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ABSTRACT

Recently, Masked Image Modeling (MIM) achieves great success in self-supervised
visual recognition. However, as a reconstruction-based framework, it is still an
open question to understand how MIM works, since MIM appears very different
from previous well-studied siamese approaches such as contrastive learning. In
this paper, we propose a new viewpoint: MIM implicitly learns occlusion-invariant
features, which is analogous to other siamese methods while the latter learns other
invariance. By relaxing MIM formulation into an equivalent siamese form, MIM
methods can be interpreted in a unified framework with conventional methods,
among which only a) data transformations, i.e. what invariance to learn, and
b) similarity measurements are different. Furthermore, taking MAE (He et al.,
2021) as a representative example of MIM, we empirically find the success of
MIM models relates a little to the choice of similarity functions, but the learned
occlusion invariant feature introduced by masked image – it turns out to be a
favored initialization for vision transformers, even though the learned feature could
be less semantic. We hope our findings could inspire researchers to develop more
powerful self-supervised methods in computer vision community.

1 INTRODUCTION

Invariance matters in science (Kosmann-Schwarzbach, 2011). In self-supervised learning, invariance
is particularly important: since ground truth labels are not provided, one could expect the favored
learned feature to be invariant (or more generally, equivariant (Dangovski et al., 2021)) to a certain
group of transformations on the inputs. Recent years, in visual recognition one of the most successful
self-supervised frameworks – contrastive learning (Oord et al., 2018; Tian et al., 2019; Dosovitskiy
et al., 2014a) – benefits a lot from learning invariance. The key insight of contrastive learning is,
because recognition results are typically insensitive to the deformations (e.g. cropping, resizing,
color jittering) on the input images, a good feature should also be invariant to the transformations.
Therefore, contrastive learning suggests minimizing the distance between two (or more (Caron et al.,
2021)) feature maps from the augmented copies of the same data, which is formulated as follows:

min
θ

E
x∼D

M (z1, z2) , z1 = fθ(T1(x)), z2 = fθ(T2(x)), (1)

where D is the data distribution; fθ(·) means the encoder network parameterized by θ; T1(·) and
T2(·) are two transformations on the input data, which defines what invariance to learn; M(·, ·) is
the distance function* (or similarity measurement) to measure the similarity between two feature
maps z1 and z2. Clearly, the choices of T and M are essential in contrastive learning algorithms.
Researchers have come up with a variety of alternatives. For example, for the transformation T ,
popular methods include random cropping (Bachman et al., 2019; He et al., 2020; Chen et al., 2020b;
Grill et al., 2020), color jittering (Chen et al., 2020b), rotation (Reed et al., 2020; Gidaris et al.,
2018a), jigsaw puzzle (Noroozi & Favaro, 2016), colorization (Zhang et al., 2016) and etc. For the
similarity measurement M, InfoMax principle (Bachman et al., 2019) (which can be implemented
with MINE (Belghazi et al., 2018) or InfoNCE loss (Oord et al., 2018; He et al., 2020; Chen et al.,
2020b;c)), feature de-correlation (Zbontar et al., 2021; Bardes et al., 2021), asymmetric teacher (Grill
et al., 2020; Chen & He, 2020), triplet loss (Li et al., 2021a) and etc., are proposed.

*Following the viewpoint in (Chen & He, 2020), we suppose distance functions could contain parameters
which are jointly optimized with Eq. 1. For example, weights in project head (Chen et al., 2020b) or predict
head (Grill et al., 2020; Chen & He, 2020) are regarded as a part of distance function M(·).
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Apart from contrastive learning, very recently Masked Image Modeling (MIM, e.g. Bao et al. (2021))
quickly becomes a new trend in visual self-supervised learning. Inspired by Masked Language
Modeling (Devlin et al., 2018) in Natural Language Processing, MIM learns feature via a form of
denoising autoencoder (Vincent et al., 2008): images which are occluded with random patch masks
are fed into the encoder, then the decoder predicts the original embeddings of the masked patches:

min
θ,ϕ

E
x∼D

M (dϕ(z), x⊙ (1−M)) , z = fθ(x⊙M), (2)

where “⊙” means element-wise product; M is patch mask †; fθ(·) and dϕ(·) are encoder and
decoder respectively; z is the learned representation; M(·, ·) is the similarity measurement, which
varies in different works, e.g. l2-distance (He et al., 2021), cross-entropy (Bao et al., 2021) or
perceptual loss (Dong et al., 2021) in codebook space. Compared with conventional contrastive
methods, MIM requires fewer effort on tuning the augmentations, furthermore, achieves outstanding
performances especially in combination with vision transformers (Dosovitskiy et al., 2020), which is
also demonstrated to be scalable into large vision models (He et al., 2021; Li et al., 2022b).

