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Abstract
The core of clustering lies in incorporating
prior knowledge to construct supervision signals.
From classic k-means based on data compactness
to recent contrastive clustering guided by self-
supervision, the evolution of clustering methods
intrinsically corresponds to the progression of su-
pervision signals. At present, substantial efforts
have been devoted to mining internal supervision
signals from data. Nevertheless, the abundant ex-
ternal knowledge such as semantic descriptions,
which naturally conduces to clustering, is regret-
tably overlooked. In this work, we propose lever-
aging external knowledge as a new supervision
signal to guide clustering. To implement and val-
idate our idea, we design an externally guided
clustering method (Text-Aided Clustering, TAC),
which leverages the textual semantics of Word-
Net to facilitate image clustering. Specifically,
TAC first selects and retrieves WordNet nouns
that best distinguish images to enhance the fea-
ture discriminability. Then, TAC collaborates
text and image modalities by mutually distilling
cross-modal neighborhood information. Exper-
iments demonstrate that TAC achieves state-of-
the-art performance on five widely used and three
more challenging image clustering benchmarks,
including the full ImageNet-1K dataset. The code
can be accessed at https://github.com/
XLearning-SCU/2024-ICML-TAC.

1. Introduction
Image clustering aims at partitioning images into different
groups in an unsupervised fashion, which is a long-standing
task in machine learning. The core of clustering resides in
incorporating prior knowledge to construct supervision sig-
nals. According to different choices of supervision signals,
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Figure 1. The evolution of clustering methods could be roughly
divided into three eras, including i) classic clustering, which de-
signs clustering strategies based on data distribution assumptions;
ii) deep clustering, which extracts clustering-favorable features
with deep neural networks, and iii) self-supervised clustering,
which constructs supervision signals through data augmentations
or momentum strategies. In this work, instead of mining the in-
ternal supervision, we propose exploring external knowledge to
facilitate image clustering. We categorize such a novel paradigm
as iv) externally guided clustering. By leveraging the semantics
in the text modality, our TAC pushes the clustering accuracy to a
new state-of-the-art.

one could roughly divide the evolution of clustering methods
into three eras, i.e., classic clustering, deep clustering, and
self-supervised clustering as depicted in Fig 1. At the early
stage, classic clustering methods build upon various assump-
tions on the data distribution, such as compactness (Mac-
Queen et al., 1967; Ester et al., 1996), hierarchy (Gowda
& Krishna, 1978), connectivity (Zelnik-Manor & Perona,
2005; Nie et al., 2011; Wang et al., 2020), sparsity (Elhami-
far & Vidal, 2013; Liu et al., 2017), and low rank (Cai et al.,
2009; Liu et al., 2012; Nie et al., 2016). Though having
achieved promising performance, classic clustering methods
would produce suboptimal results confronting complex and
high-dimensional data. As an improvement, deep cluster-
ing methods equip clustering models with neural networks
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to extract discriminative features (Peng et al., 2016; Yang
et al., 2016; Xie et al., 2016; Li et al., 2020). In alignment
with priors such as cluster discriminability (Ghasedi Dizaji
et al., 2017) and balance (Hu et al., 2017), various supervi-
sion signals are formulated to optimize the clustering net-
work. In the last few years, motivated by the success of
self-supervised learning (He et al., 2020; Chen et al., 2020;
Grill et al., 2020), clustering methods turn to creating super-
vision signals through data augmentation (Li et al., 2021b;
Van et al., 2020; Dang et al., 2021b) or momentum strate-
gies (Zhong et al., 2021; Huang et al., 2022).

Though varying in the method design, most existing cluster-
ing methods design supervision signals in an internal man-
ner. Despite the remarkable success achieved, the internally
guided clustering paradigm faces an inherent limitation.
Specifically, the hand-crafted internal supervision signals,
even enhanced with data augmentation, are inherently upper-
bounded by the limited information in the given data. For
example, “Corgi” and “Shiba Inu” dogs are visually similar
and are likely to be confused in image clustering. Luckily,
beyond the internal signals, we notice there also exists well-
established external knowledge that potentially conduces
to clustering, while having been regrettably and largely ig-
nored. In the above example, we could better distinguish
the images given the external knowledge that “Corgi” have
shorter and thicker legs compared with “Shiba Inu” dogs.
In short, from different sources or modalities, the external
knowledge could serve as promising supervision signals to
guide clustering. Compared with exhaustively mining inter-
nal supervision signals from data, it would yield twice the
effect with half the effort by incorporating rich and readily
available external knowledge to guide clustering.

In this work, we propose a simple yet effective externally
guided clustering method TAC (Text-Aided Clustering),
which clusters images by incorporating external knowledge
from the text modality. In the absence of class name priors,
there are two challenges in leveraging the textual seman-
tics for image clustering, namely, i) how to construct the
text space, and ii) how to collaborate images and texts for
clustering. For the first challenge, ideally, we expect the
text counterparts of between-class images to be highly dis-
tinguishable so that clustering can be easily achieved. To
this end, inspired by the zero-shot classification paradigm in
CLIP (Radford et al., 2021), we reversely classify all nouns
from WordNet (Miller, 1995) to image semantic centers.
Based on the classification confidence, we select the most
discriminative nouns for each image center to form the text
space and retrieve a text counterpart for each image. Intrigu-
ingly, Fig. 2 demonstrates that in certain cases, the retrieved
nouns could describe the image semantics, sometimes even
better than the manually annotated class names. For the
second challenge, we first establish an extremely simple
baseline by concatenating the images and text counterparts,

Images
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=0.792)
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Names

Probability
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0.9999 0.0001 0.9995 0.0005

