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ABSTRACT

Recent work provides promising evidence that Physics-Informed Neural Networks
(PINN) can efficiently solve partial differential equations (PDE). However, previous
works have failed to provide guarantees on the worst-case residual error of a PINN
across the spatio-temporal domain – a measure akin to the tolerance of numerical
solvers – focusing instead on point-wise comparisons between their solution and the
ones obtained by a solver on a set of inputs. In real-world applications, one cannot
consider tests on a finite set of points to be sufficient grounds for deployment, as
the performance could be substantially worse on a different set. To alleviate this
issue, we establish tolerance-based correctness conditions for PINNs over the entire

input domain. To verify the extent to which they hold, we introduce @-CROWN:
a general, efficient and scalable post-training framework to bound PINN residual
errors. We demonstrate its effectiveness in obtaining tight certificates by applying
it to two classically studied PDEs – Burgers’ and Schrödinger’s equations –, and
two more challenging ones with real-world applications – the Allan-Cahn and
Diffusion-Sorption equations.

1 INTRODUCTION

Accurately predicting the evolution of complex systems through simulation is a difficult, yet necessary,
process in the physical sciences. Many of these systems are represented by partial differential
equations (PDE) the solutions of which, while well understood, pose a major computational challenge
to solve at an appropriate spatio-temporal resolution (Raissi et al., 2019a; Kochkov et al., 2020).
Inspired by the success of machine learning in other domains, recent work has attempted to overcome
the aforementioned challenge through physics-informed neural networks (PINN) (Raissi et al., 2019a;
Sun et al., 2020; Pang et al., 2019). For example, the Diffusion-Sorption equation – which has
real-world applications in the modeling of groundwater contaminant transport – takes 59.83s to solve
per inference point using a classical PDE solver, while inference in its PINN version from Takamoto
et al. (2022) takes only 2.7 ⇥ 10�3s, a speed-up of more than 104 times.

The parameters of a PINN are estimated by minimizing the residual of the given PDE, together with
its initial and boundary conditions, over a set of spatio-temporal training inputs. Its accuracy is
then empirically estimated by measuring the output over separate held-out inputs, and (typically)
comparing them to standard numerical PDE solvers. In other words, most current work on PINNs
provides no formal correctness guarantees that are applicable for every input within the feasible
domain. We argue that, while testing on a finite set of points provides a good initial signal on the
accuracy of the PINN, such an approach cannot be relied upon in practice, and error certification is
needed to understand the quality of the PINN trained (Hillebrecht and Unger, 2022).

In order to alleviate the deficiencies of previous evaluation criteria, we introduce formal, tolerance-
based correctness conditions for PINNs. These require that the residual error is globally upper
bounded across the domain by a tolerance parameter. To compute this bound and verify the correctness
conditions, we build on the progress that has been made in the neural network verification literature.
Specifically, we extend the CROWN framework (Zhang et al., 2018) by deriving linear upper and
lower bounds for the various nonlinear terms that appear in PINNs, and devise a novel customized
bound propagation strategy for the task at hand.
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Our contributions are threefold. (i) We formally define global correctness conditions for general
PINNs that approximate solutions of PDEs. (ii) We introduce a general, efficient, and scalable
post-training correctness certification framework (@-CROWN) to theoretically verify PINNs over
their entire spatio-temporal domains. (iii) We demonstrate our post-training framework on two widely
studied PDEs in the context of PINNs, Burgers’ and Schrödinger’s equations (Raissi et al., 2019a),
and two more challenging ones with real-world applications, the Allan-Cahn equation (Monaco and
Apiletti, 2023) and the Diffusion-Sorption equation (Takamoto et al., 2022).

2 RELATED WORK

Since our certification framework for PINNs is based on the verification literature of image classifiers,
in this section we explore: related work for PINNs, and previous work on NN robustness verification.

Physics-informed Neural Networks Dissanayake and Phan-Thien (1994) first discussed using
neural networks to approximate PDE solutions under a supervised learning paradigm. More recently,
Raissi et al. (2019a) introduced PINNs, which leverage automatic differentiation to obtain approximate
solutions to the underlying PDE. Since then, a variety of different PINNs have emerged in a range of
applications, from fluid dynamics (Raissi et al., 2019b; 2020; Sun et al., 2020; Jin et al., 2021), to
meta material design (Liu and Wang, 2019; Fang and Zhan, 2019a; Chen et al., 2020) for different
classes of PDEs (Pang et al., 2019; Fang and Zhan, 2019b; Zhang et al., 2020). A few works analyze
the convergence of the training process of PINNs under specific conditions (Shin et al., 2020; Wang
et al., 2022b). Mishra and Molinaro (2022) approximated the generalization error of various PINNs
under specific stability and training process assumptions, and others introduced approximation bounds
under regularity assumptions (Ryck and Mishra, 2022; Hillebrecht and Unger, 2022). Our verification
framework is applicable to any PINN where the solution is modeled by a fully connected network.

