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Abstract

Recent advancements in LLM-based agents have demonstrated remarkable capa-
bilities in handling complex, knowledge-intensive tasks by integrating external
tools. Among diverse choices of tools, search tools play a pivotal role in accessing
vast external knowledge. Reinforcement Learning stands out as a natural choices
of learning to use tools. However, existing RL agents still fall short of achieving
expert-level Search Intelligence, the ability to resolve ambiguous queries, analyze
results, and conduct thorough exploration. Existing approaches fall short in scala-
bility, efficiency, and data quality. For example, small turn limits in existing online
RL methods, e.g. ≤ 10, restrict complex strategy learning. This paper introduces
ASearcher, a large-scale RL training project of search agents. Our key contributions
include: (1) Scalable fully asynchronous RL training that enables long-horizon
search while maintaining high training efficiency. (2) A prompt-based LLM agent
that autonomously synthesizes high-quality and challenging QAs, creating a large-
scale QA dataset. Through RL training, our prompt-based 32B agent achieves
substantial improvements, with +22.4 and +15.0 Avg@4 gains on xBench and
GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with
tool calls exceeding 100 turns and output tokens exceeding 400k during training.
With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves
Avg@4 scores of 51.1 on xBench and 58.1 on GAIA, achieving state-of-the-art
level results.

Figure 1: (Left) Asynchronous RL brings substantial improvements: Through RL training, our
agent, ASearcher-Web-QwQ, obtains +15.0, +22.4, and +15.6 improvements on GAIA, xBench, and
Frames, respectively. (Middle) & (Right) Through RL training, ASearcher-Web-QwQ learns to
conduct long-horizon search, with tool calls exceeding 100 turns and output tokens exceeding 400k
during training. The agent also learns expert-level search strategies (See case study in Appendix
A. A)
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1 Introduction

Recent advances in LLM-based agents have demonstrated remarkable capabilities in solving complex,
knowledge-intensive problems by leveraging single or multiple external tools [35, 37, 31]. Among
these, search tools stand out as particularly critical, enabling agents to access vast external knowledge
for enhanced problem-solving [20, 5, 21]. However, expert-level use of search requires advanced
intelligence. For instance, consider the question “As of December 31, 2024, what were the numbers
of gold, silver, and bronze medals won by China in the 2012 London Olympics?”.While seemingly
straightforward, this query is indeed challenging due to conflicting answers online (e.g., “38 gold,
27 silver, 22 bronze” vs. “39 gold, 31 silver, 22 bronze”). A search agent must navigate noisy
and conflicting answers from diverse sources, identify the root cause of conflicts as doping test
disqualifications from official reports, and ultimately determine the correct answer.

Online Reinforcement Learning (RL) stands out as a particularly promising direction for training
models to learn advanced search strategies through trials and errors [7, 24, 27, 41]. Through online
RL training, the agent could gradually learn to solve input queries with more tool calls [7, 24, 27, 41].
However, agents trained through existing online RL approaches still exhibit worse problem-solving
capabilities than prompt-based LLM agents [7, 14]. In practice, we find that existing online RL
approaches fail to incentivize complex and effective search strategies. We identify two critical
obstacles hindering effective online RL training for search agents:

• Insufficient search turns limit complex strategy learning. Existing works, such as Search-
R1 [7], artificially limit the number of search turns, e.g. ≤ 10 per trajectory, preventing the agent
from exploring deeper search paths. However, complex queries often require multi-turn tool calls
and reasoning, that could not be learned under strict turn limits.

• Lack of large-scale, high-quality question-answer (QA) pairs: RL training for reasoning
tasks requires abundant, challenging, and correct QA pairs [1, 12, 38]. However, most existing
open-source datasets for search agents are often outdated (e.g. HotpotQA), oversimplified, or too
small, failing to stimulate complex search behaviors through RL [36, 13, 28].

To address these challenges, we introduce ASearcher, a large-scale agentic RL training project for
search agents. Our contributions include:

• Long-horizon search via fully asynchronous agentic RL training. With a large turn limit in
batch generation RL training systems [7, 24, 17, 29], long trajectories within a batch could easily
lead to significant idle time, slowing down the training process. Building up on AReaL [4], our
fully asynchronous system avoids long trajectories from blocking the training by decoupling tra-
jectory execution from model updates. This allows relaxed turn limits (e.g., 128 turns/trajectory),
enabling agents to explore deeper search paths without sacrificing training efficiency.

• A scalable QA synthesis agent. We design an LLM-based agent that autonomously generates
challenging, uncertain, and grounded QA pairs requiring multi-turn tool use. Starting from seed
questions, the agent iteratively fuzzes queries by obscuring key information, or injects external
facts to increase complexity. Each constructed question undergoes multi-stage validation to
ensure quality. We generate 25.6k high-quality samples requiring external tools to solve.