Retrieved
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(Ours) 0.8081 0.1919 0.0097 0.9903

Brittany Spaniel Clumber Spaniel

Figure 2. Our observations with two image examples from the
ImageNet-Dogs dataset as a showcase. For each example, we show
the manually annotated class names and the nouns obtained by the
proposed TAC, as well as the zero-shot classification probabilities.
From the example, one could arrive at two observations, namely, i)
visually similar samples could be better distinguished in the text
modality, and ii) manually annotated class names are not always
the best semantic description. As shown, zero-shot CLIP falsely
classifies both images to the Blenheim Spaniel class (probably due
to the word Spaniel), whereas the nouns obtained by our TAC
successfully separate them. Such observations suggest a great
opportunity to leverage the external knowledge (hidden in the text
modality in this showcase) to facilitate image clustering.

which already significantly enhances the k-means cluster-
ing performance without any additional training. For better
collaboration, we propose to mutually distill the neighbor-
hood information between the text and image modalities.
By additionally training cluster heads, the proposed TAC
achieves state-of-the-art performance on five widely used
and three more challenging image clustering datasets. With-
out loss of generality, we evaluate TAC on the pre-trained
CLIP model in our experiments, but TAC could adapt to any
vision-language pre-trained (VLP) model by design.

The major contributions of this work could be summarized
as follows:

• Unlike previous clustering works that exhaustively ex-
plore and exploit supervision signals internally, we
propose leveraging external knowledge to facilitate
clustering. We summarize such a novel paradigm as
externally guided clustering, which provides an inno-
vative perspective on the construction of supervision
signals.

• To implement and validate our idea, we propose an
externally guided clustering method TAC, which lever-
ages the textual semantics to facilitate image clustering.
Experiments demonstrate the superiority of TAC over
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eight datasets, including ImageNet-1K. Impressively,
in most cases, TAC even outperforms zero-shot CLIP
in the absence of class name priors.

• The significance of TAC is two-fold. On the one hand,
it proves the effectiveness and superiority of the pro-
posed externally guided clustering paradigm. On the
other hand, it suggests the presence of more simple but
effective strategies for mining the zero-shot learning
ability inherent in VLP models.

2. Related Work
In this section, we review the deep clustering methods, and
the zero-shot classification paradigm of VLP models which
also utilizes the text modality to perform visual tasks.

2.1. Deep Image Clustering

In addition to effective clustering strategies, discriminative
features also play an important role in clustering. Benefit-
ing from the powerful feature extraction ability of neural
networks, deep clustering methods show their superiority in
handling complex and high-dimensional data (Peng et al.,
2016; Guo et al., 2017; Ghasedi Dizaji et al., 2017). The
pioneers in deep clustering focus on learning clustering-
favorable features through optimizing the network with clus-
tering objectives (Yang et al., 2016; Xie et al., 2016; Peng
et al., 2018; Hu et al., 2017; Huang et al., 2020; Ji et al.,
2019). In recent years, motivated by the success of con-
trastive learning, a series of contrastive clustering methods
achieve substantial performance leaps on image clustering
benchmarks (Li et al., 2021b; Shen et al., 2021; Zhong et al.,
2021). Instead of clustering images in an end-to-end manner,
several works initially learn image embedding through uni-
modal pre-training and subsequently mine clusters based
on neighborhood consistency (Van et al., 2020; Dang et al.,
2021a) or pseudo-labeling (Niu et al., 2022). By disen-
tangling representation learning and clustering, these multi-
stage methods enjoy higher flexibility for their easy adaption
to superior pre-trained models. A recent study (Huang et al.,
2022) demonstrates that the clustering performance could
be further improved when equipping clustering models with
more advanced representation learning methods (Grill et al.,
2020). Very recently, SIC (Cai et al., 2023) attempts to
generate image pseudo labels from the textual space.

Though having achieved remarkable progressions, almost
all existing deep image clustering methods mine supervi-
sion signals internally. However, the internal supervision
signals are inherently bounded by the given images. Instead
of pursuing internal supervision signals following previous
works, we propose a new paradigm that leverages external
knowledge to facilitate image clustering. We hope the sim-
ple design and engaging performance of TAC could attract

more attention to the externally guided clustering paradigm.

2.2. Zero-shot Classification

Recently, more and more efforts have been devoted to multi-
modal, especially vision-language pre-training (VLP). By
learning the abundant image-text pairs on the Internet, VLP
methods (Li et al., 2021a; Wang et al., 2022), have achieved
impressive performance in multi-modal representation learn-
ing. More importantly, unlike uni-modal pre-trained mod-
els that require additional fine-tuning, VLP models could
adapt to various tasks such as classification (Radford et al.,
2021), segmentation (Zhou et al., 2022), and image caption-
ing (Li et al., 2022) in a zero-shot manner. Here, we briefly
introduce the zero-shot image classification paradigm in
CLIP (Radford et al., 2021) as an example. Given names of
K classes, CLIP first assembles them with prompts like “a
photo of [CLASS]”, where the [CLASS] token is replaced
by the specific class name. Then, CLIP computes the text
embeddings {wi}Ki=1 of the prompted sentences with its pre-
trained text encoder. Finally, CLIP treats the embeddings
{wi}Ki=1 as the classifier weight, and predicts the probability
of image v belonging to the i-th class as

p(y = i|v) = exp(sim(v, wi)/τ)∑K
j=1 exp(sim(v, wj)/τ)

, (1)

where v denotes the image features, sim(·, ·) refers to the
cosine similarity, and τ is the learned softmax temperature.

