
NECO_a_01254-Wimalawarne MITjats-NECO.cls December 4, 2019 16:53

U
nc

or
re

ct
ed

Pr
oo

f



NECO_a_01254-Wimalawarne MITjats-NECO.cls December 4, 2019 16:53

U
nc

or
re

ct
ed

Pr
oo

f

LETTER Communicated by Terry Sejnowski

Scaled Coupled Norms and Coupled Higher-Order
Tensor Completion

Kishan Wimalawarne
kishanwn@gmail.com
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Uji, Kyoto 611-0011, Japan

Makoto Yamada
makoto.yamada@riken.jp
Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku,
Kyoto 606-8501, Japan; RIKEN, Center for Advanced Intelligence Project,
Tokyo 103-0027, Japan; Institute of Statistical Mathematics, Tokyo 190-8562, Japan;
and PRESTO, Japan Science and Technological Agency, Japan

Hiroshi Mamitsuka
mami@kuicr.kyoto-u.ac.jp
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan, and Department of Computer Science, Aalto University,
Espoo F1-00076, Finland

Recently, a set of tensor norms known as coupled norms has been pro-
posed as a convex solution to coupled tensor completion. Coupled norms
have been designed by combining low-rank-inducing tensor norms with
the matrix trace norm. Though coupled norms have shown good perfor-
mances, they have two major limitations: they do not have a method
to control the regularization of coupled modes and uncoupled modes,
and they are not optimal for couplings among higher-order tensors. In
this letter, we propose a method that scales the regularization of cou-
pled components against uncoupled components to properly induce the
low-rankness on the coupled mode. We also propose coupled norms for
higher-order tensors by combining the square norm to coupled norms.
Using the excess risk-bound analysis, we demonstrate that our proposed
methods lead to lower risk bounds compared to existing coupled norms.
We demonstrate the robustness of our methods through simulation and
real-data experiments.

1 Introduction

In recent years, learning from multiple data sources has gained considerable
interest. One such field that has gained interest is coupled tensor completion
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2 K. Wimalawarne, M. Yamada, and H. Mamitsuka

(also referred to as collective tensor completion), where we impute miss-
ing elements of a partially observed tensor by sharing information from its
coupled tensors (Acar, Papalexakis et al., 2014; Acar, Nilsson, & Saunders,
2014; Acar, Bro, & Smilde, 2015; Bouchard, Yin, & Guo, 2013). A coupling
between two tensors occurs when they share a common mode, where one
tensor can be side information (Narita, Hayashi, Tomioka, & Kashima, 2011)
to the other or both mutually share information (Acar, Papalexakis et al.,
2014). Coupled tensor completion has been useful in several real-world ap-
plications such as link prediction (Ermis, Acar, & Cemgil, 2015), recommen-
dation systems (Acar, Kolda, & Dunlavy, 2011; Acar, Papalexakis et al., 2014;
Acar, Nilsson et al., 2014; Acar et al., 2015; Jeon, Jeon, Sael, & Kang, 2016),
and computer vision (Li, Zhao, Li, Cichocki, & Guo, 2015; Zhou, Qian, Shen,
Zhang, & Xu, 2017).

Recently, Wimalawarne, Yamada, and Mamitsuka (2018) proposed a set
of norms known as coupled norms to solve coupled completion. One of the
main advantages of these norms is that they are convex and lead to global
solutions, while many of the existing coupled completion models are non-
convex factorization methods (Acar, Nilsson et al., 2014; Ermis et al., 2015).
Furthermore, most factorization-based methods are restricted to the CAN-
DECOMP/PARAFAC (CP) rank (Acar, Nilsson et al., 2014) of tensors while
others are restricted to nonnegative factorization (Ermis et al., 2015). Cou-
pled norms are able to learn using the multilinear rank of tensors and are
applicable to heterogeneous tensor data. Theoretical analysis on completion
with coupled norms has shown that proper regularization of low-rankness
along the coupled modes leads to better performance compared to indi-
vidual tensor completion. Except for the computational challenge of using
trace norm regularization, these norms can be easily extended to multiple
couplings of multiple tensors, thus making them a promising approach to
coupled tensor learning.

Although coupled norms have several favorable qualities, we find that
they have two limitations. One limitation is that there is no control on regu-
larization of coupled modes with respect to uncoupled modes. In the exist-
ing design of coupled norms, there is always an assumption that all modes
are low-ranked. This is not an optimal design since the the shared low-
rankness induced by the concatenation of the tensors on the coupled modes
could be different compared to low-rankness induced by the tensors in-
dependently. Another limitation with coupled norms is that their design
is limited to coupling of three-mode tensors. A naive application of these
coupled norms to higher-order tensors (tensors with more than three di-
mensions) may not be optimal since these norms have been designed using
norms robust for three-mode tensors such as the overlapped trace norm
(Liu, Musialski, Wonka, & Ye, 2009; Tomioka & Suzuki, 2013) and scaled la-
tent trace norm (Wimalawarne, Sugiyama, & Tomioka, 2014). The recently
proposed square norm (Mu, Huang, Wright, & Goldfarb, 2014) has been
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Coupled Higher-Order Tensor Completion 3

shown to be better for completion of higher-order tensors, which would be
more suitable for coupled higher-order tensors.

In this letter, we propose extensions to coupled norms to overcome the
limitations we have noted. We introduce scaling of the regularization on the
coupled mode with respect to uncoupled modes. Additionally, we integrate
the square norm to coupled tensors to create extensions for higher-order
tensors. We derive excess risk bounds for coupled completion based on reg-
ularization by scaled coupled norms and their higher-order extensions. We
provide details of simulation and real-data experiments and show that our
methods lead to better performance for coupled completion.

Before we move on to the core concepts of our research, we introduce
some notations that we use in this letter. Following Kolda and Bader (2009),
we write a K-mode tensor as T ∈ R

n1×n2×···×nK , and its mode-k unfolding is
obtained by T(k) ∈ R

nk×
∏K

j �=k n j , which is obtained by concatenating all slices
along mode-k. Given two matrices M ∈ R

n1×n2 and N ∈ R
n1×n′

2 , the notation
[M; N] ∈ R

n1×(n2+n′
2 ) represents their concatenation on the common mode-1.

2 A Short Review on Completion with Coupled Norms

Coupled tensors completion using coupled norms was introduced by
Wimalawarne et al. (2018). They considered a partially observed three-
way tensor T̂ ∈ R

n1×n2×n3 and a matrix M̂ ∈ R
n1×n′

2 having a common mode
(mode-1 in this case) with the number of partially observed elements of
m1 and m2, respectively. Given mappings of �T̂ : Rn1×n2×n3 → R

m1 and �M̂ :
R

n1×n′
2 → R

m2 , a collective completion model was proposed as

min
T ,M

1
2
‖�M̂(M − M̂)‖2

F + 1
2
‖�T̂ (T − T̂ )‖2

F + λ‖T , M‖cn, (2.1)

where ‖T , M‖cn represents a coupled norm, which can be constructed by
using tensor norms such as the overlapped trace norm (Tomioka & Suzuki,
2013), the scaled latent trace norm (Wimalawarne et al., 2014), and the ma-
trix trace norm (Fazel, 2002; Candès & Recht, 2009).

We now review basic constructions of coupled norms. Given a tensor
T ∈ R

n1×n2×n3 and a matrix M ∈ R
n1×n′

2 , the general definition of a coupled
norm takes the following format,

‖T , M‖a
(b,c,d), (2.2)

where the superscript a specifies the mode in which the tensor and the
matrix are coupled, and the subscripts indicated by b, c, d ∈ {O, L, S,−}
specify the regularization method on each mode of the tensor. The nota-
tion O indicates overlapping trace norm-based regularization, L indicates
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4 K. Wimalawarne, M. Yamada, and H. Mamitsuka

latent trace norm-based regularization, S indicates scaled latent trace norm-
based regularization, and − indicates no regularization with respect to the
specified mode. The core building block to construct coupled norms is the
matrix trace norm also known as the nuclear norm (Fazel, 2002; Candès
& Recht, 2009), which is defined for a matrix M ∈ R

n1×n′
2 with rank J as

‖M‖tr =∑J
j=1 σ j, where σ j is the jth nonzero singular value of the matrix

M. The matrix trace norm is a convex relaxation to minimizing the rank of a
matrix (Fazel, 2002; Candès & Recht, 2009), and it is used to define all low-
rank tensor norms (Liu, Lin, & Yu, 2010; Wimalawarne et al., 2014; Mu et al.,
2014).

In order to look into few of the norms introduced in Wimalawarne et al.
(2018), we first consider the coupled norm ‖T , M‖1

(O,O,O), which takes fol-
lowing format:

‖T , M‖1
(O,O,O) := ‖[T(1); M]‖tr +

3∑
k=2

‖T(k)‖tr. (2.3)

In the above norm, the tensor T is unfolded on each mode and regularized
with the trace norm, and on the coupled mode, the concatenated matrix
[T(1); M] is regularized. The trace norm for the concatenation between the
matrix and the tensor induces low-rankness for both the tensor and the ma-
trix with respect to the coupled mode, allowing collective regularization.

A coupled norm with all the modes regularized with the scaled latent
norm is defined as ‖T , M‖1

(S,S,S), which takes the following format,

‖T , M‖1
(S,S,S) = inf

T (1)+T (2)+T (3)=T

(
1√
n1

‖[T (1)
(1) ; M]‖tr +

3∑
k=2

1√
nk

‖T (k)
(k) ‖tr

)
,

(2.4)

where T (1), T (2), and T (3) are latent tensors (Wimalawarne et al., 2014,
2018). The above norm is created by extending the scaled latent trace norm
(Wimalawarne et al., 2014) with the addition of the concatenation of M to
the unfolded latent tensor T (1). The use of unfolded latent tensors on each
mode allows the norm to regularize the rank of each mode independent of
the ranks of other modes compared to overlapped regularization. For an ex-
ample, if all the modes of a tensor are full rank except one mode, the latent
trace norm will be able to induce low-rankness with respect to low-rank
mode since each mode is regularized independently using latent tensors.
However, the overlapped trace norm will regularize all the modes equally
to induce low-rankness. The use of latent tensors benefits the above cou-
pled norm, equation 2.4, since concatenated regularization on the coupled
mode does not depend on the ranks of the uncoupled modes. The division
of latent tensor regularization by the inverse of its mode dimension leads to
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Coupled Higher-Order Tensor Completion 5

the inducement of low-rankness with relative ranks with respect to mode
dimensions (Wimalawarne et al., 2014).

