histogram) has already been seen in that bucket, with a cap of
60,000 proposals per bucket. Once a total of 4000 unique graphs have been collected, we perform
a per-bucket random split into 3000 training and 1000 test graphs using the same seed (42), which
preserves the class proportions up to integer rounding.

B Optimizer and training

B.1 Optimizer details

All models are trained with the Adam optimizer as implemented in PyTorch, using the default
parameters (31, 32) = (0.9,0.999) and € = 108, Unless otherwise stated, we use a mini-batch size
of 256, no learning-rate scheduling, and no early stopping; every configuration is run over multiple
random seeds, but the optimizer hyperparameters are identical across seeds. No dropout is performed.

Table 2: Training hyperparameters (optimizer, learning rate, weight decay, and batch size) by
experiment and architecture.

Experiment Task / dataset Model Learning rate Weight decay Epochs

1 PAIRWISE 4 GCN 0.10 0 300
1 PAIRWISE 4 GIN 0.01 0 150
1 PAIRWISE 4 GAT 0.01 0 150
2 CONJUNCTION GCN 0.001 107° 1600
2 CONJUNCTION ~ GIN 0.001 10° 1600
2 CONJUNCTION GAT  0.001 107° 1600
3 PAIRWISE 4 GCN 0.10 0 200
3 PAIRWISE 4 GIN 0.01 0 200
3 PAIRWISE 4 GAT 0.01 0 200
4 PAIRWISE 4 GCN 0.10 0 250
4 PAIRWISE 4 GIN 0.01 0 250
4 PAIRWISE 4 GAT 0.01 0 250

Experiment 1 (Dimension induced bottleneck on PAIRWISE). We use mean global pooling,
batch size 256, and the learning rates and weight decays from Table 2] We train GCN models for 300
epochs and GIN/GAT models for 150 epochs:

GCN: Ir = 0.10, wd = 0, 300 epochs; GIN/GAT: Ir = 0.01, wd = 0, 150 epochs.

The optimizer is Adam with the above defaults and no scheduler.

Experiment 2 (Topology induced superposition). For the second experiment we again use Adam,
batch size 256, and mean pooling, but employ smaller learning rates and a small amount of weight
decay. All architectures share the same training schedule:

GCN/GIN/GAT: Ir = 1073, wd = 10~°, 1600 epochs.

Training is performed by calling model.fit (train_loader, optimizer, num_epochs=1600)
with no additional regularization beyond weight decay.

Experiment 3 (alignment on PAIRWISE ). In the alignment experiments on the PATRWISE ¢
dataset we sweep the hidden dimension over [10, 16, 22] with batch size 256, and the same Adam
learning rates and weight decays as in Experiment 1 (see Table[2). We sweep the generalized-mean
pooling exponent over

p € {1.0,2.0,4.0, 8.0, pmax },

where pmax denotes the largest exponent used in our code (approximating max pooling); all other
optimization hyperparameters are kept fixed across p.
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Experiment 4 (rank / selectivity on PAIRWISE5). We use the ExperimentRank wrapper with
hidden dimension 16, batch size 256, and the Adam settings from Table E} Each model is trained
viamodel.fit(train_loader, optimizer, num_epochs=num_epochs), where num_epochs
is a fixed constant within this experiment and does not depend on the random seed; no learning-rate
schedule or additional regularization is applied beyond the specified weight decay.

C Generalized Mean Pooling

Let N be the number of nodes, z;q € R the d-th dimension of node ¢, and p € R a pooling parameter.
Introduce a small stabiliser € > 0 and define

gp.e(x) = sgn(z) (|Jz| +¢)".

1. Element-wise transformation: For every node 7 and feature dimension d,

Fia = Gp.e(tia) = sgn(ia) (|zia] + )"

2. Pooling: Sum the transformed features and take their mean,

N 1
8q = E Tid, 84 = == 84-
N
i=1

3. Inverse transformation: Apply the signed p-th root to obtain the pooled feature
ha = sgn(8q) (|54] +¢) p,
The resulting graph-level representation is the vector
h= (hl,hg, . .7hD).

Remark. Setting p = 1 recovers ordinary mean pooling (modulo the stabilisation term ¢), while
p — o0 recovers max pooling.

D Symmetry Breaking

Recall the stabilized generalized mean pooling from App. [C} For each feature dimension d, let
z;q € R be the feature of node 4, and define

N
) ~ B 1
Fid = Gpe(via) = sgn(zia) (|zia] + )7, 5d = ind’ 5= N
i=1

The pooled feature is then

ha = sen(54) (|54 +¢)"/7.

We now compute Ohg/0x;4, away from the measure-zero points where z;4 = 0 or §5 = 0 (so that
the sign functions are locally constant).

Step 1: derivative of the inner transform. For fixed d and node 7, write

Tiqg = sgn(wia) (|zia| + s)p.

Using %li—ijl = sgn(r;q) and sgn(z;4)% = 1, we obtain
8@@ —1 8 Tid
= = sgn(wia) - p(|wia +¢)7 - a‘;ﬂ' = p(|zia + ¢
K3

)
8$id
Hence

N ~
an . a _ B axld B pil
Oria  Oxig (;xﬂd) = Oz =p(|lzia| + )",
and therefore
agd o i 35d - ﬁ
8‘rid - Na.’l?ld B N

(‘Jiid| + 6)1)—1.
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Step 2: derivative of the outer map. Define y = 5,5 and write

1
ha = f(y) = sen(y)(ly| +¢) "
For y # 0, sgn(y) is locally constant, and we have

Ohq 1/p-1 Oyl 1

e . L 1/p—1
3 =sgn(y) - = (lyl +¢) 9 )

1
- (|y| +€ )
b

since %zl = sgn(y) and the sign factors cancel.