Thanks to the consistent form between pre-training and in-
ference, CLIP achieves promising results in zero-shot image
classification. However, such a paradigm requires prior
knowledge of class names, which is unavailable in cluster-
ing. To leverage CLIP for image clustering, the most direct
approach is performing k-means (MacQueen et al., 1967)
on the image embeddings. Nevertheless, the performance
of k-means is limited and the textual semantics are underuti-
lized. In this work, we explore a more advanced paradigm
for image clustering, by taking full advantage of both the
pre-trained image and text encoders. Intriguingly, experi-
ments demonstrate that even in the absence of class name
priors, the proposed TAC outperforms zero-shot CLIP in
most cases. We hope this work could bring some insights
into the paradigm design of leveraging VLP models for
downstream classification and clustering.

3. Method
In this section, we present TAC, a simple yet effective exter-
nally guided clustering method illustrated in Fig. 3. In brief,
we first propose a text counterpart construction strategy to
exploit the text modality in Sec. 3.1. Then, we propose a
cross-modal mutual distillation strategy to collaborate the
text and image modalities in Sec. 3.2.
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Figure 3. Overview of the proposed TAC. (Left) TAC first classifies all nouns from WordNet to image semantic centers, and selects the
most discriminative nouns to construct the text space. After that, TAC retrieves nouns for each image to compute its counterpart in the text
space. By concatenating the image and retrieved text, we arrive at an extremely simple baseline without any additional training. (Right)
To better collaborate the text and image modalities, TAC trains cluster heads by mutually distilling the neighborhood information. In brief,
TAC encourages images to have consistent cluster assignments with the nearest neighbors of their counterparts in the text embedding
space, and vice versa. Such a cross-modal mutual distillation strategy further boosts the clustering performance of TAC.

3.1. Text Counterpart Construction

The textual semantics are naturally favored in discriminative
tasks such as classification and clustering. Ideally, clustering
could be easily achieved if images have highly distinguish-
able counterparts in the text modality. To this end, in the
absence of class name priors, we propose to select a sub-
set of nouns from WordNet (Miller, 1995) to compose the
text space, which is expected to exhibit the following two
merits, namely, i) precisely covering the image semantics;
and ii) highly distinguishable between images of different
semantics.

The image semantics of different granularities could be cap-
tured by k-means with various choices of k. A small value
of k corresponds to coarse-grained semantics, which might
not be precise enough to cover the semantics of images at
cluster boundaries. Oppositely, a large value of k produces
fine-grained semantics, which might fail to distinguish im-
ages from different classes. To find image semantics of
appropriate granularity, we estimate k = N/300 given N
images, hypothesizing a cluster of Ñ = 300 images is
compact enough to be described by the same set of nouns.
Experiments in Section 4.4.1 show that our TAC is robust
across a reasonable range of Ñ . With the estimated value of
k, we apply k-means on image embeddings to compute the

image semantic centers by

sl =

N∑
i=1

1vi∈l vi, l ∈ [1, k], (2)

where 1vi∈l is the indicator which equals one iff image vi
belongs to the l-th cluster.

Next, we aim to find discriminative nouns to describe each
semantic center. Here, motivated by the zero-shot classifi-
cation paradigm of CLIP, we reversely classify all nouns
from WordNet into k image semantic centers. Specifically,
the probability of the i-th noun belonging to the l-th image
semantic center is

p(y = l|ti) =
exp(sim(ti, sl))∑k
j=1 exp(sim(ti, sj))

, (3)

where ti denoted the i-th noun prompted like CLIP, and ti is
the feature extracted by the text encoder. To identify highly
representative and distinguishable nouns, we select the top
γ confident nouns for each image semantic center. Formally,
the i-th noun would be select for the l-th center if

p(y = k|ti) ≥ p̄(y = k), (4)
p̄(y = k) = sort{p(y = k|ti)| argmax p(y|ti) = k}[γ],

where p̄(y = k) corresponds to the γ-th largest confidence
of nouns belonging to the l-th center. In practice, we fix
γ = 5 on all datasets.
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The selected nouns compose the text space catering to the
input images. Then, we retrieve nouns for each image to
compute its counterpart in the text modality. To be specific,
let {t̄i}Mi=1 be the set of M selected nouns with {t̄i}Mi=1 be-
ing their text embeddings, we compute the text counterpart
t̃i for image vi as

t̃i =

M∑
j=1

p(t̄j |vi)t̄j , (5)

p(t̄j |vi) =
exp(sim(vi, t̄j)/τ̃)∑M
k=1 exp(sim(vi, t̄k)/τ̃)

, (6)

where τ̃ = 0.005 controls the softness of retrieval. The
design of soft retrieval is to prevent the text counterparts of
different images from collapsing to the same point. After
the text counterpart construction, we arrive at an extremely
simple baseline by applying k-means on the concatenated
features [t̃i, vi]

N
i=1. Notably, such an implementation re-

quires no additional training or modifications on CLIP, but
it could significantly improve the clustering performance
compared with directly applying k-means on the image em-
beddings (see Section 4.2).

