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Abstract

In this paper, we consider the problem of computing the integral of a function on the unit
sphere, in any dimension, using Monte Carlo methods. Although the methods we present
are general, our guiding thread is the sliced Wasserstein distance between two measures
on Rd, which is precisely an integral of the d-dimensional sphere. The sliced Wasserstein
distance (SW) has gained momentum in machine learning either as a proxy to the less
computationally tractable Wasserstein distance, or as a distance in its own right, due in
particular to its built-in alleviation of the curse of dimensionality. There has been recent
numerical benchmarks of quadratures for the sliced Wasserstein (Sisouk et al., 2025), and
our viewpoint differs in that we concentrate on quadratures where the nodes are repulsive,
i.e. negatively dependent. Indeed, negative dependence can bring variance reduction when
the quadrature is adapted to the integration task. Our first contribution is to extract and mo-
tivate quadratures from the recent literature on determinantal point processes (DPPs) and
repelled point processes, as well as repulsive quadratures from the literature specific to the
sliced Wasserstein distance. We then numerically benchmark these quadratures. Moreover,
we analyze the variance of the UnifOrtho estimator, an orthogonal Monte Carlo estimator
introduced by Rowland et al. (2019). Our analysis sheds light on UnifOrtho’s success for the
estimation of the sliced Wasserstein in large dimensions, as well as counterexamples from
the literature. Our final recommendation for the computation of the sliced Wasserstein dis-
tance is to use randomized quasi-Monte Carlo in low dimensions and UnifOrtho in large
dimensions. DPP-based quadratures only shine when quasi-Monte Carlo also does, while
repelled quadratures show moderate variance reduction in general, but more theoretical
effort is needed to make them robust.
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1 Introduction

In Monte Carlo integration, introducing repulsion between the points at which the integrand is evaluated
can bring a significant variance reduction. In Rd, determinantal point processes (DPP) have for example
been shown to yield a central limit theorem with improved convergence rate over classical Monte Carlo, for
compactly supported integrands (Bardenet & Hardy, 2020; Coeurjolly et al., 2021). In the same vein, even
a modicum of negative dependence can reduce variance, e.g. applying a single step of a gradient descent
aimed at minimizing the Coulomb energy between the quadrature nodes (Hawat et al., 2023). Beyond
Euclidean spaces, Monte Carlo methods with DPPs have been considered over selected manifolds (Berman,
2024; Lemoine & Bardenet, 2024). One natural manifold to look at is the sphere Sd−1 ⊂ Rd; however,
beyond the case of S2 treated in Berman (2024), it is not yet clear whether DPPs and similar randomized
quadratures with negative dependence can be a practical asset.

In machine learning, the problem of integrating over Sd−1 naturally arises in recent applications of optimal
transport. A central object in optimal transport is the so-called Wasserstein distance, an intuitive distance
between probability measures with a host of theoretical properties (Peyré & Cuturi, 2018). On the negative
side, numerically evaluating the Wasserstein distance between two measures typically starts with replacing
these two measures by i.i.d. realizations, but the quality of the approximation rapidly degrades with the di-
mension (Fournier & Guillin, 2015). Moreover, even between two discrete distributions with M atoms each,
the cost of a generic algorithm to compute the Wasserstein distance scales as M3 log(M), which becomes
intractable for large M (Peyré & Cuturi, 2018). This has led to research on alternatives to the Wasserstein
distance, one of which is the sliced Wasserstein distance (SW).

The sliced Wasserstein distance finds its roots in one-dimensional optimal transport (Bonnotte, 2013). The
cost of computing the Wasserstein distance between two discrete distributions with their atoms on a line
essentially boils down to sorting the abscissa of the atoms. In higher dimension d, the idea is hence to look
at the projection of our discrete measures on a given direction, compute the Wasserstein distance between
these projected point clouds, and integrate the results along all possible directions. The corresponding
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quantity is an integral over the sphere, the integrand being a one-dimensional Wasserstein distribution, that
defines a metric over the space of probability measures called the sliced Wasserstein distance. The SW
distance preserves the main topological properties of the Wasserstein distance, while holding the promise to
solve the aforementioned curse of dimensionality and tractability issues (Bayraktar & Guo, 2021; Nadjahi,
2021).

The SW distance has found many applications in machine learning, in gradient descent (Bonet et al., 2022),
barycenter computation (Bonneel et al., 2015), generative models (Deshpande et al., 2018; Liutkus et al.,
2019) or kernel methods (Kolouri et al., 2016). The SW distance has also been used as a proxy to the
Wasserstein distance, when comparing the output of different sampling algorithms (Linhart et al., 2024).
This is why getting an accurate evaluation of the sliced Wasserstein distance is a relevant issue. The main
limitation lies in the computation of the underlying integral over the sphere, which does not have an explicit
expression in general. One hence has to rely on Monte Carlo algorithms on the sphere to get an estimate of
the desired quantity. Although the cost of evaluating the integrand is relatively cheap, stacking up a large
number N of evaluations on as many directions on the sphere can still become computationally heavy, and
the slow decay in N−1/2 of the error of crude Monte Carlo integration will typically require such a large N
(Robert & Casella, 2004).

Several Monte Carlo methods have already been investigated to solve the integration task inherent to com-
puting the SW distance. In particular, while we were working on this manuscript, a survey has appeared
(Sisouk et al., 2025). Their conclusions are that for d ∈ {2, 3}, quasi-Monte Carlo methods prevail, while
in higher dimension (typically above d = 20), the so-called orthogonal Monte Carlo method (Rowland et al.,
2019; Lin et al., 2020) is both more efficient than crude Monte Carlo and computationally cheap enough to
be practical in ML applications. In the intermediate range, they do not provide clear guidelines but rather en-
courage the reader to experiment. Besides also reviewing existing Monte Carlo methods for SW estimation,
our contributions are twofold. First, we introduce and benchmark five randomized quadratures that have
not yet been used to estimate the sliced Wasserstein distance. One of these is a natural importance sampling
baseline. The four others are joint distributions with negative dependence that we draw and sometimes
mildly adapt from the recent literature on repulsive Monte Carlo methods. Some of the resulting estimators
already provably enjoy faster decaying variance than i.i.d. quadratures. To our knowledge, when considering
the sliced Wasserstein distance, this has only been achieved by the estimator from Leluc et al. (2024). On top
of the interest of computing the sliced Wasserstein distance, our numerical investigations are also meant to
help us identify repulsive point processes that are useful for Monte Carlo integration on the sphere. Indeed,
proving a variance reduction result with negative dependence as in (Bardenet & Hardy, 2020; Hawat et al.,
2023) can be long and technical, so that it is important that the community focus their mathematical efforts
on the most promising candidates. Precisely doing that, i.e. focussing our mathematical efforts on under-
standing practically successful estimators, our second main contribution is to compute the variance of an
estimator based on orthogonal Monte Carlo (Rowland et al., 2019; Lin et al., 2020). The latter has already
been empirically shown to be successful for SW estimation in large dimensions, which our own experiments
confirm. Our variance calculation sheds light on the situations where orthogonal Monte Carlo may (or may
not) yield variance reduction.

The rest of the paper is organized as follows. Section 2 introduces background on repulsive point processes
for Monte Carlo integration. Section 3 describes the main properties of the sliced Wasserstein distance,
and reviews numerical quadratures that have already been implemented to estimate it. Section 4 presents
new candidate estimators for the sliced Wasserstein distance, among which a natural importance sampling
scheme and various repulsive point processes adapted to the spherical case. Section 5 presents our deriva-
tion of the variance of an orthogonal Monte Carlo estimator known as UnifOrtho. All these methods are
empirically evaluated and benchmarked in Section 6. Section 7 concludes the paper. The appendix presents
supplementary background on spherical harmonics, additional details on the importance sampling baseline,
as well as additional experiments.
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2 Repulsive Monte Carlo

Monte Carlo methods are randomized algorithms for quadrature, i.e., numerical integration. The common
idea is to build linear combinations of a finite number of integrand evaluations at well-chosen quadrature
nodes (Robert & Casella, 2004). While classical Monte Carlo methods draw their nodes using independent
random variables or a Markov chain, many recent works have tried to leverage negative dependence among
nodes in Rd to obtain lower mean-square integration errors, e.g. (Delyon & Portier, 2016; Leluc et al., 2025).
We review here two families of methods that use negative dependence for integration in Rd, determinantal
and repelled point processes. We choose these two because they easily adapt to the sphere, as we shall see
in Section 4.

2.1 Determinantal point processes

Initially invented to model the arrival times of physical fermions in optics (Macchi, 1972), determinantal
point processes (DPPs) have seen a recent surge of interest in probability (Soshnikov, 2000; Hough et al.,
2006), statistics (Lavancier et al., 2015), and machine learning (Kulesza & Taskar, 2012). Formally, we shall
only use projection DPPs, which can be defined as follows.

Definition 1 (Projection DPP) Let X be a separable complete metric space, and µ be a measure on its Borel
sets. Let N ≥ 1, and ϕ0, . . . , ϕN−1 be orthonormal functions in L2(µ). Let

K : x, y 7→
N−1∑
k=0

ϕk(x)ϕk(y). (1)

Let (X1, . . . , XN ) be drawn from

1
N ! det((K(xi, xj))1≤i,j≤N ) dµ(x1) . . . dµ(xN ). (2)

Then, we say that the random set X = {X1, . . . , XN } ⊂ X has for distribution the projection DPP of kernel
K : X × X → R and reference measure µ, and we write X ∼ DPP(K, µ).