Robustness Verification of Neural Networks The presence of adversarial examples, i.e., small
local input perturbations that lead to large output changes, was established by Szegedy et al. (2013) in
image classifiers. As robust classifiers emerged (Madry et al., 2017), so did attempts to certify them
formally. Those methods can be divided into exact, i.e., complete (Katz et al., 2017; Ehlers, 2017;
Huang et al., 2017; Lomuscio and Maganti, 2017; Bunel et al., 2018), or conservative, i.e., sound but
incomplete (Gowal et al., 2018; Mirman et al., 2018; Wang et al., 2018; Wong and Kolter, 2018; Ayers
et al., 2020). A promising set of conservative methods poses the problem as a convex relaxation of
the original nonlinear network architecture, and solves it using a linear programming solver (Salman
et al., 2019) or by obtaining closed-form bounds (Zhang et al., 2018; Wang et al., 2021). The latter
are especially appealing due to their efficiency. Examples include CROWN (Zhang et al., 2018) and
↵-CROWN (Xu et al., 2020b). Xu et al. (2020a) extended the linear relaxation framework from
Zhang et al. (2018) to general computation graphs, but the purely backward propagation nature makes
it potentially less efficient than custom bounds/hybrid approaches (Shi et al., 2020).

We use techniques from robustness verification typically applied in a local input neighborhoods
to certify the full applicability domains of PINNs. To the best of our knowledge, ours is the first
application of these methods to a ‘global’ specification, and within a scientific context.

3 PRELIMINARIES

3.1 NOTATION

Given vector a 2 Rd, ai refers to its i-th component. We use @
x
j
i
f and @jf

(@xi)j
interchangeably to

refer to the j-th partial derivative of a function f : Rn
! R with respect to the i-component of its

input, xi. Where it is clear, we use f(x) and f interchangeably. We take L(i)
W,b(x) = W

(i)
x + b

(i)

to be a function of x parameterized by weights W
(i) and bias b

(i). We define an L-layer fully

connected neural network g : Rd0 ! RdL for an input x as g(x) = y(L)(x) where y(k)(x) =

L(k)
W,b(z(k�1)(x)), z(k�1)(x) = �(y(k�1)(x)), z(0)(x) = x, in which W

(k)
2 Rdk⇥dk�1 and

b
(k)

2 Rdk are the weight and bias of layer k, � is the nonlinear activation, and k 2 {1, . . . , L}.
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3.2 PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

We consider general nonlinear PDEs of the form:

f(t, x̂) = @tu(t, x̂) + N [u](t, x̂) = 0, x̂ 2 D, t 2 [0, T ], (1)

where f is the residual of the PDE, t is the temporal and x̂ is the spatial components of the input,
u : [0, T ]⇥D ! R is the solution, N is a nonlinear differential operator on u, T 2 R+, and D ⇢ RD.
Where possible, for conciseness we will use x = (t, x̂), for x 2 C = [0, T ] ⇥ D, with x0 = t.

We assume f is the residual of an Rth order PDE where the differential operators of N ap-
plied to u yield the partial derivatives for order {0, ..., R} as: u 2 N

(0), @xiu 2 N
(1),

@x
2
i
u 2 N

(2), . . . , @x
R
i
u 2 N

(R) for i 2 {0, . . . , D}
1. With these, we can re-write f =

P(u, @x0u, . . . , @xDu, . . . , @x
R
D

u), where P is a nonlinear function of those terms. Furthermore,
the PDE is defined under (1) initial conditions, i.e., u(0, x̂) = u0(x̂), for x̂ 2 D, and (2) gen-
eral Robin boundary conditions, i.e., au(t, x̂) + b@nu(t, x̂) = ub(t, x̂) for a, b 2 R, x̂ 2 �D and
t 2 [0, T ], and @nu is the normal derivative at the border with respect to some components of x̂.