3.2. Cross-modal Mutual Distillation

Though concatenating text counterparts and image embed-
dings improves the k-means performance, it is suboptimal
for collaborating the two modalities. To better utilize multi-
modal features, we propose the cross-modal mutual distil-
lation strategy. Specifically, let N (vi) be a random nearest
neighbor of vi, we introduce a cluster head f : v → p ∈ RK

to predict the soft cluster assignments for images vi and
N (vi), where K is the target cluster number. Formally, we
denote the soft cluster assignments for n images and their
neighbors as

P =

 p1
· · ·
pn

 and PN =

 pN1
· · ·
pNn

 . (7)

Likewise, we introduce another cluster head g : t̃i → qi ∈
RK to predict the soft cluster assignments for text counter-
part t̃i and its random nearest neighbor N (t̃i), resulting in
the cluster assignment matrices

Q =

 q1
· · ·
qn

 and QN =

 qN1
· · ·
qNn

 . (8)

Let p̂i, p̂Ni , q̂i, q̂
N
i be the i-th column of assignment matrices

P, PN , Q,QN , the cross-modal mutual distillation loss is

defined as follows, namely,

LDis =

K∑
i=1

Lv→t
i + Lt→v

i , (9)

Lv→t
i = − log

e(sim(q̂i,p̂
N
i )/τ̂)∑

k

e(sim(q̂i,p̂N
k )/τ̂) +

∑
k ̸=i

e(sim(q̂i,q̂k)/τ̂)
,

(10)

Lt→v
i = − log

e(sim(p̂i,q̂
N
i )/τ̂)∑

k

e(sim(p̂i,q̂Nk )/τ̂) +
∑
k ̸=i

e(sim(p̂i,p̂k)/τ̂)
,

(11)

where τ̂ is the softmax temperature parameter. The distilla-
tion loss LDis has two effects. On the one hand, it minimizes
the between-cluster similarity, leading to more discrimina-
tive clusters. On the other hand, it encourages consistent
clustering assignments between each image and the neigh-
bors of its text counterpart, and vice versa. In other words, it
mutually distills the neighborhood information between the
text and image modalities, bootstrapping the clustering per-
formance in both. In practice, we set the number of nearest
neighbors N̂ = 50 on all datasets. Note that the neighbors
are only computed once on all samples before training.

Next, we introduce two regularization terms to stabilize the
training. First, to encourage the model to produce more
confident cluster assignments, we introduce the following
confidence loss, namely,

LCon = − log

n∑
i=1

p⊤i qi, (12)

which would be minimized when both pi and qi become
one-hot. Second, to prevent all samples from collapsing into
only a few clusters, we adopt the balance loss, i.e.,

LBal = −
K∑
i=1

(p̄i log p̄i + q̄i log q̄i) , (13)

p̄ =
1

n

n∑
i=1

pi ∈ RK , q̄ =
1

n

n∑
i=1

qi ∈ RK , (14)

where p̄ and q̄ correspond to the cluster assignment distribu-
tion in the image and text modality, respectively.

Finally, we arrive at the overall objective function of TAC,
which lies in the form of

LTAC = LDis + LCon − α · LBal, (15)

where α = 5 is the weight parameter.

4. Experiments
In this section, we evaluate the proposed TAC on five widely
used and three more challenging image clustering datasets.
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A series of quantitative and qualitative comparisons, abla-
tion studies, and hyper-parameter analyses are carried out to
investigate the effectiveness and robustness of the method.

4.1. Experimental Setup

We first introduce the datasets and metrics used for evalua-
tion, and then provide the implementation details of TAC.

4.1.1. DATASETS

To evaluate the performance of our TAC, we first apply it to
five widely-used image clustering datasets including STL-
10 (Coates et al., 2011), CIFAR-10 (Krizhevsky & Hinton,
2009), CIFAR-20 (Krizhevsky & Hinton, 2009), ImageNet-
10 (Chang et al., 2017b), and ImageNet-Dogs (Chang et al.,
2017b). With the rapid development of pre-training and
clustering methods, we find clustering on relatively simple
datasets such as STL-10 and CIFAR-10 is no longer chal-
lenging. Thus, we further evaluate the proposed TAC on
three more complex datasets with larger cluster numbers,
including DTD (Cimpoi et al., 2014), UCF-101 (Soomro
et al., 2012), and ImageNet-1K (Deng et al., 2009). Follow-
ing recent deep clustering works (Van et al., 2020; Dang
et al., 2021a), we train and evaluate TAC on the train and
test splits, respectively. The brief information of all datasets
used in our evaluation is summarized in Table 1.

Table 1. A summary of datasets used for evaluation.
Dataset Training Split Test Split # Training # Test # Classes

STL-10 Train Test 5,000 8,000 10
CIFAR-10 Train Test 50,000 10,000 10
CIFAR-20 Train Test 50,000 10,000 20
ImageNet-10 Train Val 13,000 500 10
ImageNet-Dogs Train Val 19,500 750 15

DTD Train+Val Test 3,760 1,880 47
UCF-101 Train Val 9,537 3.783 101
ImageNet-1K Train Val 1,281,167 50,000 1,000

4.1.2. EVALUATION METRICS

We adopt three widely-used metrics including Normalized
Mutual Information (NMI), Accuracy (ACC), and Adjusted
Rand Index (ARI) to evaluate the clustering performance.
Higher values of these metrics indicate better results.

4.1.3. IMPLEMENTATION DETAILS

Following previous works (Cai et al., 2023), we adopt the
pre-trained CLIP model with ViT-B/32 (Dosovitskiy et al.,
2020) and Transformer (Vaswani et al., 2017) as image
and text backbones, respectively. For nouns from Word-
Net (Miller, 1995), we assemble them with prompts like
“A photo of [CLASS]” before feeding them into the Trans-
former. For datasets with an average cluster size less than
300, we empirically set k in k-means thrice as the target clus-

ter number K. The two cluster heads f and g are two-layer
MLPs of dimension 512-512-K. We train f and g by the
Adam optimizer with an initial learning rate of 1e−3 for 20
epochs, with a batch size of 512. We fix τ = 5e−3, τ̂ = 0.5,
and α = 5.0 in all the experiments. The only exception is
that on UCF-101 and ImageNet-1K, we change τ̂ to 5.0,
batch size to 8192, and training epochs to 100, catering to
the large cluster number. All experiments are conducted on
a single Nvidia RTX 3090 GPU. In our experiments, it takes
only one minute to train TAC on the CIFAR-10 dataset.