In this paper, we aim to build up a unified understanding framework for MIM and contrastive learning.
Our motivation is, even though MIM obtains great success, it is still an open question how it works.
Several works try to interpret MIM from different views, for example, He et al. (2021) suggests
MIM model learns "rich hidden representation" via reconstruction from masked images; afterwards,
Cao et al. (2022) gives a mathematical understanding for MAE (He et al., 2021). However, what the
model learns is still not obvious. The difficulty lies in that MIM is essentially reconstructive (Eq. 2),
hence the supervision on the learned feature (z) is implicit. In contrast, contrastive learning acts as
a siamese nature (Eq. 1), which involves explicit supervision on the representation. If we manage
to formulate MIM into an equivalent siamese form like Eq. 1, MIM can be explicitly interpreted as
learning a certain invariance according to some distance measurement. We hope the framework may
inspire more powerful self-supervised methods in the community.

In the next sections, we introduce our methodology. Notice that we do not aim to set up a new
state-of-the-art MIM method, but to improve the understanding of MIM frameworks. Our findings
are concluded as follows:

• We propose RelaxMIM, a new siamese framework to approximate the original reconstructive
MIM method. In the view of RelaxMIM, MIM can be interpreted as a special case of
contrastive learning: the data transformation is random patch masking and the similarity
measurement relates to the decoder. In other words, MIM models intrinsically learn
occlusion invariant features.

• Based on RelaxMIM, we replace the similarity measurement with simpler InfoNCE loss.
Surprisingly, the performance maintains the same as the original model. It suggests that the
reconstructive decoder in MIM framework does not matter much; other measurements could
also work fine. Instead, patch masking may be the key to success.

• To understand why patch masking is important, we perform MIM pretraining on very
few images (e.g. only 1 image), then finetune the encoder with supervised training on
full ImageNet. Though the learned representations lack of semantic information after
pretraining, the finetuned model still significantly outperforms those training from scratch.
We hypothesize that the encoder learns data-agnostic occlusion invariant features during
pretraining, which could be a favored initialization for finetuning.

2 MIM INTRINSICALLY LEARNS OCCLUSION INVARIANT FEATURE

In this section, we mainly introduce how to approximate MIM formulation (Eq. 2) with a siamese
model. For simplicity, we take MAE (He et al., 2021) as an representative example of MIM, in which
the similarity measurement is simply l2−distance on the masked patches. Other MIM methods can
be analyzed in a similar way. Following the notations in Eq. 2, the loss function for MAE training is‡:

L(x,M) = ∥dϕ(fθ(x⊙M))⊙ (1−M)− x⊙ (1−M)∥2. (3)

†So “x⊙M” represents “unmasked patches” and vice versa.
‡In original MAE (He et al., 2021), the encoder network only generates tokens of unmasked patches and the

decoder only predict the masked patches during training. In our formulations, for simplicity we suppose both
networks predict the whole feature map; we equivalently extract the desired part via proper masking if necessary.
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Figure 1: CKA similarity between the representations generated by the masked image and the full
image respectively under different mask ratios. FT means finetuned model on ImageNet; and other
models except “Supervised” are self-supervised pretrained models. (Best view in color.)

Let us focus on the second term. Typically, the dimension of feature embedding is much larger than
dimension of input image, thus the encoder (at least) has a chance to be lossless (Li et al., 2022b).
That means for the encoder function fθ(·), there exists a network d′ϕ′(·) parameterized by ϕ′ that
satisfying d′ϕ′(fθ(x⊙ (1−M)))⊙ (1−M) ≈ x⊙ (1−M). Then, we rewrite Eq. 3 in the following
equivalent form:

L(x,M) = ∥dϕ(fθ(x⊙M))⊙ (1−M)− d′ϕ′(fθ(x⊙ (1−M)))⊙ (1−M)∥2

s.t. ϕ′ = argmin
ϕ′

E
x′∼D

∥d′ϕ′(fθ(x
′ ⊙ (1−M)))⊙ (1−M)− x′ ⊙ (1−M)∥2 (4)

Eq. 4 can be further simplified. Notice that d′ϕ′(·) just approximates the “inverse” (if exists) of fθ(·),
there is no reason to use a different architecture from dϕ(·). So we let d′ = d. Then we define a new
similarity measurement:

Mϕ,ϕ′(z1, z2) ≜ ∥(dϕ(z1)− dϕ′(z2))⊙ (1−M)∥2, (5)

and transformations:
T1(x) = x⊙M, T2(x) = x⊙ (1−M), (6)

hence Eq. 4 equals to:

L(x,M ; θ, ϕ) = Mϕ,ϕ′(fθ(T1(x)), fθ(T2(x)))
s.t. ϕ′ = argmin

ϕ′
E

x′∼D
∥(dϕ′(fθ(T2(x′)))− T2(x′))⊙ (1−M)∥2. (7)

We name Eq. 7 siamese form of MAE.

