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Abstract: An elusive goal in navigation research is to build an intelligent agent
that can understand multimodal instructions including natural language and im-
age, and perform useful navigation. To achieve this, we study a widely useful cat-
egory of navigation tasks we call Multimodal Instruction Navigation with demon-
stration Tours (MINT), in which the environment prior is provided through a pre-
viously recorded demonstration video. Recent advances in Vision Language Mod-
els (VLMs) have shown a promising path in achieving this goal as it demonstrates
capabilities in perceiving and reasoning about multimodal inputs. To solve MINT,
we present Mobility VLA, a hierarchical Vision-Language-Action (VLA) navi-
gation policy that combines the environment understanding and common sense
reasoning power of long-context VLMs and a robust low-level navigation pol-
icy based on topological graphs. The high-level policy consists of a long-context
VLM that takes the demonstration tour video and the multimodal user instruction
as input to find the goal frame in the tour video. Next, a low-level policy uses the
goal frame and an offline constructed topological graph to generate robot actions at
every timestep. We evaluated Mobility VLA in a 836m2 real world environment
and show that Mobility VLA has a high end-to-end success rates on previously
unsolved multimodal instructions such as “Where should I return this?” while
holding a plastic bin. A video demonstrating Mobility VLA can be found here:
youtu.be/-Tof Q8 5s

Keywords: vision-language navigation, multimodal foundation models, long-
context reasoning

1 Introduction

Robot navigation has come a long way. Early work relied on users specifying physical coordinates in
pre-mapped environments [1, 2, 3, 4, 5, 6, 7]. Object goal and Vision Language navigation (ObjNav
and VLN) [8, 9, 10, 11, 12, 13, 14] are a giant leap forward in robot usability as they allow the use
of open-vocabulary language to define navigation goals, such as “Go to the couch”. To make robots
truly useful and ubiquitous in our daily lives, we propose another leap forward by lifting ObjNav
and VLN’s natural language space onto the multimodal space, meaning that the robot can accept
natural language and/or image instructions simultaneously. For example, a person unfamiliar with
the building can ask “Where should I return this?” while holding a plastic bin (Figure 1, upper left),
and the robot guides the user to the shelf for returning the box based on verbal and visual context.
We call this category of navigation tasks Multimodal Instruction Navigation (MIN).

MIN is a broad task consisting of environment exploration and instruction guided navigation. How-
ever, in many scenarios one can bypass exploration by leveraging a demonstration tour video that
fully traverses the environment. The demonstration tour has several benefits: 1) It is easy to collect:
users can teleoperate the robot or simply record a video on a smartphone while walking in the en-
vironment. There also exists exploration algorithms [9, 14] that can be used to create the tour. 2) It
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Figure 1: Mobility VLA architecture. The multimodal user instruction and a demonstration tour video of the
environment are used by a long-context VLM (high-level policy) to identify the goal frame in the video. The
low-level policy then uses the goal frame and an offline generated topological map (from the tour video using
structure-from-motion) to compute a robot action at every timestep.

aligns with user common practice: when a user gets a new home robot, it is natural for them to show
the robot around in their home, and they can verbally introduce locations of interest during the tour.
3) In certain circumstances, restricting the robot’s motion in a pre-defined zone is desirable due to
safety and privacy purposes [15]. To that end, in this paper, we introduce and study this category of
tasks called Multimodal Instruction Navigation with Tours (MINT), which leverages demonstration
tours and focuses on fulfilling multimodal user instructions.

Recently, large Vision-Language Models (VLMs) [16, 17, 18] have shown great potential in solving
MINT thanks to their impressive capabilities in language and image understanding and common-
sense reasoning [19], all critical pieces to achieve MINT. However, VLMs alone struggle to solve
MINT due to: 1) The number of input images for many VLMs are highly limited due to context-
length limitation. This severely limits the fidelity of environment understanding in large environ-
ments. 2) Solving MINT requires computing robot actions. Queries to solicit such robot actions
are typically out-of-distribution from what VLMs are (pre)trained with. As a result, the zero-shot
navigation performance is often unsatisfactory (we show this in Section 5.3).

To solve MINT, we present Mobility VLA, a hierarchical Vision-Language-Action (VLA) naviga-
tion policy that combines the environment understanding and common sense reasoning power of
long-context VLMs and a robust low-level navigation policy based on topological graphs. Specif-
ically, the high-level VLM uses the demonstration tour video and the multimodal user instruction
to find the goal frame in the tour video. Next, a classical low-level policy uses the goal frame and
a topological graph (constructed offline from tour frames) to generate robot actions (waypoints) at
every timestep. The use of long-context VLMs addressed the environment understanding fidelity
problem, and the topological graph bridges the gap between VLM’s training distribution and the
robot actions required to solve MINT.

We evaluated Mobility VLA in a real world (836m2) office and a home-like environment. Mobility
VLA achieved 86% and 90% success rates (26% and 60% higher than baseline methods) on previ-
ously infeasible MINT tasks involving complex reasoning (e.g., “I want to store something out of
sight from the public eye. Where should I go?”) and multimodal user instructions. We also demon-
strated a leap forward in how easily users can interact with the robot, where a user takes a narrated
video walkthrough in a home environment with a smartphone and then asks “Where did I leave my
coaster?”