We train agents equipped with search engines and browsers under two settings, RL training starting
from base models (Qwen2.5-7B/14B), to demonstrate that our training pipeline incentivizes strong and
generalizable search strategies, and fine-tuning a prompt-based agent empowered by a powerful LRM
(QwQ-32B), to validate the scalability of our training pipeline in fine-tuning large-scale prompt-based
LLM agents. We evaluate our agents with on multi-hop QA benchmarks and challenging benchmarks
including GAIA [19] , xBench-DeepSearch [34], and Frames [10]. ASearcher-Local-7B/14B, trained
only with local knowledge base, demonstrate surprisingly generalizability to realistic web search
and achieve state-of-the art performances on multi-hop and single-hop QA tasks. Building up on
QwQ-32B, ASearcher-Web-QwQ achieves an Avg@4 score of 51.1 on xBench-DeepSearch and 58.7
on GAIA, surpassing a set of advanced agents. Notably, through RL training, ASearcher-Web-QwQ
obtains 78.0% and 34.3% improvements on xBench-DeepSearch and GAIA, respectively.
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Figure 2: A case study on a complex query from GAIA. Search-R1-32B is unable to break down the
complex question and has severe hallucinations. It is also worth noting that, since the turn limit is
set as a small value, e.g. 4, during training, the model only exhibits a short tool-use horizon. Our
end-to-end RL agent, ASearcher-Web-QwQ, exhibits key behaviors featuring Search Intelligence:
uncertainty-aware reasoning (list and examine candidate answers), precise extraction from noisy
contents, and grounded verification.

2 ASearcher

In this work, we present ASearcher, which unlocks search intelligence in search agents through
large-scale asynchronous RL training. In the subsequent sections, we present the agent design, the
training data as well as data synthesis agent, and fully asynchronous reinforcement learning training.

2.1 Agent Design

We employ a simple agent design in ASearcher, as illustrated in Fig. 3.

Tools. The agent can utilize two basic tools: a search engine and a web browser. The search
engine takes a query as input and returns relevant snippets along with corresponding URLs. The
web browser accepts a URL and returns content of the webpage. Since webpages could contain
excessively long contents, therefore we employ the agent to summarize the webpage into a compact
summary.

Instantiating ASearcher with Base LLMs and Advanced LRMs. We investigate two specific
instantiations: either base LLMs such as Qwen2.5-7B/14B, or advanced Large Reasoning Models
(LRMs) such as QwQ-32B. These two different types of instantiations require different design choices
in history management and prompting.

For base LLMs, we following prior works [7, 24], to adopt append-only style prompting for the
agent. Specifically, starting from a system prompt, all LLM-generated responses, search results and
summaries of webpages are appended to the history.
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Figure 3: Comparison between ASearcher and Search-R1. (Left) Search-R1 is only equipped with
search tools and lacks web browsing capability. (Right) ASearcher utilizes a simple agent design with
two basic tools including search and browsing tools, without relying on any external LLM. ASearcher
is a comprehensive agent capable of both reasoning and summarizing lengthy web contents.

For LRMs, we instruct the LRM with different prompts for tool selection, summarization, and
answering. Note that LRMs typically generate long responses, and history could be long. Therefore,
in the history, we discard thinking processes but instead keep summarized thoughts and tool calls.
When prompting the LRM, only the most recent 25k characters of the history are provided to the
LRM as additional context. These designs ensure that the LRM inputs are of at most 10k tokens.

End-to-End RL Training. Finally, we highlight that the all LLM-generated responses of the agent,
including the thinking process, tool calling, and summarization, are trained using Reinforcement
Learning in an end-to-end manner.

2.2 Training Data

Our training data are from two primary sources, including samples filtered from open-source datasets
and synthetic high-quality question-answer (QA) pairs.

Open-source Data. We begin with the training sets from HotpotQA[36] and 2WikiMultiHopQA[6].
We employ a model-based filtering process. We first train a model on the full set of open-source
data with RL, and then generate 16 responses for each question using the trained model. Finally, we
filter out questions that are too hard for the model or too easy for the model. This filtering approach
ensures we keep only the most challenging yet solvable questions that demand tool use. Finally, from
a total of 304k QA pairs, we retain 16k challenging samples for RL training.

Data Synthesis Agent. We further develop a data synthesis agent to create high-quality question-
answer pairs. As shown in Fig. 4, the data synthesis agent begins with a seed question, and iteratively
modifies the question to increase the complexity. To ensure the synthetic question is strictly aligned
with reliable sources, a list of supporting facts obtained during the question synthesis process is kept
and continuously updated. At each step, the agent automatically selects between two key actions,

• Action 1: Injection aims to enrich the context of the question by inserting facts related to the
question. The agent first selects an entity in the question and then obtains one piece of related
fact about the selected entity from external sources such as Wikipedia. Then a new question is
proposed by injecting the fact into the question.

• Action 2: Fuzzing blurs certain details in the question to increase the uncertainty level of the
question. For example, "Catskill Mountain Railroad" could be replaced with "a historic mountain
railway".

