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Abstract

The increasing realism of synthetic images generated by advanced models such
as VAEs, GANs, and LDMs poses significant challenges for synthetic image
detection. To address this issue, we explore two artifact types introduced during
the generation process: (1) latent distribution deviations and (2) decoding-induced
smoothing effects, which manifest as inconsistencies in local textures, edges, and
color transitions. Leveraging local pixel dependencies (LPD) properties rooted
in Markov Random Fields, we reconstruct synthetic images using neighboring
pixel information to expose disruptions in texture continuity and edge coherence.
Building upon LPD, we propose FerretNet, a lightweight neural network with
only 1.1M parameters that delivers efficient and robust synthetic image detection.
Extensive experiments demonstrate that FerretNet—trained exclusively on the 4-
class ProGAN dataset—achieves an average accuracy of 97.1% on an open-world
benchmark comprising 22 generative models. Our code and datasets are publicly
available at https://github.com/xigua7105/FerretNet.

1 Introduction

The field of AI-based image generation has progressed rapidly, driven by the development of powerful
generative models such as Variational Autoencoders (VAEs) [23], Generative Adversarial Networks
(GANs) [19, 22, 1], and Latent Diffusion Models (LDMs) [41, 34, 9]. These models have enabled
widespread applications across art, entertainment, and e-commerce, allowing users to effortlessly
create realistic and engaging images. However, the potential misuse of such content has raised ethical
concerns and driven extensive research on synthetic image detection [51, 10, 31, 27].

Many existing detection approaches rely heavily on model-specific features, which limit their general-
ization ability to unseen generative architectures. For example, Durall et al. [8] observed characteristic
frequency artifacts in GAN-generated images. Although frequency-domain techniques [51, 16, 17]
have demonstrated strong performance under known conditions, they often struggle to generalize
across different models. DIRE [52] introduced a diffusion-based detection framework that distin-
guishes synthetic images by reconstructing them through a diffusion model, a capability that fails
with real images. However, this method performs poorly when applied to GAN-generated content.

To address the generalization challenge, Ojha et al. [31] explored the utilization of pre-trained models,
employed frozen backbone for image encoding, providing universal representations from pre-training,
followed by a linear classifier. FatFormer [27] introduced an Adaptor to CLIP [38] to enhance the
pre-trained model’s ability to learn artifacts. While these methods achieved encouraging results, they
are constrained by large parameter counts or low computational efficiency.

To overcome the dual challenges of limited generalization and computational inefficiency in synthetic
image detection, we conduct a comprehensive analysis of artifact patterns shared across GAN-, VAE-,
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and LDM-based generative models. Our analysis reveals that visual anomalies-such as unnatural
textures, geometric distortions, and poor object-background integration—primarily originate from
two sources: (1) distributional shifts in the latent variable z, and (2) over-smoothing and color
discontinuities introduced during the decoding process.

Based on these insights and grounded in the theory of Markov Random Fields, we introduce a
pixel-level artifact representation that captures local pixel dependencies (LPD) through median-
based reconstruction. We further propose FerretNet, a lightweight detector incorporating depthwise
separable and dilated convolutions to achieve a balance between computational efficiency and
representational power.

Contributions of this work are as follows:

• We propose a novel approach that leverages Markov Random Fields and median-based
statistics to capture local pixel dependencies for detecting artifacts and anomalies in synthetic
images.

• We present Synthetic-Pop, a 60K-image benchmark for evaluating detection models against
high-fidelity generators, containing 30K synthetic images from six models and 30K real
images from COCO [25] and LAION-Aesthetics V2 (6.5+) [45]. See Appendix A for more
details.

• We introduce FerretNet, a lightweight model with only 1.1 million parameters, which
achieves 97.1% accuracy on synthetic image detection across 22 generative models, while
maintaining low computational overhead.

2 Related Work

We categorize existing synthetic image detection methods into two main paradigms: pixel-based and
frequency-based approaches.

2.1 Pixel-based Synthetic Image Detection

Wang et al. [51] trained a classifier on images generated by a single model to detect fake images
across various architectures and datasets, addressing cross-model generalization via data augmentation
and diverse training samples. Shi et al. [47] proposed a difference-guided reconstruction learning
framework that exploits discrepancies between real and synthetic images to enhance detection
accuracy. Ojha et al. [31] tackled the generalization problem to unseen generative models by
leveraging a feature space not explicitly trained for real/fake discrimination, employing nearest-
neighbor and linear probing strategies. He et al. [13] introduced a super-resolution-based re-synthesis
technique to reconstruct test images and extract residual or layered artifact features, thereby reducing
reliance on frequency artifacts. Tan et al. [50] proposed NPR, a method that revisits the upsampling
process in generative CNNs by modeling Neighbor Pixel Relations, aiming to improve generalization
in deepfake detection. Liu et al. [26] designed a robust detection framework based on multi-view
image completion, which simulates real image distributions and captures frequency-independent
features. FatFormer [27] presented a forgery-aware adaptive transformer incorporating forgery-
specific adapters and language-guided alignment modules to better adapt pre-trained models for
synthetic image detection. CO-SPY [2] leverages a frozen CLIP encoder for semantic features and
a VAE-based reconstruction difference for artifacts, integrating them via adaptive fusion for robust
synthetic image detection.