Our contributions include: 1) proposed a new paradigm of robot navigation: MIN and its variant
MINT, which make robots significantly more helpful and intuitive to use. 2) proposed Mobility VLA
as a solution of MINT, which combines long-context VLMs and topological maps. This method has
significantly improved the naturalness of human-robot interaction, and greatly increased the robot
usability.
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2 Related Work

Object and Visual Navigation Object and image goal navigation techniques [20, 21, 22] utilize
rich input modalities. These include object categories [23, 24, 25, 11], natural language instruc-
tions [26, 27], dialogue [28], goal image conditions [29, 30], and even multimodal inputs combining
language and images [31]. Most of these approaches involve an active exploration phase because
the robot operates without prior knowledge of the environment. Our work distinguishes itself by
leveraging environment priors provided in the form of a previously collected video tour. In this
regard, our work shares similarities with [14], where semantic information is obtained from past
explorations, and [32, 33, 34] which utilizes memory to improve mapping and planning. However,
a key difference lies in the absence of explicit semantic scene representation graphs [35, 36] in our
approach, thanks to the capabilities of VLMs to process raw videos.

Vision-language models Prior to the emergence of large VLMs, researchers typically needed
to pretrain their own visual representations for navigation tasks [37, 38, 39, 40], although some
leveraged existing pretrained multimodal embeddings [31, 14]. Recent breakthroughs in large lan-
guage models (LLMs) [41, 42] and VLMs [17, 18], trained on web-scale data, have paved the
way for zero or few-shot navigation capabilities. This potential has been explored in various stud-
ies [43, 44, 45, 46], showcasing the diverse applications of LLMs and VLMs in navigation. These
models have demonstrated the ability to: Provide navigation preferences, e.g., “stay close to marked
pavements” [44]; Construct high-level motion plans, e.g., “move past the hallway towards the bed-
room” [45]; Substitute object detectors, i.e., recognizing landmarks [46]; In some cases directly
output trajectories [47]. Our work is most similar to [45] in the sense that a large VLM (Gemini
Pro 1.5 [17]) is used to generate high-level navigation plans for the robot, but differs from the the
previous work in that our VLM directly outputs the navigation goal for the low-level controller to
consume and generate navigation commands.

3 MINT Problem Formulation

The MINT task considered in this paper takes as input a demonstration tour video and a multimodal
user instruction. The robot must navigate to certain goal location(s) to satisfy the user’s instruction.

Under this setting, the demonstration tour video consists of a sequence of first-person view image
frames F = {fi|fi ∈ RH×W×3, i = 1, 2, ..., k} taken during a tour of the environment, where k is
the number of frames in the video. In addition, optional natural language narratives can be added to
certain frames N = {nj |nj ∈ str, j ∈ [1, 2, ..., k]}. The multimodal user instruction can be just
a text instruction d ∈ str (e.g., “Where can I find a ladder?”), or both text and image instructions
I ∈ RH×W×3 (e.g., “Where can I get something to clean this?” + The robot sees the user pointing
to a dirty whiteboard).

We aim to produce a navigation policy π(a|O,F,N, d, I), where O ∈ RH×W×3 is the robot’s
current camera observation. The policy emits an embodiment-agnostic waypoint action a ∈ R3

representing longitudinal translation (∆x), lateral translation (∆y), and rotation along the vertical
axis (∆θ), all in the robot-centric frame. We assume that the robot has an embodiment-specific
mechanism to execute waypoint actions.

4 Mobility VLA

Mobility VLA is a hierarchical navigation policy (Figure 1) with online and offline components. In
the offline phase, a topological graph G was generated from the demonstration tour (N,F ). Online,
the high-level policy takes the demonstration tour and the multimodal user instruction (d, I) to find
the navigation goal frame index g, which is an integer corresponding to a specific frame of the tour.
Next, the lower-level policy utilize the topological graph, the current camera observation (O) and g
to produce a waypoint action (a) for the robot to execute at each timestep.

g = h(F,N, d, I) (1)
π(a|O,F,N, d, I) = l(a|G,O, g) (2)
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where h and l are the high and low-level policies.

4.1 Demonstration Tour and Offline Topological Graph Generation

Mobility VLA utilizes a demonstration tour of the environment to solve MINT. This tour can be
given by a human user via teleoperation, or by simply recording a video on a smartphone while
walking in the environment.

Mobility VLA then constructs a topological graph G = (V,E) offline, where each vertex vi ∈ V
corresponds to the frame fi from the demonstration tour video (F , N ). We use COLMAP [48, 49],
an off-the-shelf structure-from-motion pipeline to determine the approximate 6-Degree-of-Freedom
camera pose for each frame and store it in the vertex (see Section 7.1 for details). Next, a directed
edge is added to G if the target vertex is “in front of” the source vertex (less than 90 degrees away
from source vertex’s pose) and is within 2m.