First, we note that (2) defines a bona fide probability distribution because K in (1) is a projection kernel,
namely the kernel of the projection onto Span(ϕ0, . . . , ϕN−1); see e.g. Hough et al. (2006). Second, DPPs are
repulsive in the sense that the determinant in (2) favors configurations where the Xis spread evenly across
X. Indeed, if K is smooth, two points close to each other correspond to two nearly identical columns in the
Gram matrix ((K(xi, xj))1≤i,j≤N ), and thus a small determinant. Third, DPPs with non-projection kernels
can be defined (Hough et al., 2006), but we shall only be concerned by projection kernels in this paper.
Finally, on top of having a relatively simple expression, a computational advantage of DPPs that makes them
an ideal candidate for summarization tasks is that the chain rule for (2) can be simply expressed using Schur
complements (Hough et al., 2006)[Proposition 19]. In more detail, to sample (2), it is enough to sample X1
from 1/N · K(x1, x1)dµ(x1), and for k = 2, . . . , N , iteratively sample Xk from

K(xk, xk) − K(xk, x1:k−1)K−1
k−1Kk−1(x1:k−1, xk)

N − k + 1 dµ(xk), (3)

where K(xk, x1:k−1) = K(xk, x1:k−1)T is short for (K(xk, x1), . . . , K(xk, xk−1)), and Kk−1 =
(K(xi, xj))1≤i,j≤k−1 . Individual sampling steps in (3) are typically implemented using rejection sampling.
In Gautier et al. (2019b), the total number of rejections for sampling an Orthogonal Polynomial Ensemble
in Rd is estimated to be O(2dN log(N)). A realization of this particular DPP in the square [−1, 1]2 can be
observed in Figure 1c. In general, much is known on sampling DPPs, exactly or approximately (Gautier,
2020; Barthelmé et al., 2023).

2.2 Monte Carlo integration with DPPs

Monte Carlo methods relying on DPPs with specific kernels have been investigated when X = Rd and the
target measure has a density w.r.t. the Lebesgue measure, e.g. (Bardenet & Hardy, 2020; Mazoyer et al.,
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2020; Belhadji et al., 2019; 2020). A general conclusion is that for the right choice of kernel, a DPP with
cardinality N can integrate smooth functions with a mean squared error in o(1/N), thus decaying faster
than for classical Monte Carlo methods. For instance, the so-called multivariate orthogonal polynomial
ensembles studied in (Bardenet & Hardy, 2020) yield a mean squared error in 1/N1+1/d for integrands that
are continuously differentiable. In this paper, we rather consider integration on the sphere Sd−1 ⊂ Rd.
Using a change of variables such as spherical coordinates, it is straightforward to adapt e.g. the quadratures
proposed by (Bardenet & Hardy, 2020; Mazoyer et al., 2020) for [−1, 1]d−1 to Sd−1, at the price of an artificial
accumulation of points. Closer to our interest for the sphere, Lemoine & Bardenet (2024) show that for a
compact complex manifold of complex dimension d/2 (and thus dimension d when seen as a real manifold),
the right choice of kernel in (2) yields the faster rate 1/N1+2/d. This applies to S2, where the corresponding
DPP is called the spherical ensemble; see Section 4.2 for more details. However, this result does not easily
generalize to Sd−1 with d > 3. Still in the particular case d = 3, even finer results are available in (Berman,
2024), actually the first paper to explicitly investigate a DPP for integration on the sphere. Berman (2024)
provides a theoretical analysis of the worst-case integration error of the spherical ensemble for functions
on the sphere in specific Sobolev classes. Finally, for integrands that are smooth enough to belong to a
reproducing kernel Hilbert space (RKHS), DPPs (Belhadji et al., 2019) and mixtures of DPPs (Belhadji et al.,
2020; Belhadji, 2021) have been proven to yield fast-decaying mean squared errors.

2.3 Quadratic-time alternatives to DPPs

Sampling a DPP, while polynomial, can still be intractably long when the cost of evaluating the integrand is
low. In particular, one needs to come up with rejection sampling routines to sample the conditionals (3) in
a reasonable time; see (Gautier et al., 2019a) for a discussion. Alternately, there are O(N2) algorithms that
can still achieve a mean squared error decay in o(1/N). For instance, Delyon & Portier (2016) propose a
variant of importance sampling where the proposal PDF is replaced by a kernel density estimator, with a fast
error decay. A particularly natural repulsive strategy that does not require strong smoothness assumptions on
the integrand is known as repelled point processes (Hawat et al., 2023). The idea is to draw a computationally
cheap randomized quadrature, and apply one step of a gradient descent aimed at minimizing the Coulomb
energy of the configuration of quadrature nodes, as if they were identically charged particles. The result of
such a procedure can be observed in Figure 2. It is easy to come up with a similar algorithm for points on
the sphere, as we shall do in Section 4. However, the main variance reduction result of Hawat et al. (2023)
does not hold for the sphere, and we see our paper as an exploration of which algorithms have promising
empirical performances to motivate their theoretical study.
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(a) 1000 points sampled i.i.d. uni-
formly in the square.
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(b) The repelled configuration cor-
responding to the 1000 points in 1a.
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(c) 1000 points sampled from a DPP
in the square.

Figure 1: Realizations of three point processes
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3 The sliced Wasserstein distance

Our motivating application for integration on the sphere is the computation of the sliced Wasserstein (SW)
distance between two probability distributions.

Definition 2 Let d ∈ N, p > 0, and µ, ν be two probability measures on Rd. The sliced Wasserstein distance
between µ and ν is

SWp(µ, ν) =
(∫

Sd−1
[Wp(θ#µ, θ#ν)]p dθ

)1/p

, (4)

where θ#µ denotes the push-forward measure of µ by the function aθ : x ∈ Rd → θT x ∈ R, Wp is the
one-dimensional p-Wasserstein distance, and the integral is with respect to the uniform measure on the sphere.

Before discussing its evaluation cost, we give some motivating facts about the SW distance, and refer to
Nadjahi (2021) for an exhaustive reference.

3.1 Motivating properties

First, for all p ≥ 1, SWp metrizes the weak convergence on the space of finite p-moments probability mea-
sures (Nadjahi, 2021) [Theorem 3.1]. On compact domains, the topology induced by the sliced Wasserstein
metric is actually equivalent to the one induced by the Wasserstein metric since, if µ, ν are supported on
B(0, R),

SWp(µ, ν) ≤ Wp(µ, ν) and W p
p (µ, ν) ≤ Cd,pR(p−1)/(d+1)SWp(µ, ν)1/(d+1), (5)

where Cd,p is a constant only depending on p and d (Bonnotte, 2013)[Proposition 5.1.3 and Theorem
5.1.15]. Second, and importantly to train e.g. generative models, it is also possible to perform gradient
descent on the SW metric (Nguyen et al., 2024). Formally, if for X ∈ Rd×M , µX denotes the empirical mea-
sure supported on the columns of X, then for a discrete measure ν, the map X ∈ Rd×M → SW 2

2 (µX, ν) ∈ R
is C1 (Bonneel et al., 2015) [Theorem 1].

Focussing now on its practical evaluation, one key advantage of the SW distance over the Wasserstein
distance is its dimension-free sample complexity. Formally, for a measure µ, write its p-moment as
mp(µ) =

∫
∥t∥pdµ(t) and µ̂M for the empirical measure obtained from M i.i.d. draws from µ. For p ∈ [1, ∞),

assume that µ and ν both have a finite moment of order q > p. Then

E[|SWp(µ̂M , ν̂M ) − SWp(µ, ν)|] ≤ C1/q
pq m1/q

q (µ, ν) ×


M−1/2p if q > 2p

M−1/2p log(M)1/p if q = 2p

M−(q−p)/pq if q ∈ (p, 2p)
,

where m
1/q
q (µ, ν) = m

1/q
q (µ) + m

1/q
q (ν) (Nadjahi, 2021) [Theorem 7.14]. In particular, it is enough to

focus on evaluating the SW distance (4) between two empirical measures of support of cardinality M . This
is an integral over the sphere, which cannot be solved analytically, thus requiring numerical quadrature.
Fortunately, the integrand can be efficiently computed: for p ≥ 1, it can be done exactly in time O(M log M +
Md). The Md part comes from the computation of the projection, as each point on which the measure is
supported has to be projected onto a line. As for the M log(M) part, it comes from the theory of one-
dimensional optimal transport, where one can show that the only computational bottleneck is essentially
sorting the atoms of the involved (discrete) measures (Peyré & Cuturi, 2018, Remark 2.30).

The choice of a numerical quadrature can be informed by the smoothness of the integrand. We know that
the map

f (p)
µ,ν : θ ∈ Sd−1 → W p

p (θ#µ, θ#ν), (6)

is Lipschitz (Bayraktar & Guo, 2021)[Proposition 2.2], with Lipschitz constant

pWp(µ, ν)p−1(mp(µ)1/p + mp(ν)1/p).
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However, when both measures are discrete, while the map (6) is C∞ outside of a set of measure 0 on
the sphere, it fails to be globally C1 in general. This motivates the use of numerical quadratures that do not
make strong smoothness assumptions on the integrand, intuitively dismissing methods that rely on the target
integrand being in an RKHS such as (Belhadji et al., 2019; 2020). Moreover, the dependence in Md of the
cost of evaluating the integrand –due to computing the projections in the push-forward measures– justifies
searching for quadratures with a fast-decaying error if we are to estimate the SW between large datasets
in high-dimensional spaces. Repulsive Monte Carlo methods such as DPP-based quadratures and repelled
point processes thus seem natural to investigate. Before doing so, we quickly review the existing literature
on advanced Monte Carlo techniques for the SW.