Continuous-time PINNs (Raissi et al., 2019a) result from approximating the solution, u(x), using a
neural network parameterized by ✓, u✓(x). We refer to this network as the approximate solution. In
that context, the physics-informed neural network (or residual) is f✓(x) = @tu✓(x) + N [u✓](x). For
example, the one-dimensional Burgers’ equation (explored in detail in Section 6) is defined as:

f✓(x) = @tu✓(x) + u✓(x)@xu✓(x) � (0.01/⇡)@x2u✓(x). (2)

Note f✓ has the same order as f , and can be described similarly as a nonlinear function with the
partial derivatives applied to u✓ instead of u. For example, Burgers’ equation from above has one
0th order term (u✓), two 1st order ones (@tu✓ and @xu✓), and a 2nd order partial derivative (@x2u✓),
while u✓(x)@xu✓(x) is a nonlinear term of the f✓ polynomial.

3.3 BOUNDING NEURAL NETWORK OUTPUTS USING CROWN (ZHANG ET AL., 2018)

The computation of upper/lower bounds on the output of neural networks over a domain has been
widely studied within verification of image classifiers (Katz et al., 2017; Mirman et al., 2018; Zhang
et al., 2018). For the sake of computational efficiency, we consider the bounds obtained using
CROWN (Zhang et al., 2018)/↵-CROWN (Xu et al., 2020b) as the base for our framework.

Take g to be the fully connected neural network (as defined in Section 3.1) we’re interested in
bounding. The goal is to compute max / minx2C g(x), where C is the applicability domain. Typically
within verification of image classifiers, C = Bp

x,✏ = {x
0 : kx

0
� xkp  ✏}, i.e., it is a local `p-ball of

radius ✏ around an input from the test set x.

CROWN solves the optimization problem by back-propagating linear bounds of g(x) through each
hidden layer of the network until the input is reached. To do so, assuming constant bounds on y(k)(x)
are known for x 2 C, i.e., 8x 2 C : y(k),L

 y(k)(x)  y(k),U , CROWN relaxes the nonlinearities of
each z(k) using a linear lower and upper bound approximation that contains the full possible range of
�(y(k)(x)). By relaxing the activations of each layer and back-propagating it through z(k), CROWN
obtains a bound on each y(k) as a function of y(k�1). Back-substituting from the output y(L) = g(x)
until the input x results in:

min
x2C

g(x) � min
x2C

A
L
x + a

L, max
x2C

g(x)  max
x2C

A
U
x + a

U ,

where A
L, aL, AU and a

U are computed in polynomial time from W
(k),b(k), and the linear

relaxation parameters. The solution to the optimization problems above given simple constraints C

can be obtained in closed-form. ↵-CROWN (Xu et al., 2020b) improves these bounds by optimizing
the linear relaxations for tightness.

1For simplicity, we assume N does not contain any cross-derivative operators, yet an extension would be
trivial to derive.
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4 CORRECTNESS CONDITIONS FOR PINNS

By definition, u✓ is a correct solution to the PINN f✓ – and therefore the PDE f(x) = 0 – if 3
conditions are met: 1 the norm of the solution error with respect to the initial condition is upper
bounded within an acceptable tolerance, 2 the norm of the solution error with respect to the boundary
conditions is bounded within an acceptable tolerance, and 3 the norm of the residual is bounded
within an acceptable convergence tolerance. We define these as PINN correctness conditions, and
formalize it in Definition 1.
Definition 1 (Correctness Conditions for PINNs). u✓ : [0, T ] ⇥ D ! R is a �0, �b, "-globally correct

approximation of the exact solution u : [0, T ] ⇥ D ! R if:

1 max
x̂2D

|u✓(0, x̂) � u0(x̂)|2  �0,

2 max
t2[0,T ],x̂2�D

|au✓(t, x̂) + b@nu✓(t, x̂) � ub(t, x̂)|2  �b,

3 max
x2C

|f✓(x)|2  ".

Previous works deriving from Raissi et al. (2019a) have measured the correctness of the approximation
u✓ empirically through the error between u✓ and a solution obtained via either analytical or numerical
solvers for f , satisfying a relaxed, empirical version of these conditions only. In practice, �0, �b, and
" correspond to tolerances similar to the ones given by numerical solvers for f .

5 @-CROWN: PINN CORRECTNESS CERTIFICATION FRAMEWORK

The verification of the PINN correctness conditions from Definition 1 requires bounding a linear
function of u✓ for 1 . Moreover, it requires bounds for a linear function of u✓ and @nu✓ for 2 , and
the PINN output, f✓, in 3 . To achieve 1 , assuming u✓ is a standard fully connected neural network
as in Raissi et al. (2019a), we can directly use CROWN/↵-CROWN (Zhang et al., 2018; Xu et al.,
2020b). However, bounding 2 and 3 with a linear function in x efficiently requires a method to
bound linear and nonlinear functions of the partial derivatives of u✓.