Compared to traditional navigation pipelines (e.g., map the environment, identify traversable areas
and then construct a PRM [50]), the topological graph approach significantly simpler as it captures
the general connectivity of the environment based on the tour trajectory.

4.2 High-Level Goal Finding with Long-Context Multimodal VLMs

During online execution, the high-level policy leverages the common sense reasoning ability of
VLMs to identify a navigation goal from the demonstration tour that satisfies a wide range of
multimodal, colloquial and often ambiguous user instructions. To this end, we prepare a prompt
P (F,N, d, I) consisting of interleaving text and images. A concrete example of P for the multi-
modal user instruction “Where should I return this?” in Table 1 is shown below:
You are a robot operating in a building and your task is to respond to the user
command about going to a specific location by finding the closest frame in the
tour video to navigate to.
These frames are from the tour of the building last year.
[Frame 1 Image f1]
Frame 1. [Frame narrative n1]
...
[Frame k Image fk]
Frame k. [Frame narrative nk]
This image is what you see now. You may or may not see the user in this image.
[Image Instruction I]
The user says: Where should I return this?
How would you respond? Can you find the closest frame?

The VLM returns an integer goal frame index g.

4.3 Low-level Goal Reaching using Topological Graphs

Once the goal frame index g is identified by the high-level policy, the low-level policy (Algorithm 1)
takes over and produces a waypoint action at every timestep (Eq. 1).

Algorithm 1 Low-level Goal Reaching Policy
1: Input: goal frame index g, offline-constructed topological graph G.
2:
3: while timestep ≤ maximum steps do
4: Get new camera observation image O
5: Get start vertex vs and robot pose T by localizing O in G
6: if vs == vg then
7: Navigation goal reached, break
8: end if
9: Compute S = [vs, v1, ..., vg], the shortest path between vs and vg .

10: Compute waypoint action a from the relative pose between T and v1
11: Execute a on robot
12: end while

At every timestep, we use a real-time hierarchical visual localization system (described briefly be-
low, please see Section 7.1 for more details) to estimate the pose of the robot T and the closest start
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vertex vs ∈ G (line 5) using the current camera observation O. This localization system finds k-
nearest candidate frames in G w.r.t a global descriptor [51], and then computes T through PnP [52].
Next, the shortest path S on the topological graph between vs and the goal vertex vg (the vertex cor-
responding to g) is identified by Dijkstra’s algorithm (line 9). Finally, the low-level policy returns a
waypoint action which is simply the ∆x, ∆y, ∆θ of the next vertex v1 in S relative to T (line 10).

5 Experiments

To demonstrate the performance of Mobility VLA and gain further insights into key designs, we
design experiments to answer the following research questions (RQs):

RQ1: Does Mobility VLA perform well in MINT in the real world?
RQ2: Does Mobility VLA outperform alternatives thanks to the use of long-context VLM?
RQ3: Is the topological graph necessary? Can VLMs produce actions directly?

Reasoning-Free (RF) Small Object (SO)
Text instr. (d) Goal frame (g) Text instr. (d) Goal frame (g)

Take me to Where can I
a conference room borrow a hand
with a double door. sanitizer?

Reasoning-Required (RR) Multimodal (MM)
Text instr. (d) Goal frame (g) Text instr. (d) Image instr. (I) Goal frame (g)
I want to store

something Where should
out of sight I return this?

from public eyes.
Where should I go?

Table 1: Examples of user instructions in 4 categories (better in color).

We highlight the key experimental setup below and leave details to Section 7.

Environments. We evaluate Mobility VLA for MINT in an real office environment occupied by
humans (Figure 2a). It is 836m2 and cluttered with everyday items such as shelves, desks and
chairs.

Robot. We use a wheel-based mobile manipulator (Figure 2b) to evaluate Mobility VLA. The robot
uses a MPC-based algorithm [53] to execute the waypoint action (∆x, ∆y, ∆θ in the robot-centric
frame) while avoiding obstacles.

(a) Top down view of the 836m2 office environment with all paths taken during experi-
ments.
The longest robot path (60.22m) is in dashed blue.

(b) Our mobile
manipulator

Figure 2: Experiment setup.

Demonstration Tour. We collect the demonstration tour by teleoperating the robot with a gamepad.
All corridors are traversed twice from opposite directions. The resulting tour is roughly 16 minutes
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long (948 frames @ 1Hz) and we add narratives during the tour “Temp desk for everyone” and
“Lewis’ desk” to frame 5:28 and 7:14 respectively to enable personalized navigation.

Multimodal User Instructions. We crowd-sourced 57 user instructions in 4 categories. This in-
cludes: 20 Reasoning-Free (RF), 15 Reasoning-Required (RR), 12 Small Objects (SO), and 10
Multimodal (MM) instructions (Examples are in Table 1, full list in Section 7.7). Importantly,
“Reasoning Required” instructions do not mention the specific object or location the robot needs to
navigate to, and the destination of Multimodal instructions are nearly impossible to infer without the
image modality in the instruction. As far as we know, prior works were not designed for or evaluated
against these two categories of tasks, and they are the key differentiator between MINT and ObjNav
and VLN.