In addition to the homogeneous regularization methods given above,
mixed norms such as (S, O, O), (O, S, O), and (O, O, S) have also been pro-
posed (Wimalawarne et al., 2018). An example of a mixed norm is

‖T , M‖1
(S,O,O) = inf

T (1)+T (2)=T

(
1√
n1

‖[T (1)
(1) ; M]‖tr +

3∑
k=2

‖T (2)
(k) ‖tr

)
,

where the scaled latent trace norm is regularized on the coupled mode and
the rest of the modes are regularized using the overlapped trace norm.

3 Limitations of Coupled Norms

Though coupled norms have favorable properties such as convexity and
better performance in coupled tensor completion (Wimalawarne et al.,
2018) compared to individual tensor completion, they are not optimal for
coupled tensor completion. We identify two major limitations with coupled
norms.

3.1 Lack of Control on Shared Low-Rankness. The basic design prin-
ciple of coupled norms is to combine two tensor norms by having a single
trace norm regularization on the concatenated unfolding of tensors along
the coupled mode. The underlying assumption with this formulation is that
the concatenation of unfolded tensors is low rank; in other words, we can
have a low-rank factorization of the concatenated matrix. This indicates that
both tensors have a common left component matrix indicating shared low-
rankness along the coupled modes. Though this is a reasonable assumption,
in practice, the degree of shared low-rankness needs to be controlled when
regularizing a learning model. Since the coefficient in front of the regular-
ization of concatenation of unfolded tensors is equal to one, similar to other
trace norm regularizations for other modes in a coupled norm, it induces
an equal amount of regularization for both coupled and uncoupled compo-
nents. This makes existing coupled norms suboptimal. A better design of
coupled norms with theoretical guarantees should be developed.

3.2 Inefficiency with Higher-Order Tensors. The coupled norms pro-
posed by Wimalawarne et al. (2018) are confined to the overlapped trace
norm and latent trace norms. Though these norms can be applied as low-
rank-inducing norms for any tensor, they may not be efficient with higher-
order tensors. The square norm proposed by Mu et al. (2014) has been
shown to be more efficient as a low-rank-inducing norm for higher-order
tensors. More specifically, for a higher-order tensor with K modes each of di-
mensions n with a multilinear rank of (r, . . . , r), the excess risk bound using



NECO_a_01254-Wimalawarne MITjats-NECO.cls December 4, 2019 16:53

U
nc

or
re

ct
ed

Pr
oo

f

6 K. Wimalawarne, M. Yamada, and H. Mamitsuka

the overlapped norm is bounded as O(K
√

r(
√

nK−1 + √
n)) (Wimalawarne

et al., 2018), while the use of the square norm leads to an excessive risk
bound of O(r�K/2	n
K/2�) (see theorem 11 in the appendix and Mu et al., 2014).
Thus, the existing coupled norms would not give the best performance for
coupled higher orders, which creates a need to incorporate the square norm
in coupled norms.

4 Proposed Methods

In this section, we propose new approaches to overcome the limitations we
have described. We propose a new coupled completion model and discuss
extensions to coupled norms.

First, we give the main problem that we investigate in this letter: gen-
eralized coupled tensor completion for higher-order tensors with con-
trol of regularization of coupled components. We define this problem by
considering two partially observed tensors X̂ ∈ R

n1×n2×···×nK , K ≥ 3 and
Ŷ ∈ R

n1×n′
2×···×n′

K′ , K′ ≥ 2. Let m1 and m2 be the number of observed ele-
ments of X̂ and Ŷ , respectively. We define �X̂ : Rn1×n2×···×nK → R

m1 and
�Ŷ : Rn1×n′

2×···×n′
K′ → R

m2 as mappings to observed elements. Then the pro-
posed coupled completion model is

min
X ,Y

1
2
‖�X̂ (X − X̂ )‖2

F + 1
2
‖�Ŷ (Y − Ŷ )‖2

F + λ‖X ,Y‖(1,γ )
hcn , (4.1)

where ‖X ,Y‖(a,γ )
cn is an extended definition of coupled norms, with γ indi-

cating scaling of the concatenated regularization on the coupled mode a. In
sections 4.1 and 4.2, we propose our extensions to coupled norms with scal-
ing to previously defined coupled norms (Wimalawarne et al., 2018) with
three-mode tensors and higher-order coupled tensors.

4.1 Scaled Coupled Norms. We propose to explicitly control the regu-
larization on concatenated components on the coupled mode. We achieve
this by introducing a scaling factor γ ∈ R+ for the coupled regularization
of the coupled norm. To include the scaling parameter, we extend the ex-
isting definition of the coupled norm as ‖ · ‖(a,γ )

(b,c,d), which we hereafter refer
to as a scaled coupled norm, where the superscript (a, γ ) indicates that the
regularization on components on coupled mode a is scaled by γ .

Using the new definition, we redefine all the coupled norms in
Wimalawarne et al. (2018). As an example, we can show the norm
‖T , M‖(1,γ )

(O,O,O) for a three-mode tensor T ∈ R
n1×n2×n3 and M ∈ R

n1×n′
2 as

follows:

‖T , M‖(1,γ )
(O,O,O) := γ ‖[T(1); M]‖tr +

3∑
j=2

‖T( j)‖tr. (4.2)
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Coupled Higher-Order Tensor Completion 7

If γ = 1, then scaled coupled norms coincide with original coupled norms.
In practice, the optimal scaling parameter for γ needs to be selected using an
appropriate parameter selection method such as cross-validation. Though
this creates an additional computational cost, we show theoretically (see
section 5.1) and experimentally (see section 6.1) that this scaling leads to
better performance.

We can also regularize each of the trace norms separately (e.g., the right-
hand side of equation 4.2 can be γ1‖[T(1); M]‖tr + γ2

∑3
j=2 ‖T( j)‖tr), which

would add more computational costs to solve the completion model. Our
definition of scaled coupled norms is more convenient during optimization
due to fewer parameters and also helps in theoretical analysis and interpre-
tation, as we show in section 5.

4.2 Completion of Coupled Higher-Order Tensors. Now we propose
coupled norms for higher-order tensors by combining the square norm with
the coupled norms.

We first consider a higher-order tensor X ∈ R
n1×n2×···×nK with K ≥ 4 cou-

pled with another tensor, Y ∈ R
n1×n′

2×···×n′
K′ with K′ ≥ 2. Without losing gen-

erality, we assume that they are coupled on a specific mode a. We introduce
a modified scaled coupled norm notation as

‖X ,Y‖(a,γ )
(b,c),(d,e, f ), (4.3)

where a indicates the coupled mode, and (b, c) and (d, e, f ) indicate regular-
ization methods for each tensor. As defined in Wimalawarne et al. (2018), if
Y is a three-mode tensor, then c, d, e, f ∈ {O, L, S,−}. The notation b := [v]
indicates that the particular higher-order tensor (X in this case) should be
regularized using the square norm (Mu et al., 2014), given as

‖X[v]‖tr =
∥∥∥∥∥∥reshape

⎛
⎝X(1),

v∏
i=1

ni,

K∏
j=v+1

nj

⎞
⎠
∥∥∥∥∥∥

tr

,

where v specifies the modes to be considered for reshaping and the func-
tion reshape() (Mu et al., 2014) reshapes the tensor to a matrix of dimensions
n1 . . . nv × nv+1 . . . nK. Further, the second parameter c in the subscript indi-
cates how the tensor X should be regularized coupled to Y .

4.2.1 Coupled Norms for a Higher-Order Tensor and a Matrix. Let us look
at a few examples of possible higher-order coupled norms that we can
construct using the new extension, equation 4.3. Given that Y is a matrix
Y := M ∈ R

n1×n′
2 , we can define a coupled norm using only the overlapped

regularization as
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8 K. Wimalawarne, M. Yamada, and H. Mamitsuka

‖X , M‖(1,γ )
([v],O),(O,O) := γ ‖[X(1); M]‖tr + ‖X[v]‖tr + ‖M‖tr. (4.4)

Now let us consider making the regularization with respect to the coupled
mode less dependent on the regularization of other modes of the tensor. To
achieve this, we can add latent tensor regularization to the coupled modes.
By changing O to S in equation 4.4 for the tensor Y , we have the following
definition,

‖X , M‖(1,γ )
([v],S),(O,O) := inf

X (1)+X (2)=X

γ√
n1

‖[X (1)
(1) ; M]‖tr + ‖X (2)

[v] ‖tr + ‖M‖tr,

(4.5)

where the tensor X is considered as a summation of latent tensors X (1) and
X (2) with X (1) coupled to M and X (2) regularized independently.

4.2.2 Coupled Norms for a Higher-Order Tensor and a Three-Way Tensor. If Y
is a three-mode tensor Y ∈ R

n1×n′
2×n′

3 , we can define several coupled norms
using the overlapped regularization (notation O) and latent and scaled la-
tent regularizations (notations L and S) for the three-mode tensor, while
applying regularization to the X tensor using the square norm. Ap-
plying overlapped regularization and scaled latent regularization to
‖X ,Y‖(1,γ )

([v],O),(O,O,O) to Y gives us

‖X ,Y‖(1,γ )
([v],O),(O,O,O) := γ ‖[X(1);Y(1)]‖tr +

3∑
k=2

‖Y(k)‖tr + ‖X[v]‖tr

and

‖X ,Y‖(1,γ )
([v],O),(S,S,S) = inf

Y (1)+Y (2)=Y

(
γ√
n1

‖[X(1);Y (1)
(1) ]‖tr

+
3∑

k=2

1√
nk

‖Y (2)
(k) ‖tr + ‖X[v]‖tr

)
.

Additionally, we can create mixed norms by applying a mixture of
regularizations to the three-mode tensor. Due to space limitations, we
will give only one example of the mixed higher-order coupled norm
‖X ,Y‖(1,γ )

([v],O),(O,S,O), which is defined as

‖X ,Y‖(1,γ )
([v],O),(O,S,O) = inf

Y (1)+Y (2)=Y

(
γ ‖[X(1);Y (1)

(1) ]‖tr + 1√
n2

‖Y (2)
(2) ‖tr

+ ‖Y (1)
(3) ‖tr + ‖X[v]‖tr

)
,
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Coupled Higher-Order Tensor Completion 9

where the second mode of Y is regularized with the scaled latent trace
norm and the rest of the modes are regularized using the overlapped trace
norm.