2.2 Frequency-based Synthetic Image Detection

F3Net [37] introduced a dual-branch architecture that captures frequency-aware clues for detecting
subtle forgery traces, particularly in low-quality and facial imagery. FrePGAN [17] developed a
frequency-level perturbation GAN framework, where a generator-discriminator pair is used to itera-
tively improve classifier robustness against unseen categories and generative models. Tan et al. [48]
exploited pre-trained CNN gradients to generate generalizable representations of GAN-specific
artifacts. BiHPF [16] amplified frequency-level artifacts via a high-pass filtering approach, achieving
improved robustness across diverse image categories, color manipulations, and generative models.
FreqNet [49] introduced high-frequency representations and frequency-specific convolution layers to
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enhance detection by focusing on localized high-frequency components, addressing overfitting and
poor generalization seen in prior methods. SAFE [24] leverages the high-frequency component of the
Discrete Wavelet Transform to extract forensic artifacts and employs data augmentation techniques
including ColorJitter, RandomRotation, and a patch-based RandomMask mechanism to improve the
model’s generalization and robustness.

3 Artifacts in Synthetic Image Generation

This section provides a high-level, intuitive framework to motivate our search for universal artifacts.
We establish the general principle that all generative models, despite architectural differences,
introduce artifacts. While these artifacts have multiple high-level sources (e.g., latent space, decoding),
our work chooses to focus on detecting a powerful and universal effect—the disruption of local pixel
statistics—which is effectively captured by our LPD method.

3.1 Image Generation Pipeline

Generative models such as VAEs, GANs, and LDMs are widely used for image synthesis. Despite
differences in architecture and training objectives, these models share a common two-stage generation
pipeline, as illustrated in Figure 1.

Figure 1: The image generation process in VAEs,
GANs, and LDMs can be broadly divided into
two stages: obtaining the latent variable z, and
decoding it into an image.

1. Obtaining the latent variable z:

In LDMs, the generation process begins with
Gaussian noise ϵ ∼ N (0, I), which is itera-
tively denoised into a latent representation z
within the compressed latent space of a pre-
trained autoencoder, using a denoising network
such as U-Net [42, 41] or Diffusion Transformer
(DiT) [33, 54]. In contrast, VAEs and GANs
directly sample z from predefined prior distri-
butions, such as a standard normal distribution
N (0, I) or a uniform distribution U(−1, 1).

2. Decoding z to generate images: In both VAEs and LDMs, a decoder transforms z into the final
image through a series of convolutional layers with specific kernel sizes and strides. In GANs, the
generator plays an analogous role, mapping z to the image space with the aim of approximating the
target data distribution.

While this two-stage framework enables high-fidelity image synthesis, it can also introduce artifacts
such as texture irregularities, unnatural transitions, and local detail loss. These artifacts commonly
arise from two major sources: (1) deviations in the distribution of the latent variable z, and (2)
imperfections introduced during the decoding process.

3.2 Latent Distribution Deviations

The quality of synthetic images exhibits significant sensitivity to the distribution of the latent repre-
sentation z [40, 14, 5, 57]. Ideally, the sampled distribution Q(z) should match the prior distribution
P (z) assumed or learned during training. However, in practice, factors such as data imbalance
or insufficient training can lead to a mismatch between Q(z) and P (z). This discrepancy can be
quantified using the Kullback–Leibler (KL) divergence:

DKL(Q(z)∥P (z)) =

∫
Q(z) log

Q(z)

P (z)
dz > δ, (1)

where δ denotes an acceptable divergence threshold. When this threshold is exceeded, the resulting
images are prone to visible artifacts, including texture inconsistencies and the loss of fine structural
details. For example, in GANs, if the latent space is poorly aligned with the true data distribution, the
generator may fail to reproduce realistic textures, resulting in unnatural or distorted outputs [53].
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(a) COCO (b) LAION (c) BigGAN (d) SDXL-Turbo (e) StyleGAN (f) RealVisXL-4.0

Figure 2: Local pixel dependencies (LPD) comparison between real and synthetic images. Top row:
real images (COCO, LAION) and synthetic images (BigGAN, SDXL-Turbo, StyleGAN, RealVisXL-
4.0). Bottom row: LPD maps derived from neighborhood-median reconstruction emphasize structural
differences.

3.3 Artifacts from the Decoding Process

Even when z is accurately sampled, decoding artifacts may still arise due to limitations in the network
architecture [21]. The kernel size and stride used in convolutional layers are particularly influential
in determining the fidelity of the output [22]. Large kernels may over-smooth local features, while
improper stride configurations can lead to aliasing, both of which degrade image quality.

Moreover, upsampling operations—such as nearest-neighbor or bilinear interpolation—are known to
introduce specific artifacts. Nearest-neighbor interpolation often produces jagged edges, whereas
bilinear interpolation may blur textures due to its smoothing effect. These operations can significantly
impact the realism and perceptual quality of the generated images, especially in high-frequency
regions.

4 Methodology

4.1 Local Median-based Feature Extraction

Natural images exhibit strong local statistical consistency due to the underlying physics of light and
matter, where neighboring pixels are highly correlated. Generative models, however, often struggle to
perfectly replicate these subtle, complex statistics during the synthesis of high-frequency details. This
struggle leads to microscopic disruptions in local pixel dependencies. We propose a synthetic image
detection method based on local statistical dependencies. The core idea is to identify generation
artifacts by quantifying the deviation of each pixel from the median of its surrounding neighborhood.
The full computational procedure is outlined in Algorithm 1.