5.1 RQ1: Mobility VLA’s robust high end-to-end performance in the wild

To evaluate Mobility VLA in MINT in the real world, we randomly select 5 user instructions per
category and evaluate Mobility VLA’s performance from 4 random starting poses (location and yaw)
that are at least 20 m away. We use Gemini 1.5 Pro [17] as our long-context multimodal VLM.

High end-to-end success rate. Table 2 shows that Mobility VLA has a high end-to-end naviga-
tion success rate in most user instructions categories, including previously infeasible Reasoning-
Required and Multimodal instructions. However, the success rate is significantly lower in the Small
Object category. This is not unexpected given the limited tour video resolution. Mobility VLA also
has a reasonable SPL (Success Rate weighted Path Length), indicating that the topological graph
does not incur a high path length penalty. Lastly, Mobility VLA successfully incorporated the per-
sonalization narratives in the demonstration tour. It correctly navigated to different locations when
responding to essentially the same instructions, but from different users (moved to frame 7:14 when
asked “I’m Lewis, take me to a temp desk please.” and moved to frame 5:28 when asked “Hi robot,
I’m visiting, can you take me to a temp desk?”). See the supplementary video for examples.

Reasoning-Free Reasoning-Required Small Objects Multimodal

Goal Finding SR 80% 80% 40% 85%
Goal Reaching SR 100% 100% 100% 100%

End-to-end SR 80% 80% 40% 85%
SPL 0.59 0.69 0.38 0.64

Table 2: Mobility VLA end-to-end navigation Success Rate (SR) and SPL of various user instruction types in
the real Office environment.

Robust low-level goal reaching. Table 2 also shows the robustness of Mobility VLA’s low-level
goal reaching policy (100% success rate) in the real world, with the demonstration tour recorded
months prior to experiments when many objects, furniture, and lighting conditions had been differ-
ent.

Large-scale sim confirms high end-to-end success rate. To further investigate the end-to-end
performance, we leverage simulations to scale evaluation numbers. Concretely, we created a high
fidelity simulation reconstruction of the office environment using NeRF [54] (see Section 7.7 for
details and example images), and evaluate Mobility VLA against 20 language instructed tasks with
50 random starting poses per task. Our experiment resulted in 90% high level goal finding and 100%
low level goal reaching success rates, with a total of 900 successful end-to-end execution (full results
in Table 8 in Section 7.3).

Generalization to a home-like environment using a smartphone tour. To show Mobility VLA’s
generality and ease of use, we conducted a proof-of-concept experiment in a real home-like envi-
ronment (details in Section 7.2). Rather than giving the robot a teleoperated tour, we use a Google
Pixel 6 smartphone to record the demonstration tour, and then evaluated Mobility VLA end-to-end
with 4 Reasoning-Required and 1 Small Object user instructions with 4 random starts each. The
success rate is 100% with a SPL of 0.87. This shows that 1) Mobility VLA performs well regardless
of environments, and 2) it is extremely easy to deploy, as the user can simply use their smartphone
to record a tour of their environment, upload to the robot and then immediately start giving instruc-
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tions. To our knowledge, this level of generality and ease of use had never been shown in robot
navigation.

5.2 RQ2: Long-context VLM outperforms alternatives on high level goal finding

We investigate how well alternative methods perform compared to Mobility VLA to answer whether
using long-context multimodal VLMs is the key to solve MINT. Concretely, we compare the fol-
lowing baselines:

CLIP-based retrieval: We reproduce the high-level goal finding module of NLMap [14]
by adopting OWL-ViT [55] for region proposal and CLIP [56] for sub-regions and full-
images embeddings extraction for tour frames. We then perform goal frame retrieval us-
ing CLIP embeddings of the instruction language and image. State-of-the-art work like
ESC [22], ZSON [31], and CLIP-on-Wheels [57] also fall into the category of this base-
line.
Text-Only Mobility VLA: Similar to [58], where the multimodal demonstration tour is
captioned by a VLM frame-by-frame to form a “text tour”. An LLM (Gemini 1.5 Pro [16])
then uses the text tour to produce the goal frame index.

Mobility VLA outperforms comparisons. Table 3 shows that high-level goal finding success rates
of Mobility VLA are significantly higher than comparison methods. Given the 100% low-level
success rate, this high-level goal finding success rates are representative of end-to-end success rates.

Success Rates Reasoning-Free Reasoning Required Small Objects Multimodal

CLIP-based retrieval 35% 33% 25% 20%
Text Only Mobility VLA 70% 60% 50% 30%

Mobility VLA (Ours) 95% 86% 42% 90%

Table 3: High-level goal finding Success Rates of Mobility VLA compared to baselines

Processing high frame rate tour videos with long-context VLMs is critical for success. Feeding
a full demonstration tour of a large environment into non-long-context VLMs is challenging since
each image requires hundreds-of-token budgets. One solution for reducing input tokens number is
reducing the tour video frame rate, at the cost of intermediate frames loss. Table 4 shows that the
high-level goal finding success rate decreases as the tour frame rate decreases. This is unsurprising
since a lower frame rate tour can sometimes miss the navigation target frame. In addition, comparing
state of the art VLMs, only Gemini 1.5 Pro yields satisfactory success rate thanks to its long 1M
token context-length.