3.2 Existing Monte Carlo methods for the sliced Wasserstein distance

Besides the natural i.i.d. sampling on the sphere, several advanced Monte Carlo methods have been proposed
that reduce the mean squared error in estimating (4), using either control variates or randomized grids.

3.2.1 Control variates

Control variates is a standard variance reduction technique in Monte Carlo integration (Owen, 2013, Chapter
X). In a nutshell, consider φi : Sd−1 → R, i = 1, . . . , s, such that

∫
φi(θ)dθ = 0 for all i. Letting f : Sd−1 → R

be a square-integrable function, and θ1, . . . , θN be drawn i.i.d. uniformly on the sphere, consider the ordinary
least-squares (OLS) problem

(
Iols

N (f), βols
N (f)

)
= argmin

α∈R,β∈Rs


N∑

i=1
(f(θi) − α −

s∑
j=1

βjφj(θi))2

 . (7)

To gain intuition, we note that for a fixed β ∈ Rs, minimizing the RHS of (7) in α yields the empirical mean
of f(θi) −

∑s
j=1 βjφj(θi), where i = 1, . . . , N . This should in turn be close to

∫
f(θ)dθ since the φj have

integral zero. Optimizing over β further reduces the variance of Iols
N (f) at the cost of introducing a small

bias. The key decision to be made by the practitioner is the choice of s and the control variates φ1, . . . , φs. In
particular, as both s and N go to infinity, if the space spanned by the control variates is large enough to allow
reconstructing the integrand f , Portier & Segers (2019) obtain a central limit theorem with a squared error
decaying faster than the Monte Carlo rate 1/N . We now present two choices of control variates that have
been proposed in the specific case of the sliced Wasserstein integrand (6): the up/low method of Nguyen &
Ho (2024) and the spherical harmonics in (Leluc et al., 2024).

Control variates "up" and "low". For two probabilities µ, ν on Rd with finite first and second moments
mµ, mν , Σµ, Σν , we know (Peyré & Cuturi, 2018, Remark 2.9) that the 2-Wasserstein distance satisfies

W 2
2 (µ, ν) = ∥mµ − mν∥2 + W 2

2 (µ̃, ν̃), (8)

where µ̃, ν̃ are the centered versions of µ and ν, ie µ̃ = t
(µ)
# µ, where t(µ) : x ∈ Rd → x − mµ. When

computing SW2, Nguyen & Ho (2024) thus suggest taking s = 1 control variate in (7), with φ1 equal to

φlow : θ 7→
(
θT (mµ − mν)

)2 − 1
d

∥mµ − mν∥2.

Note that φlow is centered, and that it will likely have little impact when either p ̸= 2 or the target distribu-
tions are already centered. In the same spirit, Nguyen & Ho (2024) also propose s = 1, with φ1 this time
equal to

φup : θ 7→ φlow(θ) + θT Σµθ + θT Σνθ − 1
d

(Tr(Σµ) + Tr(Σµ)) ,

where the quadratic term on top of φlow upper-bounds the W2 distance between two centered Gaussians
–hence the label up– and the remaining term guarantees a null integral, as required for a control variate.
This time, the control variate is expected to pick up second-order information. Finally, note that while φlow
and φup use rather crude approximations to the integrand and are limited to the case p = 2, they are both
cheap to compute and provide useful baselines.
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Spherical Harmonics. Still based on (7), Leluc et al. (2024) rather propose to take 1, φ1, φ2, . . . to be
spherical harmonics {Yℓ

k, ℓ ≥ 0, 1 ≤ k ≤ hℓ}, ordered in the lexicographic order of (ℓ, k). To wit, Y0
0 = 1 is

constant, and, for ℓ ≥ 1, {Yℓ
k, ℓ ≥ 1} form an orthonormal basis of Hℓ, the hℓ-dimensional set of harmonic

homogeneous polynomials of degree ℓ restricted to Sd−1. We refer to (Leluc et al., 2024, Section 4.1) or
our Appendix A.1 for a quick self-contained definition of spherical harmonics, but for now it suffices to say
that 1, φ1, φ2, . . . is an orthonormal basis of L2(Sd−1). For a fixed N , let s = sN be the number of spherical
harmonics of degree at most 2LN . Note that sN = O(Ld−1

N ). The estimator SHCV p
N (µ, ν) of the SW distance

between two probability measures on Rd is then defined to be Iols
N in (7).

Leluc et al. (2024) prove that for d ≥ 2, p ≥ 1, µ, ν having finite p-th moments, and when sN = o(N2), so
that LN = N1/2(d−1)/ℓN for some sequence ℓN going arbitrarily slowly to +∞ when N grows,

|SHCV p
N (µ, ν) − SW p

p (µ, ν)| = OP(ℓN N−(1/2+1/2(d−1))), (9)

demonstrating a reduction in the error rate compared to standard Monte Carlo. The whole procedure runs
in O(Nωf + Ns2

N + s3
N ), where ωf is the time complexity of evaluating f , so that the procedure is quadratic

if sN = o(N2) as prescribed. It is expected that SHCV p
N will be efficient when the integrand (6) appearing

in the definition of the SW distance will be well-approximated by polynomials of degree lower than sN ,
and that it will outperform the control variates φlow and φup as soon as the degree is large enough, at a
higher computational price, however. Another caveat that we shall discuss again later is that the complexity
estimate ignores the computational time spent evaluating spherical harmonics, which can be prohibitive in
large-dimensional settings; see also Appendix A.1.

3.2.2 Randomized grids

Letting N be the number of evaluations of the integrand (6) that one is willing to spend, and assuming
for simplicity that k = N/d is an integer, Rowland et al. (2019) propose to take k i.i.d draws from the
Haar measure on the orthogonal group O(d). The columns of these matrices are then marginally uniformly
distributed on the sphere, and the average of the integrand (6) over the reunion of these N = kd columns
is thus an unbiased estimator, called the UnifOrtho estimator in (Rowland et al., 2019). Intuitively, since
the columns of a single Haar draw are orthonormal, they fill the sphere quite evenly, thus justifying our
classification as a randomized grid. One could expect some variance reduction coming from this very uniform
spread, but there appears to be no such theoretical guarantee so far. Rowland et al. (2019) even exhibit a
counterexample of two empirical measures such that UnifOrtho yields a worse (i.e. higher-variance) SW
estimator than crude i.i.d. Monte Carlo on the sphere. We clarify the situation with an explicit derivation of
the variance of the UnifOrtho estimator in Section 5.

Quasi-Monte Carlo (QMC; Dick & Pilichshammer, 2010) methods are deterministic quadratures that can
be thought of as the computationally tractable higher-dimensional version of a grid. Worst-case guarantees
usually involve proving that the quadrature nodes have low discrepancy, and an additional randomization can
help obtain guarantees with more tractable constants. QMC methods for computing the SW distance have
been numerically investigated in the three-dimensional setting in Nguyen et al. (2024). However, there is no
known low-discrepancy sequence on Sd−1, as soon as d ≥ 3. An empirically promising alternative (Nguyen
et al., 2024; Sisouk et al., 2025) is to use the so-called Fekete points as quadrature, a notion from potential
theory defined as the set of points that minimize a particular interaction potential over the sphere. We note
however that the construction of Fekete points on the sphere in polynomial time is known to be a hard
problem, and in dimension 3 is even listed as Smale’s 7th problem (Smale, 1998). A more straightforward
alternative to low-discrepancy quadratures is to map a low-discrepancy sequence in [0, 1]d−1 to Sd−1, via
some transformation such as using the inverse cumulative function of the normal distribution. Empirical
results have been however less encouraging (Nguyen et al., 2024; Sisouk et al., 2025).

In this paper, we will consider a randomized QMC benchmark in two and three dimensions, i.e. on S1 and
S2. On S2, we use the generalized spiral points from Rakhmanov et al. (1994), which are easy to draw and
have been proven to have low discrepancy, at least asymptotically (Brauchart et al., 2014). To wit, consider
zi = 1 − (2i − 1)/N for 1 ≤ i ≤ N and

Φi,1 = cos−1(zi), Φi,2 = 1.8
√

NΦi,1 mod(2π). (10)
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The generalized spiral points are the points on the sphere with spherical coordinates (Φi,1, Φi,2). Note that
the constant 1.8 is chosen arbitrarily, and is used to match the experimental setting of Nguyen et al. (2024).
To randomize the quadrature and obtain an unbiased estimator, we simply apply a single uniformly drawn
rotation to all points. In the two-dimensional setting, we will also include the regular grid on [−π, π), with
a random rotation of uniformly drawn angle θ ∼ U [−π, π).

4 New candidate estimators

We propose new estimators for the integral inherent to the sliced Wasserstein distance. Our first proposition
is a natural importance sampling baseline, and the rest are repulsive methods: three DPPs, a repelled point
process. For the DPPs, we select existing DPPs in the probability literature and motivate our selection by
applying existing theoretical results to the particular case of the sliced Wasserstein integrand. The novelty
there is thus in the application of these DPPs, rather than in the creation of a novel kernel or, say, a new
central limit theorem. All estimators will be numerically compared in the experimental section.