Let I denote the input image, and xi,j represent the pixel value at location (i, j). According to the
Markov Random Field (MRF) assumption, the probability distribution of a pixel depends only on its
local neighborhood. Specifically,

P (xi,j | xk,l, (k, l) ̸= (i, j)) = P (xi,j | xk,l, (k, l) ∈ Ni,j), (2)

where Ni,j is the set of neighboring pixels located within an n × n window centered at (i, j),
excluding the center pixel itself:

Ni,j =

{
xk,l

∣∣∣∣ i−m ≤ k ≤ i+m, j −m ≤ l ≤ j +m,
(k, l) ̸= (i, j)

}
, (3)

with n = 2m+ 1 and m ∈ Z+.

To enhance the robustness of the median filtering process and prevent contamination from generated
pixels, we introduce a zero-masking strategy that replaces the center pixel with zero before computing
the median. This adjustment is particularly beneficial when the neighborhood contains an even
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Algorithm 1 Local Dependency Feature Extraction via Zero-Masked Median Deviation
Input: I: Image tensor of shape (C,H,W ); n: Neighborhood size (n is odd)
Output: LPD: Feature map of shape (C,H,W )

1: # Compute padding size and center index
2: p← ⌊n/2⌋, center_idx← ⌊n2/2⌋
3: # Pad the image to handle borders
4: Ipad ← Pad(I, padding = p,mode = ’constant’, value = 0)
5: # Extract n× n local patches centered at each pixel
6: Ipatches ← Unfold(Ipad, kernel_size = n) // shape: (C, n2, H ·W )
7: # Zero out the center pixel in each patch
8: Ipatches[:, center_idx, :]← 0
9: # Compute median along patch dimension

10: I ′med ← Median(Ipatches, dim = 1)
11: # Reshape to match original image dimensions
12: I ′ ← Reshape(I ′med, shape = (C,H,W ))
13: # Compute local pixel dependency map
14: LPD ← I − I ′

15: return LPD

Figure 3: Pipeline of FerretNet: computation of local pixel median discrepancy for artifact represen-
tation, followed by lightweight detection using depthwise separable and dilated convolutions.

number of pixels. The median-based reconstruction at location (i, j) is therefore computed as:

yi,j = Median(xk,l, (k, l) ∈ N ′
i,j), (4)

where N ′
i,j = Ni,j ∪ {xi,j = 0} is the extended neighborhood that includes the masked center pixel.

By applying the above operation to all pixels, we obtain a median-reconstructed image I ′, where
each pixel value is replaced by its corresponding yi,j . The final local pixel dependency (LPD) feature
map is then computed as the pixel-wise difference:

LPD = I − I ′. (5)

Since both I and I ′ conform to local dependency assumptions, the LPD feature map effectively
captures pixel-level inconsistencies and subtle structural deviations, offering strong cues for distin-
guishing synthetic from natural content, as illustrated in Figure 2.

This method effectively integrates the local dependency modeling capabilities of Markov Random
Fields with the robustness of median filtering, providing a principled and resilient strategy for
detecting subtle inconsistencies in synthetic imagery.

4.2 FerretNet Architecture

FerretNet is a lightweight convolutional neural network designed to achieve a balance between
computational efficiency and feature extraction capability. As illustrated in Figure 3, the network
begins with two conventional 3× 3 convolutional layers for initial feature extraction, each followed
by Batch Normalization (BN) [15] and ReLU activation.
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At the core of FerretNet are four cascaded Ferret Blocks, which progressively refine the extracted
features while keeping the model compact. The final stage comprises a 1 × 1 convolution, global
average pooling, Dropout regularization, and a fully connected layer for classification.

The key innovation lies in the Ferret Block, which is designed to expand the effective receptive field
under constrained network depth, thereby enhancing the model’s capacity for local pattern extraction.
Each Ferret Block adopts a dual-path parallel architecture to increase the receptive field:

• The primary path employs a 3× 3 dilated grouped convolution with a dilation rate of 2.
The number of groups equals the number of input channels, allowing the receptive field to
expand without increasing the number of parameters.

• The secondary path utilizes a standard 3× 3 grouped convolution, maintaining the same
grouping structure to capture fine-grained local patterns.

This dual-path configuration approximates a sparse 5 × 5 receptive field via parallel processing,
enabling FerretNet to simulate deeper network behaviors within shallower layers, thus reducing
computational cost. The outputs from both paths are fused through a 1× 1 convolution, followed by
BN and ReLU activation. Additional 3× 3 grouped and 1× 1 convolution layers further enrich the
feature representation. Residual connections are employed to facilitate stable gradient propagation
and enhance learning stability.

5 Experiments

5.1 Dataset Construction

5.1.1 Training Dataset

To ensure a consistent evaluation baseline, we follow the protocols established in [16, 31, 27, 50],
utilizing four semantic classes (car, cat, chair, horse) from the ForenSynths dataset [51]. Each class
contains 18,000 synthetic images generated by ProGAN [19], paired with an equal number of real
images from the LSUN dataset [56]. All methods compared in this study were trained or fine-tuned
on this same limited ProGAN 4-class dataset, except for CO-SPY [2], which utilized its officially
released weights trained on other datasets.