Frame GPT-4V [18] GPT-4o [59] Gemini 1.5 Pro [17]

Rate RF RR SO MM RF RR SO MM RF RR SO MM

0.2 FPS 60% 53% 17% 30% 75% 40% 25% 50% 95% 67% 36% 60%
1 FPS Exceeds token limit Exceeds token limit 95% 86% 42% 90%

Table 4: High-level goal finding Success Rates with regards to various user instruction types (presented in the
order of Reasoning Free (RF), Reasoning Required (RR), Small Objects (SO), MultiModal (MM)) as a function
of VLM models (column) and multimodal demonstration tour Frames Per Second (FPS) (row). All VLMs were
queried in June 2024.

We also showcase one selected qualitative comparison example for high-level goal finding of all
candidates approaches in Figure 3. When given the multimodal instruction of “I want more of this.”
and a picture of several Coke cans on a desk, Mobility VLA correctly identified the frame containing
the refrigerator which it should lead the user to. On the other hand, CLIP-based retrieval finds a
region in which a water bottle and some stuff are on a desk to be most similar to the full instruction
image, given it is hard to extract “what the user want” from the instruction image using Owl-ViT.
GPT-4o incorrectly attempts to find the frame closest to the instruction image, while GPT-4V refuses
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to give a frame number since it was unable to find a frame where beverages are. Lastly, the Text
only approach cannot understand whether “this” refers to the Coke cans or the office setting, since it
relies only on caption of the instruction image. The full LLM responses can be found in Section 7.5

Figure 3: Qualitative comparison of Mobility VLA and other approaches on a multimodal instruction. The
bottom row shows the intermediate output of each approach.

Altogether, experiments in this section show that the long-context multimodal VLM capability is
critical in solving MINT. In addition, at present, only the Gemini 1.5 Pro VLM provides satisfactory
success rate due to its long 1M token context-length.

5.3 RQ3: Topological graphs are critical for success

Mobility VLA uses a hierarchical architecture to harness long-context VLM’s reasoning capability
and uses a topological graph to produce waypoint actions. Is this necessary? Can we prompt the
VLM to output waypoint actions directly?

Topological graphs are critical for navigation success. Table 5 shows the end-to-end performance
of Mobility VLA in simulation compared to prompting the VLM to output waypoint actions directly
(prompt and details in Section 7.6). The 0% end-to-end success rate shows that Gemini 1.5 Pro is
incapable of navigating the robot zero-shot w/o the topological graph. Empirically, we found that
Gemini almost always outputs the “move forward” waypoint action regardless of the current camera
observation. In addition, the current Gemini 1.5 API requires the upload of all 948 tour images at
every inference call, resulting in a prohibitively expensive 26s per-step running time for the robot
to move just 1m. On the other hand, Mobility VLA’s high-level VLM spends 10-30s to find a goal
index and then the robot navigates to the goal using the low-level topological graph results in a
highly robust and efficient (0.19s per step) system for solving MINT.

Direct Waypoint Action Output Goal Index Output + Topological Graph

Success Rate 0% 90%
SPL - 0.84

Per-step inference Time 25.90±8.36s 0.19±0.047s

Table 5: End-to-end navigation results for different VLM output formats in the simulated Office environment.

6 Discussion

In this paper, we present Mobility VLA, a new paradigm of navigation policy for solving MINT.
Mobility VLA achieved 86% and 90% end-to-end success rates on previously infeasible navigation
tasks involving complex reasoning and multimodal user instructions in a large real world environ-
ment. We also demonstrated a leap forward in how easily users can interact with the robot, where a
user records a video walkthrough in a home environment with a smartphone and then asks “Where
did I leave my coaster?”

Limitation: (1) Lack of exploration. The current version of Mobility VLA relies on a demon-
stration tour, and does not explore the environment automatically. However, existing exploration
mechanisms such as frontier exploration or diffusion-based exploration [39] can be easily integrated
during the demonstration tour. (2) Long VLM inference time impedes natural user interactions.
The inference time of high-level VLMs is round 10-30 seconds, resulting in users awkwardly wait-
ing for the robot to respond. However, it is possible to cache the demonstration tour, which takes up
roughly 99.9% of the input tokens, in order to significantly improve inference speed.
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7 Appendix

7.1 Structure-from-Motion and Hierarchical Localization

We use COLMAP [48], an off-the-shelf structure-from-motion pipeline to estimate the pose of the
robot for each frame in the tour (i.e. reference images), 3D point landmarks in the environment (see
Figure 4) and their corresponding 2D projections across all reference images (i.e. 2D-3D correspon-
dences).

Figure 4: Top-down view of the COLMAP result of the office environment: 3D point landmarks and reference
image poses (blue).

The poses are used to build a fully connected topological graph. The tour frames F , 3D landmarks
and 2D features are used in our own implementation of a real-time hierarchical localizer. The method
is hierarchical since it divides localization of the observed image O into two steps: a global search
to determine a set of candidate reference images close to O followed by local feature matching and
pose estimation.