Discussion. Eq. 7 helps us to understand MIM from a explicit view. Compared Eq. 7 with Eq. 1,
the formulation can be viewed as a special case of contrastive learning: the loss aims to minimize the
differences between the representations derived from two masking transformations. Therefore, we
conclude that MIM pretraining encourage occlusion invariant features. The decoder joints as a
part of the similarity measurement (see Eq. 5), which is reasonable: since it is difficult to define a
proper distance function directly in the latent space, a feasible solution is to project the representation
back into the image space, because similarities like l2-distance in image space are usually explainable
(analogous to PSNR). In addition, the constraint term in Eq. 7 can be viewed as standard AutoEncoder
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Table 1: Comparisons of self-supervised methods on ImageNet with ViT-B (Dosovitskiy et al., 2020).
Epochs in the table indicate numbers of pretraining epochs (for random initialization baselines they
are total epochs of training from scratch). PSNR means the similarity between the generated image
(from the masked image) and the original image after pretraining.

Pretrain Methods Transformation Framework Epochs FT Acc (%) PSNR (dB)

Random Init – – 100 80.9 –
– – 300 82.1 –

MoCov3 (Chen et al., 2021) crop & jitter siamese 300 83.2 –
DINO (Caron et al., 2021) crop & jitter siamese 800 82.8 –

BeiT (Bao et al., 2021) patch masking reconstructive 300 82.9 –
MAE (He et al., 2021) patch masking reconstructive 1600 83.6 19.3
CAE (Chen et al., 2022) patch masking reconst. + siam. 300 83.3 –

MAE (our impl.) patch masking reconstructive 100 83.1 22.2
R-MAE (ours) patch masking siamese 100 82.7 23.7

defined on the space of T2(x), which guarantees the projection dϕ′(·) to be informative, avoiding
collapse of the similarity measurement.

Although Eq. 7 explicitly uncovers the invariant properties of MIM in theory, it is a drawback that
Eq. 7 involves a nested optimization, which is difficult to compute. We thus propose a relaxed form
of Eq. 7, named R-MAE (or RelaxMIM in general):

min
θ,ϕ,ϕ′

E
x∼D

Mϕ,ϕ′(fθ(T1(x)), fθ(T2(x))) + λ∥(dϕ′(fθ(T2(x)))− T2(x))⊙ (1−M)∥2. (8)

Eq. 8 jointly optimizes the distance term and the constraint term in Eq. 7. λ controls the balance
of the two terms. In practice, we let ϕ = ϕ′ to save computational cost, as we empirically find the
optimization targets of dϕ(·) and dϕ′(·) in Eq. 8 do not diverge very much.

Empirical evaluation. First, we verify our claim that MIM representation is robust to image
occlusion, as suggested by Eq. 7. We compute the CKA similarity (Kornblith et al., 2019) between
the learned features from full images and images with different mask ratios respectively, at each
block in the encoder. Figure 1 shows the CKA similarities of different models. The numbers (0.1
to 0.9) indicate the mask ratios (i.e. percentages of image patches to be dropped) of the test images
respectively. As shown in Figure 1, both original MAE and our relaxed R-MAE (as well as another
variant C-MAE, see the next section) obtain high CKA scores, suggesting those methods learn
occlusion invariant features. In contrast, other methods such as supervised training or MoCo v3 (Chen
et al., 2021) do not share the property, especially if the drop ratio is large. After finetuning, the CKA
similarities drop, but are still larger than those training from scratch.

Next, we verify how well R-MAE (Eq. 8) approximates the original MAE. We pretrain the original
MAE and R-MAE on ImageNet using the same settings: the mask ratio is 0.75 and training epoch
is 100 (λ is set to 1 for ours). Then we finetune the models on labeled ImageNet data for another
100 epochs. Results are shown in Table 1. Our finetuning accuracy is slightly lower than MAE by
0.4%, which may be caused by the relaxation. Nevertheless, R-MAE roughly maintains the benefit
of MAE, which is still much better than supervised training from scratch and competitive among
other self-supervised methods with longer pretraining. Another interesting observation is that, the
reconstruction quality of R-MAE is even better than the original MAE (see PSNR column in Table 1),
which we think may imply the trade-off by the choice of λ in Eq. 8. We will investigate the topic in
the future.

3 SIMILARITY MEASUREMENT IN MIM IS REPLACEABLE

Eq. 7 bridges MIM and contrastive learning with a unified siamese framework. Compared with
conventional contrastive learning methods (e.g. He et al. (2020); Chen et al. (2020b); Caron et al.
(2021); Chen et al. (2021); Grill et al. (2020)), in MIM two things are special: 1) data transformations
T (·): previous contrastive learning methods usually employ random crop or other image jittering,
while MIM methods adopt patch masking; 2) similarity measurement M(·, ·), contrastive learning
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often uses InfoNCE or other losses, while MIM implies a relatively complex§ formulation as Eq. 5.
To understand whether the two differences are important, in this section we study how the choice of
M(·, ·) affects the performance.