5.1.2 Testing Dataset

To assess the generalization ability of the proposed method under real-world conditions, we evaluate
its performance on diverse synthetic and real images from four distinct test sets, comprising a total of
22 generative models:

ForenSynths. This test set includes synthetic images generated by eight representative generative
models: ProGAN [19], StyleGAN [20], StyleGAN2 [21], BigGAN [1], CycleGAN [58], Star-
GAN [3], GauGAN [32], and Deepfake [43]. Real images are sourced from six widely-used datasets:
LSUN [56], ImageNet [44], CelebA [29], CelebA-HQ [18], COCO [25], and FaceForensics++ [43],
totaling 62,000 images.

Diffusion-6-cls. As described in FatFormer [27], this test set comprises synthetic images generated
by six diffusion-based models collected from DIRE [52] and Ojha et al. [31], including DALL-E [39],
Guided [7], PNDM [28], VQ-Diffusion [11], Glide [30], and LDM [41]. Variants produced by Glide
and LDM with different parameter configurations are treated as separate categories (see original
papers for details). Each subset includes 1,000 synthetic and 1,000 real images, with some real
images reused across subsets.

Synthetic-Pop. To capture the latest progress in high-resolution image generation, we constructed
the Synthetic-Pop dataset using six popular models—Openjourney [36], Proteus-0.3 [6], RealVisXL-
4.0 [46], SD-3.5-Medium [9], SDXL-Turbo [34], and YiffyMix [55]. Each model was prompted
with 5,000 captions randomly sampled from COCO [25]. Real images were drawn from COCO and
LAION-Aesthetics V2 (6.5+) [45], resulting in six subsets, each containing 5,000 synthetic and 5,000
real images (60,000 images total).

Synthetic-Aesthetic. To further investigate the aesthetic and stylistic diversity of synthetic imagery,
we sampled 40,000 images from the Simulacra Aesthetic Captions (SAC) dataset [35], which were
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generated by CompVis latent GLIDE [41] and Stable Diffusion [41] using prompts sourced from
over 40,000 real users. An equal number of real images were sampled from LAION-Aesthetics V2
(6.5+) [45], resulting in a total of 80,000 images. This dataset provides a challenging benchmark for
evaluating performance under realistic and user-driven conditions.

5.2 Implementation Details

FerretNet is trained from scratch without any pretraining. We use the Adam optimizer with a learning
rate of 2 × 10−4, betas of (0.937, 0.999), and a weight decay of 5 × 10−4. The model is trained
for 100 epochs using a batch size of 32. During training, input images are randomly cropped to
a resolution of 224 × 224 and augmented with random horizontal flipping. Binary Cross Entropy
with Logits Loss (BCEWithLogitsLoss) is adopted as the loss function. For evaluation, images are
center-cropped to 256× 256.

Following previous work [16, 31, 27], Accuracy (ACC) and Average Precision (AP) are used as
the primary evaluation metrics. To measure real-world performance, we report throughput on the
Synthetic-Aesthetic test set using an NVIDIA RTX 4090 GPU and an Intel(R) Xeon(R) Gold 6430
CPU (16 vCPUs), with a batch size of 128.

5.3 Main Results

Table 1: Accuracy and average precision comparisons with peer methods on ForenSynth test set for
different GAN images and Deepfake images. The best and second best performance are highlighted
in bold and underlined, respectively.

Methods ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean

Wang [51] 91.4/99.4 63.8/91.4 76.4/97.5 52.9/73.3 72.7/88.6 63.8/90.8 63.9/92.2 51.7/62.3 67.1/86.9
F3Net [37] 99.4/100.0 92.6/99.7 88.0/99.8 65.3/69.9 76.4/84.3 100.0/100.0 58.1/56.7 63.5/78.8 80.4/86.2
FrePGAN [17] 99.0/99.9 80.7/89.6 84.1/98.6 69.2/71.1 71.1/74.4 99.9/100.0 60.3/71.7 70.9/91.9 79.4/87.2
BiHPF [16] 90.7/86.2 76.9/75.1 76.2/74.7 84.9/81.7 81.9/78.9 94.4/94.4 69.5/78.1 54.4/54.6 78.6/77.9
LGrad [48] 99.9/100.0 94.8/99.9 96.0/99.9 82.9/90.7 85.3/94.0 99.6/100.0 72.4/79.3 58.0/67.9 86.1/91.5
Ojha [31] 99.7/100.0 89.0/98.7 83.9/98.4 90.5/99.1 87.9/99.8 91.4/100.0 89.9/100.0 80.2/90.2 89.1/98.3
FreqNet [49] 99.6/100.0 90.2/99.7 88.0/99.5 90.5/96.0 95.8/99.6 85.7/99.8 93.4/98.6 88.9/94.4 91.5/98.5
NPR [50] 99.8/100.0 96.3/99.8 97.3/100.0 87.5/94.5 95.0/99.5 99.7/100 86.6/88.8 77.4/86.2 92.5/96.1
FatFormer [27] 99.9/100.0 97.2/99.8 98.8/99.9 99.5/100.0 99.3/100.0 99.8/100.0 99.4/100.0 93.2/98.0 98.4/99.7
SAFE [24] 99.9/100.0 98.0/99.9 98.6/100.0 89.7/95.9 98.9/99.8 99.9/100.0 91.5/97.2 93.1/97.5 96.2/98.8
CO-SPY [2] 74.7/78.1 63.9/70.2 59.7/63.1 71.6/83.9 58.5/55.8 62.1/94.3 69.6/83.4 65.7/79.7 65.7/76.1