In the global search, the candidate set C ⊆ F of k-nearest (w.r.t. the l2-norm of a global image
descriptor [51]) tour frames toO is determined. 2D features [60] inO are matched to the 2D features
of each frame in C. Using the pre-computed 2D-3D correspondences, we establish correspondences
between 2D features in O and 3D landmarks observed in the tour.

Given the set of 2D-3D correspondences for each frame in C, the pose of O is computed by solving
the corresponding Perspective-n-Point problem [52]. The pose with the most inlier 2D-3D corre-
spondences is selected as TO.

Figure 5: Localization error: median ATE = 0.056m.

When TO is used to determine the closest vertex onG, the scale-ambiguity characteristic of monocu-
lar structure-from-motion systems is inconsequential to the high-level goal-finding policy. However,
when computing the waypoint action for low-level navigation (see Algorithm 1), the scale factor is
utilized to generate metrically accurate actions.
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We evaluated localization accuracy by comparing it to groundtruth computed by localizing unseen
test images with COLMAP in a slow but accurate offline process (see Figure 5). Note that the
method failed when O was blurry or feature-sparse and the system was forced to fall back to the last
known pose. Since we would eventually receive a feature-rich, non-blurry frame, this limitation did
not affect end-to-end performance.

7.2 Home-Like Environment Experiment Setup

A handheld Pixel 6 smartphone tour of a home-like environment was collected (see Figure 6). The
tour is 75 seconds long and contains 224 frames (3 Hz).

(a) Home-like Environment (b) Smartphone Tour

Figure 6: Collection of the handheld smartphone tour (right) of a home-like environment (left).

Once the topological graph was built from the tour, Mobility VLA was evaluated end-to-end with 5
instructions (see Table 6) and 4 random start points.

Instruction Category
Where did I leave my coaster? Small Objects

I want to heat up some food. Where should I go?
Where can I keep this ice cream cold?

Where can I go number 2?
Where can I eat my dinner?

Reasoning-required

Table 6: Instructions in the home-like environment

Even though the images from the camera are significantly different (see Figure 7) from the robot’s
camera with a collection trajectory independent of robot motion, we achieved 100% success rate
with an SPL of 0.87.

7.3 Additional Experiments

We also investigate if strictly multimodal user instructions (instructions that are nearly impossible to
answer without the image) can be answered by the text modality alone. To this end, we replace the
image part of the multimodal user instructions with its caption. Table 7 shows the high-level goal
reaching success rate of such setup in the Text Instruction columns compared to feeding VLMs the
image (MM Instruction column).

Multimodal user instructions requires multimodal demo tour and image instructions. Table 7
shows that the success rate is much higher when multimodal demo tour and image instructions are
fed to the VLM (lower right corner). Replacing the image with its caption significantly reducess
success rate.
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(a) Smartphone (b) Robot

Figure 7: Images from the smartphone (left) and robot (right) cameras.

Success Rates GPT-4o GPT-4o Gemini 1.5 Pro Gemini 1.5 Pro
Text Instruction MM Instruction Text Instruction MM Instruction

Text Tour 0.10 0.10 0.20 0.20
Multimodal Tour Exceeds token limit Exceeds token limit 0.40 0.90 (Ours)

Table 7: High-level goal finding Success Rates of multimodal user instructions as a function of VLM models
and instruction representations (columns) and tour modalities (row). In MM Instructions columns, the robot’s
current camera observation is fed directly into the VLMs. In Text Instructions columns, the camera observation
is captioned by Gemini 1.5 Pro and the caption text is then fed into the VLMs. The text tour was captioned w/
Gemini 1.5 Pro

7.4 Large-Scale end-to-end sim details

To further investigate Mobility VLA’s end-to-end performance, we use simulations to conduct large-
scale evaluations. To that end, we created a high fidelity reconstruction of the Office environment in
simulation using NeRF [54].

(a) NeRF render of the simulated Office environment (b) Real image of the Office environment

Figure 8: Side-by-side comparison of the NeRF rendering and real image.

The Office environment was reconstructed in simulation using ZipNeRF [61]. To accomplish this,
we capture 3,244 images of the office environment using a Sony A7 IV camera with a Rokinon
12mm wide-angle lens. The capture is taken uniformly along the walkways of the office facing
in all directions. COLMAP [48] is then used to determine the image poses and camera intrinsics.
We train a NEural Radiance Field (NeRF) using the technique described in ZipNeRF [61]. This
NeRF is used to derive the assets needed for simulation. To generate the collision mesh, we distill
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a mesh from the NeRF using the technique described in [62]. We then use the distilled mesh as a
reference to construct the collision mesh by hand from mesh primitives using Blender. To render
realistic camera images, we align the NeRF with the simulated environment and render using the
same camera intrinsics as the real robot’s cameras. This ensures that the image distributions of the
simulator and the real environment match as closely as possible. Figure 8 shows a side-by-side
comparison of a simulated render using NeRF and an image from the robot’s camera at the same
location in the real environment.

