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ABSTRACT

Contrast enhancement, a key aspect of image-to-image translation (I2IT), im-
proves visual quality by adjusting intensity differences between pixels. However,
many existing methods struggle to preserve fine-grained details, often leading to
the loss of low-level features. This paper introduces LapLoss, a novel approach
designed for I2IT contrast enhancement, based on the Laplacian pyramid-centric
networks, forming the core of our proposed methodology. The proposed approach
employs a multiple discriminator architecture, each operating at a different reso-
lution to capture high-level features, in addition to maintaining low-level details
and textures under mixed lighting conditions. The proposed methodology com-
putes the loss at multiple scales, balancing reconstruction accuracy and percep-
tual quality to enhance overall image generation. The distinct blend of the loss
calculation at each level of the pyramid, combined with the architecture of the
Laplacian pyramid enables LapLoss to exceed contemporary contrast enhance-
ment techniques. This framework achieves state-of-the-art results, consistently
performing well across different lighting conditions in the SICE dataset.

1 INTRODUCTION

Image-to-image translation (I2IT) (Isola et al., 2017) is a popular task in the field of Computer Vi-
sion, which targets the transfer of images mapped from an input domain to an output domain. It is
a critical challenge in modern industries, where the demand for complex and precise image trans-
formations is rapidly growing requiring diverse image transformations, from minor augmentations
to major format alterations. As the field advances, I2IT has proven highly effective in tasks such as
colourizing grayscale images, image illumination, style transfer, and contrast enhancement, with the
latter being a key challenge for improving visual clarity in underexposed or overexposed images,
particularly in critical applications like autonomous driving (Xia et al., 2022), where accurate and
realistic visual representations are essential.

Many traditional methods (Liu et al., 2017) (Wang et al., 2018) are available for performing transla-
tion, but they are computationally heavy, often requiring large inference times due to the complexity
of the algorithms involved. This work focuses on tackling contrast enhancement and combatting the
existing limitations with a novel approach. To this end, the Laplacian Pyramid (Liang et al., 2021),
a powerful multi-scale image processing approach that decomposes any image into a series of levels
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that represent distinct low and high-level features and from which the original image can be recon-
structed is employed. Initially, it involves the creation of a Gaussian pyramid from the original image
through downsampling and at each level, the difference between the original and the smoothened
version is calculated to capture finer structural intricacies. This method preserves important features
across different scales, enabling models to better handle the structure of an images, which ulti-
mately enhances the quality of image translation. It addresses the previous challenges through its
lightweight architecture (Huang et al., 2022), which supports faster inference times while delivering
results comparable to other state-of-the-art models (SOTA).

In this work, Generative Adversarial Networks employed (GANs) to enhance the translational net-
works for I2IT (Denton et al., 2015). This competitive process between the generator and discrim-
inators encourages incremental improvements, refining the generator’s outputs to address subtle
changes like variations in saturation and other visual attributes, successfully fooling the discrimi-
nator over time. Due to this competitive framework, GANs prove to be highly versatile with their
use cases (Islam et al., 2024); (Sauer et al., 2023), and produce highly realistic outputs. However,
GANs are susceptible to unstable training and mode collapse (Durall et al., 2020), where the gener-
ator fails to capture the full data distribution and repeatedly produces similar outputs. Additionally,
GANs may suffer from vanishing gradients, making optimization difficult. Generative tasks in high-
dimensional spaces demand more robust solutions for ensuring efficiency and latent space leads to
further instability of training.

Major contributions in this work are summarized as:

• Proposed a novel approach that integrates pixel-wise loss with adversarial losses across
multiple scales of a Laplacian pyramid, achieving state-of-the-art results.

• Performed extensive experiments to analyze the impact of the translational network at each
pyramid level, demonstrating its adaptability and generalizability across nine different con-
trast levels, effectively handling underexposed, overexposed, and mixed-exposure condi-
tions.

• Showcased the robustness of the proposed loss function through cross-validation, achieving
competitive performance to other frameworks for contrast enhancement.