FerretNet (Our) 99.9/100.0 98.0/100.0 98.5/100.0 92.6/98.5 98.8/99.9 99.1/100.0 91.4/99.8 89.2/96.7 95.9/99.3

Table 2: Accuracy and average precision comparisons with peer methods on Diffusion-6-cls test set.
Dataset Wang [51] LGrad [48] Ojha [31] FreqNet [49] NPR [50] FatFormer [27] SAFE [24] CO-SPY [2] FerretNet

Dall-E 51.8/61.3 88.5/97.3 89.5/96.8 97.3/99.7 90.9/98.1 98.8/99.8 97.5/99.7 81.8/87.2 91.4/98.2
Guided 54.9/66.6 86.6/100.0 75.7/85.1 67.2/75.4 74.0/78.1 76.1/92.0 82.4/95.8 62.5/86.0 92.1/98.6
PNDM 50.8/90.3 69.8/98.5 75.3/92.5 85.2/99.9 97.5/100.0 99.3/100.0 78.9/98.6 53.0/55.6 96.9/100.0
VQ-Diffusion 50.0/71.0 96.3/100.0 83.5/97.7 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 71.9/71.5 99.9/100.0
Glide-50-27 54.2/76.0 90.7/95.1 91.1/97.4 86.6/95.8 97.5/99.5 94.7/99.4 96.6/99.2 69.1/74.6 97.2/99.7
Glide-100-10 53.3/72.9 89.4/94.9 90.1/97.0 87.8/96.0 97.8/99.5 94.2/99.2 97.3/99.4 76.6/81.6 97.9/99.9
Glide-100-27 53.0/71.3 87.4/93.2 90.7/97.2 84.4/95.6 97.4/99.5 94.4/99.1 95.8/98.9 73.5/78.2 97.3/99.7
LDM-100 51.9/63.7 94.8/99.2 90.5/97.0 97.8/99.9 98.0/99.6 98.7/99.9 98.8/100.0 82.7/86.9 98.8/100.0
LDM-200 52.0/64.5 94.2/99.1 90.2/97.1 97.4/99.9 98.2/99.6 98.6/99.8 98.8/100.0 83.1/87.5 98.8/100.0
LDM-200-CFG 51.6/63.1 95.9/99.2 77.3/88.6 97.3/99.9 98.0/99.5 94.9/99.1 98.7/99.9 85.3/91.0 98.5/99.9

Mean 52.4/70.1 89.4/97.7 85.4/94.6 90.1/96.2 94.9/97.3 95.0/98.8 94.5/99.1 73.9/80.0 96.9/99.6

We begin by evaluating FerretNet on GAN-based and Deepfake images using the ForenSynths test set.
As shown in Table 1, it achieves an average accuracy (ACC) of 95.9%, outperforming lightweight
baselines such as FreqNet [49] (91.5%) and NPR [50] (92.5%). Although FatFormer [27] reports a
higher ACC of 98.4%, it relies on pre-trained CLIP weights, whereas FerretNet achieves competitive
accuracy with significantly fewer parameters.

Next, on diffusion-generated images (Table 2), FerretNet attains an ACC of 96.9% and an AP of
99.6%, outperforming FatFormer [27] by 1.9 and 0.8 percentage points (pp), respectively. Other
lightweight models such as NPR [50], FreqNet [49] and SAFE [24] perform less favorably, with ACC
scores falling below 95.0%.
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Table 3: Accuracy and average precision comparisons with state-of-the-art methods on Synthetic-Pop
test set.

Methods Openjourney Proteus-0.3 RealVisXL-4.0 SD-3.5-Medium SDXL-Turbo YiffyMix Mean

FreqNet [49] 56.3 / 63.6 44.0 / 41.2 59.4 / 66.6 78.5 / 86.8 77.5 / 86.0 74.3 / 84.4 65.0 / 71.4
NPR [50] 78.8 / 83.5 68.6 / 69.3 78.1 / 82.0 80.4 / 84.1 78.2 / 82.9 80.0 / 85.1 77.4 / 81.2
FatFormer [27] 58.8 / 65.4 93.9 / 97.6 49.0 / 41.7 81.9 / 89.1 58.7 / 65.3 80.9 / 89.9 70.5 / 74.8
SAFE [24] 94.7 / 99.3 99.2 / 99.9 97.9 / 99.8 98.1 / 99.7 98.1 / 99.8 99.5 / 99.9 97.9 / 99.7
CO-SPY [2] 92.4 / 97.6 88.8 / 93.0 79.0 / 86.5 80.9 / 87.8 79.9 / 88.3 92.9 / 97.5 85.6 / 91.8

FerretNet 98.4 / 99.7 98.6 / 99.7 98.8 / 99.9 97.2 / 99.6 98.9 / 100.0 97.8 / 99.7 98.3 / 99.8

Table 4: Performance comparisons with state-of-the-art methods across four distinct test sets.
Throughput measurements were conducted on the Synthetic-Aesthetic test set. Upward arrows
indicate that higher values are better, while downward arrows signify the opposite.