To ensure that a synthetic question is of high quality and precisely evaluate difficulty, we incorporate
a rigorous quality verification phase. Three specific steps are included: 1. Basic Quality by checking
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Figure 4: Data Synthesis Agent. Starting from a seed QA, the data synthesis agent iteratively modifies
the question through two actions, Injection and Fuzz. Through injection, the agent enriches the
question by adding some external facts.

the clarity of the question and verifying whether the question-answer pair is accurate based on the
supporting facts; 2. Difficulty Measurement by employing an LRM (e.g., QwQ-32B) to generate
multiple answers directly without using any external tool; 3. Answer Uniqueness by evaluating
whether any of the mismatched answers generated during the Difficulty Measurement step could
serve as alternative valid answers, to ensure answer uniqueness.

2.3 Asynchronous Agentic RL Training

2.3.1 Challenges of Scaling Up Trajectory Length in RL

In this section, we show that variance of trajectory execution time is large during training with a loss
turn limit, which could lead to significant idle time in batch generation RL systems.

High Variance in Trajectory Execution Time. Long trajectories also introduce significant variance
in execution time. We analyze the number of tool calls and token generation during RL training of
our QwQ agent (Fig. 1) and observe that the longest trajectories can span dozens more tool calls and
two orders of magnitude more tokens than shorter ones. This disparity leads to highly unpredictable
per-trajectory runtime, further complicating training efficiency.

Efficiency Issues of Agentic RL Training. Both prolonged execution and high runtime variance
degrade RL training efficiency. We take one-step-off RL training system [17] as a representative
example for batch generation RL systems. As shown in Fig. 5, though this system overlaps trajectory
rollouts with model training, batch generation remains bottlenecked by the slowest trajectory (e.g.,
trajectory 7), causing GPU idle time and under-utilization.

2.3.2 Fully Asynchronous RL Training.

To ensure efficient agentic RL training, we adopt a fully asynchronous training paradigm. Notably,
our approach incorporates asynchornization at the two distinct aspects.

Asynchronous Trajectory Rollouts. Trajectory rollouts are collected in parallel and do not directly
interfere with each other. Each trajectory independently sends tool calling requests to corresponding
servers and LLM generation requests to the LLM inference engine. Concurrent requests from different
trajectories are automatically handled by the servers. Fully independent trajectory execution ensures
a trajectory does not need to wait for other trajectories when generating LLM responses and waiting
for tool calling responses, thereby improving training efficiency.
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Figure 5: One-Step-off RL v.s. Fully Asynchronous RL. In batch generation systems, a batch should
wait for the longest trajectory, leading to significant GPU idle time. In contrast, fully asynchronous
RL achieves faster training than batch generation RL by fully decoupling training and trajectory
generation, achieving near-full resource utilization for trajectory generation.

Decoupled Rollout and Training. Besides asynchronous rollout, trajectory rollouts and model
updates are also fully decoupled. In Fig. 5, we compare our fully asynchronous RL training with
one-step-off RL training, which utilizes asynchronous rollout within batches. In fully asynchronous
RL training, long trajectories do not block generation and can span multiple versions, significantly
reducing GPU idle time and achieving near-full GPU utilization during generation. On the training
side, a training step is launched as soon as sufficient trajectories are collected to form a batch.

2.4 Training Details

MDP Formulation. We follow the formulation of Markov Decision Process (MDP). Formally, an
MDP is defined by the tuple (S,A, T,R). Here S represents the state space, usually containing the
history, search results, and retrieved webpages. A denotes the action space and an action includes
tokens generated by the agent. Some tool calling could be extracted from the action through specific
tags, e.g. <search> search query </search>. T (s′|s, a) is the transition probability, where s′ is the
updated state after applying the tool calling in action a at state s. At each timestep, the agent receives
a state st and generates an action at with policy π : S → A. The goal of the agent is to maximize the

return J(π) = E
[∑∞

t=0 R(st, at)

∣∣∣∣at ∼ π(st)

]
.

GRPO Training. We employ the GRPO [23] algorithm to train search agents. Specifically, for
each input question x, G trajectories τ1, τ2, · · · , τG are generated where τi = (si0, a

i
0, s

i
1, · · · , siTi

).
To optimize the agent, we employ the following loss,

JGRPO(θ) = Ex∼D,{τi}G
i=1∼πθold

(·|x)

[
1

G

G∑
i=1

1∑Ti−1
t=0 |ait|

Ti−1∑
t=0

|ai
t|∑

j=1

min

(
πθ(a

i
t,j |st, ait,<j)

πθold(a
i
t,j |st, ait,<j)

Âi,

clip

(
πθ(a

i
t,j |st, ait,<j)

πθold(a
i
t,j |st, ait,<j)

, 1− ϵ, 1 + ϵ

)
Âi

)]
(1)

where ϵ is a hyperparameter, and Âi is the advantage for the i-th trajectory, computed based on the
relative rewards of all trajectories within each group.

Dynamic Filtering. To enhance training efficiency, we implement dynamic filtering to exclude
queries that lack meaningful training signals. Specifically, we remove queries where all responses
yield identical rewards (resulting in zero advantages).

Reward Function. For reward function, we adopt a sparse-reward setting where rewards are
computed at trajectory completion. When training from base LLMs, the reward function combines
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Table 1: Results with Local Knowledge Base.

Method
Multi-Hop QA Single-Hop QA Avg.