4.1 An importance sampling baseline

Crude Monte Carlo approximates the integral in (2) using i.i.d. samples from the uniform measure dθ on
the sphere. Importance sampling consists in rather drawing θ1, . . . , θN from a measure with density g with
respect to dθ, and then to define the estimator

IIS, g
N (f) = 1

N

N∑
i=1

f(θi)
g(θi)

. (11)

It is unbiased by construction, and the choice of the proposal distribution g which minimizes Var(IIS, g
N (f)) is

gopt ∝ |f | (Robert & Casella, 2004) [Theorem 3.12]. Since this proposal is not available in practice, several
schemes have been proposed to approximate it using part of one’s computational budget in evaluations of
the integrand. For instance, limiting ourselves to proposal distributions in the parametric family

Gvmf =
{

1
2 vmf(·|ε, κ) + 1

2 vmf(− · |ε, κ); vmf(·|ε, κ) = C(κ) exp(κεT (·)) | κ > 0, ε ∈ Sd−1
}

of symmetrized von Mises-Fisher distributions, we spend a fixed fraction r ∈ (0, 1) of our N evaluations of
the integrand to find the PDF g⋆ in Gvmf that minimizes an estimate of the KL divergence between g and
gopt; this is the so-called cross-entropy method (Kroese et al., 2013); see Appendix A.2 for numerical details
on how we perform the fit.

4.2 Three determinantal point processes

Orthogonal polynomial ensembles on spherical coordinates. Representing points on the sphere by their
spherical coordinates, we can obtain a DPP on the sphere by mapping a DPP on X = [0, 2π]d−2 × [0, π];
changes of coordinates are C1-diffeomorphisms and thus preserve DPPs (Lavancier et al., 2015, Proposition
A.1.). As a DPP baseline, we thus blindly follow Bardenet & Hardy (2020), who use a projection DPP (Defini-
tion 1) with eigenfunctions (ϕk) in (1) being the products of Legendre polynomials, orthogonal with respect
to the uniform distribution. Efficient rejection sampling routines that implement the chain rule (3) are avail-
able in the Python package DPPY Gautier et al. (2019b). A central limit theorem for a simple estimator
built on such a DPP is available in Bardenet & Hardy (2020), thus potentially helping us obtain asymptotic
confidence intervals. However, our integrand (6) is not regular enough, nor is compactly supported within
the interior of X as required in the results of Bardenet & Hardy (2020). Intuitively, we should rather use
DPPs that handle both the manifold structure of the sphere and allow for less smooth integrands.

The spherical ensemble. In the specific setting d = 3, another projection DPP over S2 is available in the
probability literature, the so-called spherical ensemble. The spherical ensemble comes from random matrix
theory, with a dedicated sampling algorithm by construction.

9
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Definition 3 (Spherical ensemble, Theorem 3 in Krishnapur (2009)) Let A and B be standard i.i.d. N ×
N complex Gaussian matrices. Consider π : S2 \ {North} → C the stereographic projection (North being the
North pole), and λ1, . . . , λN the eigenvalues of the random matrix A−1B. Then SN = {π−1(λ1), . . . , π−1(λN )}
is a DPP with respect to the uniform measure dθ on the sphere, of almost sure cardinality N .

This point process is naturally repulsive as can be observed on Figure 2.

There are several results that support using the spherical ensemble for Monte Carlo integration on the sphere.
Berman (2024) showed that, akin to quasi-Monte Carlo designs, it has low discrepancy with high probability,
thus yielding a fast-decaying worst-case integration error for smooth functions. In a more Monte Carlo
vein, there exist fast central limit theorems for the spherical ensemble under weak smoothness assumptions.
Indeed, for our integrand (6), Theorem 1 in Rider & Virag (2007) and Theorem 2.5 in Marzo Sánchez et al.
(2024) imply

Var
(∑

θ∈SN

f (p)
µ,ν(θ)

)
→
∫
S2

∥∇f (p)
µ,ν∥2dθ. (12)

and

N

(
1
N

∑
θ∈SN

f (p)
µ,ν(θ) −

∫
S2

f (p)
µ,νdθ

)
law→ N

(
0,

∫
S2

∥∇f (p)
µ,ν∥2dθ

)
. (13)

The only smoothness assumption needed if for the variance in (13) to be finite. In our case, this follows
from our integrand being Lipschitz continuous, so that it has an almost-everywhere bounded gradient by
Rademacher’s theorem (see e.g. Cheeger (1999); although when both measures are discrete, supported on
M points, Rademacher’s theorem can be replaced by noting that the integrand is C∞ except on a finite union
of great circles). The estimator in (13) has the fastest converging mean-square error in d = 3 among known
results for the estimators of the sliced Wasserstein discussed in this paper, beating the rate in 1/N1+1/2 =
1/N3/2 associated to the control variates in (9). We thus expect the spherical ensemble to dominate Monte
Carlo estimators in d = 3. A major downside of the spherical ensemble is that it is hard to generalize in
higher dimensions; see Beltrán & Etayo (2019) and Lemoine & Bardenet (2024). There is however a close
cousin to the spherical ensemble that generalizes to any dimension.

The harmonic ensemble. Following the formulation given in Marzo Sánchez et al. (2024) and Beltrán
et al. (2016), let Hℓ be the space of homogeneous harmonic polynomials in Rd of degree ℓ, restricted to the
sphere Sd−1, and hℓ = dim(Hℓ). The harmonic ensemble is the DPP with respect to the uniform measure on
the sphere and with kernel

K(x, y) = πL(
L+(d−1)/2

L

)P
((d−1)/2,(d−1)/2−1)
L (xT y), (14)

where πL = h0 + · · · + hL and P
((d−1)/2,(d−1)/2−1)
L is a Jacobi polynomial (Gautschi, 2004). One can show

that it is a projection DPP in the sense of Definition 1, where the eigenfunctions (ϕk) are given by spherical
harmonics {Yℓ

k, ℓ ≥ 0, 1 ≤ k ≤ hℓ}; see Appendix A.1. The harmonic ensemble can be sampled using the
chain rule (3), although for d = 2, there is a simpler random matrix model, as the harmonic ensemble is
known in this particular case as the Circular Unitary Ensemble (CUE), which is the law of the eigenvalues
of a Haar-distributed unitary matrix; see e.g. Remark 4.1.7 in Anderson et al. (2010). A realization of this
specific point process on S2 can be observed in Figure 2.

Like the spherical ensemble, a strong motivation for using the harmonic ensemble is the availability of a fast
central limit theorem that translates into small asymptotic confidence intervals for Monte Carlo integration.
Indeed, letting SN = {θ1, . . . , θN } be the harmonic ensemble, Theorem 2.2 in Marzo Sánchez et al. (2024)
implies that for our integrand (6),

lim
N→∞

1
N1− 1

d−1
Var

[ ∑
θ∈SN

f (p)
µ,ν(θ)

]
=
∣∣∣∣∣∣∣∣∣f (p)

µ,ν

∣∣∣∣∣∣∣∣∣2
1
2

.

10
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Moreover, √
N1+ 1

d−1

(
1
N

∑
θ∈SN

f (p)
µ,ν(θ) −

∫
Sd

f (p)
µ,ν(θ)dθ

)
law→ N (0,

∣∣∣∣∣∣∣∣∣f (p)
µ,ν

∣∣∣∣∣∣∣∣∣2
1
2

).

where |||·||| 1
2

is a specific semi-norm on the Sobolev space H
1
2 (Sd−1) that is equivalent to the semi-norm

[f ] 1
2

:=
∫∫

Sd−1×Sd−1

|f(x) − f(y)|2

η(x, y)d
dxdy, f ∈ L2, (15)

where η(·, ·) is the geodesic distance on Sd−1; see Marzo Sánchez et al. (2024). To wit, H
1
2 (Sd−1) is the

function space for which this quantity is finite. The Lipschitz continuity of f
(p)
µ,ν ensures that f

(p)
µ,ν ∈ H

1
2 (Sd−1),

so that Marzo Sánchez et al. (2024) [Theorem 2.2] applies and gives the aforementioned central limit
theorem.

Note that this definition of the harmonic ensemble constrains us to sample a specific number of points, πL.
It can be interesting to look at what happens in intermediary levels i.e. to consider incomplete harmonic
ensembles. This has been implemented but the runtime becomes quite large when the number of points
grows.

4.3 Repelled point processes on the sphere

To further reduce the computational cost of repulsive Monte Carlo compared to DPPs, quadratic-time alter-
natives have been considered for integration on Rd, such as the repelled Poisson process of Hawat et al.
(2023) that we recall in Section 2.3. We propose a straightforward adaption to the sphere. More precisely,
let X be a finite point configuration on the sphere Sd−1, and x ∈ X. Define

Fs, X(x) =
∑

y∈X, y ̸=x

x − y

∥x − y∥s
, (16)

which we think of as a repulsive force exerted on x by the other points of the configuration. Like Hawat
et al. (2023), unless otherwise specified, we take s = d. We consider the repelled configuration

Π̃ϵ, sX =
{

x + ϵFs, X(x)
∥x + ϵFs, X(x)∥ | x ∈ X

}
, (17)

where, unlike Hawat et al. (2023), we need to project back onto the sphere. Letting the original configuration
be a Poisson point process of intensity ρ > 0, tentatively extending the results of Hawat et al. (2023), we
expect the estimator

Îrep
Π̃ϵ, dX(f (p)

µ, ν) = 1
ρ

∑
x∈Π̃ϵ, dX

f (p)
µ ν (x). (18)

to be an unbiased estimator of the sliced Wasserstein distance between µ and ν, with reduced variance
compared to a sum over X, at least for ϵ > 0 small enough. Similarly, we expect the same properties to hold
if the initial point process is a set of N i.i.d. draws from the uniform measure on the sphere.

Note that in Hawat et al. (2023), a choice of ϵ independent of f , and proportional to ρ−1 is suggested. Our
empirical findings (see A.4) suggest that this should be the correct magnitude for our ϵ in the case s = d.
Note also that the whole procedure only requires the computation of all the pairwise distances and hence
runs in O(N2), as it is the case in the Euclidean setting, where N is the number of projection directions
to be sampled. Overall, we mainly focus our study to a binomial point process X with N points. It is also
possible to apply this repelling step to all the other methods presented here. This leads in various cases to a
significant variance decrease at a relatively cheap computational cost as we will experimentally show.