4.2.3 Coupled Norms for Two Higher-Order Tensors. Let us now consider
Y also as a higher-order tensor Y ∈ R

n1×n′
2×···×n′

K′ , K′ ≥ 4. In this case, we
propose a coupled norm with both tensors regularized using the square
norm as ‖X ,Y‖(1,γ )

([v],O),([v ′],O), where v ′ indicates the modes that are used for
the square reshaping norm for Y . Then the definition of this norm is

‖X ,Y‖(1,γ )
([v],O),([v ′],O) := γ ‖[X(1);Y(1)]‖tr + ‖X[v]‖tr + ‖Y[v ′]‖tr. (4.6)

We can also define coupled norms with latent trace norm regulation for
higher-order tensors as

‖X ,Y‖(1,γ )
([v],L),([v ′],O) := inf

X (1)+X (2)=X
γ ‖[X (1)

(1) ;Y(1)]‖tr + ‖X (2)
[v] ‖tr + ‖Y[v ′]‖tr

and

‖X ,Y‖(1,γ )
([v],L),([v ′],L) := inf

X (1)+X (2)=X
inf

Y (1)+Y (2)=Y
γ ‖[X (1)

(1) ;Y (2)
(1) ]‖tr

+‖X (1)
[v] ‖tr + ‖Y (2)

[v ′]‖tr.

4.2.4 Coupled Norms for Tensors Coupled on Multiple Modes. Our proposed
norms need not be restricted to coupling of tensors by a single mode. The
proposed norms can be extended to tensors that are coupled by more than
one mode by specifying the multiple modes on the superscript a of equa-
tion 4.3 and changing the definition of the norm accordingly. As an ex-
ample, let us consider two higher-order tensors X ∈ R

n1×n2×···×nK and Y ∈
R

n1×n′
2×···×n′

K′ , K, K′ ≥ 4, which are coupled on their first two modes. Us-
ing overlapped regularization for both the tensors, we can define the norm
‖X ,Y‖((1,2),γ )

([v],O),([v ′],O) as

‖X ,Y‖((1,2),γ )
([v],O),([v ′],O) := γ ‖[X(1,2);Y(1,2)]‖tr + ‖X[v]‖tr + ‖Y[v ′]‖tr, (4.7)

where coupling with modes 1 and 2 leads to an unfolding of X and Y by
combining modes 1 and 2 for the coupled regularization. Further, if we con-
sider scaled latent norm regularization for both coupled tensors, we can
define the following coupled norm:
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10 K. Wimalawarne, M. Yamada, and H. Mamitsuka

‖X ,Y‖((1,2),γ )
([v],S),([v ′],S) := inf

X (1)+X (2)=X
inf

Y (1)+Y (2)=Y

γ√
n1n2

‖[X (1)
(1,2);Y (1)

(1,2)]‖tr

+ 1√
n1 · · · nv

‖X (2)
[v] ‖tr + 1√

n1 · · · n′
v ′

‖Y (2)
[v ′]‖tr. (4.8)

4.3 Optimization of the Coupled Completion Model. The objective
function in equation 4.1 can be solved using convex optimization meth-
ods. We have used the alternating direction method of multipliers (ADMM)
method (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011) to solve the above
objective function. We do not give the details of the optimization pro-
cedure since it is similar to the optimization of coupled norms given in
Wimalawarne et al. (2018).

5 Theoretical Analysis

In this section, we present a theoretical analysis of the proposed cou-
pled completion models regularized by the scaled coupled norms and the
higher-order coupled norms.

Taking a similar approach to that of Wimalawarne et al. (2018), we
derive excess risk bounds (El-Yaniv & Pechyony, 2007) for coupled com-
pletion using the Rademacher complexity. For our analysis, we consider
two tensors X ∈ R

n1×n2×···×nK and Y ∈ R
n1×n′

2×···×n′
K′ coupled on their first

mode. We represent indexes of observed elements of X by the set P, where
(i1, . . . , iK ) ∈ P refers to the element Xi1,...,iK . Similarly, the set Q represents
the set of observed elements in Y . Further, we consider observed elements
separated as training and test sets as PTrain, QTrain, PTest, and QTest, such that
P = PTrain ∪ PTest and Q = QTrain ∪ QTest.

We denote any coupled norm by ‖W,V‖(1,γ )
hcn and the hypothesis class

constrained by it with some constant B as W = {W,V : ‖W,V‖(1,γ )
hcn ≤ B}.

Then the training error of the coupled completion model, equation 4.1, for
a given hypothesis class W is expressed as

L(W,V ) : = 1
|PTrain| + |QTrain|

⎡
⎣ ∑

(i1,...,iK )∈PTrain

l(Xi1,...,iK ,Wi1,...,iK )

+
∑

( j1,..., jK′ )∈QTrain

l(Y j1,..., jK′ ,V j1,..., jK′ )

⎤
⎦ , (5.1)

where l(a, b) = (a − b)2. When K = 3 and K′ = 2, we deal with coupled
three-mode tensors based on the scaled coupled norms proposed in sec-
tion 4.1. When K ≥ 4 and K′ ≥ 2, we consider completion of coupled higher-
order tensors. We can also define the test error for a given hypothesis class
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Coupled Higher-Order Tensor Completion 11

W, L̄(W,V ) as follows:

L̄(W,V ) := 1
|PTest| + |QTest|

⎡
⎣ ∑

(i1,...,iK )∈PTest

l(Xi1,...,iK ,Wi1,...,iK )

+
∑

( j1,..., jK′ )∈QTest

l(Y j1,..., jK′ ,V j1,..., jK′ )

⎤
⎦ . (5.2)

Using the standard conditions, let l(·, ·) be a �-Lipschitz contin-
uous loss function bounded by supi1,...,iK

|l(Xi1,...,iK ,Wi1,...,iK )| ≤ bl and
sup j1,..., jK′ |l(Y j1,..., jK′ ,V j1,..., jK′ )| ≤ bl . We consider the special case where
|PTrain| = |PTest| = |P|/4 and |QTrain| = |QTest| = |Q|/4. This leads to equal-
sized training and test sets, |PTrain| + |QTrain| = |PTest| + |QTest| = |P|/2 =
|Q|/2 = d, similar to the assumption made in Shamir and Shalev-Shwartz
(2014). Following the transductive Rademacher complexity theory (El-
Yaniv & Pechyony, 2007; Shamir & Shalev-Shwartz, 2014), the following
excess risk bound holds with probability 1 − δ,

L̄(W,V ) − L(W,V ) ≤ 4RP,Q(l ◦ W, l ◦ V ) + bl

(
11 + 4

√
log 1

δ√|PTrain| + |QTrain|

)
,

(5.3)

where RP,Q(l ◦ W, l ◦ V ) is the transductive Rademacher complexity
(Wimalawarne et al., 2018; El-Yaniv & Pechyony, 2007; Shamir & Shalev-
Shwartz, 2014), defined as follows,

RP,Q(l ◦ W, l ◦ V ) = 1
d
Eσ

⎡
⎣ sup

W,V∈W

∑
(i1,..,iK )∈P

σi1,..,iK l(Xi1,...,iK ,Wi1,...,iK )

+
∑

( j1,.., jK′ )∈Q

σ j1,.., jK′ l(Y j1,..., jK′ ,V j1,..., jK′ )

⎤
⎦ ,

where Rademacher variables σi1,...,iK and σ j1,..., jK′ consist of values of {−1, 1}
with probability 0.5. Let us define � ∈ R

n1×n2×···nK with �i1,...,iK = σi1,...,iK
if (i1, . . . , iK ) ∈ P and �i1,...,iK = 0 otherwise, and �′ ∈ R

n1×n′
2×···n′

K′ with
�′

j1,..., jK′ = σ j1,..., jK′ if ( j1, . . . , jK′ ) ∈ Q and �′
j1,..., jK′ = 0 otherwise. Then us-

ing the assumption of Rademacher contraction principle (Meir & Zhang,
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12 K. Wimalawarne, M. Yamada, and H. Mamitsuka

2003) we can bound RP,Q(l ◦ W, l ◦ V ) as follows:

RP,Q(l ◦ W, l ◦ V ) ≤ �

d
Eσ

⎡
⎣ sup

W,V∈W

∑
i1,..,iK

�i1,...,iKWi1,...,iK

+
∑

j1,.., jK′

�′
j1,..., jK′V j1,..., jK′

⎤
⎦ . (5.4)

Using the primal-dual relationship of the norm ‖ · ‖(1,γ )
hcn	 we can further

bound equation 5.4 as follows,

RP,Q(l ◦ W, l ◦ V ) ≤ �

d

[
Eσ sup

W,V∈W
‖W,V‖(1,γ )

hcn ‖�,�′‖(1,γ )
hcn	

]
, (5.5)

where ‖ · ‖(1,γ )
hcn	 is the dual norm of ‖ · ‖(1,γ )

hcn . Using equation 5.5, we bound
the Rademacher complexities for each of the scaled coupled norms (see ap-
pendixes B and C), which we discuss next.

5.1 Excess Risk of Scaled Three-Mode Couple Norms. Excess risk
bounds for three-mode tensors coupled with a matrix based on unscaled
coupled norms have been derived in Wimalawarne et al. (2018). Since the
scaling parameter γ affects only the concatenated components of the cou-
pled norm, the excess risk bounds in Wimalawarne et al. (2018) can be eas-
ily updated for scaled norms (see appendix A). The updated Rademacher
complexities (RP,Q(l ◦ W, l ◦ V ) in equation 5.5 for completion of a coupled
three-mode tensor X ∈ R

n1×n2×n3 and a matrix M := Y ∈ R
n1×n′

2 are shown
in Table 1. We show only the ‖ · ‖(1,γ )

(O,O,O), ‖ · ‖(1,γ )
(S,S,S), and ‖ · ‖(1,γ )

(S,O,O) norms due
to space limitations.