4.2. Main Results

Here we compare TAC with state-of-the-art baselines on five
classic and three more challenging image clustering datasets,
followed by feature visualizations to show the superiority
of the proposed TAC.

4.2.1. PERFORMANCE ON CLASSIC DATASETS

We first evaluate the proposed TAC on five widely-used im-
age clustering datasets, compared with 15 deep clustering
baselines. While early baselines adopt ResNet-34(18) as the
backbone, here we mainly focus on comparisons with zero-
shot CLIP and CLIP-based methods. As shown in Table 2,
by simply retrieving a text counterpart for each image, the
proposed TAC successfully mines “free” semantic informa-
tion from the text encoder. Without any additional training,
TAC (no train) substantially improves the k-means cluster-
ing performance, especially on more complex datasets. For
example, it achieves 14.4% and 43.5% ARI improvements
on CIFAR-20 and ImageNet-Dogs, respectively. When fur-
ther enhanced with the proposed cross-modal mutual dis-
tillation strategy, TAC achieves state-of-the-art clustering
performance, even surpassing zero-shot CLIP on all five
datasets. Such compelling results demonstrate that beyond
the current zero-shot classification paradigm, alternative
simple but more effective strategies exist for mining the
VLP model’s ability in image classification and clustering.

4.2.2. PERFORMANCE ON CHALLENGING DATASETS

The clustering results of TAC and baseline methods on
more challenging datasets are provided in Table 3. Firstly,
we observe TAC without additional training could consis-
tently boost the k-means performance, which achieves a
10% improvement in clustering accuracy on ImageNet-1K.
Secondly, although zero-shot CLIP yields slightly better
performance on ImageNet-1K given its substantial prior
knowledge of 1K class names, TAC still achieves superior
performance on DTD and UCF-101 without the class name
prior. Such a result verifies the effectiveness of the proposed
text counterpart construction strategy, as well as our obser-
vation that manually annotated class names are not always
the best semantic description.
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Table 2. Clustering performance on five widely-used image clustering datasets. The best and second best results are denoted in bold and
underline, respectively.
Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs AVG
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

JULE (Yang et al., 2016) 18.2 27.7 16.4 19.2 27.2 13.8 10.3 13.7 3.3 17.5 30.0 13.8 5.4 13.8 2.8 15.5
DEC (Xie et al., 2016) 27.6 35.9 18.6 25.7 30.1 16.1 13.6 18.5 5.0 28.2 38.1 20.3 12.2 19.5 7.9 21.2
DAC (Chang et al., 2017a) 36.6 47.0 25.7 39.6 52.2 30.6 18.5 23.8 8.8 39.4 52.7 30.2 21.9 27.5 11.1 31.0
DCCM (Wu et al., 2019) 37.6 48.2 26.2 49.6 62.3 40.8 28.5 32.7 17.3 60.8 71.0 55.5 32.1 38.3 18.2 41.3
IIC (Ji et al., 2019) 49.6 59.6 39.7 51.3 61.7 41.1 22.5 25.7 11.7 – – – – – – –
PICA (Huang et al., 2020) 61.1 71.3 53.1 59.1 69.6 51.2 31.0 33.7 17.1 80.2 87.0 76.1 35.2 35.3 20.1 52.1
CC (Li et al., 2021b) 76.4 85.0 72.6 70.5 79.0 63.7 43.1 42.9 26.6 85.9 89.3 82.2 44.5 42.9 27.4 62.1
IDFD (Tao et al., 2020) 64.3 75.6 57.5 71.1 81.5 66.3 42.6 42.5 26.4 89.8 95.4 90.1 54.6 59.1 41.3 63.9
SCAN (Van et al., 2020) 69.8 80.9 64.6 79.7 88.3 77.2 48.6 50.7 33.3 – – – 61.2 59.3 45.7 –
MiCE (Tsai et al., 2020) 63.5 75.2 57.5 73.7 83.5 69.8 43.6 44.0 28.0 – – – 42.3 43.9 28.6 –
GCC (Zhong et al., 2021) 68.4 78.8 63.1 76.4 85.6 72.8 47.2 47.2 30.5 84.2 90.1 82.2 49.0 52.6 36.2 64.3
NNM (Dang et al., 2021a) 66.3 76.8 59.6 73.7 83.7 69.4 48.0 45.9 30.2 – – – 60.4 58.6 44.9 –
TCC (Shen et al., 2021) 73.2 81.4 68.9 79.0 90.6 73.3 47.9 49.1 31.2 84.8 89.7 82.5 55.4 59.5 41.7 67.2
SPICE (Niu et al., 2022) 81.7 90.8 81.2 73.4 83.8 70.5 44.8 46.8 29.4 82.8 92.1 83.6 57.2 64.6 47.9 68.7
SIC (Cai et al., 2023) 95.3 98.1 95.9 84.7 92.6 84.4 59.3 58.3 43.9 97.0 98.2 96.1 69.0 69.7 55.8 79.9
CLIP (k-means) 91.7 94.3 89.1 70.3 74.2 61.6 49.9 45.5 28.3 96.9 98.2 96.1 39.8 38.1 20.1 66.3

TAC (no train) 92.3 94.5 89.5 80.8 90.1 79.8 60.7 55.8 42.7 97.5 98.6 97.0 75.1 75.1 63.6 79.5
TAC 95.5 98.2 96.1 83.3 91.9 83.1 61.1 60.7 44.8 98.5 99.2 98.3 80.6 83.0 72.2 83.2
CLIP (zero-shot) 93.9 97.1 93.7 80.7 90.0 79.3 55.3 58.3 39.8 95.8 97.6 94.9 73.5 72.8 58.2 78.7

Table 3. Clustering performance on three more challenging image clustering datasets. The best and second best results are denoted
in bold and underline, respectively.