2 RELATED WORKS

2.1 TRADITIONAL LOW-LIGHT ENHANCEMENT METHODS AND CONTRAST ENHANCEMENT

The low-light image enhancement (LLIE) discipline has transitioned significantly over the years.
Elementary approaches relied upon histogram equalization (Woods & Gonzalez, 2018), which re-
distributes pixel intensities across the entire range. Further contrast enhancement in each tile and
modifying the histogram equalization process (Reza, 2004; Tian & Cohen, 2017). Despite their util-
ity, the persistent shortcomings of histogram-based methods in achieving accurate colour restora-
tion—particularly under non-linear illumination distortions—] motivated the adoption of gamma
correction (Huang et al., 2012; 2013) by applying power-law transformation compensated for the
non-linear response of display devices and for enhancing details in dark or bright regions of an
image. However, it does not address issues like noise or colour distortion, which are common in
low-light conditions.

Deep learning has improved LLIE by addressing colour shifts, noise, and uneven illumination.
RetinexNet (Chen et al., 2018; Wang et al., 2019) and Bread (Guo & Hu, 2023) tackle noise but
introduce colour distortion. SNR-Aware (Xu et al., 2022) tries to tackle noise using transformers but
struggles with extreme lighting. Recent approaches, including DRBN (Yang et al., 2020) and self-
supervised methods (Li et al., 2021), have improved noise suppression and adaptive illumination
adjustment. Another direction of using Diffusion models led to innovations including DDPMs (Ho
et al., 2020), PyDiff (Zhou et al., 2023), and Diff-Retinex (Yi et al., 2023) which improved noise
handling but suffered from inefficiency and over-exposure. KinD (Zhang et al., 2019) introduces
noise-aware priors, yet the high costs and distortions remain.

Generative models, especially GANs and Cycle GANs, have shown incredible prowess in contrast
enhancement across domains. In the medical domain, GANs have been applied to generate contrast-
enhanced MRI and CT images (Cheng et al., 2024). For example, CGAN-based models yield notable
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SSIM values for the synthetic T1-weighted brain MRI images (Solak et al., 2024); the deep learning
frameworks for sCECT enhance mediastinal lymph nodes lesion conspicuity and contrast-to-noise
ratios (Choi et al., 2021). Nonetheless, there are significant limitations for generative models (Skan-
darani et al., 2023), which limit their wider applicability. For instance, in medical imaging, their
performance mostly relies on homogeneous data sets and often shows less generalization (Choi
et al., 2021). Moreover, their heavy computational nature postpones real-time deployment (Solak
et al., 2024) (Wang et al., 2023) hindering practical capabilities.

2.2 LAPLACIAN PYRAMIDS IN I2IT

Pyramid decomposition, originally used for multi-resolution analysis like DWT (Burt & Adelson,
1983), has been widely adopted in machine learning. Techniques like using convolutional networks
in a Laplacian pyramid for image generation (Denton et al., 2015) and SPD for textures (Thakur
& Chubach, 2015) have advanced this approach. Our work builds on this by employing a Lapla-
cian pyramid to decompose images, enabling better high-resolution detail restoration. Parallely, The
fastFF2FFPE method (Fan et al., 2022), which uses a Laplacian Pyramid to decompose FF histo-
pathological images into low- and high-frequency components for efficient FFPE-style translation,
offers notable computational advantages, including faster inference and lower memory usage com-
pared to methods like vFFPE and AI-FFPE. However, it is quantitative results and perceptual quality
remain comparable without surpassing existing approaches, limiting its appeal for high-fidelity ap-
plications and high-frequency details.

A recent development of the Laplacian Pyramid Translation Network (LPTN) (Liang et al., 2021)
is a scalable deep learning framework for image enhancement tasks such as low-light enhancement.
LPTN leverages a Laplacian Pyramid to decompose images into low-frequency global features and
high-frequency components independently processed by lightweight neural networks, enhancing
global and local features while minimizing computational costs. The Laplacian Pyramid Super-
Resolution Network (LapSRN) (Lai et al., 2017) progressively reconstructs high-resolution images
by predicting residuals in a coarse-to-fine manner using a Laplacian pyramid framework. Despite
the improvements made, LPTN suffers from limitations in addressing mixed exposures, where it
fails to focus on localized behaviour and does not adapt to changes in dynamic lighting (Zhou et al.,
2019), curtailing its ability to perform at an optimal level on challenging datasets. The research by
(Rathore et al., 2025) highlights the effectiveness of the LPTN architecture when adapted to process
both underexposed and overexposed images, albeit with a significant computational cost.