In Table 1, the parameter γ scales the induced low-rankness re-
lated to the rank of the coupled unfolding √r(1). Note that the param-

eter γ inversely scales the components γ −1C2(
√

n1 +
√∏3

j=2 nj + n′
2) and

γ −1C2(n1 +
√∏3

i=1 ni + n1n′
2). This behavior of scaling with γ tells us that

if 0 < γ < 1, then the shared low-rankness among the two tensors on the
coupled mode is less, and excess risk would be bonded with larger terms

of γ −1C2(
√

n1 +
√∏3

j=2 nj + n′
2) and γ −1C2(n1 +

√∏3
i=1 ni + n1n′

2). On the
other hand, if γ > 1, it indicates more shared low-rankness among coupled
tensors, and the maximum term would select a smaller value. This analysis
allows us to conclude that in order to obtain less excess risk, coupled tensor
should share an adequate amount of low-rankness on the coupled mode.
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Coupled Higher-Order Tensor Completion 13

Table 1: Rademacher Complexity Bounds of Scaled Coupled Norms for Three-
Mode Tensors.

Norm Rademacher Complexity RP,Q(l ◦ W, l ◦ V )

‖ · ‖(1,γ )
(O,O,O)

3�
2d

[
γ
√r(1)(BW + BV ) +∑3

k=2
√

rkBV

]

max
{
γ −1C2

(√
n1 +

√∏3
j=2 n j + n′

2

)
,

mink∈2,3 C1

(√
nk +

√∏3
j �=k n j

)}

‖ · ‖(1,γ )
(S,S,S)

3�
2d

[
γ

√
r(1)
n1

(BW + BV ) + mink∈2,3

√
rk
nk

BV

]

max
{
γ −1C2

(
n1 +

√∏3
i=1 ni + n1n′

2

)
,

C1 maxk=2,3

(
nk +

√∏3
i �=k ni

)}

‖ · ‖(1,γ )
(S,O,O)

3�
2d

[
γ

√
r(1)
n1

(BW + BV ) +∑i=2,3
√

riBV

]

max
{
γ −1C2

(
n1 +

√∏3
i=1 ni + n1n′

2

)
,

mink=2,3 C1

(√
nk +

√∏3
i �=k ni

)}

Note: Coupled completion of X ∈ R
n1×n2×n3 and Y ∈ R

n1×n′
2 re-

sulting in a hypothesis class W = {W,V : ‖W,V‖(1,γ )
hcn ≤ B} where

‖ · ‖(1,γ )
hcn is any of the three-mode tensor-based coupled norms. The

multilinear rank of W is (r1, r2, r3), and the rank on coupled mode
unfolding is r(1). BW , BV , C1, and C2 are constants.

5.2 Excess Risk of Coupled Higher-Order Tensors. Now we look into
excess risk bounds for completion models regularized by the proposed
higher-order coupled norms. Due to the large number of coupled norms
we can define using the proposed norm, we analyze excess risk bounds for
only a few coupled norms in this section.

The following theorem gives the Rademacher complexity for a coupling
between a K-mode tensor X ∈ R

n1×n2×···×nK with K ≥ 4 and a matrix Y :=
M ∈ R

n1×n′
2 .

Theorem 1. Let X ∈ R
n1×n2×···×nK and Y := M ∈ R

n1×n′
2 be coupled on their first

modes with sets of observed elements P and Q, respectively, with |P|/2 = |Q|/2 =
d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),(O,O) ≤ B}, the coupled
completion using ‖W,V‖(1,γ )

([v],O),(O,O) leads to the following Rademacher complexity
of equation 5.5 with probability 1 − δ,
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14 K. Wimalawarne, M. Yamada, and H. Mamitsuka

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW +

√
r′BV

⎤
⎦

min

⎧⎨
⎩γ −1C1

⎛
⎝√

n1 +
√√√√ K∏

j=2

nj + n′
2

⎞
⎠ , max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠,

C3

(√
n1 +

√
n′

2

)⎫⎬
⎭
⎫⎬
⎭ .

where (r1, . . . , rK ) is the multilinear rank of W , r′ is the rank of V , r(1) is the rank
of the coupled unfolding on the first mode, BW , BV , C1, C2, and C3 are constants.

Next, three theorems consider a coupling between a K-mode tensor X ∈
R

n1×n2×···×nK with K ≥ 4 and a three-mode tensor Y ∈ R
n1×n′

2×n′
3 .

Theorem 2. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with sets of observed elements P and Q, respectively, with |P|/2 = |Q|/2 =
d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),(O,O,O) ≤ B}, the coupled

completion using ‖W,V‖(1,γ )
([v],O),(O,O,O) leads to the following Rademacher complex-

ity of equation 5.5 with probability 1 − δ,

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) +
3∑

i=2

√
r′

iBW + min

⎛
⎝
√√√√ k∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BV

⎤
⎦

min

⎧⎨
⎩C1γ

−1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠, max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠,

min
{
C4

(√
n′

2 +
√

n1n′
3

)
,C5

(√
n′

3 +
√

n1n′
2

)}⎫⎬
⎭
⎫⎬
⎭,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW , BV , C1, C2,
C4, and C5 are constants.

Theorem 3. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with set of observed elements P and Q, respectively, with |P|/2 = |Q|/2 = d.
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Coupled Higher-Order Tensor Completion 15

Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )
([v],O),(S,S,S) ≤ B}, the coupled com-

pletion using ‖W,V‖(1,γ )
([v],O),(S,S,S) leads to the following Rademacher complexity of

equation 5.5 with probability 1 − δ,

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ

√
r(1)

n1
(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW

+ min

⎛
⎝
√

r′
2

n2
,

√
r′

3

n3

⎞
⎠BV

⎤
⎦max

⎧⎨
⎩γ −1C1

⎛
⎝n1 +

√√√√ K∏
a=1

na + n1n′
2n′

3

⎞
⎠ ,

C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠,C4

(
n′

2 +
√

n1n′
2n′

3

)
,C5

(
n′

3 +
√

n1n′
2n′

3

)⎫⎬
⎭,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW , BV , C1, C2,
C4, and C5 are constants.

Inspection of the bounds of theorem 1 to 3 leads us to similar con-
clusions as in section 5.1 that more shared low-rankness among the cou-
pled tensors leads to lower excess risks due to the scaling of γ . In order
to make easier comparisons, we consider a tensor T ∈ R

n1×n2×···×nK with
n1 = n2 = · · · = nK = n and matrix M ∈ R

n1×n′
2 with n1 = n′

2 = n. Assuming
that the multilinear rank of T is (r, . . . , r), the rank of M is r, and the rank on
the concatenation of unfolded tensors is also r, then the Rademacher com-
plexity of ‖ · ‖(1,γ )

([v],O),(O,O)is bounded by O((γ
√

r + r
K/2�)n�K/2	) given that γ

is sufficiently large (γ < n(K/4)).

Theorem 4. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with the set of observed elements P and Q, respectively, with |P|/2 =
|Q|/2 = d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v]),(S,O,O) ≤ B}, the

coupled completion using ‖W,V‖(1,γ )
([v],O),(S,O,O) leads to the following Rademacher

complexity of equation 5.5 with probability 1 − δ,

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ

√
r(1)

n1
(BW + BV ) +

3∑
a=2

√
r′

aBV + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW

⎤
⎦
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max

⎧⎨
⎩γ −1C1

⎛
⎝n1 +

√√√√ K∏
a=1

na + n1n′
2n′

3

⎞
⎠ ,C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠

min
(
C4

(√
n′

2 +
√

n1n′
3

)
,C5

(√
n′

3 +
√

n1n′
2

))⎫⎬
⎭ ,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW , BV , C1, C2,
C4, and C5 are constants.

Theorems 1, 2, and 3 also show that combining the square norm with
the overlapped trace norm and the scaled latent norm leads to a lower
Rademacher complexity. Again, if we consider the special case of n1 =
n2 = · · · = nK = n and n1 = n′

2 = n′
3 = n, we have a Rademacher complex-

ity of O((γ
√

r1 + r
K/2�)n
K/2�). However, if we apply coupled norm in
Wimalawarne et al. (2018), we end up with a larger Rademacher complex-
ity of O((γ

√
r1 + √

r)
√

nK−1). Hence, our proposed method leads to a better
theoretical guarantee.

Finally, we consider the coupling of two higher-order tensors X ∈
R

n1×n2×···×nK and Y ∈ R
n1×n′

2×···×n′
K′ where K, K′ ≥ 4.

Theorem 5. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×···×n′

K′ be coupled on their first
modes with set of observed elements P and Q, respectively, with |P|/2 = |Q|/2 = d.
Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),([v ′],O) ≤ B}, the coupled com-

pletion using ‖W,V‖(1,γ )
([v],O),([v ′],O) leads to the following Rademacher complexity of

equation 5.5 with probability 1 − δ,

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i1=1

ri1,

√√√√ K∏
j1=v+1

r j1

⎞
⎠BW

+ min

⎛
⎝
√√√√ v ′∏

i2=1

r′
i2,

√√√√ K′∏
j2=v ′+1

r′
j2

⎞
⎠BV

⎤
⎦min

⎧⎨
⎩γ −1C6

⎛
⎝√

n1 +
√√√√ K∏

a=2

na +
K∏

b=2

n′
b

⎞
⎠,

max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ ,C7

⎛
⎝
√√√√ v ′∏

i′=1

n′
i′ +

√√√√ K′∏
j′=v ′+1

n′
j′

⎞
⎠
⎫⎬
⎭
⎫⎬
⎭ ,

where (r1, . . . , rK ) is the multilinear rank ofW ; (r′
1, . . . , r′

K′ ) is the multilinear rank
of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW ; BV , C2, C6,
and C7 are constants.
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Coupled Higher-Order Tensor Completion 17

We can draw a similar conclusion for coupling two higher-order ten-
sors as in previous theorems that the proposed extension leads to a
lower Rademacher complexity compared to applying coupled norms in
Wimalawarne et al. (2018). If we extend norms from Wimalawarne et al.
(2018) or section 4.1 for higher-order tensors (e.g., ‖ · ‖(1,γ )

(O,O,...,O)), the excess

risk will be bounded by a larger term, such as O(K
√

r(
√

nK−1 + √
n)), which

is larger than the excess risk bounds achievable from theorem 5. This in-
dicates that the integration of the square norm to coupled norms leads to
better performance for coupled higher-order tensors.