Dataset DTD UCF-101 ImageNet-1K AVG
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI

CLIP (k-means) (Radford et al., 2021) 57.3 42.6 27.4 79.5 58.2 47.6 72.3 38.9 27.1 50.1
SCAN (Van et al., 2020) 59.4 46.4 31.7 79.7 61.1 53.1 74.7 44.7 32.4 53.7
SIC (Cai et al., 2023) 59.6 45.9 30.5 81.0 61.9 53.6 77.2 47.0 34.3 54.6

TAC (no train) 60.1 45.9 29.0 81.6 61.3 52.4 77.8 48.9 36.4 54.8
TAC 62.1 50.1 34.4 82.3 68.7 60.1 79.9 58.2 43.5 59.9
CLIP (zero-shot) (Radford et al., 2021) 56.5 43.1 26.9 79.9 63.4 50.2 81.0 63.6 45.4 56.7

4.2.3. VISUALIZATION

To provide an intuitive understanding of the clustering re-
sults, we visualize the features obtained at four different
steps of TAC in Fig. 4. The clustering performance by
applying k-means on the features is annotated at the top.
Fig. 4(a) shows the image features extracted by the pre-
trained CLIP image encoder. As can be seen, images of
different breeds of dogs are mixed, leading to a poor clus-
tering ARI of 23.4%. By selecting and retrieving discrimi-
native nouns, visually similar samples could be better dis-
tinguished in the text modality as shown in Fig. 4(b). By
simply concatenating images and retrieved text counterparts,
TAC significantly improves the feature discriminability and
k-means performance without any additional training. Fi-
nally, when equipped with the proposed cross-modal mutual
distillation strategy, TAC could better collaborate the image
and text modalities, leading to the best within-clustering
compactness and between-cluster scatterness.

4.3. Ablation Study

In this section, we conduct ablation studies on the three loss
terms and the direction of the cross-modal distillation.

4.3.1. LOSS TERMS

To understand the efficacy of the three loss terms LDis,
LCon, and LBal in Eq. 9, 12, and 13, we evaluate the perfor-
mance of TAC with different loss combinations. According
to the results in Table 4, one could see that: i) the balance
loss LBal could prevent cluster collapsing. Without LBal,
TAC assigns most images to only a few clusters, leading to
poor clustering performance on both datasets; ii) the confi-
dence loss LCon is necessary for datasets with large cluster
numbers. The reason is that the cluster assignments would
be less confident when the cluster number is large. In this
case, the regularization efficacy of LBal would be alleviated,
which explains the performance degradation on UCF-101;
and iii) LDis could effectively distill the neighborhood in-
formation between the text and image modalities, leading
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(d) TAC

Figure 4. Visualization of features extracted by different methods on the ImageNet-Dogs training set, with the corresponding k-means
clustering ARI annotated on the top. a) image embedding directly obtained from the CLIP image encoder; b) text counterparts constructed
by TAC; c) concatenation of images and text counterparts; d) representation learned by TAC through cross-modal mutual distillation.

to the best clustering performance.

Table 4. The performance of TAC with different combinations of
the loss terms.

LDis LCon LBal
ImageNet-Dogs UCF-101

NMI ACC ARI NMI ACC ARI

✓ 71.4 69.5 38.1 69.3 7.6 13.6
✓ 57.2 14.3 24.3 52.1 3.4 8.6

✓ 15.1 19.3 4.1 43.5 16.2 5.7
✓ ✓ 72.5 57.0 45.3 55.6 3.6 9.9
✓ ✓ 80.6 83.5 72.3 70.5 45.1 34.5

✓ ✓ 78.2 81.8 69.6 81.6 67.3 59.1
✓ ✓ ✓ 80.6 83.0 72.2 82.3 68.7 60.1

4.3.2. DISTILLATION DIRECTION

Recall that the cross-modal distillation strategy mutually
distills the neighborhood information from one modality to
another. To better understand the effectiveness of mutual
distillation, we evaluate the performance of TAC with dif-
ferent directions of the distillation in Table 5. As can be
seen, text-to-image distillation gives inferior performance
compared with bi-directional distillation, probably due to
the less exploration of image neighborhood information.
Moreover, in the one-directional scenarios, text-to-image
outperforms image-to-text distillation, which proves that the
textual semantics are more favorable for clustering.

Table 5. The performance of TAC with different distillation direc-
tions. †: Use the text head for clustering.

Direction ImageNet-Dogs UCF-101

NMI ACC ARI NMI ACC ARI

Image → Text† 76.5 79.3 67.1 78.5 64.1 53.7
Text → Image 78.8 82.1 69.4 81.1 65.8 57.5
Image ↔ Text 80.6 83.0 72.2 82.3 68.7 60.1

4.4. Parameter Analyses

To evaluate the robustness of TAC, we evaluate it under
various choices of the expected compact cluster size Ñ , the
number of discriminative nouns for each image semantic
center γ, and the number of nearest neighbors N̂ . The
results are shown in Fig. 5.

4.4.1. EXPECTED COMPACT CLUSTER SIZE Ñ

To see how the granularity of image semantics influences
the final clustering performance, we test various choices of
Ñ in Fig. 5(a). As shown, TAC is stable across a reasonable
range of Ñ . However, since UCF-101 has an average cluster
size much less than the default Ñ = 300, it encounters a
performance drop on large cluster sizes due to overly coarse-
grained semantics. Conversely, when the cluster size is
overly small, the excessively fine-grained semantics leads
to performance degradation on ImageNet-Dogs.