Contrastive MAE (C-MAE). We aim to replace the measurement Mϕ,ϕ′(·, ·) with a much simpler
InfoNCE loss (Oord et al., 2018). We name the new method contrastive MAE (C-MAE). Inspired
by Chen et al. (2021); Grill et al. (2020), we transform the representations with asymmetric MLPs
before applying the loss. The new distance measurement is defined as follows:

M̃ϕ,ϕ′(z1, z2) ≜ LNCE = −log
exp(s(z1, z2)/τ)∑
j exp(s(z1, z

′
j)/τ)

, (9)

and

s(z, z′) =
qϕ′(pϕ(z)) · pϕ(z′)

∥qϕ′(pϕ(z))∥ · ∥pϕ(z′)∥
, (10)

where pϕ(·) and qϕ′(·) are project head and predict head respectively following the name in BYOL
(Grill et al., 2020), which are implemented with MLPs; τ is the temperature of the softmax. Readers
can refer to (Chen et al., 2021) for details. Hence the objective function of C-MAE is:

L(x,M ; θ, ϕ, ϕ′) = M̃ϕ,ϕ′(fθ(T1(x)), fθ(T2(x))). (11)

Unlike Eq. 7, C-MAE does not include nested optimization, thus can be directly optimized without
relaxing.

The design of transformation T . We intend to use the same transformation as we used in MAE
and R-MAE (Eq. 6). However, we find directly using Eq. 6 in C-MAE leads to convergence problem.
We conjecture that even though the two transformations derive different patches from the same image,
they may share the same color distribution, which may lead to information leakage. Inspired by
SimCLR (Chen et al., 2020b), we introduce additional color augmentation after the transformation to
cancel out the leakage. The detailed color jittering strategy follows SimSiam (Chen & He, 2020).

Token-wise vs. instance-wise loss. We mainly evaluate our method on ViT-B (Dosovitskiy et al.,
2020) model. By default, the model generates a latent representation composed of 14×14 patch
tokens and one class token, where each patch relates to one image patch while the class token relates
to the whole instance. It is worth discussing how the loss in Eq. 11 applies to the tokens. We come
up with four alternatives: apply the loss in Eq. 11 1) only to the class token; 2) on the average of all
patch tokens; 3) to each patch token respectively; 4) to each patch token as well as the class token
respectively. If multiple tokens are assigned to the loss, we gather all loss terms by averaging them up.
Table 5 shows the ablation study results. It is clear that token-wise loss on the patch tokens achieves
the best finetuning accuracy on ImageNet. In comparison, adding the class token does not lead to
improvement, which may imply that class token in self-supervised learning is not as semantic as in
supervised learning. Therefore, we use a token-wise-only strategy for C-MAE by default.

Implementation details. Following Chen et al. (2021), we use a siamese network, which contains
an online model and a target model whose parameters are EMA updated by the online model. We use
2-layer projector (i.e. pϕ(·) in Eq. 11) and 2-layer predictor (qϕ′ ), and use GELU as activation layer.
To represent the masked patches into the encoder network, we adopt learnable mask tokens as Xie
et al. (2021b); Bao et al. (2021) does rather than directly discard the tokens within the masked region
as the original MAE, because unlike MAE, our C-MAE does not include a heavy transformer-based
decoder to predict the embeddings for the masked region.

Result and discussion. Table 2 shows the finetuning results of C-MAE and a few other self-
supervised methods. C-MAE achieves comparable results with the counterpart MAE baselines,
suggesting that in MIM framework the reconstructive decoder, or equivalently the measurement in
siamese form (Eq. 5), does not matter much. A simple InfoNCE loss works fine. We also notice
that our findings agree with recent advances in siamese MIMs, e.g. iBOT (Zhou et al., 2021), MSN
(Assran et al., 2022) and data2vec (Baevski et al., 2022), whose frameworks involve various distance

§Notice that the constraint term in Eq. 7 also belongs to the similarity measurement.
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Table 2: Comparisons of C-MAE and other pretraining methods on ImageNet finetuning. All models
are based on ViT-B.