We then evaluate Mobility VLA in simulation by randomly picking 10 instructions in both
Reasoning-Free and Reasoning-Required categories each with 50 random starting poses. Unfortu-
nately we cannot directly user instructions in the real Office environment as the NeRF reconstruction
was done a few months prior from when the demonstration tour in real was collected. We omit the
Small Objects and Multimodal instructions due to limited visual fidelity and challenges in including
humans in NeRF

Reasoning-Free Reasoning Required

High-Level Goal Finding SR 90% 90%
Low-Level Goal Reaching SR 100% 100%

End-to-end SR 90% 90%
SPL 0.83 0.84

Table 8: End-to-end navigation Success Rate (SR) and SPL of various user instruction types in the simulated
Office environment.
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7.5 Full VLM intermediate output in Figure 3

GPT-4V GPT-4o Text Only Mobility
VLA

Mobility VLA

It appears you are
interested in finding
more Coca-Cola Zero
Sugar cans, specifi-
cally the ones with
the Marvel character
design. To assist you
in locating more of
these cans within
the building, I would
need to navigate
to the area where
beverages or pantry
supplies are stored.
Based on the images
provided, there isn’t
a specific frame that
shows a location
where beverages are
stored or a pantry
area. However,
common places to
look for additional
cans of soda in an
office or building en-
vironment would be a
kitchen, break room,
or storage area where
supplies are kept. If
you can provide more
context or direct me
to a specific area
within the building
where beverages are
typically stored, I
can attempt to find
the closest frame that
matches that descrip-
tion. Otherwise, I
recommend checking
common areas where
refreshments are
usually available.

To find more of the
Coca-Cola cans, you
should navigate to
the closest frame in
the tour video that
shows the area where
the cans are likely
located. The current
frame you see is
Frame 945, which
shows a workspace
area. The closest
frame in the tour
video to this loca-
tion is Frame 935.
This frame shows a
workspace area with
desks and equipment,
which is similar to
the current frame
you see. Navigate
to Frame 935 to
find more of the
Coca-Cola cans.

This is a tricky one!
As a robot, I can’t re-
ally understand what
“this” refers to in
your request. It
could be the soda
cans, the office set-
ting, or something
else entirely. To
help me understand,
could you please be
more specific? For
example, you could
say:* “I want to see
more pictures of soda
cans.”* “I want to see
more pictures of of-
fices.” * “I want to
see more pictures of
whatever is in this im-
age”. “Once I un-
derstand what you’re
looking for, I can
try to find the closest
matching frame from
my database”.

Frame 222 is the clos-
est frame as it shows
the same refrigerator

Table 9: Full VLM intermediate output wrt to the multimodal user instruction shown in Figure 3

7.6 Prompt for direct VLM waypoint actions output

You are a robot operating in a building and your task is to respond to the user
command about going to a specific location by finding the closest frame in the
tour video to navigate to.
These frames are from the tour of the building last year.
[Frame 1 Image f1]
Frame 1. [Frame narrative n1]
...
[Frame k Image fk]
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Frame k. [Frame narrative nk]
This image is what you see now. You may or may not see the user in this image.
[Image Instruction I]
The user says: Where should I return this?
Could you select and answer the most appropriate action to take now among
’left ’, ’forward ’ and ’right ’, which correspond to respectively? Answer:

7.7 User Instructions tested in the Office environment

Reasoning-Free Instructions.

1. Can you take me to the building map?
2. Where can I find a ladder?
3. Take me to the exit
4. Where can I find some paper cups?
5. gray trash can.
6. Take me to robot number 109.
7. Take me to a blue area.
8. I want to borrow my friend’s scooter, can you take me to it?
9. Take me to a conference room with a double door.

10. I need a tripod, where can I find it in this office?
11. Take me to a whiteboard.
12. Where are the gray cabinets again?
13. I heard there’s a cool dark-backgrounded poster, where is it?
14. where can I find a long wooden bench?
15. Take me to a two-paned door
16. I’m Lewis, take me to a temp desk please.
17. Hi robot, I’m visiting, can you take me to a temp desk?
18. Take me to a white shelf
19. Take me to a plant
20. where can I find a moving box?

Reasoning-Required Instructions.

1. There is a fire, where should I find tools to fight the fire?
2. I’m thirsty.
3. I’m here to water things, please guide take me to them.
4. Help me dispose of this cardboard box.
5. Take me to a room with a closed door.
6. I want to store something out of sight from public eyes. Where should I go?
7. I left my drink on a cart, can you take me to it?
8. Can you take me upstairs?
9. I need to charge my phone, please help.

10. I heard there is a place to see lots of robots?
11. I need to sit down.
12. Can you take me somewhere to lie down?
13. Where can I find something cold?
14. I’m tired. Where can I rest?
15. I want to draw something.
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Small Objects Instructions.

1. Where is the Jackery portable power station?
2. where is the bench with a bag of chips on it?
3. where can I find a fire extinguisher?
4. Where can I borrow a hand sanitizer?
5. I heard there is a cute tiny traffic cone, where is it?
6. I need a xbox controller.
7. Did you see my white water bottle?
8. Where can I find a fire alarm switch?
9. Can you help me find my cat mask?