Step 3: chain rule. Combining the two steps by the chain rule,

Ohq _%. 954 _1(|§|+5)1/p71.
drig 054 Orig po "
Thus the stabilized gradient of generalized mean pooling is

oh 1, 11
5oy = v (8l +9)7 ™ (Jial +¢)

(i +9)"

p—1

for all x;4 and 54 away from the non-differentiable points of the absolute-value function.

Remark. If we further let ¢ — 0 and assume non-negative activations so that 54 = s4/N and x;4 > 0,

this reduces to 2L = N—1/p|g,|t/p=15P 1
Ox;q id

E Sharp SI transitions during transition

A training-time phase transition. On PAIRWISE we observe two training modes: (i) full-rank
runs where 7, (H) rises to d and EffRank(H) tracks it; (ii) low-rank runs where 7 (H) remains < d
for most of training. Across seeds, S/WNO of the centroids exhibit a reproducible four-stage pattern:

1. Feature birth (noisy). Early on, new class directions appear; Eff Rank(C') rises = SI.. Packing
inside the span is crude, so WNO typically increases.

2. Compression (sharp transition). A narrow span forms: smallest singular values of H drop or
remain suppressed, PC1 energy rises, and EffRank(C') contracts = a sharp SI spike. This point
almost always coincides with the onset of overfitting (test loss starts to rise).

3. Repacking (smooth). One or two small singular directions “wake up”, allowing repacking within
a slightly larger span: WNOJ and SI| smoothly.

4. Convergence (flat). Geometry stabilizes; train loss drifts down, test loss drifts up.

The sharpness of Stage 2 reflects a discrete change in r(H) (entire channels becoming globally
inactive or reactivated), whereas WNO is computed after PC1 removal and need not jump at the same
epoch.

F Geometric Regimes for Anti-Aligned Embedding Directions

F.1 Problem Formulation

We first consider the case where the feature number n is small and no hyperplane has formed: Let
{vi €eR4|||vi]2 =1, i=1,...,n} be the (column-normalized) embedding directions learned by
the network’s last hidden layer, and let {w;}"_; denote the corresponding unit-length rows of the
classifier weight matrix. The anti-alignment hypothesis we explored in Section [6] states that after
training

v <0 (i#7), (A.1)

Vi R W; and v

i.e. every embedding is (almost) identical to its class weight, and pairwise inner products are
non-positive if possible. In other words, the network attempts to realise a set of n mutually obtuse
vectors in R%. The feasibility of (A.1) depends on the relation between n and d, which can be
separated into four distinct regimes.
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F.2 Regime Analysis

1. Over-complete case, n > 2d. Via a simple counting argument, at least two vectors must lie
in the same closed half-space; hence their inner product is > 0, so one pair is necessarily
acute.

2. Intermediate regime, d + 1 < n < 2d. There are at most n = d + 1 mutually obtuse
vectors. In this regime some vectors are mutually orthogonal and some are mutually obtuse.

3. Simplex threshold, n = d + 1. The largest set of vectors that can satisfy v] v; < 0 for all
1 # j is the vertex set of a centred regular d-simplex. This is the first value of n that permits
pairwise obtuse directions.

4. Under-complete case, n < d. One can choose any n orthogonal unit vectors (or the n
vertices of a degenerate n-simplex in a n — 1 dimensional subspace).

F.3 Implication for Rank Collapse

Assume training has converged to a low-rank subspace S C R? with dim(S) = r < dand all v; € S.
Activating a new latent dimension e | S perturbs one vector as v, — v = V1 — 2 vy +ce; .

Then, for i # k,
VT,;VZ' =+4/1—¢2 V-);Vi > v—,gvi, (A.3)

because v—',;vi < 0 in the metastable state. Hence the angle decrease{] towards 90°, which reduces
pairwise obtuseness. As discussed in Section [f] this is is penalised by the BCE loss function.
During back propagation gradients oppose the escape from the low-rank basin, effectively creating
a metastable minima. If € grows large enough performance gains may begin to outweigh the angle
penalty, and the rank grows.

F.4 Rank Collapse with Hyperplane

So far we have assumed that

VvV, & Wy,
yet when a separating hyperplane emerges, the learned embeddings {v;} and the classifier weights
{w;} are no longer almost identical. Empirically, v; are often acute rather than mutually obtuse, but
the cross-class dot products stay strictly negative:

wivi <0 (i #j). (A.4)
Perturbation into a fresh dimension. Using the same notation as before, we perturb one embed-
ding as
Vi = V1—g&2vytee].
Forany j # k

~ T
w;vk = \/1752W;vk+5wjel > vak, (A.S5)

since w;vk < 0 by (A.4) while wIe 1 = 0. Thus the cross-class dot product becomes less negative,
which increases BCE loss. In short, even after the hyperplane forms, the network remains trapped in
a low-rank metastable basin for the same reason as before: cross-class obtuseness (W—eri < 0) resists
escapes that would reduce the margin.

F.5 Leaky ReLLU Rank

Figure[7]illustrates the evolution of the rank of pooled embeddings across 15 training runs of a GIN
model on the PAIRWISE dataset. The left graph presents results for a standard GIN, while the right
graph shows outcomes when the MLP layers in the GIN architecture use leaky ReLU as the activation
function.

SEquality holds only when v, v; = 0, keeping the angle unchanged at 90°.
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Evolution of Rank (Leaky vs NonLeaky RelU)
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Figure 7: GIN model training runs with input dimension 12 and hidden dimensions [12, 6].
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