Pretrain Methods Epochs FT Acc (%)

Random Init – 80.9

MoCo v3 (Chen et al., 2021) 300 83.2
DINO (Caron et al., 2021) 800 82.8
MAE (He et al., 2021) 1600 83.6

MAE (our impl.) 100 83.1
C-MAE (ours) 100 82.9
MAE (our impl.) 400 83.2
C-MAE (ours) 400 83.1

measurements between the siamese branches instead of reconstructing the unmasked parts, however,
achieve comparable or even better results than the original reconstruction-based MIMs like He
et al. (2021); Bao et al. (2021). In addition to those empirical observations, our work uncovers
the underlying reason: both reconstructive and siamese methods target learning occlusion invariant
features, thereby it is reasonable to obtain similar performances.

Table 2 also indicates that, as siamese frameworks, C-MAE achieves comparable or even better
results than previous counterparts such as DINO (Caron et al., 2021), even though the former mainly
adopts random patch masking while the latter involves complex strategies in data transformation. He
et al. (2021) also reports a similar phenomenon that data augmentation is less important in MIM. The
observation further supports the viewpoint that learning occlusion invariant feature is the key to MIM,
rather than the loss. Intuitively, to encourage occlusion invariance, patch masking is a simple but
strong approach. For example, compared with random crop strategy, patch masking is more general
– cropping can be viewed as a special mask pattern on the whole image, however, according to the
experiments in Xie et al. (2021b); He et al. (2021), it is good enough or even better to leave patch
masking fully randomized¶.

Additional ablations. Table 3 presents additional results on MAE and C-MAE. First, Although
C-MAE shows comparable fine-tuning results with MAE, we find under linear probing (He et al.,
2020; 2021) and few-shot (i.e. fine-tuning on 10% ImageNet training data) protocols, C-MAE models
lead to inferior results. Further study shows the degradation is mainly caused by the usage of mask
tokens in C-MAE, which is absent in the original MAE – if we remove the mask tokens as done in
MAE’s encoder, linear probing and few-shot accuracy largely recover (however fine-tuning accuracy
slightly drops), which we think is because mask tokens enlarge the structural gap between pretraining
and linear/few-shot probing, since the network is not fully fine-tuned under those settings.

Second, we further try replacing the InfoNCE loss (Eq. 9) with BYOL (Grill et al., 2020) loss in
C-MAE. Following the ablations in Table 5, we still make the BYOL loss in token-wise manner.
Compared with InfoNCE, BYOL loss does not have explicit negative pairs. Results imply that BYOL
loss shows similar trend as InfoNCE loss, which supports our viewpoint “similarity measurement
in MIM is replaceable”. However, we also find BYOL loss is less stable, resulting in slightly lower
accuracy than that of InfoNCE.

Last, since our C-MAE involves color jittering (Chen et al., 2020b), one may argue that color
transformation invariance could be another key factor other than occlusion invariance. We study
the original MAE with additional color jittering (Table 3). We compare two configurations: a)
augmenting the whole image before applying MAE; b) only augmenting the unmasked patches (i.e.
the reconstruction targets keep the same). Results show that neither setting boosts MAE further, which
implies the invariance of color jittering does not matter much. Moreover, we try the compositions of
three different augmentation strategies on MAE and C-MAE. As shown in Table 4, although C-MAE
gets more benefit with stronger augmentations, both MAE and C-MAE drop a lot of performance
when removing patch masking. That indicates learning occlusion invariance is critical for the models.
The details of the experiments are explained in Appendix A.

¶Although very recent studies (Shi et al., 2022; Kakogeorgiou et al., 2022; Li et al., 2022a; Wu & Mo, 2022)
suggest more sophisticated masking strategies can still help.
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Table 3: Additional comparisons on MAE and C-MAE. All models are pretrained and fine-tuned for
100 epochs respectively.

Pretrain Methods Lin. Prob Acc (%) FT Acc (%) 10% FT Acc (%)

MAE 54.5 83.1 67.5
MAE w/ color jitter (whole image) 53.4 83.1 67.3
MAE w/ color jitter (unmasked only) 54.0 83.0 67.3

C-MAE 41.1 82.9 66.4
C-MAE w/o mask token 56.2 82.6 67.5

C-MAE (BYOL loss) 26.9 82.8 65.2
C-MAE w/o mask token (BYOL loss) 55.2 82.5 66.1

Table 4: Ablation study of different augmentation strategies on MAE and C-MAE. The models
are trained for 100 epochs with ViT-S on ImageNet-100. Sup means 200-epoch supervised result.
■means patch masking, ■means cutmix, and ■means color augmentation. (Best view in color.)

Pretrain Methods Sup ■ ■ ■ ■■ ■■ ■■ ■■■

MAE 81.6 71.9 87.1 83.3 81.6 86.1 85.5 83.8 86.4
C-MAE 80.0 86.5 83.5 82.8 86.9 86.8 83.1 87.1

4 MIM LEARNS A FAVORED, (ALMOST) DATA-AGNOSTIC INITIALIZATION

As discussed in the above sections, learning occlusion invariant features is the key “philosophy” of
MIM methods. Hence an interesting question comes up: how do the learned networks model the
invariance? One possible hypothesis is that occlusion invariance is represented in an data-agnostic
way, just analogous to the structure of max pooling – the output feature is robust only if the most
significant input part is not masked out, thereby the invariance is obtained by design rather than data.
Another reasonable hypothesis is, in contrast, the invariance requires knowledge from a lot of data.
In this section we investigate the question.