11
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(a) N = 1000 i.i.d. points (b) N = 1000 i.i.d. points repelled (c) N = 999 points from UnifOrtho

(d) N = 1000 points spherical orthog-
onal polynomial ensemble

(e) N = 1024 points harmonic ensem-
ble

(f) N = 1000 points spherical ensem-
ble

Figure 2: Various point processes over the sphere

5 On the variance of the UnifOrtho estimator

UnifOrtho, as introduced by Rowland et al. (2019) and recalled in Section 3.2.2, is recommended by the
recent (Sisouk et al., 2025) for SW estimation in large dimensions. Anticipating on our own experimental
results in Section 6, we will recommend it as well. However, a theoretical understanding of the variance of
the UnifOrtho estimator is lacking, and its proponents even identified cases where the variance might exceed
that of a crude Monte Carlo estimator based on i.i.d. samples (Rowland et al., 2019). We contribute here
a new derivation for the variance of the UnifOrtho estimator, which sheds light on integrands for which it
brings variance reduction. This behavior comes from fundamental properties of the spherical harmonics.

Proposition 4 Let f be a continuous function on Sd−1, and (X1| . . . |Xd) be a matrix drawn from the Haar
measure on the orthogonal group O(d). Let Yℓ

k, ℓ ≥ 0, 1 ≤ k ≤ hℓ be a basis of spherical harmonics, and
f̂(ℓ, k) =

∫
Sd−1 f(x)Yℓ

k(x)dx denote the spherical coefficients of f . Then

Var
(

1
d

d∑
i=1

f(Xi)
)

= 1
d

Var(f(X1)) − d − 1
d

+∞∑
ℓ=1

(−1)ℓ−1λ2ℓµ2ℓ(f) (19)

= 1
d

Var(f(X1)) − d − 1
d

+∞∑
ℓ=1

λ4ℓ−2(µ4ℓ−2(f) − α2ℓ−1µ4ℓ(f)), (20)

12
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where µℓ(f) =
hℓ∑

k=1
f̂(ℓ, k)2, αℓ = 2ℓ + 1

2ℓ + d − 1 , and λ2ℓ =
Γ( d−1

2 )Γ( 2ℓ+1
2 )

√
πΓ( 2ℓ+d−1

2 )
.

Proof: Expanding the variance and using the invariance by rotation of the Haar measure yields

Var
(

1
d

d∑
i=1

f(Xi)
)

= 1
d
E[f2(X1)] + d − 1

d
E[f(X1)f(X2)] − E[f(X1)]2.

By construction of the Haar measure, conditionally on X1, X2 follows the uniform measure σ on Sd−1 ∩ X⊥
1

(i.e., the d − 2-dimensional Hausdorff measure Hd−2, normalized to have mass 1) (Meckes, 2019, chapter
1.2). In particular,

E[f(X1)f(X2)] = E[f(X1)E[f(X2)|X1]] = E[f(X1)Ff(X1)], (21)

where Ff(u) =
∫
Sd−1∩u⊥ f(w)dσ(w) is the Funk transform of f . Now, combining Theorem 3.4 and Example

3.12 in Rubin (2024) shows that the spherical harmonics are eigenvectors of the Funk transform. More
precisely, for all ℓ ∈ N and 1 ≤ k ≤ hℓ, FY2ℓ+1

k = 0 and

FY2ℓ
k = (−1)nλ2ℓY2ℓ

k .

We note in passing that this is analogous to the classical Funk-Hecke formula Dai & Xu (2013)[Theorem 2.9]
and comes from the reproducing property of the spherical harmonics kernel

Zℓ(x, y) =
hℓ∑

k=1
Yℓ

k(x)Yℓ
k(y)

for ℓ ≥ 1. Finally, decomposing f as f =
∞∑

ℓ=0

hℓ∑
k=1

f̂(ℓ, k)Yℓ
k and reporting into (21) yields

E[f(X1)f(X2)] =
+∞∑
ℓ=0

(−1)ℓλ2ℓµ2ℓ(f).

Now µ0(f) = E[f(X1)]2, λ0 = 1, and standard properties of the Gamma function show that λ2ℓ = αℓλ2ℓ−2.
Combining these facts gives the result. □

Proposition 4 calls for comments. The first term in both (19) and (20) is the variance of the crude Monte
Carlo estimator, and (19) and (20) are two different expressions for the difference in variance between
UnifOrtho and that crude Monte Carlo estimator. First, it is clear from e.g. (19) that one can get either a
decrease or an increase in variance from UnifOrtho, depending on the “energy profile" (µ2ℓ(f))ℓ∈N of the
integrand f . This explains the observed increase in variance in an example of Rowland et al. (2019). To
make another more extreme example, note that λ2 = 1/d − 1, so that

Var
(

1
d

d∑
i=1

Y2
k(Xi)

)
= 0

for all k. In contrast, integrating Y4
k leads to an increase in variance compared to crude Monte Carlo. Second,

we note that the sum in (19) is alternating: each nonpositive term in the sum is followed by a nonnegative
term. In d = 2, λ2ℓ = 1 for all ℓ, so that each term carries the same weight, and a single large isolated
µ2ℓ at some high even frequency ℓ can be responsible for a variance increase in (19). When the dimension
grows, the generalized Stirling formula yields λ2ℓ = O(ℓ− d−2

2 ), so that only the first terms in either (19) or
(20) carry significant weight. The interest of (20) is to show the effect of dimension growth on a sequence
of integrands with the same spectral profile (µ2ℓ(f)) throughout dimensions: as αℓ for a fixed ℓ decreases
as 1/d, nonnegative terms get attenuated more and more, and the variance overall decreases. Third, note
that the Funk transform sends all odd-degree spherical harmonics to zero, and in particular UnifOrtho has
the same variance as crude Monte Carlo for an odd integrand. The integrand (6) in the sliced Wasserstein
distance is even, hence only decomposes onto even harmonics, in coherence with UnifOrtho’s success.

13
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6 Experiments

In this section, we numerically illustrate the repulsive Monte Carlo estimators of Section 4. The methods we
compare are often referred to using acronyms.

• i.i.d. is classical Monte Carlo with i.i.d. uniform points on the sphere; it is the default baseline.

• ISVMF is short for importance sampling with von-Mises Fischer proposal; see Section 4.1.

• UnifOrtho refers to the union of independent Haar-distributed bases introduced in Rowland et al.
(2019); see Sections 3.2.2 and 5.

• CV up and CV low are short for Control Variates "up" and "low" as in Nguyen & Ho (2024); see
Section 3.2.1.

• SHCV is short for Spherical Harmonics control variates Sliced Wasserstein, as introduced by Leluc
et al. (2024) and described in Section 3.2.1.

• Repelled is described in 4.3, while Repelled SHCV corresponds to using spherical harmonics control
variates built on the repelled points.

• The three DPPs from Section 4.2 are denoted as OPE for the stereographic projection of the multivari-
ate Jacobi orthogonal polynomial ensemble, Harmonic for the harmonic ensemble, and Spherical for
the spherical ensemble. Note that CUE (short for Circular Unitary Ensemble), is the 2-dimensional
version of the harmonic Ensemble.

• Spherical SHCV, only present when d = 3, consists in applying spherical harmonics control variates
to the spherical ensemble.

• Finally, QMC or Randomized regular grid corresponds to the randomized quasi-Monte Carlo grids in
d ∈ {2, 3} described in 3.2.2.

We consider three different experimental settings. The first one is a toy example where we compute the
SW distance between two independent Gaussian samples. In order to see how our algorithms behave when
comparing more realistic point clouds, we then compute the SW2 distance between pairs of datasets from a
database of three-dimensional point clouds (Chang et al., 2015) used in previous papers on the SW distance
(Leluc et al., 2024; Nguyen & Ho, 2024). Finally, to generate a different kind of realistic point clouds,
we place ourselves in the position of a researcher who wants to compare the outputs of various MCMC
algorithms, a task for which the SW has recently been used (Cardoso et al., 2023; Linhart et al., 2024). This
time, we focus on SW1 rather than SW2, since the former corresponds to a worst-case integration error, a
natural figure of merit to compare MCMC algorithms.

6.1 Gaussian toy example

For any given dimension d, we sample two independent vectors mX , mY from N (0, Id), and, independently,
two matrices U , V from N (0, Id×d). Consider then ΣX = UT U , and ΣY = V T V . Finally, sample x1, . . . , xM

(resp. y1, . . . , yM ) i.i.d. from N (mX , ΣX) (resp N (mY , ΣY )), and define

µ = 1
M

M∑
i=1

δxi , ν = 1
M

M∑
i=1

δyi .

For each dimension and number of projections, we consider 100 independent realizations of each estimator.
In d = 2 and d = 10, for SHCV, a maximal degree of 4 for the spherical harmonics is fixed, as in the original
paper (Leluc et al., 2024). For d = 20, this maximal degree is reduced to 2. Empirically, up to 1600 projection
points in d = 20, the number of control variates corresponding to a maximal degree of 3 is indeed too large
for the estimator to get near the (known) value of sliced Wasserstein. Note that a similar phenomenon is
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(a) MSE vs computing time for Gaussian toy example,
d = 2
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(b) Errors vs number of projections for Gaussian toy example,
d = 2
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(c) MSE vs computing time for Gaussian toy example,
d = 10
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(d) Errors vs number of projections for Gaussian toy example,
d = 10
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(e) MSE vs computing time for Gaussian toy example,
d = 20
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(f) Errors vs number of projections for Gaussian toy example,
d = 20

Figure 3: Results for the Gaussian toy example, across d = 2, 10, 20. The actual value of the 2-sliced Wasser-
stein distance is estimated using Monte Carlo integration with 106 projections.

observed in d = 10 on 100 projections or 250 projections (see Figure 3d). This is related to the requirement
fixed in Equation 9 for the estimator to be consistent.