Methods Ref Image size Params (M) ↓ FLOPs (G) ↓ FPS ↑ ACC / AP ↑

FreqNet [49] AAAI 2024 2562 1.85 2.58 200.2 79.2 / 86.8
NPR [50] CVPR 2024 2562 1.44 2.29 720.9 86.5 / 89.4
FatFormer [27] CVPR 2024 2242 492.59 269.92 88.6 86.1 / 91.0
SAFE [24] KDD 2025 2562 1.44 2.29 770.2 96.8 / 99.3
CO-SPY [2] CVPR 2025 3842 963.05 644.80 26.3 76.5 / 83.8

FerretNet (Ours) - 2562 1.06 2.38 772.1 97.1 / 99.6

We further evaluate performance on high-quality synthetic images using the Synthetic-Pop test
set (Table 3). Some existing methods experience noticeable degradation; for example, NPR [50]
achieves only 77.4% ACC and 81.2% AP. In contrast, FerretNet maintains 98.3% ACC and 99.8%
AP, highlighting its robustness and reliability on visually realistic forgeries.

To evaluate real-world applicability, we tested FerretNet on four distinct test sets for both detection
performance and efficiency. As shown in Table 4, FerretNet achieves 97.1% ACC and 99.6% AP
with 1.06M parameters and 772.1 FPS on an RTX 4090. Notably, it outperforms FatFormer [27] by
11.0 and 8.6 pp in ACC and AP, respectively, while using only 0.2% of its parameters.

Finally, Appendix B provides a detailed analysis of specific success and failure cases, further
clarifying the model’s decision boundaries.

5.4 Ablation Study

Unless specified, all ablation results report the average ACC and AP across four datasets: ForenSynths,
Diffusion-6-cls, Synthetic-Pop, and Synthetic-Aesthetic. More supplementary experiments see
Appendix C.

5.4.1 Impact of Different Local Neighborhood Sizes

Table 5: Impact of the local neighborhood size.

Inputs Size (n × n) ACC / AP on the Test set

3 × 3 5 × 5 7 × 7 ForenSynths Diffusion-6-cls Synthetic-Pop Synthetic-Aesthetic Mean

I 84.6 / 88.9 87.8 / 96.8 84.5 / 92.9 90.5 / 95.3 86.9 / 93.5
LPD ✓ 95.9 / 99.3 96.9 / 99.6 98.3 / 99.8 97.3 / 99.6 97.1 / 99.6
LPD ✓ 91.8 / 96.2 95.8 / 99.3 91.1 / 97.4 96.9 / 98.9 93.9 / 98.0
LPD ✓ 82.4 / 90.6 85.2 / 93.6 78.6 / 91.9 85.0 / 94.4 82.8 / 92.6

Table 5 shows that LPD extracted using a 3× 3 local neighborhood substantially enhances detection
accuracy compared to raw input I . Average ACC improves from 86.9% to 97.1% (+10.2%), and AP
rises from 93.5% to 99.6% (+6.1%). However, performance deteriorates as the neighborhood size
increases. For instance, using a 7× 7 neighborhood weakens feature discrimination and significantly
reduces detection accuracy.

This trend aligns with the structural characteristics of generative models, which typically employ 2×
upsampling and small convolutional kernels (1× 1 or 3× 3). The 3× 3 neighborhood is particularly
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effective in capturing localized decoding artifacts for two reasons: 1) It matches the scale of operations
used in generative architectures, making it ideal for exposing subtle synthesis artifacts; 2) It captures
local pixel variations while suppressing potential noise artifacts.

5.4.2 Impact of Center Pixel Processing Methods

According to Section 4.1, the neighborhood median yi,j should satisfy two key requirements: reducing
the interference of center pixels in median computation, and ensuring the median value equals a
real pixel value from the neighborhood set when possible, thus enhancing statistical correlation with
the original image. To validate the effectiveness of zero-value masking strategy, we compared three
center pixel processing methods:

Table 6: Impact of center pixel processing meth-
ods on metrics (ACC/AP): average results across
varying local neighborhood sizes.

Methods 3 × 3 5 × 5 7 × 7

Mask 97.1 / 99.6 93.9 / 98.0 82.8 / 92.6
Exclusion 95.3 / 98.8 90.5 / 96.3 86.4 / 93.6
Retention 93.3 / 97.6 89.7 / 96.3 87.5 / 93.1

1. Zero-value Masking: Set the center pixel
to zero while keeping it in the set. This in-
creases the probability that the median equals a
real neighborhood pixel and reduces the center
pixel’s influence.

2. Complete Exclusion: Remove the center
pixel entirely. This results in a non-existent pixel
value (i.e., not from the original image), thereby
weakening the dependency on the source image.

3. Center Pixel Retention: Keep the original center pixel, as in standard median filtering. This
approach compromises the ability to detect local anomalies.

The experimental results in Table 6 demonstrate that for local neighborhood sizes of 3× 3 and 5× 5,
the zero-value masking achieves the highest detection accuracy, followed by the complete exclusion,
with the center pixel retention yielding the lowest accuracy. These findings validate the effectiveness
of the proposed strategy.