Inspired by Asano et al. (2019), to verify our hypotheses we try to significantly reduce the number of
images for MAE pretraining, i.e. ranging from 1 for 1000 randomly sampled from ImageNet training
set, hence the semantic information from training data should be very limited in the pretraining phase.
Notice that MAE training tends to suffer from over-fitting on very small training set, as the network
may easily “remember” the training images. Therefore, we adopt stronger data augmentation and
early-stop trick to avoid over-fitting. Table 6 presents the result. Very surprisingly, we find pretraining
with only one image with 5 epochs already leads to improved finetuning score – much better than
100-epoch training from scratch and on par with training for 300 epochs. The fine-tuning results do
not improve when the number of pretrain images increases to 1000. Since it is not likely for only one
image to contain much of the semantic information of the whole dataset, the experiment provides
strong evidence that MIM can learn a favored initialization, more importantly, which is (almost)
data-agnostic.

Moreover, in Table 7 we benchmark various pretraining methods on a 1000-image subset from
ImageNet training data, which provides more insights on MIM training. We find the linear probing
accuracy of MAE is very low, which is only slightly better than random feature (first row), suggesting

Table 5: Ablation study on the strategies of C-MAE loss. All models are pretrained for 100 epochs.
Measurement Class Token Patch Tokens FT Acc (%)

instance-wise ✓ 82.5
instance-wise average 82.6
token-wise ✓ 82.9
token-wise ✓ ✓ 82.9
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Table 6: Comparisons of MAE pretrained with different numbers of images.
Pretrain Images Stronger Aug. Train Epochs FT Epochs FT Acc (%)

1 ✓ 5 100 82.3

10 2 100 81.9
✓ 5 100 82.3

100 10 100 82.1
✓ 10 100 82.2

1000 100 100 82.2
✓ 100 100 82.2

Random Init - 100 80.9
- 300 82.1

Table 7: Comparisons of different pretraining methods on 1000 images sampled from ImageNet (one
image for each class). All methods pretrain for 100 epochs on the sampled dataset (except for random
initialized baseline) and then fine-tune for 100 epochs on full/10%-ImageNet accordingly.

Pretrain Methods Lin. Prob Acc (%) FT Acc (%) 10% FT Acc (%)

Random Init 6.1 80.9 34.9

Supervised 33.1 81.0 52.6
MoCo v3 37.3 79.2 45.8

MAE 13.8 82.2 57.6
R-MAE 25.9 82.1 58.8
C-MAE 20.1 82.1 61.9

that the feature learned from 1000 images is less semantic; however, the finetuning result as well as
few-shot fine-tuning is fine. Our proposed R-MAE and C-MAE share similar properties as the original
MAE – relatively low linear probing scores but high fine-tuning performance. The observation
strongly supports our first hypothesis at the beginning of Sec. 4: the occlusion invariance learned by
MIM could be data-agnostic, which also serves as a good initialization for the network. In comparison,
supervised training and MoCo v3 (Chen et al., 2021) on 1000 images fail to obtain high fine-tuning
scores, even though their linear probing accuracy is higher, which may be because those methods
cannot learn occlusion-invariant features from small dataset effectively. In Appendix B, we will
discuss more on the topic.

5 EXPERIMENTAL DETAILS

Pretraining. We use ViT-B/16 as the default backbone. For MAE pretraining, we use the same
settings as (He et al., 2021), and use the patch normalization when computing loss. We use the mask
ratio of 0.75, which is the most effective one in (He et al., 2021). We use AdamW optimizer with
cosine decay scheduler and the batch size is set to 1024. We set the base learning rate (learning rate
for batch size of 256) as 1.5e-4 with a 20-epoch linear warm-up and scale up the learning rate linearly
when batch size increases (Goyal et al., 2017). For R-MAE, we search the learning rate and finally
set the base learning rate as 3.0e-4. Other training settings are the same as He et al. (2021). For
C-MAE, the momentum to update the teacher model is set to 0.996, and the temperature to compute
contrastive loss is set to 0.2. For projector and predictor heads, we set 2048-d for hidden layers. We
search the learning rate and finally set the base learning rate as 1.5e-4. Other parameters are the same
as C-MAE. We train the model for 100 epochs on the ImageNet (Russakovsky et al., 2015) dataset as
default. Due to the computational resource constraints, we report the results of 400 epochs to prove
that our method gains better results with longer training.