15



Under review as submission to TMLR

The results are given in Figure 3, with the left panel showing estimated mean-squared errors vs. computing
time, and the right panel showing boxplots of the integration errors. The reference values are computed
with a comparatively long Monte Carlo run.

For d = 2, Figure 3a highlights that the randomized regular grid far outperforms any other method in terms
of MSE. The determinantal point process CUE stands as second, and all the other methods stand in the same
range in terms of MSE. Things are different in the 10- and 20- dimensional settings, where the randomized
grid and the DPPs do not feature anymore among the leading methods. In d = 10, as per Figures 3c and 3d,
the differences between the methods are less sharp, but UnifOrtho dominates, closely followed by CV low,
as well as SHCV and Repelled SHCV, once there are enough projections for the linear systems for consistency
to show. In d = 20 dimensions, the only relevant methods seem to be UnifOrtho and CV low, which far
outperform any other method. These conclusions are coherent with the ones presented in Sisouk et al.
(2025).

Overall, repulsive methods are among the leading methods in each dimension, but no single repulsive
method uniformly dominates: as expected, a randomized grid or a well-chosen DPP are adequate in low
dimension, while higher dimensions seem to favor UnifOrtho. Maybe surprisingly, we note that repelling the
points seems to have only a moderate effect on the MSE. This effect is not even guaranteed to be a decrease
in the MSE, and we will investigate this more quantitatively in the Appendix A.4.

6.2 Three-dimensional point clouds

We now consider three-dimensional point clouds Chang et al. (2015) in the Shapenet database. They are
configurations of points that cover shapes that range from simple cylinders to planes or benches. We arbi-
trarily consider four point clouds from the database, and compute the difference between point clouds #2
and #34, and the distance between point clouds #3 and #35. The point clouds are shown in Figure 4.

(a) Point cloud #2: table
(b) Point cloud #34: cylin-
der (c) Point cloud #3: sofa (d) Point cloud #35: chair

Figure 4: Two-dimensional projections of the various point clouds used in Section 6.2.

The typical integrand in the SW2 between two such point configurations looks quite different from the toy
Gaussian case of Section 6.1. In particular, it can be multimodal; see Figure 9. The results of our experiments
are shown in Figure 5.

The results are comparable with those of the two-dimensional Gaussian toy example of Section 6.1, com-
forting the conclusion that in dimension d ≤ 3, for the integrands and the regimes we consider, randomized
grids should be the default quadrature: they are both cheap to sample and provide significantly more ac-
curate integral estimators than sophisticated Monte Carlo methods such as SHCV or DPPs like the spherical
ensemble.

Among the other methods, three seem to be of similar performance: SHCV, repelled SHCV and the spherical
ensemble. As the number of projection directions grows, the spherical ensemble gains an edge over the
other two methods, in accordance to its faster variance decay (13). A further improvement is obtained by
combining the spherical ensemble with SHCV, i.e. evaluating the SHCV estimator on a spherical ensemble
realization rather than i.i.d. points. Finally, we note that ISVMF does not necessarily reduce the MSE of the
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(a) Errors for the SW 2 between point clouds #2 and #34.
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(b) Errors for the SW 2 between point clouds #3 and #35.

Figure 5: Boxplots of the errors for three-dimensional point clouds. The boxplots are centered around a
reference value of the sliced Wasserstein estimated using QMC with 105 points.

i.i.d. estimator: this is likely due to the multimodality of the integrand, which is not reflected in the von
Mises-Fischer proposal.

To understand the behavior of the UnifOrtho estimator in the specific case, we used a QMC sequence to
estimate the spectral profile (µ2ℓ(f)), where f is the integrand of the sliced Wasserstein between two point
cloud, we refer to Proposition 4 for further details. Figure 6 shows in both cases a fast decay of these
coefficients, with a sharper slope for comparing point clouds #2 and #34. This explains the higher gain of
UnifOrtho in this case, as seen in Figure 5.
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Figure 6: Evolution of µℓ for the two integrands appearing in SW2 in Section 6.2.

6.3 Comparing MCMC kernels

To provide a realistic use case of the SW distance in high and arbitrary dimension, we consider the numerical
validation of an MCMC kernel. Numerically assessing that an MCMC kernel targets the expected distribution,
as well as comparing MCMC kernels in terms of integration errors with respect to a target distribution,
are natural tasks in computational statistics and machine learning. In that context, the sliced Wasserstein
between a realization of an MCMC history and a known target distribution can be used as a figure of merit,
as done e.g. in Cardoso et al. (2023). To see why, note first that the 1-Wasserstein distance is a worst-case
integration error. Indeed, the classical dual formulation of the W1 distance reads

W1(µ, ν) = sup
f :Lip(f)≤1

∣∣∣∣∫ fdµ −
∫

fdν

∣∣∣∣ , (22)

where Lip(f) is the Lipschitz constant of the (Lipschitz) function f ; see e.g. (Peyré & Cuturi, 2018). Second,
SW1 can be used as a proxy for W1, in the sense of the equivalence in (5). Hence, the law of the SW1 distance
between a (random) MCMC history and the target distribution provides information on the integration error
incurred by the MCMC kernel.

More formally, assume that the MCMC algorithm targets a distribution µ, and outputs a random configuration
of points (X1, . . . , XT ). Call

µMCMC
T = 1

T

T∑
i=1

δXi

the corresponding (random) empirical measure. Note that evaluating directly SW1(µMCMC
T , µ) is not pos-

sible, but if it is possible to sample Y1, . . . , YM i.i.d. from µ (as is often the case when testing sampling
algorithms on simple targets), we can use

µiid
M = 1

M

M∑
i=1

δYi

as a proxy for µ. The triangular identity indeed guarantees

SW1(µMCMC
T , µ) ≤ SW1(µMCMC

T , µiid
M ) + SW1(µiid

M , µ). (23)

The second term of the right-hand side can be controlled via results involving the sample complexity (Manole
et al., 2022), and scales as 1/

√
M . We thus focus on estimating SW1(µMCMC

T , µiid
M ), using Monte Carlo

integration over the sphere. Note that, since our goal is to illustrate various quadratures on the sphere, we
will consider a single realization of µMCMC

T per dimension, but an MCMC practitioner wanting to estimate
the quality of an MCMC kernel should repeatedly sample independent MCMC histories and consider the
distribution of the obtained SW distances.
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We consider d ∈ {10, 30}. Our target distribution is the banana-shaped target that is classically used to
demonstrate the ability of gradient-based MCMC samplers, such as Hamiltonian Monte Carlo (Duane et al.,
1987), to make long-range jumps and thus reduce the asymptotic variance of the corresponding MCMC
estimators. Formally, the banana-shaped target is the distribution of the image of a Gaussian vector X ∼
N (0, Id) by the map f : Rd → Rd defined by f2j+1(X) = x2j+1 and f2j+2(X) = −x2j+2 + (x2j+1 − 5)2 for
j ≥ 0. We further fix the number of projections in the SW estimators to N = 103, the number of points on
which the reference measure is supported to M = 104.

To obtain realizations of µMCMC
T , we consider four MCMC kernels from the PyMC v5.23.0. library (Abril-Pla

et al., 2023), namely four variants of Hamiltonian Monte Carlo (HMC; (Duane et al., 1987)). HMC has
several hyperparameters, such as a stepsize and a mass matrix parameters, and PyMC offers different options
to tune them. Our first kernel (henceforth referred to as regular HMC) is the default automatic tuning in
PyMC. Our second kernel (broken HMC) corresponds to us manually blocking the adaptation of the mass
matrix, and setting it to the identity matrix. Our third kernel (regular NUTS) is the No-U-Turn adaptive HMC
sampler of Hoffman et al. (2014), as implemented again in PyMC. Our fourth kernel (broken NUTS) is NUTS,
but with us manually blocking the online adaptation of the stepsize parameter –which renders the analysis of
the Markov chain difficult– and setting it to a fixed value. The objective it to observe the practical relevance
of the hyperparameter tuning mechanisms in HMC.

In d = 10, we consider five estimators of the SW1 distance, namely i.i.d., UnifOrtho, Repelled i.i.d., SHCV,
and Repelled SHCV. For SHCV, we were able to set the maximum degree of spherical harmonics to 4. In
d = 30, we keep i.i.d., UnifOrtho, and Repelled i.i.d.. Note that we do not consider CV up and CV low, since
they were specifically designed for SW2.

Our results for d = 10, 30 are respectively shown in Figures 7 and 8. We show the average of 1, 000 inde-
pendent realizations of each estimator, with the 95% Gaussian confidence interval for the mean, Bonferroni
corrected across the 5 × 4 estimators (respectively 3 × 4) corresponding to each value of T . Strictly speaking,
one can thus statistically compare all confidence intervals for any given value of T , but we should refrain
from comparing across values of T . Since our objective is to compare the accuracies of various quadratures,
this seemed a natural correction.