3 PROPOSED METHODOLOGY

3.1 ARCHITECTURE

This section describes the architecture employed to generate the Laplacian pyramids of the contrast-
enhanced image. LapGSR (Kasliwal et al., 2024), a lightweight model designed for Guided Super
Resolution is employed for this task. With some minor changes to the model, it is configured for
single-image processing and reconstruction of Laplacian pyramids. As evident in Fig. 1, LapGSR
merges features from various levels using residual blocks in 3 different branches to reconstruct a
Laplacian pyramid. Each branch of the model extracts features from the Laplacian pyramid and
reconstructs the corresponding pyramid layer. The number of residual blocks in each layer is repre-
sented as NTop, NMiddle and NLow. The ideal configuration of these residual blocks is decided by
exhaustive experimentation. This pyramid is responsible for the final non-parametric reconstruction
of the output image by an inverse Laplacian operation. Here, we modify the pipeline to preserve
each layer of the pyramid and use it to compute loss against the Laplacian pyramid of the Ground
Truth, as represented in Fig. 2. A more detailed explanation of the architecture is included in the
appendix A.

Each discriminator, corresponding to a level of the translational network’s output, contains 4 residual
blocks for level 0, 4 residual blocks for level 1, and 3 residual blocks for level 2. Its architecture also
includes instance normalization Ulyanov et al. (2016) and Leaky ReLU Maas et al. (2013).
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Figure 1: Schematic overview of the LapGSR model (Kasliwal et al., 2024) employed for multi-level
adversarial processing (Fig. 2). Each branch helps to extract features to finally non-parametrically
reconstruct the output image. The instance in the figure is taken from the test set of SICE V1 dataset
(Zheng et al., 2024).

3.2 LOSS FUNCTION

In the proposed method, a distinct discriminator is introduced at each level of the Laplacian pyramid,
where it is trained to identify whether the images at that level of the reconstructed output from the
generator are real or fake. Each level contributes to the final loss, as a result of a weighted average
of the losses from different levels. Adversarial loss was combined with a pixel-wise LMSE Loss at
various scales to demonstrate results and robustness across datasets.

Mean Squared Error Loss (MSELoss) (Goodfellow et al., 2016) is a fundamental loss function
commonly used in image-based tasks. It calculates the pixel-wise difference between the squares of
the ground truth and the predicted image, averaged across all pixels. This loss ensures that pixel-
wise accuracy between the output and the target images is preserved by penalizing larger deviations
more severely to maintain structure.

Adversarial Loss is critical to generating realistic images through a Generative Adversarial Net-
work (GAN) framework, it helps both the generator and the discriminator learn from each other. We
employ the Least-Square Generative Adversarial Network (LSGAN) loss (Mao et al., 2017) along
with pixel-wise MSE to enhance image fidelity by preserving critical spatial attributes. The LSGAN
loss for the discriminator and generator is expressed as:

LD =
1

2
Exreal [(D(xreal)− 1)2] +

1

2
Exfake [D(xfake)

2] (1)

LGAN =
1

2
Exfake [(D(xfake)− 1)2] (2)

As illustrated in Fig. 2, both the output and ground truth images are decomposed into hierarchi-
cal Laplacian pyramid representations. The loss at each level is computed between corresponding
pyramid layers, with D1, D2, D3 discriminators. These losses are weighted using λ1, λ2, λ3, al-
lowing finer control over how much each scale contributes to the final optimization. This structure
aligns well with the LapGSR method, which employs multi-scale, lightweight translational networks
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Figure 2: Schematic overview of the multi-scale GAN paradigm. The affine effect is only applied for
visual purposes and is not a preprocessing step. It shows the decomposed pyramid of the predicted
image and the ground truth across 3 levels. In the final loss, λ1, λ2, and λ3 are the hyperparameters
to weight the level-wise loss explained in Section 3.2.

where higher-level branches rely on outputs from lower-level branches. Specifically, these values
are weighted and summed to enable the generator network to optimize both the precision of the
generated images (measured by MSELoss) and its ability to deceive the discriminator (indicated by
the adversarial loss). This balances the loss at each level, which is later scaled using a weighting
parameter w. Therefore, the final loss for the generator is defined as:

Ltotal =

N∑
i=0

λi(Li
GAN + wLi

MSE) (3)

where N represents the number of pyramid levels, λ is the weight assigned to each level, Li
MSE

denotes the pixel-wise MSELoss at level i, and Li
GAN represents the adversarial loss for that level.