5.4.3 Impact of Neighborhood Statistic Selection

Table 7: Impact of neighborhood statistic selection
methods.

Methods 3 × 3 5 × 5 7 × 7

Max 93.6 / 97.9 86.8 / 94.3 88.9 / 94.8
Avg 92.2 / 97.2 88.2 / 94.4 90.0 / 96.6
Min 91.8 / 96.9 88.3 / 94.7 87.6 / 94.0
Med 97.1 / 99.6 93.9 / 98.0 82.8 / 92.6

To verify the advantages of the neighborhood
median-based feature extraction strategy in syn-
thetic image detection, we designed three alter-
native methods: selecting the maximum, min-
imum, and average values from the neighbor-
hood. The center pixel was masked by setting it
to infinity, negative infinity, or zero, respectively,
to reduce its influence on feature extraction. The
experimental results in Table 7 show that, for
both 3× 3 and 5× 5 local neighborhoods, the median strategy significantly outperforms the other
methods.

5.4.4 Impact of Different Backbones
Table 8: Comparison of different backbones with
and without LPD as input.

Methods Params w / o Throughput ↑ ACC / AP ↑

Xception 20.8 M × 730.5 Img/s 89.8 / 94.1
✓ 710.6 Img/s 95.1 / 98.8

ResNet50 23.5 M × 755.4 Img/s 75.0 / 80.3
✓ 750.9 Img/s 81.1 / 85.6

FerretNet 1.1 M × 777.8 Img/s 86.9 / 93.5
✓ 772.1 Img/s 97.1 / 99.6

We evaluated ResNet50 [12], Xception [4], and
our proposed FerretNet on both raw image I and
LPD inputs. As shown in Table 8, FerretNet
achieves competitive accuracy on raw images
despite having significantly fewer parameters,
and outperforms the other architectures when
leveraging LPD. Across all backbones, replac-
ing I with LPD consistently delivers accuracy
gains with negligible effect on inference speed.

6 Conclusion

This work presents a universal artifact representation framework and introduces FerretNet, a
lightweight yet effective neural network for synthetic image detection. FerretNet achieves a re-
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markable 99.8% reduction in parameters compared to the state-of-the-art method FatFormer [27],
while maintaining exceptional detection accuracy, reaching 97.1% on images generated by 22 differ-
ent generative models. It demonstrates strong generalization capabilities and computational efficiency,
outperforming existing approaches on high-quality synthetic datasets. Our contributions include a
novel artifact representation approach and the introduction of the Synthetic-Pop dataset.

Limitations and Future Work. While the proposed method demonstrates robust performance, its
effectiveness against compression-altered synthetic images has yet to be fully explored. Future work
will focus on improving detection of compression-altered images and extending the approach to
address challenges posed by emerging forms of synthetic media.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions of this paper are clearly presented in the Abstract and
Introduction, and are also summarized at the end of the Introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All relevant experimental details are provided, and the data along with the
code will be released on GitHub after the paper is published.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: If the paper is accepted, the abstract in the final submitted version will include
a link to the project.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Subsection 5.1 and 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We did.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Subsection 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We did.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models with a high risk of
misuse. Although the dataset includes synthetic images generated from COCO captions
using diffusion models, these images are intended solely for research on synthetic image
detection. The data contains no real human faces or personal information, and poses minimal
risk of harmful dual use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We did.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will provide the documentation along with the new assets in our project
page.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

20



• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We didn’t.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of Synthetic-Pop

To evaluate the practicality of our method across mainstream generated models, we construct a
benchmark named Synthetic-Pop, which includes six widely used models: Openjourney [36],
Proteus-0.3 [6], RealVisXL-4.0 [46], SD-3.5-Medium [9], SDXL-Turbo [34], and YiffyMix [55].
Images are generated using 5,000 captions randomly sampled from COCO [25], following the
inference configurations recommended by each model. Representative examples are shown in
Figure 4.

Openjourney: A bench sitting
on the beach near the ocean.

Proteus-0.3: A brown white
and black dog is laying on a

gray couch.

RealVisXL-4.0: A man that has
glasses and a hat.

SD-3.5-Medium: Two stuffed
animals sit at a table with honey.

SDXL-Turbo: Cat sitting up
with a fake tie around its neck.

YiffyMix: A woman walking
down a street talking on a

cell phone.

Figure 4: Examples of images generated by different models along with their corresponding text
prompts. Each subfigure presents an image produced by a specific model, where the format “Model:
Prompt” denotes the generating model and its input description.

B Visualization Analysis

B.1 Success Case Analysis

The effectiveness of LPD in distinguishing synthetic from real images stems from its ability to
exploit intrinsic discrepancies in their local statistical structures. First, LPD captures subtle but
systematic deviations introduced during the generative process. Although synthetic images may
appear perceptually indistinguishable from real images, their micro-texture distributions and noise
characteristics deviate from the stochastic sensor noise inherent to real image acquisition. As
illustrated in the second and fifth rows of Figure 5, real images retain structured yet naturally
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Figure 5: LPD and Grad-CAM visualizations of real and fake images.

irregular noise patterns, whereas synthetic counterparts exhibit overly smooth regions or artificial
regularities—a direct consequence of the generative model’s learned priors.