4.4.2. NUMBER OF DISCRIMINATIVE NOUNS γ

To construct the text space, we classify all nouns into the
image semantic centers and select the top γ nouns of each
center for retrieval. Here, we try various choices of γ in
Fig. 5(b). As can be seen, a solitary noun is insufficient to
cover the semantics of each image center. Conversely, an
excessive number of nouns would falsely enrich the seman-
tics, leading to inferior performance. Overall, TAC is stable
across a typical range of discriminative noun number γ.

4.4.3. NUMBER OF NEAREST NEIGHBORS N̂

To collaborate the text and image modalities, TAC mutually
distills their neighborhood information. Here, we evalu-
ate TAC with different numbers of nearest neighbors N̄ in
Fig. 5(c). The results demonstrate that TAC is robust to di-
verse numbers of N̄ . Though a smaller choice of N̄ leads to
slight improvements on ImageNet-Dogs, we find the default
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Figure 5. Analyses on six tunable hyper-parameters in the proposed TAC. The first three hyper-parameters influence both TAC with and
without training. The last three hyper-parameters only influence the cross-modal mutual distillation process of TAC.

N̄ = 50 achieves stable results across different datasets.

5. Conclusion
In this paper, instead of focusing on exhaustive internal
supervision signal construction, we innovatively propose
leveraging the rich external knowledge, which has been re-
grettably overlooked before, to facilitate clustering. As a
specific implementation, our TAC achieves state-of-the-art
image clustering performance by leveraging textual seman-
tics, demonstrating the effectiveness and promising prospect
of the proposed externally guided clustering paradigm. In
the future, the following directions could be worth explor-
ing. On the one hand, in addition to the modalities this work
focuses on, the external knowledge widely exists in differ-
ent sources, domains, models, etc. For example, one could
utilize the pre-trained object detection or semantic segmenta-
tion models to locate the semantic object for boosting image
clustering. On the other hand, instead of focusing on im-
age clustering, it is worth exploring the external knowledge
for clustering other forms of data, such as text and point
cloud. The challenges of the proposed externally guided
clustering paradigm lie in i), choosing the appropriate exter-
nal knowledge, and ii), effectively integrating the external
knowledge to improve clustering. In practice, the selection
and utilization of external knowledge should depend on the
characteristics and prior knowledge about the data and task.
Overall, we hope this work could serve as a catalyst, moti-
vating more future studies on externally guided clustering,
which is believable to be a promising direction for both
methodology improvement and real-world application.
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A. Variants of text counterpart construction.

Table 6. Clustering performance of TAC using different clustering methods for text counterpart construction. (AC: agglomerative
clustering, SC: spectral clustering, r: resolution of Louvain clustering, None: using all nouns from WordNet)

Method Semantic
Space

ImageNet-Dogs UCF-101

NMI ACC ARI NMI ACC ARI

TAC
(no train)

k-means 75.1 75.1 63.6 81.6 61.3 52.4
AC 73.4 72.0 61.2 81.9 63.7 54.8
SC 77.4 75.2 65.9 82.2 65.5 54.7

DBSCAN 68.8 64.3 51.0 81.1 61.8 52.3
Louvain (r=1) 77.0 75.1 65.0 78.6 58.3 47.9
Louvain (r=5) 77.1 78.3 66.9 81.3 61.7 54.0

Louvain (r=10) 75.7 72.9 62.7 80.9 60.8 52.5
None 70.3 68.7 53.6 81.3 63.2 52.8

TAC

k-means 80.6 83.0 72.2 82.3 68.7 60.1
AC 78.4 81.7 69.5 82.4 69.3 60.2
SC 79.2 83.1 70.8 82.3 69.1 60.4

DBSCAN 75.5 80.4 65.5 80.6 66.2 56.4
Louvain (r=1) 78.5 83.6 70.0 78.3 61.7 53.0
Louvain (r=5) 79.8 85.6 72.6 81.7 68.3 59.1

Louvain (r=10) 79.6 85.1 71.9 82.1 68.1 59.4
None 75.7 78.7 66.0 81.2 67.0 58.3

Recall that to select representation nouns for text counterpart construction, we first classify all nouns from WordNet to image
semantic centers found by applying k-means on image embeddings. Here, we investigate the robustness and necessity of the
noun selection step. Specifically, we adopt three other classic clustering methods to compute semantic centers, including
agglomerative clustering (AC), spectral clustering (SC), and DBSCAN. For AC and SC, we set the target cluster number to
the same as k-means. For DBSCAN, we tune the density parameter until it produces the same number of clusters. As shown
in Table 6, the training-free TAC achieves better performance with SC, while the performance is similar among k-means,
AC, and SC when further boosted with cross-modal mutual distillation. The performance degradation on DBSCAN is
probably due to the poor quality of image embeddings. In practice, we find DBSCAN tends to treat a portion of samples as
outliers, and thus it cannot precisely cover the image semantics, leading to suboptimal performance. Moreover, we test
the Louvain clustering algorithm that could estimate the cluster number given the cluster resolution. One could see that
Louvain clustering gives promising results with an appropriate choice of resolution. Nevertheless, almost all cluster number
estimation methods require manually setting a granularity parameter like the resolution here in Louvain. Such a process
is similar to our simple estimation based on the sample size. To investigate the necessity to filter discriminative nouns,
we further append a baseline by retrieving text counterparts from all nouns. According to the results, TAC encounters a
performance drop on both datasets, but the influence is milder on UCF-101, which could be attributed to the richer image
semantics in that dataset. In summary, the results demonstrate the effectiveness of discriminative noun selection, as well as
the robustness of TAC against different clustering methods used for text counterpart construction.