Finally, we point out that Rademacher complexities for all coupled
norms are bounded by O(1/d), where d is the total number of observed
elements of both coupled tensors. If completion of tensors were performed
separately, the resulting Rademacher complexities for each tensor would
be bounded with respect to the number of observed elements of that ten-
sor. Since the Rademacher complexity is bounded by 1/d, it may lead to
lower bounds compared to the sum of individual Rademacher complexities
for each tensor. Furthermore, since we used the transductive Rademacher
complexity analysis, we obtained faster rates of decrease by 1/d compared
to an analysis under inductive settings (Shamir & Shalev-Shwartz, 2014),
which could lead to a bounding by 1/

√
d.

6 Experiments

In this section, we present details of simulation experiments that we carried
out for coupled tensor completion.

6.1 Simulation Experiments. We organized our simulation experi-
ments into two sections. In the first section, we give a simulation ex-
periment based on scaled coupled norm regularized coupled completion
models for a coupled three-mode tensor and a matrix. In the following sec-
tion, we give simulation experiments to evaluate the proposed higher-order
coupled norms for coupled higher-order tensor completion.

6.1.1 Experiment with Coupled a Three-Mode Tensor and a Matrix. To cre-
ate coupled tensors for our simulations, we used a similar approach as in
Wimalawarne et al. (2018). All our coupled tensors were created using mul-
tilinear ranks. To generate a K-mode tensor X ∈ R

n1×···×nK with multilin-
ear rank (r1, . . . , rK ), we created a core tensor C ∈ R

r1×···×rK sampled from
a Normal distribution and orthogonal component matrices Ui ∈ R

ri×ni , i =
1, . . . , K and compute X = C ×1 U1 · · · ×K UK where ×k is the k-mode prod-
uct (Kolda & Bader, 2009). We coupled two tensors X and Y along a mode a
by sharing b left singular vectors on their mode-a, unfolding X(a) = M1P1N�

1
and Y(a) = M2P2N�

2 with M1(1 : b, 1 : na) = M2(1 : b, 1 : na). We added noise
sampled from a gaussian distribution of zero mean and variance of 0.01 to
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Figure 1: Performances of completion of a tensor with dimensions of 20 × 20 ×
20 with a multilinear rank of (15, 5, 5) and a matrix with dimensions of 20 × 30
with a rank of 5.

all elements of the tensors. We randomly sampled training sets of percent-
ages of 30, 50, and 70 from the total number of elements of each tensor and
another 10% as validation sets. The remaining elements were taken as test
sets. We repeated the experiments with three random selections and calcu-
lated the mean squared error (MSE) on the test data.

For our simulation experiment in this section, we created a three-mode
tensor T ∈ R

20×20×20 and a matrix M ∈ R
20×30 coupled on their first modes.

We specified the multilinear rank of T as (15, 5, 5) and the rank of M as 5. We
explicitly shared five left singular vectors among the tensor and the matrix
on the coupled mode such that all the left singular vectors of the matrix are
shared with the tensor. We cross-validated the regularization parameters
from the range of 0.01 to 1 in intervals of 0.05 and the scaling parameters
from the set 2−8, 2−7, . . . , 28.

Figure 1 shows the performance of the simulation experiment. We exper-
imented with all the coupled norms for a three-mode tensor (Wimalawarne
et al., 2018) and their scaled norms; however, for clear plotting, we show
only the coupled norms and scaled coupled norms that gave the best per-
formances for the coupled matrix and the tensor. As baseline methods, we
used individual completion models regularized by the overlapped trace
norm (OTN), the scaled latent trace norm (SLTN), and the matrix trace norm
(MTN). As a further baseline method we used MTCSS proposed by Li et al.
(2015).

Figure 1 shows that for matrix completion, none of the coupled norms
outperformed individual matrix completion. The scaled coupled norm
‖M, T ‖(1,γ )

(O,S,O) has performance equal to that of the matrix trace norm, while
its unscaled norm has given a poor performance. For tensor completion,
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Figure 2: Coupled completion of a four-mode tensor and a matrix.

several norms, such as ‖M, T ‖(1,γ )
(O,O,O), ‖M, T ‖1

(O,S,O), and ‖M, T ‖(1,γ )
(O,S,O), per-

formed better than individual tensor completion by the overlapped trace
norm and the scaled latent trace norm. In addition, the coupled norm
‖M, T ‖1

(O,O,O) had weaker performance than individual tensor completion,
while its scaled norm had the best performance, and the MTCSS method
had poor performance compared to coupled norms.

6.1.2 Experiments with Higher-Order Coupled Norms. In this section, we
consider four-mode tensors of dimensions 20 × 20 × 20 × 20 coupled to
other tensors. We used the same procedure to create coupled tensors as in
the section 6.1.1.

For all the experiments in this section, we used the coupled comple-
tion models regularized by higher-order norms introduced in section 4.2.
To evaluate individual completion of the higher-order tensors, we used the
square norm (SN; Mu et al., 2014. Further, we used the OTN and the SLTN
for individual three-mode tensor completion and the matrix trace norm for
individual matrix completion. For all models, we used regularization pa-
rameters from a range of 0.01 to 2 in intervals of 0.025 and scaling parameter
set 2−8, 2−7, . . . , 28.

For our first simulation experiment with coupled higher-order tensors,
we designed a coupled tensor with a four-mode tensor Y1 ∈ R

20×20×20×20

and a matrix M1 ∈ R
20×20 coupled on their first modes. We specified the

multilinear rank of the Y1 to be (3, 6, 6, 6) and the rank of M1 to be 3 where
all the left singular vectors along mode-1 were shared among both the
tensor and the matrix. For this experiment, we used the coupled norm
‖Y1, M1‖(1,γ )

([2],O),(O,O) for coupled completion. From Figure 2, we can see that
both the scaled and unscaled norms of ‖Y1, M1‖(1,γ )

([2],O),(O,O) gave the best per-
formances for both the matrix and the tensor completion.
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Figure 3: Coupled completion of a four-mode tensor and a three-mode tensor.

Next, we look into a coupled tensor consisting of a four-mode tensor
Y2 ∈ R

20×20×20×20 and a three-mode tensor Y3 ∈ R
20×20×20. We specified the

multilinear rank of Y2 to be (3, 6, 6, 6) and the multilinear rank of Y3 to be
(3, 6, 6) with all the left singular vectors along mode-1 shared among the
tensors. As baseline methods, we used the square norm for Y2 and the over-
lapped trace norm and the scaled latent trace norm forY3. We experimented
with different coupled norms that can be applied for coupled four-mode
and three-mode tensors; however, for convenience, we plot in Figure 3 only
results from the norms that gave the best performance. We observe that
for Y1, the best performance is given by the scaled and unscaled norms of
‖Y2,Y3‖([2],O),(O,O,O) and ‖Y2,Y3‖([2],S),(S,S,S). For the tensor Y2, the coupled
norms ‖Y2,Y3‖(1,γ )

([2],O),(O,O,O), ‖Y2,Y3‖(1,1)
([2],S),(S,S,S), and ‖Y2,Y3‖(1,γ )

([2],S),(S,S,S) out-
performed the OTN and the SLTN for individual tensor completion.

Finally, we look into two coupled four-mode tensors. Here, we consid-
ered two tensors Y4 ∈ R

20×20×20×20 and Y5 ∈ R
20×20×20×20. We constrained

the multilinear ranks of Y4 and Y5 to be (3, 6, 6, 6) and (3, 8, 8, 8), respec-
tively, and coupled them on their first modes by making all the left sin-
gular vectors common to both the tensors. We used the coupled norms
‖Y4,Y5‖(1,1)

([2],O),([2],O) and ‖Y4,Y5‖(1,γ )
([2],O),([2],O) for coupled completion. Addi-

tionally, we used the scaled overlapped norm extended from Wimalawarne
et al. (2018) as ‖Y4,Y5‖(1,γ )

(O,O,O,O), which indicates that both tensors are reg-
ularized with respect to each mode unfolding and the concatenated tensor
unfolding on mode-1.

Figure 4 shows that both higher-order coupled norms outperformed in-
dividual tensor learning with the square norm. For the tensor Y5, the scaled
higher-order norm ‖Y4,Y5‖(1,γ )

([2],O),([2],O) further improved the performance
compared to the unscaled norm. We can also see that ‖Y4,Y5‖(1,γ )

(O,O,O,O) gave
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Figure 4: Coupled completion two four-mode tensors.

a weaker performance compared to coupled higher-order norms, agreeing
with our theoretical analysis in section 5.

6.2 Multiview Video Completion Experiment. As a real-data exper-
iment we applied our proposed methods for multiview video comple-
tion using the EPFL data set: multicamera pedestrian Videos data (Berclaz,
Fleuret, Turetken, & Fua, 2011). The data set consists of movements of four
people in a room captured from synchronized cameras. For our experi-
ments, we used two videos; one video was considered to be corrupted and
the other not. To create the video data, we sampled 50 frames with equal
time splits from each video. We then downsampled each frame to a height
and width of 76 and 102, respectively. The dimensions of both videos were
the sameV1,V2 ∈ R

frames×channels×width×height, where frames = 50, channels =
3 representing RBG color channels, width = 76, and height = 102. Since
frames and RGB channels are common to both videos, we considered that
the two videos are coupled on both of these modes. We considered the video
V1 to be corrupted and sampled percentages of 10, 30, 50, and 70 of the to-
tal number of elements as its observed elements (training sets). From the
remaining elements, we considered 10% of the total number of elements as
validation sets; the rest were taken as test sets. To recover missing elements
of the corrupted video, we completed it coupled to the uncorrupted video
as side information using our proposed completion models regularized us-
ing higher-order coupled norms.

We completed coupled videos using the coupled norms ‖V1,

V2‖((1,2),γ )
([2],O),([2],O) in equation 4.7 and ‖V1,V2‖((1,2),γ )

([2],S),([2],S) in equation 4.8.
We performed individual completion of V1 using the square norm similar
to the coupled norm using the first two modes to reshape the tensor as
a matrix. We applied cross-validation on regularization parameters of
10x ranging x from 0 to 7, with intervals of 0.25. We experimented with
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Figure 5: Performances of multiview video completion.

different values for γ ranging from 0.1 to 1, with intervals of 0.1. We
found that best performance for ‖V1,V2‖((1,2),γ )

([2],O),([2],O) was given, with γ = 0.5

and for ‖V1,V2‖((1,2),γ )
([2],S),([2],S) with γ = 0.1. Figure 5 shows that the proposed

coupled norms gave better performance compared to the individual tensor
completion using square norm regularization. We provide further experi-
mental results to compare the performances of the proposed methods with
baseline methods in appendix D.