2WikiMQA HotpotQA Bamboogle Musique NQ TriviaQA PopQA
F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ

7B Models

Qwen-2.5-7B Direct Gen. 30.4 29.4 29.2 30.9 37.2 42.4 11.8 11.0 27.9 29.4 50.4 59.8 21.5 20.5 29.8 31.9
Search-R1-7B 54.7 58.1 57.6 60.8 55.8 58.4 28.2 27.1 58.7 49.9 68.0 78.0 57.3 55.7 54.3 55.4
R1-Searcher-7B 64.0 67.1 57.1 61.0 51.8 56.0 28.7 27.3 51.2 49.1 62.0 72.8 50.9 49.5 52.2 54.7

ASearcher-Local-7B 72.3 77.6 62.6 67.6 55.0 60.0 34.4 32.6 55.6 54.5 68.1 79.3 57.9 55.9 58.0 61.0

14B/32B Models

QwQ-32B Direct Gen. 34.6 35.4 37.1 40.2 56.9 61.6 16.8 16.1 36.9 38.2 65.4 75.8 27.9 26.3 39.4 41.9
Search-R1-14B 48.2 49.8 56.2 58.9 52.8 51.2 27.0 25.7 60.0 51.2 71.0 79.9 56.1 54.3 53.0 53.0
Search-R1-32B 63.1 67.5 60.5 64.0 60.0 61.6 34.4 32.9 60.8 52.2 72.0 82.1 60.3 58.2 58.7 59.8

ASearcher-Local-14B 72.2 79.1 65.1 71.0 59.4 64.8 35.6 34.6 56.6 56.1 71.6 84.0 57.6 55.9 59.7 63.6

a format reward and F1 score through multiplication. When fine-tuning LRM-based agents (e.g.,
QwQ), we utilize LLM-as-Judge[16][32] as the reward function and omit format rewards, as these
models inherently maintain proper output formatting.

3 Experiments

3.1 Experiment Setup

Benchmarks. We first evaluate the agents on single-hop and multi-hop QA tasks. For single-hop
questions, we use Natural Questions [11], TriviaQA [8] and PopQA [18]. For multi-hop questions,
we use HotpotQA [36], 2WikiMultiHopQA [6], MuSiQue [30], and Bamboogle [22]. We further
perform evaluation on more challenging benchmarks, including Frames [10], GAIA [19], and xBench-
DeepSearch [34] as extra test sets. We evaluate our approach on 1000 randomly sampled instances
from the validation sets of HotpotQA, 2WikiMultiHopQA, and MuSiQue. For Bamboogle, Frames,
GAIA and xBench-DeepSearch, we use their full test sets. For GAIA, we use the 103 examples from
the text-only validation subset [14].

Search Tools. We evaluate the search agents with two settings, each with different types of search
tools. In the first setting, local knowledge base with RAG, agents interact with a locally deployed
RAG system to retrieve related information from a Wikipedia 2018 corpus [9]. In the other web-based
search and browsing setting, agents operate in an interactive web environment with access to both a
search engine and a browser tool.

Baselines We consider two groups of baselines aligned with the two benchmark categories.
For the multi-hop and single-hop QA benchmarks, we include Search-R1(7B/14B/32B) [7], R1-
Searcher(7B) [24], Search-o1(QwQ-32B) [14], DeepResearcher [41] and SimpleDeepSearcher [25].
We also prompt Qwen-2.5-7B/32B to directly generate answers without using any tools. On
the more challenging benchmarks, we compare against powerful 32B-scale models, including
direct generation with QwQ-32B, Search-o1(QwQ-32B) [14], Search-R1-32B [7], WebThinker-
QwQ [15],SimpleDeepSearcher-QwQ [25] and WebDancer-32B [33]. All baselines are evaluated
using the same tools as our agent to ensure a fair comparison.

Evaluation Metrics We adopt two evaluation metrics: F1 score and LLM-as-Judge (LasJ). For
LLM-as-Judge, a strong LLM (Qwen2.5-72B-Instruct) is prompted to assess the correctness of
outputs.

Training Details of ASearcher. We set the turn limit as 32 for 7B and 14B models, and 128 for
ASearcher-Web-QwQ. The batch size is set as 128 for 7B and 14B models, and 64 for ASearcher-
Web-QwQ.Training of ASearcher-Web-QwQ takes approximately 16k H800 GPU hours.
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Table 2: Results with Web-based Search and Browsing.

Method Training
Setting

Multi-Hop QA Single-Hop QA Avg.