B. The textual semantic space constructed by TAC.
To provide an intuitive understanding of the textual space constructed by TAC, we provide the discriminative nouns selected
for all datasets. Due to the space limitation, only the thirty most discriminative nouns are shown. As can be seen, for object
clustering datasets including STL, CIFAR, and ImageNet, the selected discriminative nouns directly match the name of
objects. The results are more intriguing on the DTD and UCF-101 datasets with textures and actions as the clustering
criterion, respectively. For the DTD dataset, some nouns directly match the adjectives that describe textures. For example,
”Belgian waffle” matches the ”waffled” texture, and ”honeycomb” matches the ”honeycombed” texture. For other selected
nouns that do not have a direct matching, they turn out to have close relationships with those textures. For example, the
nouns ”garden lettuce”, ”peony”, and ”Peruvian lily” correspond to the ”frilly” texture, ”grevy’s zebra” corresponds to the
”striped” texture, and ”chessboard” corresponds to the ”chequered” texture. In other words, these nouns describe or reflect
the texture and can thus benefit the discrimination between images of different textures. For the UCF-101 dataset, most
selected nouns correspond to the object that actions interact with. For example, the ”snooker table” in ”billiard hall” is used
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for ”Billiards” and the ”typewriter keyboard” is used for ”Typing”. There also exist some gerundial nouns that directly refer
to the actions such as ”cliff diving” and ”touch typing”. The close connection between the nouns and actions explains the
performance improvement in image clustering. To summarize, external nouns from WordNet would be closely related to the
semantics in images, either directly or indirectly. As a result, these nouns could provide more compact semantics and benefit
clustering.

Table 7. Top-30 selected discriminative nouns for image semantic centers from different datasets.

Dataset Selected Discriminative Nouns

STL-10 floatplane, titi monkey, sand cat, whitetail deer, harness horse, black billed cuckoo, garbage truck, fire truck,
Lipizzan, container ship, ocean liner, trucking rig, aerobatics, Angora cat, airline, black and tan terrier,
electric automobile

CIFAR-10 spadefoot toad, field sparrow, curassow, Lipizzan, sable antelope, black fronted bush shrike, chameleon tree
frog, whitetail deer, fire truck, waterbuck, emu, hartebeest, dressage, containership, pratincole, woodland
caribou, hydroplane racing, banana boat, yacht race, yellow breasted chat, pen tailed tree shrew, elk, wagtail,
stonefish, trucking rig, clipper ship, Texas horned lizard, stealth bomber, articulated lorry, fire department

CIFAR-20 Iceland poppy, Lepiota procera, oceanic whitetip shark, prairie sunflower, goblet, common dolphin, carabid
beetle, sunflower, rosy boa, trolleybus, soda can, school bus, Peromyscus maniculatus, characin fish, banded
gecko, Arabian camel, armoured combat vehicle, diesel electric locomotive, African elephant, bunk bed,
tandem bicycle, sandbar shark, common wallaby, European spider crab, eastern chimpanzee, navel orange,
edmontosaurus, Kodiak bear, lawn mower, tractor

ImageNet-10 crested penguin, snow leopard, Graf Zeppelin, navel orange, Maltese terrier, soccer ball, blimp, candied citrus
peel, airship, serval, dirigible, containership, articulated lorry, trailer truck, tractor trailer, sports car, tufted
puffin, soccer player, wire haired terrier, roadster, Sealyham terrier, soft coated wheaten terrier, sporting dog,
airline, turboprop, flying bomb, wind bell, fruit tree, Antarctic Peninsula, airliner

ImageNet-Dogs Doberman pinscher, giant schnauzer, Norwegian elkhound, clumber spaniel, chowchow, Shetland sheepdog,
Welsh springer spaniel, pug, standard schnauzer, schipperke, basset, beach, merino sheep, Arctic wolf,
keeshond, Maltese terrier, standard poodle, snowfall, swimming hole, chromolithography, sleeping partner,
chipping sparrow, dog show, Persian cat, Pomeranian, golden retriever, triple jump, meadow jumping mouse,
fieldwork, harness race

DTD butterflyfish, garden lettuce, peony, grevy’s zebra, chessboard, Peruvian lily, pothole, Belgian waffle, turban
squash, African elephant, anchor rope, chainlink fence, wicker basket, sweetsop, honeycomb, komondor,
cytologic smear, rood screen, orb weaving spider, pillow lace, fluorite, proboscis monkey, birch bark, grape
leaf begonia, sunset, zebrawood, stockinette stitch, lecanora, houndstooth check, black crappie

UCF-101 sitar, cliff diving, snooker table, blackboard, typewriter keyboard, billiard hall, marching band, darning needle,
touch typing, Islamic Army of Aden, piano sonata, violoncellist, table tennis, koto player, contradance,
bowling alley, Seattle Slew, tai chi chuan, parade, sumo ring, candlepin bowling, pelican crossing, cymbalist,
Armenian Secret Army for the Liberation of Armenia, tenor drum, woodwind instrument, Panjabi, Victory
Day, cyclist, Belmont Stakes

ImageNet-1K Cypripedium fasciculatum, fireboat, swamphen, colobus monkey, plaque, komondor, limpkin, chasuble,
European black grouse, nine banded armadillo, sulphur crested cockatoo, ruffed grouse, common stinkhorn,
genus Cypripedium, Geastrum coronatum, ptarmigan, red breasted merganser, tobacconist shop, oyster-
catcher, axolotl, slate colored junco, purple gallinule, black capped chickadee, Tibetan mastiff, redshank, red
legged partridge, Polaroid camera, pygmy marmoset, cherimoya, sharp tailed grouse
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