Finetuning. We follow the training settings in He et al. (2021). We use the average pooling feature
of the encoded patch tokens as the input of classifier, and train the model end-to-end. Following He
et al. (2021), we reset the parameters of the final normalization layer. We use AdamW optimizer with
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cosine decay scheduler and set the batch size to 1024. We set the base learning rate as 1.0e-3 with
5-epoch linearly warm-up and train the model for 100 epochs. Note that the supervised trained ViT
in our paper uses the same settings as finetuning and the model is trained for 100 epochs.

6 RELATED WORK

Masked Image Modeling. As the ViT models achieve breakthrough results in computer vision,
self-supervised pretraining for ViTs becomes an intense scholarly domain. In addition to siamese
frameworks such as Chen et al. (2021); Caron et al. (2021), MIM is an efficient and popular way of
self-supervised modeling. The model learns rich hidden information by optimizing the reconstruction
model (He et al., 2021). Following BERT (Devlin et al., 2018), Chen et al. (2020a) compress the
image to a few pixels, and then directly learn the masked pixel color. Bao et al. (2021) maps all image
patches to 8192 embeddings by training d-VAE (Ramesh et al., 2021), and then learns the correct
embedding correspondence for mask patches. Li et al. (2021b) optimizes the masking process based
on BEiT. El-Nouby et al. (2021); Zhou et al. (2021); Li et al. (2021b) combines MIM with siamese
frameworks and improves the performance of linear probing. He et al. (2021); Xie et al. (2021b)
use a simple method to reconstruct the original image, and also learn rich features effectively. Cao
et al. (2022) gives a mathematical understanding of MAE. MSN (Assran et al., 2022), which is a
concurrent work of ours, also discusses the invariance to mask.

Siamese approaches in SSL. Self-supervised pretraining achieves great success in classification
(Dosovitskiy et al., 2014b; Doersch et al., 2015; Gidaris et al., 2018b; Noroozi & Favaro, 2016;
Oord et al., 2018; Wu et al., 2018; He et al., 2020; Chen et al., 2020b; Grill et al., 2020; Zbontar
et al., 2021), detection(Liu et al., 2020; Xiong et al., 2020; Lang et al., 2021; Xie et al., 2021a) and
segmentation. One of the promising methods is based on siamese frameworks (Tian et al., 2019; He
et al., 2020; Chen et al., 2020c; 2021; Misra & van der Maaten, 2020; Chen et al., 2020b;c; Grill
et al., 2020; Caron et al., 2020; Chen & He, 2020; Xie et al., 2020; Caron et al., 2021; Zbontar
et al., 2021; Bardes et al., 2021), which learns representations by minimizing the distance of positive
samples with siamese networks. In practice, Chen et al. (2020b); Caron et al. (2020); Chen & He
(2020); Zbontar et al. (2021) uses the same parameters in the online and target model, while He et al.
(2020); Chen et al. (2020c; 2021); Grill et al. (2020); Caron et al. (2021) updates online parameters
to target using exponential moving average. Only minimizing the distance of positive samples will
cause the model to fall into trivial solutions, so a critical problem in SSL is how to prevent such a
model from collapsing. Chen et al. (2020b); He et al. (2020) use negative samples from different
images, then computes contrastive loss. Grill et al. (2020); Chen & He (2020) add an extra predictor
on the top of the online model then stop the gradient of the target model. Instead of optimizing the
loss per instance, Zbontar et al. (2021); Bardes et al. (2021) optimize the variance, covariance or
cross-covariance on the channel dimension. Caron et al. (2021) optimize the distributions of the two
features, and avoid trivial solutions by centering and sharpening.

7 CONCLUSION

In this paper, we propose a new viewpoint: MIM implicitly learns occlusion-invariant features, and
build up a unified understanding framework RelaxMIM for MIM and contrastive learning. In the
view of RelaxMIM, MIM models intrinsically learn occlusion invariant features. Then we verify that
the representation of RelaxMIM is robust to image occlusion. Based on RelaxMIM, we replace the
similarity measurement with simpler InfoNCE loss and achieve comparable results with the original
MIM framework. It suggests that patch masking may be the critical component of the framework. To
understand why patch masking is important, we perform MIM pretraining on very few images and
finetune the encoder with supervised training on full ImageNet. We find that the encoder learns almost
data-agnostic occlusion invariant features during pretraining, which could be a favored initialization
for finetuning. To measure whether the MIM method has learned human recognition patterns, we
compare the shape bias of different self-supervised models and conclude that, MIM could improve
the recognition ability of ViT to make it closer to human recognition, but the improvement may be
limited. We hope the RelaxMIM framework may inspire more powerful self-supervised methods in
the community.
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A CONFIGURATIONS OF AUGMENTATION EXPERIMENTS

Augmentation strategies. Generally in MAE, the source image which is send into encoder and the
target image which is the target to reconstruct are always the same. Here we try to add additional aug-
mentations on the source image. After the random-resize-cropped and horizontal-flip augmentation,
the image is cropped to 224×224. Then we try the compositions of three additional augmentation
strategies on the source image. The definitions of augmentation strategies are described as follow:

1. Patch masking (Figure 2(b)): we divide the image into non-overlapping 16×16 patches and
randomly mask 75% patches, then the image is occluded by small and neat black blocks.