7 Conclusion

In this letter, we have investigated two limitations of coupled norms and
proposed scaled coupled norms and coupled norms for higher-order ten-
sors. Through theoretical analysis and experiments, we demonstrated that
our proposed methods are more robust for coupled completion compared
to existing coupled norms. However, we feel that coupled norms should be
further investigated to be used widely in real-world applications.

One drawback of the scaling of coupled norms is that it requires more
computations to find the optimal scaling parameters (γ ). Though cross-
validation can be employed to find the optimal scaling parameter, it can
become computationally infeasible in real-world applications, especially
with tensors with large dimensions. Future research in coupled norms
should be directed toward finding better optimization strategies and pa-
rameter selection methods to overcome these computational issues. Fur-
ther, our theoretical analysis was focused on excess risk bounds for tensor
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completion. In future research, a more suitable yet rigorous theoretical anal-
ysis would be to derive exact recovery bounds (Yuan & Zhang, 2016) for
coupled completion.

Appendix A: Dual Norms for Scaled Coupled Norms

The dual norms of our proposed coupled norms are important to prove
excess risk bounds given in this letter. The dual norms of scaled cou-
pled norms for three-mode tenors are similar to dual norms given in
Wimalawarne et al. (2018). The only difference comes from the scaling pa-
rameter γ , which is inversely multiplied in the dual norm. For instance, the
dual norm of ‖Y, M‖(1,γ )

(O,O,O) is

‖Y, M‖(1,γ )
(O,O,O)	 = max{γ −1‖[Y(1); M]‖op, ‖Y(2)‖op‖Y(3)‖op}.

Dual norms of coupled higher-order tensors can also be derived by using
a similar approach as in Wimalawarne et al. (2018). We give a brief overview
of how to derive dual norms for higher-order coupled norms, starting with
the dual norm of ‖X ,Y‖(1,γ )

([v],O),(O,O,O), which we derive next.

Theorem 6. Let a matrix X ∈ R
n1×n2×n3×n4 and a tensor Y ∈ R

n1×n′
2×n′

3 be cou-
pled on their first modes. The dual norm of ‖X ,Y‖(1,γ )

([v],O),(O,O,O) is

‖X ,Y‖(1,γ )
([v],O),(O,O,O)	 = inf

X (1)+X (2)=X
inf

Y (1)+Y (2)+Y (3)=Y
max

{
γ −1‖[X (1)

(1) ;Y (1)
(1) ]‖op,

‖X (2)
[v] ‖op, ‖Y (2)

(2) ‖op, ‖Y (3)
(3) ‖op

}
.

Proof. We adopt the method of deriving dual norms for tensor norms in
Tomioka and Suzuki (2013) and Wimalawarne et al. (2018) to derive the
dual norm ‖X ,Y‖(1,γ )

([v],O),(O,O,O)	 . First, we derive the unscaled dual norm

‖X ,Y‖(1,1)
([v],O),(O,O,O)	 .

Let us consider a linear operator 
 similar to Tomioka and Suzuki
(2013) and Wimalawarne et al. (2018) such that z := 
(X ,Y ) = [vec([X(1);
Y(1)]); vec(X([v]) ); vec(Y(2) ); vec(Y(3) )] ∈ R

2d1+3d2 where d1 = n1n2n3n4 and
d2 = n1n′

2n′
3 .

Now, we consider the Schatten norm of the coupled norm
‖X ,Y‖(1,1)

([v],O),(O,O,O),Sq
p
, which is defined as

‖z‖∗ =
(

‖[Z(1)
1(1); Z(1)

2(1)]‖
q
Sp

+
3∑

k=2

‖Z(k)
1(k)‖

q
Sp

+ ‖Z(2)
2([v])‖

q
Sp

)1/q

, (A.1)
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where Z (k)
1 is the inverse vectorization of elements z((k−1)d2+1):(kd2 ) for k =

1, 2, 3, and Z (1)
2 and Z (2)

2 are inverse vectorizations of z(3d1+1):(3d1+d2 ) and
z(3d1+d2+1):(3d1+2d2 ), respectively. Then the dual of the above norm is

‖z‖∗∗ =
(

‖[Z(1)
1(1); Z(1)

2(1)]‖
q∗

Sp∗
+

3∑
k=2

‖Z(k)
1(k)‖

q∗

Sp∗
+ ‖Z(2)

2([v])‖
q∗

Sp∗

)1/q∗

,

where 1/p + 1/p∗ = 1 and 1/q + 1/q∗ = 1.
Since 
� is the inverse operator of 
 Tomioka and Suzuki (2013), we find

that


�(z) = {X ,Y} =
⎧⎨
⎩

2∑
j=1

Z ( j)
2 ,

3∑
i=1

Z (i)
1

⎫⎬
⎭ .

Then we have a norm such as

|||[X ,Y]|||∗(
) = inf
Z (1)

1 +Z (2)
1 =X

inf
Z (1)

2 +Z (2)
2 +Z (3)

2 =Y

(
‖[Z (1)

1(1);Z (1)
2(1)]‖

q
Sp

+ ‖Z (2)
1[v]‖

q
Sp

+‖Z (2)
2(2)‖

q
Sp

+ ‖Z (3)
2(3)‖

q
Sp

)1/q
. (A.2)

Now if we take |||X ,Y|||∗(
) = ‖X ,Y‖(1,1)
([v],O),(O,O,O),Sq

p
and

|||[X ,Y]|||∗(
) = inf ‖z‖∗ s.t 
�(z) = {X ,Y},

then from lemma 3 in Tomioka and Suzuki (2013), we can conclude that the
dual norm of ‖X ,Y‖(1,1)

([v],O),(O,O,O) is |||[X ,Y]|||∗(
)	 , as given in equation A.2.
If we consider the case special where p = 1 and q = 1, then we will obtain

the following dual norm:

‖X ,Y‖(1,1)
([v],O),(O,O,O)	 = inf

X (1)+X (2)=X
inf

Y (1)+Y (2)+Y (3)=Y
max

{
‖[X (1)

(1) ;Y (1)
(1) ]‖op,

‖X (2)
[v] ‖op, ‖Y (2)

(2) ‖op, ‖Y (3)
(3) ‖op

}
.

Using the duality relationship (Boyd & Vandenberghe, 2004), we find
that the scaled norm ‖X ,Y‖(1,γ )

([v],O),(O,O,O)	 has the following dual norm:

‖X ,Y‖(1,γ )
([v],O),(O,O,O)	 = inf

X (1)+X (2)=X
inf

Y (1)+Y (2)+Y (3)=Y
max

{
γ −1‖[X (1)

(1) ;Y (1)
(1) ]‖op,

‖X (2)
[v] ‖op, ‖Y (2)

(2) ‖op, ‖Y (3)
(3) ‖op

}
.

�



NECO_a_01254-Wimalawarne MITjats-NECO.cls December 4, 2019 16:53

U
nc

or
re

ct
ed

Pr
oo

f

Coupled Higher-Order Tensor Completion 25

We can use theorem 6 to deduce dual norms for other norms. For exam-
ple, if we consider ‖X ,Y‖(1,γ )

([v],O),([v],O)	 , we can extend theorem 6 to arrive at
the dual norm,

‖X ,Y‖(1,γ )
([v],O),([v],O)	 = inf

X (1)+X (2)=X
inf

Y (1)+Y (2)=Y
max

{
γ −1‖[X (1)

(1) ;Y (1)]‖op,

‖X (2)
[v] ‖op, ‖Y (2)

[v] ‖op

}
.

Similarly, dual norms of other scaled higher-order coupled norms can be
derived.

Appendix B: Excess Risk Bounds for Coupled Three-Mode Tensor
Completion

The excess risk bounds for coupled completion using scaled coupled norms
given in section 5.1 can be derived in an identical way, as Wimalawarne et al.
(2018) proved for unscaled norms. As a guide for proof and completeness,
we give the detailed proof of excess risk bounds for the norm ‖ · ‖(1,γ )

(O,O,O).

Theorem 7. Let X ∈ R
n1×n2×n3 and Y := M ∈ R

n1×n′
2 be coupled on their first

modes with sets of observed elements P and Q, respectively, with |P|/2 = |Q|/2 =
d. Given a hypothesis class W = {W,WM : ‖W,WM‖(1,γ )

(O,O,O) ≤ B}, the coupled

completion using ‖W,V‖(1,γ )
(O,O,O) leads to the following Rademacher complexity of

equation 5.5 with probability 1 − δ,

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

[
γ −1√r(1)(BW + BM) +

3∑
k=2

√
rkBW

]

max

⎧⎪⎨
⎪⎩C2

⎛
⎜⎝√

n1 +

√√√√√ 3∏
j=2

nj + n′
2

⎞
⎟⎠ , min

k∈2,3
C1

⎛
⎜⎝√

nk +

√√√√√ 3∏
j �=k

n j

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

where (r1, r2, r3) is the multilinear rank of W ; r′ is the rank of M; r(1) is the rank of
the coupled unfolding on the first mode; and BM, BW , C1, C2, and C3 are constants.

Proof. We first bound ‖W,WM‖(1,γ )
(O,O,O) as

‖W,WM‖(1,γ )
(O,O,O) = γ ‖[W(1);WM]‖tr +

3∑
k=2

‖W(k)‖tr

≤ γ
√

r(1)(BW + BM) +
3∑

k=2

√
rkBW ,
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where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled
unfolding on mode 1, ‖WM‖F ≤ BM, and ‖W‖F ≤ BW .

To bound E‖�,�′‖(1,γ )
(O,O,O)∗ , we use the following duality relationship

from section 8:

‖�,�′‖(1,γ )
(O,O,O)∗ = inf

�(1)+�(2)+�(3)=�
max

{
γ −1‖[�(1)

(1);�′]‖op,

‖�(2)
(2)‖op, ‖�(3)

(3)‖op

}
.