T i.i.d. Repelled UnifOrtho SHCV Repelled SHCV

10

4.955 ± 0.093
4.959 ± 0.101
4.957 ± 0.089
4.805 ± 0.102

4.957 ± 0.062
4.960 ± 0.068
4.957 ± 0.073
4.811 ± 0.062

4.958 ± 0.028
4.958 ± 0.026
4.958 ± 0.026
4.811 ± 0.023

4.960 ± 0.049
4.957 ± 0.052
4.956 ± 0.060
4.812 ± 0.050

4.957 ± 0.037
4.957 ± 0.040
4.959 ± 0.039
4.812 ± 0.041

100

0.741 ± 0.007
0.847 ± 0.012
4.051 ± 0.082
0.579 ± 0.008

0.741 ± 0.005
0.848 ± 0.008
4.050 ± 0.054
0.579 ± 0.006

0.741 ± 0.002
0.848 ± 0.003
4.051 ± 0.020
0.580 ± 0.002

0.741 ± 0.004
0.847 ± 0.007
4.049 ± 0.044
0.580 ± 0.005

0.741 ± 0.003
0.848 ± 0.006
4.051 ± 0.029
0.579 ± 0.004

1 000

0.270 ± 0.003
0.487 ± 0.009
0.374 ± 0.004
0.242 ± 0.004

0.270 ± 0.002
0.487 ± 0.006
0.374 ± 0.003
0.242 ± 0.003

0.270 ± 0.001
0.487 ± 0.002
0.374 ± 0.002
0.242 ± 0.001

0.270 ± 0.003
0.487 ± 0.005
0.374 ± 0.005
0.242 ± 0.003

0.270 ± 0.002
0.487 ± 0.004
0.374 ± 0.004
0.242 ± 0.002

10 000

0.158 ± 0.002
0.097 ± 0.001
0.790 ± 0.016
0.098 ± 0.001

0.1580 ± 0.001
0.0968 ± 7 · 10−4

0.790 ± 0.010
0.0984 ± 6 · 10−4

0.1580 ± 8 · 10−4

0.0968 ± 4 · 10−4

0.790 ± 0.004
0.0983 ± 4 · 10−4

0.158 ± 0.002
0.097 ± 0.001
0.790 ± 0.008

0.0983 ± 9 · 10−4

0.1580 ± 0.001
0.0968 ± 8 · 10−4

0.790 ± 0.006
0.0983 ± 6 · 10−4

Figure 7: Averaged SW1 and asymptotic confidence intervals in d = 10. The color code is Blue for broken
HMC, Red for regular HMC, Green for broken NUTS, and Purple for regular NUTS.

The first conclusion is that UnifOrtho consistently yields smaller confidence intervals than the other methods,
in both dimensions, which is why we display the corresponding column in bold. Similarly, the second
conclusion is that repelled versions of each algorithm reduce the size of the confidence intervals in d = 10,
but the improvement is less perceptible in d = 30. This is to be taken with a pinch of salt, however, as we do
not provide a confidence interval on the variance of the estimator.
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T i.i.d. Repelled UnifOrtho

10

2.135 ± 0.017
1.919 ± 0.010
4.057 ± 0.067
4.717 ± 0.089

2.135 ± 0.017
1.918 ± 0.010
4.063 ± 0.078
4.718 ± 0.086

2.135 ± 0.002
1.918 ± 0.001
4.063 ± 0.018
4.719 ± 0.022

100

0.726 ± 0.009
0.849 ± 0.013
4.242 ± 0.077
0.529 ± 0.007

0.725 ± 0.009
0.848 ± 0.011
4.251 ± 0.079
0.529 ± 0.008

0.725 ± 0.004
0.848 ± 0.004
4.247 ± 0.020
0.529 ± 0.003

1 000

0.363 ± 0.005
0.288 ± 0.003
0.236 ± 0.003
0.215 ± 0.003

0.363 ± 0.004
0.288 ± 0.004
0.236 ± 0.003
0.215 ± 0.003

0.363 ± 0.001
0.288 ± 0.001
0.236 ± 0.001
0.215 ± 0.001

10 000

0.169 ± 0.002
0.134 ± 0.002

0.0645 ± 8 · 10−4

0.0638 ± 7 · 10−4

0.169 ± 0.002
0.134 ± 0.002

0.0645 ± 8 · 10−4

0.0638 ± 8 · 10−4

0.1693 ± 6 · 10−4

0.1341 ± 6 · 10−4

0.0646 ± 3 · 10−4

0.0638 ± 3 · 10−4

Figure 8: Averaged SW1 and asymptotic confidence intervals in d = 30. The color code is Blue for broken
HMC, Red for regular HMC, Green for broken NUTS, and Purple for regular NUTS.

As to our mock goal to compare algorithms, Figure 7 shows first, for instance, no statistical gain in using
NUTS rather than regular HMC when T = 10, 000. In d = 30, a similar phenomenon can be observed in
Figure 8 when comparing broken NUTS and regular NUTS when T = 10, 000. In that case, only UnifOrtho
has a small enough variance to yield a statistically significant difference in performance, in favor of regular
NUTS, as expected. This time, the pinch of salt comes from our use of a single MCMC run for each pair of
values of T and d. Still, as quadrature algorithms are concerned, UnifOrtho is to be preferred.

7 Discussion

Our empirical findings suggest that, when working in small dimensions (d ∈ {2, 3}), the lowest variance is
obtained by randomizing simple deterministic quadratures. Indeed, the randomized spiral points in d = 3,
and the classical grid in d = 2 outperform most sophisticated random methods, at a cheap computational
cost. When the dimension grows, these methods become unavailable, and more inherently random quadra-
tures become attractive. Crude Monte Carlo, using i.i.d. uniform samples, quickly gets outperformed by most
of the presented methods. Among them, DPPs are competitive in smaller dimensions, but their sampling cost
becomes prohibitive as dimension increases. This is especially true for the harmonic ensemble, whose car-
dinality is bound to be exponential in the dimension, while sampling intermediate levels requires extensive
calls to the spherical harmonics and a rejection sampling phase with a loose rejection bound. On the other
hand, the Repelled processes are cheap alternatives to DPPs that lead to a (small) variance reduction. Yet,
their behavior is less well understood. While Appendix A.4 suggests that some of the intuition on tuning the
repulsion carries over from the Euclidean case, combining the repulsion operator with e.g. control variates
leads to unstable behavior. Turning to control variates methods, they consistently lead to variance reduc-
tion in our benchmark, yet they come with restrictions: CV up and CV low are limited to SW2, while SHCV
requires the computation of spherical harmonics. Finally, a clear cost-efficient algorithm outperforms every
other method in higher dimension: UnifOrtho. This is interesting, as it is a repulsive Monte Carlo estimator,
yet with limited negative dependence due to the fact that it is the union of many independent small repulsive
point processes. We contributed to the understanding of the success of UnifOrtho by providing an expression
for the variance the corresponding estimator in terms of the spherical harmonics coefficients of the inte-
grand, which also explains why variance can actually increase if applied to integrands with specific spectral
profiles. Another avenue for future work is to combine UnifOrtho and control variates to provide a uniform
decrease in variance. Similarly, understanding the spectral profile of the integrand in the SW distance, in
terms of easy-to-estimate features of the two involved distributions, would help choosing the right estimator.
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A Appendix

A.1 Spherical harmonics

The spherical harmonics are a class of functions that play an important role in approximating functions on
the sphere. We refer to Dai & Xu (2013) for a comprehensive introduction, from which we isolate a few
points here for completeness.

Let d ≥ 2, the simplest definition is that the spherical harmonics on Sd−1 are the homogeneous harmonic
polynomials of Rd, restricted to the sphere Sd−1. Alternately, if ∆ is the Laplace-Beltrami operator on Sd−1

and λℓ = ℓ(ℓ+d−2), the spherical harmonics of order ℓ ∈ N can be defined as the elements of the eigenspace
Hℓ of ∆ corresponding to eigenvalue −λℓ. One can then show that Hℓ is the set of harmonic homogeneous
polynomials of degree ℓ restricted to Sd−1 as expected. Furthermore,

ΠL =
L⊕

ℓ=0
Hℓ

is the space of harmonic polynomials in Rd restricted to Sd−1 of degree up to L. We also note, following
Marzo Sánchez et al. (2024), that

πL := dim(ΠL) = 2L + (d − 1)
d − 1

(
(d − 1) + L − 1

L

)
= 2

Γ(d)Ld−1 + o(Ld−1). (24)

For a given ℓ, let hℓ = dim(Hℓ) and {Yℓ
k|1 ≤ k ≤ hℓ} be any orthonormal basis of Hℓ. Then Dai & Xu (2013)

[Theorem 1.2] state that the elements of {Yℓ
k|ℓ ∈ N, 1 ≤ k ≤ hℓ} are centered functions for the uniform

measure on the sphere, as soon as l ≥ 1, which form a Hilbert basis of L2(Sd−1).

From a computational standpoint, it is often useful to note the following addition formula Dai & Xu (2013)
[Theorem 2.6],

∀x, y ∈ Sd−1, Zℓ(x, y) :=
hℓ∑

k=1
Yℓ

k(x)Yℓ
k(y) = n + λ

λ
Cλ

ℓ (⟨x, y⟩), (25)

where Cλ
ℓ is the Gegenbauer polynomial of degree ℓ and λ = d−2

2 . This leads to the following definition.

Definition 5 A set of points {x1, · · · , xhℓ
} ⊂ Sd−1 is said to be fundamental if the matrix Cℓ :=

(Cλ
ℓ (⟨xi, xj⟩))1≤i,j≤hℓ

is invertible.

Fundamental sets are particularly interesting since, if {x1, · · · , xhℓ
} is a fundamental set, then

{Cλ
ℓ (⟨·, xi⟩) | 1 ≤ i ≤ hℓ} is a basis of Hℓ (Dai & Xu, 2013) [Theorem 3.3]. This theorem is at the

heart of the library1 developed by Dutordoir et al. (2020) to compute spherical harmonics. Their method
consists in greedily building a fundamental set that is likely to lead to a stable Cholesky decomposition
Cℓ. This is done by iteratively adding a point that maximizes the determinant of (Cλ

ℓ (⟨xi, xj⟩))1≤i,j≤hℓ
.