We propose @-CROWN, an efficient framework to: (i) compute closed-form bounds on the partial
derivatives of an arbitrary fully-connected network u✓ (Section 5.1), and (ii) bound a nonlinear
function of those partial derivative terms, i.e., f✓ (Section 5.2). Throughout this section, we assume
u✓(x) = g(x) as defined in Section 3.1, with d0 = 1+D. Proofs for lemmas and theorems presented
in this section are in Appendix E.

5.1 BOUNDING PARTIAL DERIVATIVES OF u✓

The computation of the bounds for the 0th order derivative, i.e., u✓, and intermediate pre-activations
can be done using CROWN/↵-CROWN (Zhang et al., 2018; Xu et al., 2020b). As such, for what
follows, we assume that for x 2 C, both the bounds on u✓ and y(k), 8k are given.

Assumption 1. The pre-activation layer outputs of u✓, y(k) = L(k)
W,b(z(k�1)), are lower and upper

bounded by linear functions L(k),L
A,a (x)  y(k)

 L(k),U
A,a (x). Moreover, for x 2 C, we have

y(k),L
 y(k)

 y(k),U
.

Note that using CROWN/↵-CROWN, A(k),L, a(k),L, A(k),U , a(k),U are functions of all the previous
layers’ parameters. For 1st order derivatives, we start by explicitly obtaining the expression of @xiu✓.
Lemma 1 (Computing @xiu✓). For i 2 {1, . . . , d0}, the partial derivative of u✓ with respect to xi

can be computed recursively as @xiu✓ = W
(L)@xiz

(L�1)
for:

@xiz
(k) = @z(k�1)z(k)@xiz

(k�1), @xiz
(0) = ei,

for k 2 {1, . . . , L � 1}, and where @z(k�1)z(k) = diag
⇥
�0 �y(k)

�⇤
W

(k)
.

Using this result, we can efficiently linearly lower and upper bound @xiu✓.
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Figure 1: Bounding Partial Derivatives with @-CROWN: our hybrid scheme for bounding @xiu✓

and @x
2
i
u✓ uses back-propagation and forward substitution (inspired by Shi et al. (2020)) to compute

bounds in O(L) instead of the O(L2) complexity of full back-propagation as in Xu et al. (2020a).

Theorem 1 (@-CROWN: Linear Bounding @xiu✓). There exist two linear functions @xiu
U
✓ and

@xiu
L
✓ such that, 8x 2 C it holds that @xiu

L
✓  @xiu✓  @xiu

U
✓ , where the linear coefficients can be

computed recursively in closed-form in O(L) time.

The formal statement of Theorem 1 and expressions for @xiu
L
✓ and @xiu

U
✓ are provided in Appendix

E.3. Note that this bound is not computed using fully backward propagation as in Xu et al. (2020a).
Instead we use a hybrid scheme in the spirit of Shi et al. (2020) for the sake of efficiency. We
perform backward propagation to compute @z(k�1)z(k) as a function of y(k), and forward-substitute
the pre-computed CROWN bounds L(k),L

A,a (x)  y(k)
 L(k),U

A,a (x) at that point instead of fully
backward propagating which would have O(L2) complexity. This induces a significant speed-
up while achieving tight enough bounds. Figure 1 showcases the back-propagation and forward
substitution paths for bounding @xiu✓ in blue. Similarly to CROWN with the activation �, this bound
requires relaxing �0(y(k)).

Similarly, we can linearly bound @x
2
i
u✓, a requirement to bound f✓ in 2nd order PINNs.

Lemma 2 (Expression for @x
2
i
u✓(x)). For i 2 {1, . . . , d0}, the second partial derivative of u✓ with

respect to xi can be computed recursively as @x
2
i
u✓ = W

(L)@x
2
i
z(L�1)

where:

@x
2
i
z(k) = @xiz(k�1)z(k)@xiz

(k�1) + @z(k�1)z(k)@x
2
i
z(k�1),

and @x
2
i
z(0) = 0, for k 2 {1, . . . , L � 1}, with @xiz

(k�1)
and @z(k�1)z(k) as per in Lemma 1, and

@xiz(k�1)z(k) = diag
⇥
�00 �y(k)

� �
W

(k)@xiz
(k�1)

�⇤
W

(k)
.