2WikiMQA HotpotQA Bamboogle Musique NQ TriviaQA PopQA
F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ

7B Models

Qwen-2.5-7B Direct Gen. - 30.8 30.9 28.6 29.5 37.2 39.6 10.6 1.9 29.6 29.9 51.2 59.3 19.8 17.4 29.7 29.8
Search-R1-7B local 58.9 64.8 59.0 62.8 66.3 73.6 29.4 25.4 58.4 51.1 73.1 84.1 53.0 51.3 56.9 59.0
R1-Searcher-7B local 66.6 69.4 56.8 61.6 62.8 72.0 28.7 25.3 49.6 48.7 67.6 79.5 46.5 45.2 54.1 57.4
DeepResearcher-7B web 61.0 64.1 57.1 61.0 68.8 76.8 26.8 24.5 52.0 52.9 70.0 82.8 48.9 45.7 54.9 58.3
Simple DS-7B web 67.4 73.9 57.6 62.5 61.5 72.0 26.4 26.2 43.9 53.1 73.9 85.4 43.7 48.8 53.5 60.3

ASearcher-Local-7B local 69.1 75.5 61.6 67.1 66.2 76.0 33.3 30.7 54.7 53.7 75.2 87.3 52.9 49.7 59.0 62.9
ASearcher-Web-7B web 67.5 73.3 61.7 67.2 66.4 72.0 32.9 29.6 55.2 55.4 74 85.7 52.4 48.9 58.6 61.7

14B/32B Models

QwQ-32B Direct Gen. - 33.7 33.4 39.1 42.1 56.9 57.9 18.8 19.3 37.8 43.0 63.8 74.2 25.9 24.5 39.4 42.1
Search-o1 (QwQ-32B) - 68.9 77.8 58.4 65.3 68.6 82.4 31.8 33.5 43.1 57.2 76.3 89.6 43.2 48.3 55.8 64.9
Search-R1-14B local 51.8 53.8 55.3 58.6 67.4 75.2 29.8 26.9 57.7 49.6 74.4 83.9 51.0 49.8 55.4 56.8
Search-R1-32B local 63.7 69.3 60.3 64.2 76.4 81.6 33.0 30.8 58.6 51.1 76.2 86.6 55.0 53.6 60.4 62.5
Simple DS-QwQ web 71.7 80.4 62.0 67.5 73.2 83.2 33.3 32.9 45.7 55.3 77.2 90.2 45.5 47.8 58.4 65.3

ASearcher-Local-14B local 70.4 79.8 63.6 70.5 68.7 80.8 35.1 33.8 53.5 55.4 76.1 88.5 52.5 50.5 60.0 65.6
ASearcher-Web-14B web 76.1 80.7 63.5 68.5 69.9 75.2 36.6 33.7 56.0 55.5 75.4 87.6 52.9 50.0 61.5 64.5

Table 3: Results on GAIA, xBench-DeepSearch, and Frames. The results are evaluated with LLM-as-
Judge. For baselines, we run for 4 seeds and report Avg@4 and Pass@4.

Method GAIA xBench-DeepSearch Frames
Avg@4 Pass@4 Avg@4 Pass@4 Avg@4 Pass@4

QwQ-32B Direct Gen. 23.1 31.1 11.8 23.0 29.9 39.9
Search-o1 (QwQ) 48.1 67.0 40.3 65.0 63.6 81.1
Search-R1-32B 28.6 43.7 19.5 37.0 44.1 61.0
WebThinker-QwQ 42.5 57.3 32.8 52.0 57.7 79.5
Simple DS-QwQ 47.6 64.1 35.8 61.0 67.0 82.2
WebDancer-QwQ 47.4 61.2 40.0 68.0 63.8 81.4

ASearcher-Web-QwQ 58.7 74.7 51.1 75.0 74.5 85.5

3.2 Main Results

Local Knowledge Base with RAG on Standard QA Benchmarks. As shown in Table 1,
ASearcher-Local, trained via reinforcement learning with local knowledge base, achieves the best
performance across 7B and 14B on a suite of multi-hop and single-hop QA benchmarks. In the 7B set-
ting, ASearcher attains an average F1 of 58.0, outperforming strong baselines such as Search-R1-7B
(54.3) and R1-Searcher-7B (52.2). It also achieves a LasJ score of 61.0, significantly outperforming
Search-R1-7B (55.4) and R1-Searcher-7B (54.7). The gains are even more pronounced at the 14B
scale, where ASearcher-Local-14B reaches an F1 of 60.0 and LasJ of 65.6, surpassing even the larger
32B retrieval-based baseline Search-R1-32B.

Web-based Search and Browsing on Standard QA Benchmarks In Table 2, we evaluate
agents with realistic search engines. Across both model sizes, ASearcher consistently outperforms
strong baselines. In particular, ASearcher-Web-14B achieves the best performance, surpassing
SimpleDeepSearcher, the strongest 32B baseline in this setting. Remarkably, ASearcher-Local-14B
model exhibits strong generalization when tested in the web-based setting, achieving significant gains
over all baselines in terms of LasJ. This confirms that ASearcher learns generalizable search strategies
that transfer to different information sources.

Web-based Search and Browsing on Challenging Benchmarks. Table 3 shows experiment
results on challenging QA tasks that require advanced problem-solving capabilities and search
strategies. As a result, directly generating answers from models (e.g., QwQ-32B) performs poorly
across all datasets. Our agent, ASearcher-Web-QwQ, achieves the best Avg@4 scores on GAIA
(58.7) and xBench-DeepSearch (51.1), outperforming previous state-of-the-art open-source agents.
These results further highlight superiority in handling long-horizon planning, real-world tool use,
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and open-domain exploration. Besides Avg@4, we also report the Pass@4 score that computes the
ratio of questions that an agent finds the correct answer out of 4 trials. ASearcher-Web-QwQ also
outperforms state-of-the-art open-source agents in terms of pass rate.