10. My friend told me to get his moving box under his desk, can you help me find it?
11. take me to the tombstone I heard so much about.
12. where can I find a toy cart?

Multimodal Instructions. See Table 10 below.
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# Text Image

1 Where should I return this?

2 I don’t want this anymore. Can you help me?

3 Where can I charge this?

4 I want more of this.

5 Can you follow the directions on the whiteboard?

6 I don’t think this is supposed to be here, where should it go?

7 Where can I get something to clean this?

8 Where can I use this?

9 Where can I see the most amount of this?

10 Can you take me somewhere to NOT see this?

Table 10: Multimodal Instructions.
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7.8 A colab for reproducing the goal reaching part of Mobility VLA

Copyright 2024 Google LLC.
SPDX -License -Identifier: Apache -2.0

Prerequisites:
!pip install pytubefix

Obtain a tour from YouTube:
from pytubefix import YouTube
import cv2
from PIL import Image

def download_youtube_video(url , output_path ="video.mp4"):
""" Downloads a YouTube video to the specified output path.

Args:
url: The URL of the YouTube video.
output_path: The path where the video should be saved.

"""
yt = YouTube(url)
stream = yt.streams.get_by_itag (244) # This is a 480p stream.
stream.download(filename=output_path)

# Replace with your YouTube video URL
video_url = "https ://www.youtube.com/watch?v=C_jSIKC1OyY"
download_youtube_video(video_url , output_path ="video.mp4")

from moviepy.editor import VideoFileClip
from PIL import Image
import tqdm

def mp4_to_pil_images(mp4_file , save_every_n_frames =30, img_downsample_ratio =2):
""" Converts an MP4 file to a list of PIL Images using MoviePy.

Args:
mp4_file: Path to the MP4 file.

Returns:
A list of PIL Images.

"""

clip = VideoFileClip(mp4_file)
images = []
frame_counter = 0
for frame in tqdm.tqdm(clip.iter_frames ()):

if frame_counter % save_every_n_frames != 0:
frame_counter += 1
continue

# Convert NumPy array to PIL Image
pil_image = Image.fromarray(

frame [:: img_downsample_ratio , :: img_downsample_ratio , ...]
)
images.append(pil_image)
frame_counter += 1

return images

images = mp4_to_pil_images ("video.mp4")
print(len(images ))

See an example image in the tour:
images [96]

Initialize Gemini 1.5 Pro:
import google.generativeai as genai

# Init Gemini 1.5 Pro
main_key = "myAPIKey" #@param

genai.configure(api_key=main_key)
gen_config = genai.types.GenerationConfig(temperature =0.0)
gemini = genai.GenerativeModel(

model_name ="gemini -1.5-pro -latest", generation_config=gen_config
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)
gemini_text = genai.GenerativeModel(

model_name ="gemini -1.5-pro -latest", generation_config=gen_config
)

response = gemini.generate_content (["hi"])
print(response.text)

Utility functions:
#@title Utils
def get_gemini_response(user_input , tour_chunks ):

contents = [
"You are a robot operating in a building and your task is to respond to the user"
"command about going to a specific location by finding the closest frame in the tour"
"video to navigate to. These frames are from the tour of the building last year.",
*tour_chunks ,
"The user says: ",
user_input ,
"How would you respond? Can you find the closest frame?",

]
response_stage1 = gemini.generate_content(contents)
try:

stage1_text = response_stage1.text
except:

print(response_stage1)
raise ValueError(’Gemini Refuses to respond ..’)

return stage1_text , contents

def get_goal_idx(stage1_response_text ):
# Need clarification check
contents_clarification = [

stage1_response_text ,
"Can you find only one unique frame number in the sentence above? Tell me that "
"frame number and nothing else."

]
idx_text = gemini_text.generate_content(contents_clarification)
idx_text = idx_text.text
idx = -1
try:

idx = int(idx_text)
except: pass
return idx

Make tour context chunks:
#@title Make tour context chunks
# This is where you can add custom label or nicknames to any frame.
custom_pois = {0: "my favorite plant", 150: "Lewis ’ desk", 192: "The kid ’s room"}

def get_framed_chunks_from_imgs(imgs):
chunks = []
for i, img in enumerate(imgs):

frame_caption = f"Frame {i}."
if i in custom_pois:

frame_caption = f"Frame {i}. {custom_pois[i]}."
chunks.append(img)
chunks.append(frame_caption)

return chunks

tour_chunks_custom = get_framed_chunks_from_imgs(images)

Goal finding wrt an user instruction:
#@title Goal finding wrt an user instruction
user_instruction = "Where is the office ?" #@param {type:" string "}

# stage1_text is the raw gemini response , contents is the prompt sent to Gemini
stage1_text , contents = get_gemini_response(user_instruction , tour_chunks_custom)
print(f"Gemini Raw Response :\n{stage1_text }")

idx = get_goal_idx(stage1_text)
print(f"Closest frame index :\n{idx}")
images[idx]
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