Extensive experimentation was conducted with hyperparameters as discussed in Section 4.

4 EXPERIMENTS

4.1 DATASETS

The dataset used in this work is the publicly available SICE dataset (Cai et al., 2018), which com-
prises 589 high-resolution multi-exposure sequences with a total of 4,413 images. Each sample in
the dataset contains either 7 or 9 different contrast levels of the same scene. For this study, we
utilized the SICE V2 dataset, which includes 1,458 images derived from the 229 unique (out of the
589) samples for training.

For testing, images from the SICE V1 dataset were used, selecting the -1EV (Exposure value)
image as the low-light input for underexposure and the +1EV image for overexposure, creating two
separate test sets, as per the testing indices provided with the dataset. Additionally, we utilized
the SICEGrad and SICEMix (Zheng et al., 2024) datasets, each containing 529 unique images.
These datasets were employed for testing, as they include all possible contrast variations within a
single image, replicating the training set. The SICEGrad dataset arranges contrast in increasing or
decreasing strips, while the Mix dataset has unordered contrast variations.
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4.2 HYPERPARAMETER TUNING

The images used for training were resized to a shape of 608 × 896, and Vertical Flip, Horizontal
Flip, and Shift Scale Rotate augmentations were employed to avoid overfitting of the generator.

Through extensive experimentation, we determined that the optimal ratio of adversarial to recon-
struction weighting to be w=4.5 × 103 which effectively stabilized the translation network. Ad-
ditionally, we found that a learning rate of 10−3 was optimal for achieving stable convergence,
ensuring robust results.

Table 1: Impact of Level-wise weights on performance across all subsets and datasets. The values
show the levels included for loss calculation and their respective weights. The metrics in this table
are given as PSNR/SSIM, with higher values indicating better performance.

Levels Weights Overexposure Underexposure SICEGrad SICEMix
[0] [1] 16.54/0.767 16.97/0.726 16.14/0.691 16.09/0.680
[1] [1] 18.68/0.774 17.74/0.748 16.49/0.699 16.31/0.726
[2] [1] 18.79/0.530 18.94/0.625 17.00/0.648 16.79/0.635

[0,1,2] [4/7, 2/7, 1/7] 19.91/0.714 18.79/0.751 16.74/0.678 16.63/0.668
[0,1,2] [1/7, 2/7, 4/7] 19.71/0.691 18.87/0.746 16.72/0.683 16.57/0.671
[0,1,2] [1/3, 1/3, 1/3] 20.33/0.745 18.96/0.754 16.76/0.671 16.64/0.681

The interplay between pyramid-level weighting and performance is shown in Table 1. Training with
only a single-level loss resulted in higher pyramid levels performing better on PSNR, as these focus
on fine-grained details important for pixel-wise accuracy. However, SSIM peaked at intermediate
levels, since mid-frequency features control structural coherence. In this setup, training with a
single-level loss means that only one discriminator was active at a specific pyramid level during
GAN training, with both reconstruction and adversarial losses computed exclusively at that level,
resulting in N=1 for Equation 3. Additionally, i represents the corresponding level, as shown in the
first three rows of 1.

Weighting schemes like 1
7 ,

2
7 ,

4
7 , which emphasize finer levels, degraded performance because they

disproportionately prioritize high-frequency details at the cost of mid-frequency textures and global
illumination corrections.This shows that multi-level integration is indeed necessary and the equal
weights of 1

3 per level optimally allow balanced contributions from all levels, achieving state-of-the-
art metrics.

Thorough experimentation was conducted to evaluate the various GAN variants, revealing that LS-
GAN outperformed WGAN (Wasserstein GAN)Arjovsky et al. (2017), WGAN-Softplus Ding et al.
(2020), and HingeGANLim & Ye (2017). Its stable training dynamics and features, such as prevent-
ing gradient vanishing, made LSGAN the optimal choice.We employed SOAP (Shampoo with Adam
in the Preconditioner’s eigenbasis) (Vyas et al., 2025) for optimizing the generator and AdamW
Kingma & Ba (2014) for each discriminator in the GAN training process.