Effect of RL Training. As shown in Fig. 1, ASearcher-Web-QwQ obtains +15.0, +22.4, and
+15.6 improvements on GAIA, xBench-DeepSearch and Frames respectively. When considering the
pass rate, i.e. Pass@4, ASearcher-Web-QwQ also obtains significant gains, especially on xBench-
DeepSearch with 24.0 improvements. A detailed case study showing that ASearcher-Web-QwQ
learns advanced search strategies is given in Appendix A.

4 Related Works

Search Agents. Some works have constructed agent workflows that enable LLMs to leverage
tools for solving complex tasks, including Search-o1[14] and ReAgent[40]. Prompt-based methods,
though effective for rapid development, are fundamentally limited by the capacity of the underlying
LLMs. Some works attempt to construct SFT trajectories for LLMs. For instance, [2, 39] leverage
large LLMs to synthesize retrieval and reasoning trajectories to fine-tune smaller models. Recently,
some works investigate Reinforcement learning (RL) methods to enhance the LLM-based agents,
mostly focusing on multi-hop QA benchmarks. [7, 24, 3, 41] perform RL training with multi-hop
QA data and observe an increasing amount of tool calls. RAG-R1 [26] further combines SFT and RL
to enhance the search strategies. More recently, researchers have begun to focus on more challenging
tasks, by fine-tuning complex prompt-based agents powered by LRMs through offline RL [15], SFT
on simulated real-world web data [25, 13], and constructing challenging QAs for RL training. [28].

Synthetic Data for Search Agents. Rather than relying on large-scale human annotation, data
synthesis has emerged as a scalable approach to prepare training data for search agents. Recent
approaches generate realistic QA trajectories by interacting with real web pages and curating data
using LRMs [25, 33, 13]. On the other hand, WebSailor [13] constructs structurally challenging
tasks through sampling and fuzzing, and WebShaper [28] utilizes techniques from set theory to
construct high-quality complex QAs. By contrast, ASearcher develops an autonomous LLM agent for
synthesizing challenging QAs with high uncertainty, without relying on complex knowledge graphs.

5 Conclusion

In this work, we present ASearcher, investigating large-scale RL training for search agents. Our
contribution includes a fully asynchronous agentic RL training system and a data synthesis agent
for large-scale high-quality QA construction. By instantiating ASearcher with base LLMs including
Qwen2.5-7B/14B and prompt-based LLM agents based on QWQ-32B, ASearcher outperforms state-
of-the-art agents across different model sizes and evaluation settings. With fully asynchronous agentic
RL training and insight from our data synthesis pipeline, we hope our work could benefit future work
on training advanced agents for a broader range of applications.

References
[1] Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing

Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe
for scaling reinforcement learning on advanced reasoning models. URL https://hkunlp.
github.io/blog/2025/Polaris.

[2] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Self-
reflective retrieval augmented generation. In NeurIPS 2023 workshop on instruction tuning and
instruction following, 2023.

[3] Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z
Pan, Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via
reinforcement learning. arXiv preprint arXiv:2503.19470, 2025.

[4] Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo
Wei, Jun Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale

9

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris


asynchronous reinforcement learning system for language reasoning, 2025. URL https:
//arxiv.org/abs/2505.24298.

[5] Google Team. Introducing Gemini deep research, 2025. URL https://gemini.google/
overview/deep-research/. Accessed: 2025-04-06.

[6] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a
multi-hop qa dataset for comprehensive evaluation of reasoning steps, 2020. URL https:
//arxiv.org/abs/2011.01060.

[7] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with
reinforcement learning. arXiv preprint arXiv:2503.09516, 2025.

[8] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

[9] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In EMNLP (1), pages 6769–6781, 2020.

[10] Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler,
Shyam Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of
retrieval-augmented generation, 2024. URL https://arxiv.org/abs/2409.12941.

[11] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova,
Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le,
and Slav Petrov. Natural questions: a benchmark for question answering research. Trans.
Assoc. Comput. Linguistics, 7:452–466, 2019. doi: 10.1162/tacl\_a\_00276. URL https:
//doi.org/10.1162/tacl_a_00276.

[12] Jiazheng Li, Hong Lu, Kaiyue Wen, Zaiwen Yang, Jiaxuan Gao, Hongzhou Lin, Yi Wu, and
Jingzhao Zhang. Questa: Expanding reasoning capacity in llms via question augmentation.
arXiv preprint arXiv:2507.13266, 2025.

[13] Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin,
Baixuan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning
for web agent. arXiv preprint arXiv:2507.02592, 2025.

[14] Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025.

[15] Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen,
and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research
capability. arXiv preprint arXiv:2504.21776, 2025.

[16] Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Wei-
wei Deng, Feng Sun, and Qi Zhang. Calibrating llm-based evaluator. arXiv preprint
arXiv:2309.13308, 2023.