Since we can take any �(k) to be equal to �, the above norm can be upper-
bounded as

‖�,�′‖(1,γ )
(O,O,O)	 ≤ max

{
γ −1‖[�(1);�′]‖op, min

{‖�(2)‖op, ‖�(3)‖op
}}

.

Now, taking the expectation leads to

E‖�,�′‖(1,γ )
(O,O,O)∗ ≤ Emax

{
γ −1‖[�(1);�′]‖op, min

{‖�(2)‖op, ‖�(3)‖op
}}

≤ max
{
γ −1

E‖[�(1);�′]‖op, min
{
E‖�(2)‖op,E‖�(3)‖op

}}
.

From Wimalawarne et al. (2018) we know that E‖�(k)‖op ≤ 3C1
2

(√
nk +√∏3

j �=k n j
)

and E‖[�(1);�′]‖op ≤ 3C2
2

(√
n1 +

√∏3
j=2 nj + n′

2

)
for come con-

stants C1 and C2, which give us the final bound as

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

[
γ −1√r(1)(BW + BM) +

3∑
k=2

√
rkBW

]

max

⎧⎪⎨
⎪⎩C2

⎛
⎜⎝√

n1 +

√√√√√ 3∏
j=2

nj + n′
2

⎞
⎟⎠ , min

k∈2,3
C1

⎛
⎜⎝√

nk +

√√√√√ 3∏
j �=k

n j

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

�

From the proof of theorem 7, we can see how the parameter γ changes
the bounds compared to unscaled coupled norms in Wimalawarne et al.
(2018).

Appendix C: Excess Risk Bounds for Coupled Higher-Order Tensor
Completion

In this section, we give the proofs for the theorems in section 5.2.
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Proof of Theorem 1. Let us denote � and �′ corresponding Rademacher
variables corresponding to W and V in equation 5.5.

We bound ‖W,V‖(1,γ )
([v],O),(O,O) as follows,

‖W,V‖(1,γ )
([v],O),(O,O) = γ ‖[W(1);V]‖tr + ‖W[v]‖tr + ‖V‖tr

≤ γ
√

r(1)(BW + BV + min

⎛
⎝
√√√√ k∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW

+
√

r′BV ,

where ‖W‖F ≤ BW and ‖V‖F ≤ BV .
Using Latała’s theorem (Latała, 2005; Shamir & Shalev-Shwartz, 2014),

we can bound ‖�[v]‖op as

E‖�[v]‖op ≤ C2

⎛
⎝
√√√√ k∏

i=1

ni +
√√√√ K∏

j=v+1

nj + 4
√|�[v]|

⎞
⎠ ,

and since 4
√|�[v]| ≤ 4

√∏K
i=1 ni ≤ 1

2

(√∏v
i=1 ni +

√∏K
j=v+1 nj

)
, we have

E‖�[v]‖op ≤ 3C2

2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ .

Similarly, using Latała’s theorem, we have the following bound:

E‖[�(1);�′
(1)]‖op ≤ 3C1

2

⎛
⎝√

n1 +
√√√√ K∏

j=2

nj + n′
2

⎞
⎠ .

From Shamir and Shalev-Shwartz (2014), we know that E‖�′‖op ≤
C3
(√

n1 +√n′
2

)
.

To bound E‖�,�′‖(1,γ )
([v],O),(O,O)	 , we extend the dual norms for coupled

norms from Wimalawarne et al. (2018) as

‖�,�′‖(1,γ )
([v],O),(O,O)	 = inf

�(1)+�(2)=�
inf

�′(1)+�′(2)=�′
max

{
γ −1‖[�(1)

(1);�
′(1)
(1) ]‖op,

‖�(2)
[v] ‖op, ‖�′(2)‖op

}
.
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Since we can take any �(k), k = 1, 2 to be equal to � and any �′(l), l = 1, 2
to be equal to �, the above norm, we have

‖�,�′‖(1,γ )
([v],O),(O,O)	 ≤ min

{
γ −1‖[�(1);�′]‖op, max{‖�[v]‖op, ‖�′‖op}

}
,

(C.1)

which can be understood as taking �(1) = � and �
(1)
2 = �, which lead

to ‖�,�′‖(1,γ )
([v],O),(O,O)	 ≤ max{‖�[v]‖op, ‖�′‖op}, and taking �(2) = � and

�′(2) = �′, which lead to ‖�,�′‖(1,γ )
([v],O),(O,O)	 ≤ γ −1‖[�(1);�′]‖op, while the

results by other combinations of �(1) = � and �′(2) = �′ or �(2) = � and
�

(1)
2 = �′ are also upper-bounded by equation C.1.

Furthermore, taking the expectation of equation C.1 leads to

E‖�,�′‖(1,γ )
([v],O),(O,O)	

≤ Emin
{
γ −1‖[�(1);�′]‖op, max{‖�[v]‖op, ‖�′‖op}

}
≤ min

{
γ −1

E‖[�(1);�′]‖op, max{E‖�[v]‖op,E‖�′‖op}
}
.

Finally, by using equation 5.5, we obtain

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW +

√
r′BV

⎤
⎦

min

⎧⎨
⎩γ −1C1

⎛
⎝√

n1 +
√√√√ K∏

j=2

nj + n′
2

⎞
⎠ , max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠,

C3

(√
n1 +

√
n′

2

)⎫⎬
⎭
⎫⎬
⎭ .

�

Proof of Theorem 2. Similar to theorem 1 due to all the norms regularized
by overlapped norms, we have the following bound for ‖W,V‖1

([v],O),(O,O,O)
given that W and V are the corresponding learned elements with of X and
Y , respectively, as

‖W,V‖(1,γ )
([v],O),(O,O,O) ≤

⎡
⎣γ
√

r(1)(BW + BV ) +
3∑

i=2

√
r′

iBW
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+ min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BV

⎤
⎦ , (C.2)

where ‖W‖F ≤ BW and ‖V‖F ≤ BV .
Considering the dual norm, E‖�,�′‖(1,γ )

([v]),(O,O,O)∗ is given as

‖�,�′‖(1,γ )
([v],O),(O,O,O)∗

= inf
�(1)+�(2)+�(3)=�

inf
�′(1)+�′(2)=�′

max
{
γ −1‖[�(1)

(1);�′ (1)
(1)]‖op, ‖�(2)

[v] ‖op,

‖�′(2)
(2)‖op, ‖�′(3)

(3)‖op

}
,

which can be expressed by taking a similar argument as in theorem 1 as

‖�,�′‖(1,γ )
([v],O),(O,O,O)∗ ≤ min

{
γ −1‖[�(1);�′

(1)]‖op,

max
{‖�[v]‖op, min

{‖�′
(2)‖op, ‖�′

(3)‖op
}}}

.

The expectation of the above dual norm is bound as

E‖�,�′‖(1,γ )
([v],O),(O,O,O)∗ ≤ min

{
γ −1

E‖[�(1);�′
(1)]‖op, max

{
E‖�[v]‖op,

min
{
E‖�′

(2)‖op,E‖�′
(3)‖op

}}}
,

which can be bounded as

E‖�,�′‖(1,γ )
([v],O),(O,O,O)∗ ≤ 3

2
min

⎧⎨
⎩C1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠ ,

max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ , min

{
C4γ

−1
(√

n′
2 +

√
n1n′

3

)
,

C5

(√
n′

3 +
√

n1n′
2

)}⎫⎬
⎭
⎫⎬
⎭ . (C.3)

By combining equations C.2 and C.3 with 5.5, we arrive at the final
bound. �

Next, we look at the excess risk for the coupled norm ‖X ,Y‖(1,γ )
([v],O),(L,L,L).
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Theorem 8. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with sets of observed elements P and Q, respectively, with |P|/2 = |Q|/2 =
d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),(L,L,L) ≤ B}, the coupled

completion using ‖W,V‖(1,γ )
([v],O),(L,L,L) leads to the following Rademacher complex-

ity of equation 5.5 with probability 1 − δ:

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW

+ min
(√

r′
2,

√
r′

3

)
BV

⎤
⎦max

⎧⎨
⎩γ −1C1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠ ,

C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ ,C4

(√
n′

2 +
√

n1n′
3

)
,C5

(√
n′

3 +
√

n1n′
2

)⎫⎬
⎭ ,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW , BV , C1, C2,
C4, and C5 are constants.

Proof. Let W and V be the completed tensors for X and Y . Also let us
denote � and �′ consisting of corresponding Rademacher variables of X
and Y .

Here, we have ‖W,V‖(1,γ )
([v],O),(L,L,L), which can be explicitly written as

‖W,V‖(1,γ )
([v],O),(L,L,L)

= inf
V (1)+V (2)+V (3)=V

(
‖[W (1)

(1) ,V(1)]‖tr + ‖W[v]‖tr +
3∑

a=2

‖V (a)
(a) ‖tr

)
, (C.4)

which we can bound as

‖W,V‖(1,γ )
([v],O),(L,L,L) ≤ γ

√
r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW

+ min
(√

r′
2,

√
r′

3

)
BV , (C.5)

where we have used the fact that we can take W (2) or W (3) to be equal to W
in the last inequality and take ‖W‖F ≤ BW and ‖V‖F ≤ BV .
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To complete the proof, we need the dual norm, ‖�,�′‖(1,γ )
([v],O),(L,L,L)	 ,

which can be written as follows,

‖�,�′‖(1,γ )
([v],O),(L,L,L)	 = inf

�(1)+�(2)=�
max

{
γ −1‖[�′

(1);�
(1)
(1) ]‖op, ‖�(2)

[v] ‖op,

‖�′
(2)‖op, ‖�′

(3)‖op

}
,

which can be bounded as follows,

‖�,�′‖(1,γ )
([v],O),(L,L,L)	 ≤ max

{
γ −1‖[�′

(1);�(1)]‖op, ‖�[v]‖op,

‖�′
(2)‖op, ‖�′

(3)‖op

}
,

where the infimum with respect to � does not have an effect.
The above dual norm can be bounded with its expectation as

E‖�,�′‖(1,γ )1
([v],O),(L,L,L)	

≤ max
{
γ −1‖[�′

(1);�
(1)
(1) ]‖op, ‖�(2)

[v] ‖op, ‖�′
(2)‖op, ‖�′

(3)‖op

}
≤ max

{
γ −1

E‖[�′
(1);�

(1)
(1) ]‖op,E‖�(2)

[v] ‖op,E‖�′
(2)‖op,E‖�′

(3)‖op

}
,

which leads to

E‖�,�′‖(1,γ )
([v],O),(L,L,L)	 ≤ max

⎧⎨
⎩γ −1C1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠ ,

C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ ,C4

(√
n′

2 +
√

n1n′
3

)
,

C5

(√
n′

3 +
√

n1n′
2

)⎫⎬
⎭ . (C.6)

Combining equations C.5 and C.6 with 5.5 completes the proof. �
Proof of Theorem 3. To derive the bounds for ‖W,V‖(1,γ )

([v],O),(S,S,S) we use a
similar approach as for theorem 4.