Theorem 2 (@-CROWN: Linear Bounding @x
2
i
u✓). Assume that through a previous bounding of

@xiu✓, we have linear lower and upper bounds on @xiz
(k�1)

and @z(k�1)z(k). There exist two linear

functions @x
2
i
uU
✓ and @x

2
i
uL
✓ such that, 8x 2 C it holds that @x

2
i
uL
✓  @x

2
i
u✓  @x

2
i
uU
✓ , where the

linear coefficients can be computed recursively in closed-form in O(L) time.

The formal statement of Theorem 2 and expressions for @x
2
i
uL
✓ and @x

2
i
uU
✓ are in Appendix E.4. As

with the first derivative, this bound requires a relaxation of �00(y(k)). Note that this also follows a
hybrid computation scheme, with the back-propagation and forward substitution paths for bounding
@x

2
i
u✓ computations shown in green in Figure 1.

Assuming C = {x 2 Rd0 : xL
 x  x

U
}, we can obtain closed-form expressions for constant

global bounds on the linear functions @xiu
U
✓ , @xiu

L
✓ , @x

2
i
uU
✓ , @x

2
i
uL
✓ , which we formulate and prove
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in Appendix E.52. While here we only compute the expression for the second derivative with respect
to the same input, it would be trivial to extend it to cross derivatives (i.e., @xixju✓ for i 6= j), as well
as to higher order ones.

5.2 BOUNDING f✓

With the partial derivative terms bounded, to bound f✓, we use McCormick envelopes (McCormick,
1976) to obtain linear lower and upper bound functions fL

✓  f✓  fU
✓ : fU

✓ = µU
0 + µU

1 u✓ +Pr
j=1

P
@
x
j
i
2N (j) µU

j,i@x
j
i
u✓, and fL

✓ = µL
0 + µL

1 u✓ +
Pr

j=1

P
@
x
j
i
2N (j) µL

j,i@x
j
i
u✓, where µU

0 , µU
1 ,

and µU
i,j are functions of the global lower and upper bounds of u✓ and @

x
j
i
u✓. In the example of

Burgers’ equation (Equation 2), fU
✓ = µU

0 + µU
1 u✓ + µU

1,0@x0u✓ + µU
1,1@x1u✓ + µU

2,1@x
2
1
u✓ (and

similarly for fL
✓ with µL).

Algorithm 1 Greedy Input Branching
1: Input: function h, input domain C, # splits Nb, #

empirical samples Ns, # branches per split Nd

2: Result: lower bound hlb, upper bound hub

3: B = ;

4: B� = ;

5: ĥlb, ĥub = min \ max h(SAMPLE(C, Ns))
6: hlb, hub = @-CROWN(h, C)
7: B[C] = (hlb, hub)
8: B�[C] = max(ĥlb � hlb, hub � ĥub)
9: for i 2 {1, . . . , Nb} do

10: Ci = B.POP(arg maxC0 B[C0])
11: for each C

0
2 DOMAINSPLIT(Ci, Nd) do

12: h0
lb, h

0
ub = @-CROWN(h, C0)

13: B[C0] = (h0
lb, h

0
ub)

14: B�[C0] = max(ĥlb � h0
lb, h

0
ub � ĥub)

15: end for

16: end for

17: hlb, hub = minC0 B0[C0], maxC0 B1[C0]
18: return hlb, hub

To get fU
✓ and fL

✓ as linear functions of
x, we replace u✓ and @

x
j
i
u✓ with the lower

and upper bound linear expressions from
Section 5.1, depending on the sign of the
coefficients µU and µL. As in Section 5.1,
since C = {x 2 Rd0 : xL

 x  x
U

} we
can then solve maxx2C fU

✓ and minx2C fL
✓

in closed-form (see Appendix E.5), obtain-
ing constant bounds for f✓ in C.

5.3 TIGHTER BOUNDS
VIA GREEDY INPUT BRANCHING

Using @-CROWN we can compute a bound
on a nonlinear of derivatives of u✓, which
we will generally refer to as h, for x 2

C. However, given the approximations
used throughout the bounding process, it is
likely that such bounds will be too loose to
be useful when compared to the true lower
and upper bound of h.

To improve these bounds, we introduce greedy input branching in Algorithm 1. The idea behind it is
to recursively divide the input domain (DOMAINSPLIT, line 9) - exploring the areas where the current

bounds are further from the empirical optima obtained via sampling (SAMPLE, line 3) - and globally
bound the output of h as the worst-case of all the branches (line 13). As the number of splits, Nb,
increases, so does the tightness of our global bounds. For small dimensional spaces, it suffices to split
each branch Ci into Nd = 2d0 equal branches. Note that in higher dimensional spaces, a non-equal
splitting function, DOMAINSPLIT, can lead to improved convergence to the tighter bounds. The
time complexity of greedy input branching is O(NbNdM), where M is the complexity of running
@-CROWN for each branch. A step-by-step description is provided in Appendix H.