[17] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025. Notion Blog.

[18] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel
Khashabi. When not to trust language models: Investigating effectiveness and limitations
of parametric and non-parametric memories. arXiv preprint, 2022.

10

https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2409.12941
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51


[19] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

[20] OpenAI. Introducing deep research, 2025. URL https://openai.com/index/
introducing-deep-research/. Accessed: 2025-04-06.

[21] Perplexity Team. Introducing Perplexity deep research, 2025. URL https://
www.perplexity.ai/hub/blog/introducing-perplexity-deep-research. Accessed:
2025-04-06.

[22] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

[23] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[24] Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025.

[25] Shuang Sun*, Huatong Song*, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Lei
Fang, Zhongyuan Wang, and Ji-Rong Wen Wayne Xin Zhao. Simpledeepsearcher: Deep
information seeking via web-powered reasoning trajectory synthesis. 2025. URL https:
//github.com/RUCAIBox/SimpleDeepSearcher.

[26] Zhiwen Tan, Jiaming Huang, Qintong Wu, Hongxuan Zhang, Chenyi Zhuang, and Jinjie Gu.
Rag-r1: Incentivize the search and reasoning capabilities of llms through multi-query parallelism.
arXiv preprint arXiv:2507.02962, 2025.

[27] Zhiwen Tan, Jiaming Huang, Qintong Wu, Hongxuan Zhang, Chenyi Zhuang, and Jinjie
Gu. Rag-r1 : Incentivize the search and reasoning capabilities of llms through multi-query
parallelism, 2025. URL https://arxiv.org/abs/2507.02962.

[28] Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan
Li, Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou.
Webshaper: Agentically data synthesizing via information-seeking formalization, 2025. URL
https://arxiv.org/abs/2507.15061.

[29] Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer
Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, et al. Intellect-2: A
reasoning model trained through globally decentralized reinforcement learning. arXiv preprint
arXiv:2505.07291, 2025.

[30] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique:
Multihop questions via single-hop question composition. Transactions of the Association for
Computational Linguistics, 10:539–554, 2022.

[31] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[32] Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang
Yu, Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context
llms with extended multi-doc qa. arXiv preprint arXiv:2406.17419, 2024.

[33] Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu
Zhang, Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information
seeking agency. arXiv preprint arXiv:2505.22648, 2025.

[34] Xbench-Team. Xbench-deepsearch, 2025. URL https://xbench.org/agi/aisearch.

11

https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research
https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research
https://github.com/RUCAIBox/SimpleDeepSearcher
https://github.com/RUCAIBox/SimpleDeepSearcher
https://arxiv.org/abs/2507.02962
https://arxiv.org/abs/2507.15061
https://xbench.org/agi/aisearch


[35] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. Science China Information Sciences, 68(2):121101, 2025.

[36] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[37] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[38] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement
learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

[39] Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation
for large language models. arXiv preprint arXiv:2411.19443, 2024.

[40] Xinjie Zhao, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang,
Yusuke Iwasawa, Yutaka Matsuo, and Irene Li. Reagent: Reversible multi-agent reasoning for
knowledge-enhanced multi-hop qa. arXiv preprint arXiv:2503.06951, 2025.

[41] Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and
Pengfei Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world
environments. arXiv preprint arXiv:2504.03160, 2025.

A Full Case Study

In this section, we provide a detailed case study on an extremely challenging question from GAIA [19].
Specifically, we analyze Search-R1-32B [7] and Search-o1 (QwQ) [14] in Fig. 6.

Solution Path of the Sample Question. In Fig. 6, our case study is carried out on a question
requiring finding some specific animal given 2 conditions and 4 unknown variables. To identify the
correct answer, the search agent should first find out the mentioned species U1 according to condition
C1, identify the correct article U2 that satisfies condition C2, and then find out the papers listed in
U3.1 and U3.2. Finally, the correct answer should be determined by cross referencing the article U2
and the papers U3.1&U3.2. To summarize, this example is challenging for several main reasons,

• High Uncertainty: The question involves multiple unknown variables that could point to
many different entities. For example, the 2021 article U2 could point to any article published
in 2021 and could only be determined given the condition C2 and the alvei species U1.

• Requirement for Exact Information Extraction: To find the answer, the agent should list
all animals mentioned on the webpages and making cross-document comparison. This would
require the agent to precisely extract key information from the vast, noisy web contents,
instead of simply summarizing the webpages.

• Misleading Answers: During the process of solving this task, there could be multiple
misleading answers, such as "pigs". The agent should rigorously confirm its conclusions by
checking the intended answer in all related webpages and documents.