2. Cutmix (Figure 2(c)): we cropped a patch from the original image then resize the patch and
paste it on the image. The image is occluded by an object rather than small blocks.

3. Color augmentation (Figure 2(d)): we use the same color augmentation as SimSiam (Chen
& He, 2020). Although there is no occlusion, the entire source image and target image are
slightly different in color and texture after color augmentation.

(a) Target image.     (b) Patch masking.         (c) CutMix.                (d) Color augmentation.

Figure 2: Visualization of different augmentation strategies.

Model configurations. We use ViT-S/16 as backbone, and the models are trained and evaluated
on ImageNet-100|| classification. For C-MAE, we use normalized L2 loss (Grill et al., 2020) as
measurement. Other configurations are the same as default.

B MORE VISUALIZATION EXPERIMENTS

B.1 OCCLUSION-INVARIANCE OF FEW IMAGES PRETRAINED MAE

Here we discuss the occlusion invariance of a few images pretrained MAE models. We use CKA
similarities between the representations generated by the masked image and the full image under
different mask ratios as protocol. The numbers (0.1 to 0.9) indicate the mask ratios (i.e. percentages
of image patches to be dropped) of the test images respectively. The higher CKA similarity with a
large mask ratio means the model learns better occlusion invariance.

Figure 3 shows the CKA similarities of MAE pretrained with different amounts of data. As the
figures show, the model learns occlusion invariance even pretrained with one image. Unfortunately,
the model does not keep the occlusion invariance after finetuning. When the mask ratio increase to
0.7, the CKA similarities drop significantly below 0.5. In Comparison, full-set pretrained MAE is not
so sensitive to the change of mask ratio (after 0.7) after finetuning.

Furthermore, we discuss the relationship between occlusion invariance with overfitting. We train the
MAE with different training epochs on 10 images and plot the CKA similarities. Results in Figure 4
show that, overfitting affects the learning of occlusion invariance, and causes the performance to
drop. We further explore the way to prevent overfitting, using stronger data augmentation, whether
beneficial to maintain occlusion invariance. As shown in Figure 4, even the finetuning results increase
a little when using stronger augmentations, the occlusion invariance does not been improved.

||https://www.kaggle.com/datasets/ambityga/imagenet100
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Figure 4: CKA similarity between the representations generated by the masked image and the full
image respectively under different mask ratios. The number on the subtitle is the finetuning result
of the model. All models are pretrained on 10 images for different epochs and finetuned on full
ImageNet training set for 100 epochs. NE means the model pretrained for N epochs. +aug means
adding stronger augmentations.
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Figure 3: CKA similarity between the representations generated by the masked image and the full
image respectively under different mask ratios. One-image PT indicates the model that pretrained on
one image for 5 epochs, and Full-images PT indicates the model pretrained on ImageNet training set
for 100 epochs. The finetuning models (FT) are all trained on ImageNet training set for 100 epochs.

B.2 COMPARISON WITH HUMAN RECOGNITION

Tuli et al. (2021) shows that, ViT behaves more like humans in classification, and we wonder whether
our proposed siamese framework learns more high-level perception. Following the method in Tuli
et al. (2021), we plot the shape bias of MIM models in Figure 5.

Figure 5 shows the shape bias of MAE, MoCov3, R-MAE and C-MAE. As shown in the figure, the
grey line represents the supervised trained model, which has the lowest shape bias. That means fully
supervised learning prefers to learn texture information rather than self-supervised pretrained models.
Both MAE (blue line) and R-MAE (green line) learn less shape bias than MoCo (yellow line) and
C-MAE (orange line). We speculate that it is because the target of the pretext task of MIM is closer to
the original images (or exactly the origin images), which makes the model learn more texture features.
Additionally, C-MAE learns a similar shape-bias compared with MoCo v3. The results indicate
that instance-wise learning is not necessary for models to learn as human does, learning occlusion
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Figure 5: Shape bias of MAE, MoCov3, R-MAE and C-MAE pretrained on ImageNet. The vertical
line is the average shape bias of 16 classes.

invariance could also improve the ability of the model to learn shape-bias. When training longer,
all masked-based models are biased to learn texture features. We conclude that the masked-based
models could learn the ability to complete object shape quickly in a few epochs, and then learn to
reconstruct the texture of images.
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