Furthermore, the number of residual blocks in LapGSR was systematically adjusted after testing
configurations ranging from 3 to 5 blocks for each translational network, with trainable parameters
increasing from 694K to 1.13M, as detailed in the apendix A. The explanation and metrics related
to these configurations are provided in the ablation section. Ultimately, we proceeded with LSGAN
and the 3, 3, 3 lightweight framework for further experiments, comparing our results with those of
other approaches.

Structural Similarity Index Measure (SSIM) (Wang et al., 2004) and Peak Signal-to-Noise Ratio
(PSNR) (Brooks et al., 2008) were used as the metrics of evaluation due to their complementary
strengths in measuring the quality of the image. PSNR is pixel-level reconstruction accuracy, quan-
tifying noise and distortion. SSIM evaluates perceptual quality based on luminance, contrast, and
structural similarity, making it closer to human visual perception.

Through extensive hyperparameter tuning, our architecture achieved state-of-the-art results on the
SICE dataset. This systematic optimization highlights the importance of customized hyperparameter
strategies in improving low-light and high-light image enhancement, showcasing the effectiveness
of our Laplacian pyramid-based approach.
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Figure 3: Input and output taken for various samples across all datasets. The images in the 1st row
are taken from the Overexposure set, 2nd row is taken from Underexposure, 3rd are taken from
SICEMix and 4th are taken from SICEGrad. All images are from the test sets.

5 RESULTS

The proposed method, LapLoss, effectively mitigates illumination inconsistencies such as non-
uniform noise and abrupt luminance transitions. Exhaustive experiments conducted on the SICE
mixed-illumination testing sets (SICEGrad and SICEMix) demonstrate our method’s ability to bal-
ance striated darkness—alternating bands of underexposed and well-lit regions found in cloud-
shadowed landscapes or unevenly lit interiors.

Trained on images with nine contrast levels, ranging from extreme underexposure to overexposure,
it effectively corrects contrast across diverse lighting conditions. As demonstrated in Fig. 3, the
framework enhances both brightly lit and dimly lit conditions, producing outputs closely aligned
with ground truth images. Integrating Laploss with LapGSR ensures the preservation of textures,
colours, and details across varying illumination, thereby demonstrating excellent generalizability.

As shown in Table 2, our proposed model achieves the highest SSIM across all lightweight models in
recent years. While it does not produce state-of-the-art PSNR on the overexposure and underexpo-
sure test sets, it outperforms other methods in SSIM, demonstrating superior image structure preser-
vation. This improvement over previous models highlights its ability to maintain texture consistency
and natural luminance gradients, which are crucial for human perception. Results of LapGSR outdo
LPTN with Laploss, which are further outperformed by LapGSR and Laploss. The significant in-
crease of 10% in a few metrics between LapGSR and LapGSR with LapLoss thereby validates our
methodology.

In the Table 3, we aim to establish the robustness of our method and achieve notable enhancements
in both PSNR and SSIM across the SICEGrad and SICEMix at only 694K trainable parameters.
An increase of 30% compared to the previous SOTA is observed in the PSNR on the SICEGrad
dataset. Similarly, a 20% improvement is noted in PSNR on the SICEMix dataset. Along with
this, a steady increase in SSIM is observed across all datasets. Thus, the proposed loss propels
us to excel at scenarios where abrupt lighting transitions or spatially varying exposures challenge
conventional methods. A notable difference in performance is noted between LapGSR and LapGSR
with LapLoss, validating our proposed methodology.
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Table 2: Comparing our results on SICE test sets against other models. The best, second-best, and
third-best metrics per column are highlighted in blue, orange, and red, respectively. †Experiments
conducted by authors.