Second, LPD operates in a content-agnostic manner. It consistently reveals statistical inconsistencies
across diverse semantic domains, including human portraits, wildlife, and landscapes. This invariance
to semantic content highlights the signal-level nature of LPD, ensuring robustness against the rapid
evolution of generative models that continue to enhance perceptual fidelity but still leave detectable
low-level statistical artifacts.

Finally, the Grad-CAM visualizations in the third and sixth rows confirm that the model’s attention
aligns closely with LPD activation regions. Rather than focusing on semantic objects, FerretNet
concentrates on areas exhibiting statistical anomalies, enabling consistent detection across diverse
image categories. This strong alignment between LPD and Grad-CAM underpins the discriminative
strength of our approach: the network remains nearly silent on authentic images while responding
sharply to synthetic ones.
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Figure 6: LPD and Grad-CAM visualizations of False Positive Case.

Figure 7: LPD and Grad-CAM visualizations of False Negative Case.

B.2 Failure Case Analysis

False Positive Case. Figure 6 illustrates representative real images are mistakenly classified as
synthetic. Unlike the clear statistical distinctions observed in successful detections, these cases
demonstrate that certain real-world textures can exhibit statistical patterns similar to those introduced
by generative models.

In the first row, geological landscapes display highly regular and repetitive patterns, such as stratified
rock formations with sharp color transitions and well-structured edges. These natural textures lead
the LPD to capture statistical irregularities that resemble those typically found in generated content,
particularly around boundary regions.

In the second row, the image of a bear on grassland demonstrates a similar issue. The network has
learned to associate strong, structured statistical biases as primary indicators of artificial generation,
resulting in misclassification. This reflects the model’s high sensitivity to subtle statistical cues, while
also highlighting its limitations when encountering rare real-world scenes that are themselves highly
structured “outliers.”

24



False Negative Case. Figure 7 illustrates representative synthetic images that were mistakenly
classified as real. These cases reveal two distinct mechanisms by which AI-generated content can
evade detection, highlighting limitations of LPD-based approaches.

In the synthetic cow image, the LPD map correctly highlights widespread, high-energy artifacts.
Here, the failure is not in feature detection but in decision aggregation: the network sums all detected
artifact signals to compute a final "fakeness" score. In this instance, despite numerous detected
artifacts, their combined contribution did not exceed the threshold for a "fake" classification. This
represents a rare boundary-case where a state-of-the-art generator produces content lying precisely
on the “real” side of the learned decision boundary.

In contrast, the synthetic giraffe image exhibits a fundamentally different failure mode. Although
Grad-CAM shows activation in textured regions, the overall signal is weak and insufficient for
confident classification. A major factor is the clean, homogeneous sky background, which occupies a
large portion of the image. Such smooth, featureless regions lack the local pattern variations necessary
for LPD to detect pixel discontinuities or unnatural transitions. Consequently, the model receives
insufficient discriminative signal, leading to misclassification.

C Additional Experiments

C.1 Scaling FerretNet

We scaled our model down (FerretNet-S) and up (FerretNet-L, 20x parameters). As shown in Table 9,
making the model significantly larger results in a slight performance degradation. This confirms our
hypothesis that for detecting low-level statistical artifacts, larger networks are prone to overfitting to
training-specific patterns, which harms generalization. Our proposed FerretNet hits the "sweet spot"
of being sufficiently expressive without the excess capacity.

Table 9: Ablation on scaling FerretNet. Results are mean ACC/AP across all test sets.
Method Channels Blocks Parameters Mean ACC / AP

FerretNet-S (32, 64) (2, 2) 0.13 M 93.1 / 97.6
FerretNet-B (96, 192) (2, 2) 1.06 M 97.1 / 99.6
FerretNet-L (96, 192, 384, 768) (2, 2, 6, 2) 21.51 M 96.6 / 99.4

C.2 Robustness to Common Post-Processing

We conducted a comprehensive robustness analysis on the ForenSynths [51] test set against JPEG
compression, resizing, and rotation. For resizing, we used a stringent protocol with dynamic
resolutions. As shown in Table 10, FerretNet demonstrates strong robustness, particularly against
rotation, where it significantly outperforms the heavyweight FatFormer [27]. This provides strong
evidence that LPD features, being based on local, orientation-agnostic statistics, are inherently
immune to geometric transformations. While heavy JPEG compression remains a challenge for all
lightweight detectors, FerretNet performs competitively.

Table 10: Robustness analysis on the ForenSynths test set against common post-processing attacks.

Method No Attack JPEG Resize Rotation
(Q=100) (Q=75) (S=0.75) (S=1.25) D=[-45°, 45°]

FreqNet [49] 91.5/98.5 50.5/66.6 50.1/51.8 65.2/85.8 64.9/82.8 79.9/91.6
NPR [50] 92.5/96.1 55.0/59.3 50.0/49.1 83.9/84.9 78.9/81.8 86.7/90.7
FatFormer [27] 98.4/99.7 96.5/99.4 71.7/89.8 — — 68.1/96.8

FerretNet (Ours) 95.9/99.3 55.1/67.8 50.2/49.4 81.4/94.3 80.8/95.4 88.2/98.0
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