6 EXPERIMENTS

The aim of this experimental section is to (i) showcase that the Definition 1 certificates obtained
with @-CROWN are tight compared to empirical errors computed with a large number of samples
(Section 6.1), (ii) highlight the relationship of our residual-based certificates and the commonly
reported solution errors (Section 6.2, and (iii) qualitatively analyze the importance of greedy input
branching in the success of our method (Section 6.3). On top of these results, in Appendix A we
study how the training method from Shekarpaz et al. (2022) can lead to a reduction in empirical
and certified errors, in Appendix B we empirically show our method is significantly more efficient

2Note that this is different from the CROWN case in which C is assumed to be an ✏-ball around an input x.
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(a) (b) (c) (d)

Figure 2: Certifying with @-CROWN: visualization of the time evolution of u✓, and the residual
errors as a function of the spatial temporal domain (log-scale), |f✓|, for (a) Burgers’ equation (Raissi
et al., 2019b), (b) Schrödinger’s equation (Raissi et al., 2019b), (c) Allan-Cahn’s equation (Monaco
and Apiletti, 2023), and (d) the Diffusion-Sorption equation (Takamoto et al., 2022).

than Interval Bound Propagation (Gowal et al., 2018; Mirman et al., 2018), while in Appendix C we
showcase how @-CROWN can be used to identify failures in PINN training.

6.1 CERTIFYING WITH @-CROWN

To achieve (i), we apply our post-training certiication framework @-CROWN to two widely studied
PINNs from Raissi et al. (2019a), Burgers’ and Schrödinger’s equations, as well as to the more
complex Allen-Cahn’s equation from Monaco and Apiletti (2023), and the Diffusion-Sorption
equation from Takamoto et al. (2022). Since u✓ for these PINNs use � = tanh activations, we need
to be able to linearly relax �0 and �00 given pre-activation bounds. We propose a practical relaxation
in Appendix F. All timing results were obtained on a MacBook Pro with a 10-core M1 Max CPU.

Burgers’ Equation This one-dimensional PDE is used in several areas of mathematics, fluid
dynamics, nonlinear acoustics, gas dynamics and traffic flow, and is derived from the Navier-Stokes
equations for the velocity field by dropping the pressure gradient (Raissi et al., 2019a). It is defined
on a temporal domain t 2 [0, 1] and spatial domain x 2 [�1, 1] as:

@tu(t, x) + u(t, x)@xu(t, x) � (0.01/⇡)@x2u(t, x) = 0, (3)

for u(0, x) = � sin(⇡x), u(t, �1) = u(t, 1) = 0. The solution u✓ : R2
! R is modeled by an

8-hidden layer, 20 neurons per layer network (Raissi et al., 2019a). The training process took ⇠ 13.35
minutes, and resulted in a mean `2 error of 6.1 · 10�4, with a visualization in Figure 2a.

Schrödinger’s Equation Schrödinger’s equation is a classical field equation used to study quantum
mechanical systems. In Raissi et al. (2019a), Schrödinger’s equation is defined with the temporal
domain t 2 [0, ⇡/2] and spatial domain x 2 [�5, 5] as:

i @tu(t, x) + 0.5 @xxu(t, x) + |u(t, x)|2u(t, x) = 0, (4)

where u : [0, ⇡/2] ⇥ D ! C is a complex-valued solution, for initial conditions u(0, x) = 2 sech(x),
and periodic boundary conditions u(t, �5) = u(t, 5) and @xu(t, �5) = @xu(t, 5). As in Raissi
et al. (2019b), u✓ : R2

! R2 is a 5-hidden layer, 100 neurons per layer network. The training took
⇠ 23.67 minutes, and resulted in a mean `2 error of 1.74 · 10�3, with a visualization in Figure 2b.