Method Underexposure Overexposure Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
LCDPNet (Wang et al., 2022) 17.45 0.562 17.04 0.646 17.25 0.604
DRBN (Yang et al., 2020) 17.96 0.677 17.33 0.683 17.65 0.680
DRBN+ERL (Huang et al., 2023) 18.09 0.674 17.93 0.686 18.01 0.680
DRBN-ERL+ENC (Huang et al., 2023) 22.06 0.705 19.50 0.721 20.78 0.713
ELCNet (Huang & Belongie, 2017) 22.05 0.689 19.25 0.687 20.65 0.686
IAT (Cui et al., 2022) 21.41 0.660 22.29 0.681 21.85 0.671
ELCNet+ERL (Huang et al., 2023) 22.14 0.691 19.47 0.692 20.81 0.695
FECNet (Huang et al., 2019) 22.01 0.674 19.91 0.696 20.96 0.685
FECNet+ERL (Huang et al., 2023) 22.35 0.667 20.10 0.689 21.22 0.678
U-EGformer (Adhikarla et al., 2024) 21.63 0.711 19.74 0.705 20.69 0.707
U-EGformereaf (Adhikarla et al., 2024) 22.98 0.719 21.84 0.710 22.41 0.717
LPTN+LapLoss† 18.94 0.653 20.26 0.698 19.60 0.676
LapGSR† 19.33 0.662 20.62 0.708 19.97 0.685
LapGSR+LapLoss† 19.42 0.732 21.32 0.766 20.37 0.749

Table 3: Comparison of results of the proposed method on SICEGrad and Mix sets against other
models. The best, second-best, and third-best metrics per column are highlighted in blue, orange,
and red, respectively. †Experiments conducted by authors.

Method SICEGrad SICEMix

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RetinexNet (Wei et al., 2018) 12.40 0.606 12.45 0.619
ZeroDCE (Guo et al., 2020) 12.43 0.633 12.48 0.644
RAUS (Zhang et al., 2021) 0.86 0.493 0.86 0.494
SGZ (Zheng & Gupta, 2021) 10.86 0.607 10.99 0.621
LLFlow (Wang et al., 2021) 12.74 0.617 12.74 0.617
URetinexNet (Wu et al., 2022) 10.90 0.600 10.89 0.610
SCI (Ma et al., 2022) 8.64 0.529 8.56 0.532
KinD (Zhang et al., 2021) 12.99 0.656 13.14 0.668
KinD++ (Zhang et al., 2021) 13.20 0.657 13.24 0.666
U-EGformer (Adhikarla et al., 2024) 13.27 0.643 14.24 0.652
U-EGformer† (Adhikarla et al., 2024) 14.72 0.665 15.10 0.670

LPTN+LapLoss† 17.32 0.657 16.67 0.624
LapGSR† 17.27 0.629 16.71 0.623
LapGSR+LapLoss† 17.33 0.657 17.13 0.648

6 CONCLUSION AND FUTURE WORKS

In this work, we introduced LapLoss, a novel approach leveraging Laplacian Pyramid Translational
Networks (LPTNs) for various I2IT tasks. Our findings highlight its adaptability in restoring im-
ages across diverse contrast levels, emphasizing the significance of multi-level processing. We also
analyze each level’s contribution to performance.

For future work, we aim to explore broader generator and pixel-wise loss functions to enhance
robustness and accuracy. The insights from this study can extend to super-resolution, debanding,
and denoising, promoting a unified approach to image restoration using LPTNs and advanced loss
functions.
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Merve Solak, Murat Tören, Berkutay Asan, Esat Kaba, Mehmet Beyazal, and Fatma Beyazal
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A APPENDIX

In this study, we detail the exact architecture, effect and configuration of the residual blocks. Addi-
tionally, we display results with various Adversarial Losses, as well as their effects across datasets.

A.1 RESIDUAL BLOCKS

A detailed explanation of the architecture used for experiments as shown in Fig. 1 is given below:
Lower Transformation Branch (LTB):
The LTB extracts fundamental features such as luminance, texture, and illumination from lower most
level of the pyramid. It starts with a convolutional layer, followed by instance normalization and a
leaky ReLU activation to prevent vanishing gradients. After this, another convolutional layer with
leaky ReLU is applied, followed by several residual blocks consisting of convolutional layers with
skip connections. The final feature map, denoted as ÎL, is the output of the LTB. This feature map
is upsampled and combined with the second-to-last layer (L2) of the branch before being passed to
the Middle Transformation Branch (MTB). The output of the residual blocks is multiplied with L1,
yielding the final product of the LTB.