1https://github.com/vdutor/SphericalHarmonics
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Then, through a Cholesky decomposition of Cℓ, they obtain the Gram-Schmidt orthonormalization of
{Cλ

ℓ (⟨·, xi⟩) | 1 ≤ i ≤ hℓ}. In other words, they obtain an orthonormal basis Hℓ.

The greedy construction of a fundamental set is computationally heavy, although one has to only run it once
only. As a computationally cheaper alternative and at the price of stability of the Choleky decomposition, the
point sets which are not fundamental lie in {det(Cℓ) = 0}, which is an algebraic hypersurface of S(d−1)×hℓ

so is of measure zero. Hence almost every set of points is a fundamental set (Dai & Xu, 2013). However, one
cost that cannot be avoided is that all the spherical harmonics of a given level have to be computed, which
comes down to finding the Cholesky decomposition of an hℓ × hℓ matrix, and hℓ grows as ℓd−2.

A.2 More on the importance sampling scheme

For completeness, and because fitting a von-Mises-Fisher distribution is not straightforward, we provide here
pseudocode for our fitted importance sampling estimator.

Algorithm 1 A cross-entropy fitted importance sampling estimator.
1: Input: Measures µ and ν, Number N of points to be sampled, Budget fraction r ∈ (0, 1) to allocate to

estimating the proposal.
2: Sample X1, . . . , X⌊rn⌋ i.i.d. from the uniform measure on the sphere. Evaluate f

(p)
µ,ν on them. Define

imax = argmax{f (p)
µ,ν(Xi)|i ≤ ⌊rn⌋}.

3: Define f̂
(p)
µ,ν(x) = f

(p)
µ,ν(x)1[⟨Ximax , x⟩ > 0], and evaluate the quantities

ε⌊rN⌋ =

⌊rN⌋∑
i=1

f̂
(p)
µ,ν(Xi)Xi

∥
⌊rN⌋∑
i=1

f̂
(p)
µ,ν(Xi)Xi∥

, R⌊rN⌋ =
∥

⌊rN⌋∑
i=1

f̂
(p)
µ,ν(Xi)Xi∥

⌊rN⌋∑
i=1

f̂
(p)
µ,ν(Xi)

.

4: Let κ⌊rN⌋ =
R⌊rN⌋(d − R2

⌊rN⌋)
1 − R2

⌊rN⌋
as in Sra (2012).

5: Sample X⌊rN⌋+1, . . . , XN from 1
2 (vmf(ε⌊rN⌋, κ⌊rN⌋) + vmf(−ε⌊rN⌋, κ⌊rN⌋)).

6: Return

r

⌊rN⌋

⌊rN⌋∑
i=1

f (p)
µ,ν(Xi) + 2 1 − r

⌈(1 − r)N⌉

N∑
i=⌊rN⌋+1

f
(p)
µ,ν(Xi)

vmf(Xi|ε⌊rN⌋, κ⌊rN⌋) + vmf(Xi| − ε⌊rN⌋, κ⌊rN⌋) .

A.3 Discussion on the shape of the integrand

We include in Figure 9 various plots of the integrand (6) of the sliced Wasserstein distance in three di-
mensions. In Figure 9a, we show the integrand corresponding to two Gaussians with random means and
covariances, as specified in Section 6.1. In Figure 9b, we examine the integrand (6), but this time between
two empirical measures based on respective i.i.d. draws from the same two Gaussians. The integrands in
Figures 9a and 9b are visually similar, as expected. Moreover, they seem to be unimodal up to symmetry. In
particular, we expect importance sampling with a fitted symmetrized vMF proposal to yield low variance.

Figures 9c and 9d show the integrand (6) for the point clouds used in Section 6.2. Here the landscape seems
more erratic, and the regularity as well as the number of modes is less straightforward to determine. Yet,
intuitively the resulting integrands should have a relatively sparse decomposition in the bases of spherical
harmonics, as confirmed by Figure 6.

25



Under review as submission to TMLR

2

4

6 W
22
(θ#

µ
,θ#

ν
)

(a) Heatmap of the true integrand between two Gaus-
sian measures

2

4

6

8

W
22
(θ#

µ
,θ#

ν
)

(b) Heatmap of the integrand between two point
clouds sampled from these Gaussian measures

0.01

0.02

0.03

0.04

0.05
W

22
(θ#

µ
,θ#

ν
)

(c) Heatmap of the integrand between point clouds
#2 and #34

0.02

0.04

0.06

0.08

0.10

0.12

W
22
(θ#

µ
,θ#

ν
)

(d) Heatmap of the integrand between point clouds
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Figure 9: Heatmaps of the integrand in 3D for various distributions.

A.4 A few words on repelled point processes

The repelled point processes behave inconsistently in the experiments of Section 6. Intuitively, a small
repulsive perturbation, meaning a small ϵ > 0 in (17), should lead to some variance reduction, yet the
magnitude of ϵ seems to depend on the number N of points to repel as well as on their distribution. In this
section, we experimentally investigate this optimal choice for ϵ, to guide future theoretical investigations.
Following the seminal case of a homogeneous Poisson process in Rd, we expect variance reduction to happen
when ϵ is of the order of 1/N , where N is the cardinality of the configuration to repel.

To assess the influence of ϵ, we sampled 100 independent realizations of the repelled estimator for each
of a discrete set of values of ϵ and a choice of integrands and initial point processes, and reported the χ2

confidence interval for the variance of each estimator. We correct these confidence intervals with a Bonferroni
correction across the finite set of values for ϵ, to reach a simultaneous confidence level of 0.969.
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(a) Integration of the indicator of a half-sphere
with N = 100 i.i.d. points, d = 3
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(b) Integration of the indicator of a half-sphere
with N = 1000 i.i.d. points, d = 3
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(c) Integration of the sliced Wassertein between
sampled Gaussian supported on 100 points with
N = 100 i.i.d. points, d = 3
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(d) Integration of the sliced Wassertein between
sampled Gaussian supported on 100 points with
N = 1000 i.i.d. points, d = 3

10−8 10−6 10−4 10−2 100

ε

0.14

0.16

0.18

0.20

0.22

σ

(e) Integration of the sliced Wassertein between
sampled Gaussian supported on 100 points with
N = 100 i.i.d. points, d = 10
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(f) Integration of the sliced Wassertein between
sampled Gaussian supported on 100 points with
N = 1000 i.i.d. points, d = 10

Figure 10: Confidence intervals for the variance of the estimator with a Bonferroni corrected confidence
level of 0.969, where the repelled points are sampled i.i.d.

27



Under review as submission to TMLR

Figure 10 shows the results for an initial point process made of i.i.d. uniform points on the sphere, for a
choice of indicators and values of N . The red line is a reference corresponding to ϵ = 0, placed at an arbitrary
low value of ϵ for comparison. The gray dashed line corresponds to ϵ = 1/N . We observe that ϵ = 1/N is
indeed a sensible choice, leading to a variance reduction by a factor up to 2, even for a non-smooth integrand
like the indicator of a half-sphere.

Using the i.i.d. repelled points to build the SHCV estimator, as denoted by Repelled SHCV in Section 6, the
situation becomes much more unstable, as shown in Figure 11. Looking closely, it seems that a choice of ϵ
slightly under 1/N seems to consistently lead to some variance reduction, but a small variation in ϵ can have
drastic consequences, as observed on Figure 11b. Note also that, unlike the vanilla repelled i.i.d. estimator,
the optimal choice for ϵ seems to be dimension-dependent, as shown by the difference in the dips between
Figure 10b and Figure 11e. Hence, although repelling the points in the use of SHCV has the potential to
diminish the variance, further theoretical investigation are required to correctly tune ϵ.

Finally, in line with the experimental observations of Hawat et al. (2023), repelling structured points can
also lead to a straight-up increase in the variance. This is the case when the starting configuration is a
randomized grid, as in the QMC or the UnifOrtho estimators in Section 6, see Figure 12. Yet, Figure 12b
suggests that Repelled UnifOrtho can actually lead to a dip in variance when integrating an indicator. This
was an unexpected behavior and further theoretical work is needed to understand this phenomenon.
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(a) Integration of the indicator of a half-sphere
with N = 100 and SHCV, d = 3
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(b) Integration of the indicator of a half-sphere
with N = 1000 and SHCV, d = 3
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(c) Integration of the sliced Wassertein between
sampled Gaussians supported on 100 points
with N = 100 and SHCV, d = 3
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(d) Integration of the sliced Wassertein between
sampled Gaussians supported on 100 points
with N = 1000 and SHCV, d = 3
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(e) Integration of the sliced Wassertein between
sampled Gaussians supported on 100 points
with N = 1000 and SHCV, d = 10

Figure 11: Confidence intervals for the variance of the estimator with a Bonferroni corrected confidence
level of 0.969 where the SHCV estimator is built on repelled i.i.d. uniform points.
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(a) Integration of the indicator of a half-sphere
with N = 1000 RQMC points, d = 3
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(b) Integration of the indicator of a half-sphere
with N = 1000 UnifOrtho points, d = 3
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(c) Integration of the sliced Wassertein between
sampled Gaussian supported on 100 points with
N = 1000 UnifOrtho points, d = 3

Figure 12: Confidence intervals for the variance of the estimator with a Bonferroni corrected confidence
level of 0.969, when repelling points sampled using either UnifOrtho or RQMC in d = 3.
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