We have the following bound for ‖W,V‖(1,γ )
([v],O),(S,S,S) as

‖W,V‖(1,γ )
([v],O),(S,S,S) ≤ γ

√
r(1)

n1
(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW
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+ min

⎛
⎝
√

r′
2

n2
,

√
r′

3

n3

⎞
⎠BV , (C.7)

where ‖W‖F ≤ BW and ‖V‖F ≤ BV .
The dual norm, ‖�,�′‖(1,γ )

([v],O),(S,S,S)	 , can be written as

‖�,�′‖(1,γ )
([v],O),(S,S,S)	 = inf

�(1)+�(2)=�
max

{
γ −1√n1‖[�′

(1);�
(1)
(1) ]‖op, ‖�(2)

[v] ‖op,

√
n2‖�′

(2)‖op,
√

n3‖�′
(3)‖op

}
.

Using similar arguments as in theorem 5, we derive the bound for
E‖�,�′‖(1,γ )

([v],O),(S,S,S)	 as follows:

E‖�,�′‖(1,γ )
([v],O),(S,S,S)	 ≤ max

⎧⎨
⎩γ −1C1

⎛
⎝n1 +

√√√√ K∏
a=1

na + n1n′
2n′

3

⎞
⎠ ,

C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠ ,C4

(
n′

2 +
√

n1n′
2n′

3

)
,

C5

(
n′

3 +
√

n1n′
2n′

3

)⎫⎬
⎭ . (C.8)

Combining equations C.7 and C.8 with 5.5 completes the proof. �

Next, we give proofs for the mixed norms among higher-order ten-
sors and three-mode tensors. First, we give the proof of theorem 4 for
‖X ,Y‖(1,γ )

([v],O),(S,O,O).

Proof of Theorem 4. We first write ‖W,V‖(1,γ )
([v],O),(S,O,O) explicitly as

‖W,V‖(1,γ )
([v],O),(S,O,O)

= inf
V (1)+V (2)=V

(
γ√
n1

‖[W(1);V (1)
(1) ]‖tr +

3∑
a=2

‖V (2)
(a) ‖tr + ‖W[v]‖tr

)
,

and it can be bounded as

‖W,V‖(1,γ )
([v],O),(S,O,O) ≤ γ

√
r(1)

n1
(BW + BV ) +

3∑
a=2

√
r′

aBV
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+ min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW , (C.9)

where ‖W‖F ≤ BW and ‖V‖F ≤ BV .
The dual norm, ‖�,�′‖(1,γ )

([v],O),(S,O,O)	 , can be written as

‖�,�′‖(1,γ )
([v],O),(S,O,O)	 = inf

�(1)+�(2)=�
max

{
γ −1√n1‖[�1(1);�

′ (1)
(1) ]‖op,

‖�1[v]‖op, ‖� ′(2)
(2) ‖op, ‖�(2)

2(3)‖op

}
,

which can be bounded as

‖�,�′‖(1,γ )
([v],O),(S,O,O)	 ≤ max

{
γ −1√n1‖[�1(1);�2(1)]‖op, ‖�1[v]‖op,

min{‖�2(2)‖op, ‖�2(3)‖op}
}
,

which leads to

E‖�,�′‖(1,γ )
([v]),(P,O,O)	 ≤ max

⎧⎨
⎩γ −1C1

⎛
⎝n1 +

√√√√ K∏
a=1

na + n1n′
2n′

3

⎞
⎠ ,

C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠min

(
C4

(√
n′

2 +
√

n1n′
3

)
,

C5

(√
n′

3 +
√

n1n′
2

))⎫⎬
⎭ . (C.10)

Combining equations C.9 and C.10 with 5.5 completes the proof. �

Following theorem 6, we can derive the bounds for other mixed
norms as well. Next, we give the bounds for ‖X ,Y‖(1,γ )

([v],O),(O,S,O) and

‖X ,Y‖(1,γ )
([v],O),(O,O,S) without proofs.

Theorem 9. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with the set of observed elements P and Q, respectively, with |P|/2 =
|Q|/2 = d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),(O,S,O) ≤ B}, the

coupled completion using ‖W,V‖(1,γ )
([v],O),(O,S,O) leads to the following Rademacher

complexity of equation 5.5 with probability 1 − δ,
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RS,P(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ k∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW +

√
r′

3BV

+
√

r′
2

n′
2

BV

⎤
⎦max

⎧⎨
⎩min

(
C4

(
n′

2 +
√

n1n′
2n′

3

)
,C5

(√
n′

3 +
√

n1n′
2

))
,

C1γ
−1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠ ,C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠
⎫⎬
⎭ ,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; BW , and BV , C1, C2,
C3, and C4 are constants.

Theorem 10. Let X ∈ R
n1×n2×···×nK and Y ∈ R

n1×n′
2×n′

3 be coupled on their first
modes with the set of observed elements P and Q, respectively, with |P|/2 =
|Q|/2 = d. Given a hypothesis class W = {W,V : ‖W,V‖(1,γ )

([v],O),(O,O,S) ≤ B}, the

coupled completion using ‖W,V‖(1,γ )
([v],O),(O,O,S) leads to the following Rademacher

complexity of equation 5.5 with probability 1 − δ:

RP,Q(l ◦ W, l ◦ V )

≤ 3�

2d

⎡
⎣γ
√

r(1)(BW + BV ) + min

⎛
⎝
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎞
⎠BW +

√
r′

2BV

+
√

r′
3

n′
3

BV

⎤
⎦max

⎧⎨
⎩min

⎛
⎝C4

(√
n′

2 +
√

n1n′
3

)
,C5

(
n′

3 +
√

n1n′
2n′

3

))
,

C1γ
−1

⎛
⎝√

n1 +
√√√√ K∏

a=2

na + n′
2n′

3

⎞
⎠ ,C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠
⎫⎬
⎭ ,

where (r1, . . . , rK ) is the multilinear rank of W ; (r′
1, r′

2, r′
3) is the multilinear rank

of V ; r(1) is the rank of the coupled unfolding on the first mode; and BW , BV , C1, C2,
C3, and C4 are constants.

Next we give the bound for the coupled norm ‖W,V‖(1,γ )
([v],O),([v ′],O).

Proof of Theorem 5. Similar to theorem 1 (all norms are in the form of over-
lapping norms), we have the following for ‖W,V‖(1,γ )

([v],O),([v ′],O) given that W
and V are the corresponding learned elements with respect to X and Y ,
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receptively,

‖W,V‖(1,γ )
([v],O),([v ′],O) ≤ γ

√
r(1)(BW + BV ) + min

⎛
⎝
√√√√ k∏

i1=1

ri1,

√√√√ K∏
j1=v+1

r j1

⎞
⎠BW

+ min

⎛
⎝
√√√√ v ′∏

i2=1

r′
i2,

√√√√ K′∏
j2=k′+1

r′
j2

⎞
⎠BV , (C.11)

where ‖W‖F ≤ BW and ‖V‖F ≤ BV .
It is easy to derive that

‖�,�′‖(1,γ )
([v],O),([v ′],O)∗ = inf

�(1)+�(2)=�
inf

�′(1)+�′(2)=�′
max

{
γ −1‖[�(1)

(1) , �
′(1)
(1)]‖op,

‖�(2)
[v] ‖op, ‖�′(2)

[v ′]‖op

}
,

which can be simplified using a similar argument in theorem 1 as follows:

‖�,�′‖(1,γ )
([v],O),([v ′],O)∗

≤ min
{
γ −1‖[�(1), �

′
(1)]‖op, max{‖�[v]‖op, ‖�′

[v ′]‖op}
}
,

Its expectation leads to

E‖�,�′‖(1,γ )
([v],O),([v ′],O)∗ ≤ 3

2
min

⎧⎨
⎩γ −1C6

⎛
⎝√

n1 +
√√√√ K∏

a=2

na +
K∏

b=2

n′
b

⎞
⎠ ,

max

⎧⎨
⎩C2

⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏
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⎞
⎠ ,
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⎛
⎝
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i′ +

√√√√ K′∏
j′=v ′+1

n′
j′

⎞
⎠
⎫⎬
⎭
⎫⎬
⎭ . (C.12)

Combining equations C.11 and C.12 with 5.5 completes the proof. �

Given higher-order tensor T ∈ R
n1×···×nK , the excess risk bound with the

square reshaping norm.

Theorem 11. Using the square reshaping norm regularization given by ‖T[v]‖tr,
we have
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Figure 6: Further experiments for multiview video completion.

RP(l ◦ W ) ≤ 3c4�BW
2d

min

⎡
⎣
√√√√ v∏

i=1

ri,

√√√√ K∏
j=v+1

r j

⎤
⎦
⎛
⎝
√√√√ v∏

i=1

ni +
√√√√ K∏

j=v+1

nj

⎞
⎠.

for some constant c4 and (r1, . . . , rK ) is the multilinear rank of W .

Proof. The proof is direct and can be derived similarly to theorem 3 without
considering the matrix coupling. �

Appendix D: Further Experiments for Multiview Video Completion

We give further results for baseline methods for the multiview video com-
pletion experiment in section 6.4. We performed individual tensor comple-
tion of corrupted video data V1 using the overlapped trace norm (OTN) and
scaled latent trace norm (SLTN). We performed coupled completion using
the coupled norm ‖V1,V2‖((1,2),1)

(O,O,O),(O,O,O) by extending the coupled norms in
Wimalawarne et al. (2018). In Figure 6, we compare these baseline methods
with the proposed norms ‖V1,V2‖(1,2),1)

([2],O),([2],O) and ‖V1,V2‖((1,2),1)
([2],S),([2],S). We ob-

served that the baseline methods performed poorly compared to proposed
methods.
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