Allan-Cahn Equation The Allan-Cahn equation is a form of reaction-diffusion equation, describing
the phase separation in multi-component alloy systems (Monaco and Apiletti, 2023). In 1D, it is
defined on a temporal domain t 2 [0, 1] and spatial domain x 2 [�1, 1] as:

@tu(t, x) + ⇢u(t, x)(u2(t, x) � 1) � ⌫@x2u(t, x) = 0, (5)

for ⇢ = 5, ⌫ = 10�4, and u(0, x) = x2 cos(⇡x), u(t, �1) = u(t, 1). The solution u✓ : R2
! R

is modeled by an 6-hidden layer, 40 neurons per layer network, and due to its complexity, it is
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Table 1: Certifying with @-CROWN: Monte Carlo (MC) sampled maximum values (104 and
106 samples) and upper bounds computed using @-CROWN with Nb branchings for 1 initial
conditions, 2 boundary conditions, and 3 residual condition for (a) Burgers (Raissi et al., 2019b),
(b) Schrödinger (Raissi et al., 2019b), (c) Allen-Cahn (Monaco and Apiletti, 2023), and (d) Diffusion-
Sorption (Takamoto et al., 2022) equations.

MC max (104) MC max (106) @-CROWN ub (time [s])

(a) Burgers (Raissi et al., 2019b)
1 |u✓(0, x) � u0(x)|2 1.59 ⇥ 10�6 1.59 ⇥ 10�6 2.63 ⇥ 10�6 (116.5)

2
|u✓(t,�1)|2 8.08 ⇥ 10�8 8.08 ⇥ 10�8 6.63 ⇥ 10�7 (86.7)
|u✓(t, 1)|2 6.54 ⇥ 10�8 6.54 ⇥ 10�8 9.39 ⇥ 10�7 (89.8)

3 |f✓(x)|2 1.23 ⇥ 10�3 1.80 ⇥ 10�2 1.03 ⇥ 10�1 (2.8 ⇥ 105)

(b) Schrödinger (Raissi et al., 2019b)
1 |u✓(0, x) � u0(x)|2 7.06 ⇥ 10�5 7.06 ⇥ 10�5 8.35 ⇥ 10�5 (305.2)

2
|u✓(t, 5) � u✓(t,�5)|2 7.38 ⇥ 10�7 7.38 ⇥ 10�7 5.73 ⇥ 10�6 (545.4)
|@xu✓(t, 5) � @xu✓(t,�5)|2 1.14 ⇥ 10�5 1.14 ⇥ 10�5 5.31 ⇥ 10�5 (2.4 ⇥ 103)

3 |f✓(x)|2 7.28 ⇥ 10�4 7.67 ⇥ 10�4 5.55 ⇥ 10�3 (1.2 ⇥ 106)

(c) Allen-Cahn (Monaco and Apiletti, 2023)
1 |u✓(0, x) � u0(x)|2 1.60 ⇥ 10�3 1.60 ⇥ 10�3 1.61 ⇥ 10�3 (52.7)
2 |u✓(t,�1) � u✓(t, 1)|2 5.66 ⇥ 10�6 5.66 ⇥ 10�6 5.66 ⇥ 10�6 (95.4)
3 |f✓(x)|2 10.74 10.76 10.84 (6.7 ⇥ 105)

(d) Diffusion-Sorption (Takamoto et al., 2022)
1 |u✓(0, x)|2 0.0 0.0 0.0 (0.2)

2
|u✓(t, 0) � 1|2 4.22 ⇥ 10�4 4.39 ⇥ 10�4 1.09 ⇥ 10�3 (72.5)
|u✓(t, 1) � D@xu✓(t, 1)|2 2.30 ⇥ 10�5 2.34 ⇥ 10�5 2.37 ⇥ 10�5 (226.4)

3 |f✓(x)|2 1.10 ⇥ 10�3 21.09 21.34 (2.4 ⇥ 106)

trained using the Causal training scheme from Monaco and Apiletti (2023). The training process took
⇠ 18.56 minutes, and resulted in a mean `2 error of 7.9 · 10�3, with a visualization in Figure 2c.

Diffusion-Sorption The diffusion-sorption equation models a diffusion system which is retarded
by a sorption process, with one of the most prominent applications being groundwater contaminant
transport (Takamoto et al., 2022). In (Takamoto et al., 2022), the equation is defined on a temporal
domain t 2 (0, 500] and spatial domain x 2 (0, 1) as:

@tu(t, x) � D/R(u(t, x))@x2u(t, x) = 0, (6)
where D = 5 ⇥ 10�4 is the effective diffusion coefficient, and R(u(t, x)) is the retardation factor
representing the sorption that hinders the diffusion process (Takamoto et al., 2022). In particular,
we consider R(u(t, x)) = 1 + (1��)/(�)⇢sknfunf�1(t, x), where � = 0.29 is the porosity of the
porus medium, ⇢s = 2880 is the bulk density, k = 3.5 ⇥ 10�4 is the Freundlich’s parameter,
and nf = 0.874 is the Freundlich’s exponent. The initial and boundary conditions are defined as
u(0, x) = 0, u(t, 0) = 0 and u(t, 1) = D@xu(t, 1). The solution u✓ : R2

! R is modeled by a
7-hidden layer, 40 neurons per layer network, and we obtain the trained parameters from Takamoto
et al. (2022). The mean `2 solution error is 9.9 · 10�2, with a visualization in Figure 2d.