Middle Transformation Branch (MTB):
The MTB serves to bridge the low-level features from the LTB and the high-level abstractions for
subsequent tasks. It begins with a convolutional layer followed by leaky ReLU activation to extract
features while avoiding vanishing gradients. The MTB contains several residual blocks, followed by
a final convolutional layer. The feature maps from the LTB and Laplacian pyramid (L2) are fused
and passed through a tanh activation, yielding the intermediate representation, ÎM . This output
is upsampled by 2x and concatenated with L3, before being passed into the High Transformation
Branch (HTB).

High Transformation Branch (HTB):
The HTB is the final stage of the transformation pipeline, specializing in synthesizing the contrast
enhanced output image. It receives the 2x upsampled output from the MTB, ÎM , and processes
it through a convolutional layer, followed by leaky ReLU activation. The residual blocks refine
the upsampled features, and a final convolutional layer consolidates them into a corrected contrast
feature map. This output is then added to L1 and passed through a tanh activation to generate the
top layer, ÎH , of the translated pyramid. This layer combines detailed texture and abstract features
for the final visual output.

Through systematic evaluation as shown in Table 4, employing 5 residual for the lowest level branch
(NLow), 5 for the intermediate level (NMid), and 5 for the top level (NTop) in the network for
balancing the feature depth and computational efficiency. Although the configuration of 5,5,5 in
low, middle and top branches achieved the best performance in terms of metrics, we present results
using the 3,3,3 configuration while comparing against other models, as the difference in metrics was
not substantial despite the increased framework complexity. We also observed that the number of
residual blocks in the low-frequency component played a crucial role in the overall quality of the
generated images, as it serves as the foundation for translation in our interconnected network.

Params Low High Top Over Under
PSNR SSIM PSNR SSIM

768k 4 3 3 21.08 0.763 19.71 0.741
842k 5 3 3 21.21 0.742 19.31 0.7206
916k 5 4 3 21.12 0.773 19.46 0.7239
990k 5 5 3 21.06 0.771 18.81 0.7199

1.06M 5 5 4 21.09 0.766 18.91 0.7049
1.14M 5 5 5 21.32 0.765 19.42 0.7324

Table 4: Test set results for underexposure and overexposure sets.

Another observation we made is that increasing the number of residual blocks in the intermediate
layers can lead to a decrease in metrics. This could be due to the fact that, in this particular case
of I2IT, it is crucial to preserve the frequency components. In contrast, enhancement techniques
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Params Low High Top Grad Mix
PSNR SSIM PSNR SSIM

768k 4 3 3 17.25 0.658 16.94 0.644
842k 5 3 3 17.33 0.657 17.12 0.647
916k 5 4 3 17.28 0.654 17.03 0.642
990k 5 5 3 17.26 0.656 17.03 0.647

1.06M 5 5 4 17.05 0.642 17.33 0.658
1.13M 5 5 5 17.28 0.659 17.05 0.648

Table 5: Test set results with two metrics for Grad and Mix datasets.

like the intermediate level of a Laplacian pyramid effectively manage this by focusing on the finer
details of the frequency spectrum. The intermediate level of a pyramid captures crucial frequency
components that help maintain the balance between high-level features and low-level details, which
can lead to improved performance in tasks that require fine-grained information preservation.

A.2 ADVERSARIAL LOSSES

Table 6: Performance metrics (PSNR/SSIM) for different GAN types across four testing sets. Best
metrics are highlighted.

Loss Type Overexposure Underexposure SICEMix SICEGrad
LSGAN 20.54/0.75 18.88/0.75 16.79/0.67 16.66/0.66
WGAN 20.00/0.73 18.78/0.73 16.75/0.68 16.62/0.67
WGAN SOFT+ 20.13/0.75 18.72/0.72 16.80/0.67 16.61/0.66
HINGE 19.02/0.68 19.65/0.72 16.80/0.65 16.64/0.64

Our proposed loss function for Laplacian pyramid-centric generators primarily focuses on adver-
sarial losses at each level. To evaluate its effectiveness, we experimented with various GAN loss
functions, as summarized in Table 6. The results indicate that most loss functions performed simi-
larly, with minor variations in performance metrics.

Based on our experiments, LSGAN consistently produced the highest-quality images, achieving
the best average metrics across all four testing sets. As shown in Table 6, LSGAN outperformed
other GAN loss functions, particularly excelling in the Overexposure test set. This highlights its
robustness in handling bright regions and its overall effectiveness in image enhancement tasks.
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