Existing Online RL Approaches Fail to Learn Complex Search Strategies. In Fig. 6, Search-
R1-32B is not able to decompose the complex query into individual components, consequently only
making redundant queries that involve too many unknown information. The agent also has severe
hallucinations, producing conclusions that are not supported by the search results. Finally, it fails
to resolve all unknown variables. This case study shows that existing online RL approaches only
incentivize elementary search strategies. It is also worth noting that, since the turn limit is set as a
small value, e.g. 4, during training, the model only exhibits a short tool-use horizon.
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Figure 6: A case study on a complex query from GAIA. Search-R1-32B is unable to break down
the complex question and has severe hallucinations. Search-o1 (QwQ) can identify the corrects
articles through extensive tool calls, but easily misses key information and fails to verify wrong
conclusions. Our end-to-end RL agent, ASearcher-Web-QwQ, exhibits key behaviors featuring
Search Intelligence: uncertainty-aware reasoning (list and examine candidate answers), precise
extraction from noisy contents, cross-document inference, and rigorous confirmation.
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Prompt-based LLM Agents Could Fail Due to Insufficient Capability of the LLM. In Fig. 6,
Search-o1 (QwQ) can find the species name U1, as well as the 2021 article U2 and papers U3.1&U3.2
through a large amount of tool calls. However, when trying to find the answer, Search-o1 (QwQ)
would easily miss key information. Consequently, the agent makes incorrect conclusions. Notably,
even when the agent finds information that directly links to the correct answer, it is still misguided
by previous incorrect conclusions. Finally, the agent is unable to verify the correctness of previous
conclusions. This case study reveals that, though an open-source model that is not explicitly trained
on agentic tasks can perform extensive tool calls, it could not make expert-level reasoning based on
the retrieved contents and history contexts.

ASearcher-Web-QwQ. We also analyze the search strategy of our end-to-end RL agent, ASearcher-
Web-QwQ.As shown in Fig. 6, ASearcher-Web-QwQ decomposes the complex query into precise
and focused queries. Unlike Search-o1 (QwQ) that visits a large amount of websites after each search
query, ASearcher-Web-QwQ focuses on visiting the most relevant website. ASearcher-Web-QwQ
summarizes all related information from a website. Specifically, all candidate answers are listed and
carefully analyzed by the agent. When trying to search for related facts in the papers U3.1&U3.2,
the agent explicitly references the key information. When the search results do not directly point to
the desired target, e.g. when searching with “Olga Tapia (U3.2) Hafnia alvei (U1) animal studies”
to find the animals related to Olga Tapia’s paper, the agent does not get a clear information but is
able to infer the correct answer by make connection with the other paper U3.1. After the correct
answer “Mice” is found, the agent spends further turns on confirming previous conclusions before
reporting the final answer. In summary, ASearcher successfully train a search agent that exhibits
complex behaviors that feature Search Intelligence,

• Uncertainty-aware reasoning: the agent exhaustively lists and examines all possibilities
for uncertain entities

• Price Key Information Extraction: the agent is able to identify the key information from
vast, noisy web contents.

• Cross-document Inference: the agent is able to infer critical conclusions by making
connections among multiple documents.

• Rigorous Confirmation: the agent verifies the correctness of previous conclusions with
additional tool calls.

B Data Synthesis Agent

B.1 Example of Synthetic QA

We provide two illustrative examples in Tab. 4. Starting with a simple question, the injection action
replaces specific entities with related factual details. For instance, “Michael P. Hein” is expanded
to “who served as the first County Executive of Ulster County, New York...”. The fuzzing action
introduces ambiguity by generalizing precise information, replacing the exact year “1934” with “the
early 1930s” or substituting “Catskill Mountain Railroad” with “a historic mountain railway.”

B.2 Syntehtic QA Statistics
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Table 4: Examples of the synthetic questions, where red indicates injected facts and cyan represents
fuzzed content.
Round Action Question

Seed QA - When was Michael P. Hein born?

Round 1 Injection When was the Eckerd College alumnus who served as the first County Executive
of Ulster County, New York, and graduated with a Bachelor of Arts in Business
Administration born?

Round 2 Injection When was the individual born who, as County Executive of Ulster County, New
York, permitted the Catskill Mountain Railroad to continue operations between
Kingston and Hurley during the 2016 United States House of Representatives
elections and also held that position during the 2018 elections?

Round 3 Fuzzing When was the individual born who, as County Executive of Ulster County, New
York, permitted a historic mountain railway to continue operations between
Kingston and Hurley during the 2016 United States House of Representatives
elections and also held that position during the 2018 elections?

... ... ...

Seed QA - Where is the Riggs-Hamilton American Legion Post No. 20 located?

Round 1 Injection Where is the American Legion Post in Russellville, Arkansas, built in 1934 and
recognized as a notable example of WPA Rustic architecture and listed on the
National Register of Historic Places located?

Round 2 Fuzzing Where is the American Legion Post in Russellville, Arkansas, built in the early
1930s and recognized as a notable example of New Deal-era public works archi-
tecture and listed on the National Register of Historic Places located?

Round 3 Fuzzing Where is the veterans’ organization’s building in Russellville, Arkansas, built
in the early 1930s and recognized as a notable example of New Deal-era public
works architecture and listed on the National Register of Historic Places located?

... ... ...

Figure 7: Statistics from our data synthesis process. (Left) The distribution of the number of
supporting facts. (Middle) The distribution of the number of fuzz actions and injection actions.
(Right) The accuracy distribution of QwQ-32B in answering the generated questions without using
any tools.
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