@-CROWN certification We verify the global correctness conditions of the PINNs by applying
the framework from Section 5. We report in Table 1 our verification of the initial conditions 1
using Nb = 5k splits, boundary conditions 2 using Nb = 5k splits, and the certified bounds on the
residual condition 3 using Nb = 2M splits. We observe that @-CROWN approaches the empirical
bounds obtained using Monte Carlo sampling while providing the guarantee that no point within the
domain breaks those bounds, effectively establishing the tolerances from Definition 1.

6.2 EMPIRICAL RELATION OF |f✓| AND |u✓ � u|
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ũ
|

Linear fit, R = 0.878

Figure 3: Residual and solution errors:
connection of the maximum residual error
(maxS0 |f✓|) and the maximum solution er-
ror, maxS0 |u✓ � ũ|, for networks at different
epochs of the training process (in orange).

One question that might arise from our certification
procedure is the relationship between the PINN resid-
ual error, |f✓|, and the solution error with respect
to true solution u, |u✓ � u|, across the domain. By
definition, achieving a low |f✓| implies u✓ is a valid
solution for the PDE, but there is no formal guarantee
related to |u✓ � u| within our framework.

Obtaining a bound on |u✓ � u| is typically a non-
trivial task given u might not be unique, and does not
necessarily exhibit an analytical solution and can only
be computed using a numerical solver. And while
some recent works perform this analysis for specific
PDEs by exploiting their structure and/or smoothness
properties (Mishra and Molinaro, 2022; Ryck and
Mishra, 2022; Wang et al., 2022a), these methods typically suffer from scalability and bound tightness
issues. As such, we perform an empirical analysis on Burgers’ equation using a numerical, finite-
difference solver to obtain ũ(x) for sampled points x. We randomly sample 106 domain points (S 0),
and compute the maximum residual error, maxx2S0 |f✓(x)|, and the empirical maximum solution
error, maxx2S0 |u✓(x) � ũ(x)|, for networks obtained at different epochs of the training process. We
report the results in Figure 3, with each point corresponding to an instance of a network. As expected,
there is a correlation between these errors obtained using a numerical solver, suggesting a similar
correlation holds for |u✓ � u|.

6.3 ON THE IMPORTANCE OF GREEDY INPUT BRANCHING

Figure 4: Branching densities: relative den-
sity of the input branching distribution ob-
tained via Algorithm 1 applied to Burgers’
(top) and Schrödinger’s (bottom) equations.

A key factor in the success of @-CROWN in achiev-
ing tight bounds of the residual is the greedy input
branching procedure from Algorithm 1. To illustrate
the fact that a uniform sampling strategy would be
significantly more computationally expensive, we
plot in Figure 4 the relative density of branches (i.e.,
the percentage of branches per unit of input domain)
in the case of Burgers’ and Schrödinger’s equations.
As can be observed, there are clear imbalances at
the level of the branching distribution – with areas
away from relative optima of u✓ being relatively un-
der sampled yet achieving tight bounds – showcasing
the efficiency of our strategy.

7 DISCUSSION

We show that @-CROWN is able to obtain tight upper bounds on the correctness conditions established
in Definition 1. Of particular relevance is the case of the residual condition 3 for the Diffusion-
Sorption equation, for which varying the number of MC samples leads to distinct results - using
104 estimates puts the maximum at 1.10 ⇥ 10�3, while 106 samples give an estimate of 21.09 -
highlighting the need for our framework to obtain guarantees across the full domain. Note that the
absolute values of the residual errors can be seen as a function of the PDE itself, and thus cannot
be directly compared across different PINNs. However, in Appendix C we effectively show how
@-CROWN bounds can be used to detect failure cases in PINN training, highlighting another potential
use of our framework on top of certifying well-trained ones.

One of the limitations of our method is unquestionably the running time, which for residual verification
is in the order of 105–106 for each of the PINNs studied. This is mainly due to the need to perform a
high number of branchings (2M ) as a result of the looseness of the bounds obtained by @-CROWN
on each individual one. These issues become more accentuated as the input dimension grows, since
the number of branches is expected to grow exponentially. In future work we aim to improve the
tightness of the bounds to be able to apply our framework to larger, higher dimensional PINNs.
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