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Abstract

Federated learning (FL), which is a decentralized machine learning (ML) approach, often
incorporates differential privacy (DP) to provide rigorous data privacy guarantees to clients.
Previous works attempted to address high structured data heterogeneity in vanilla FL settings
through clustering clients (a.k.a clustered FL), but these methods remain sensitive and prone
to errors, further exacerbated by the DP noise. This vulnerability makes the previous methods
inappropriate for differentially private FL (DPFL) under structured data heterogeneity. To
address this gap, we propose an algorithm for differentially private clustered FL, which is
robust to the DP noise in the system and identifies the underlying clients’ clusters correctly.
To this end, we propose to cluster clients based on both their model updates and training
loss values. Furthermore, for clustering clients’ model updates at the end of the first round,
our proposed approach addresses the server’s uncertainties by employing large batch sizes as
well as Gaussian Mixture Models (GMM) to reduce the impact of DP and stochastic noise and
avoid potential clustering errors. We provide theoretical analysis to justify our approach and
evaluate it across diverse data distributions and privacy budgets. Our experimental results
show the approach’s effectiveness in addressing high structured data heterogeneity in DPFL.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is a collaborative ML paradigm, which allows multiple clients
to train a shared global model without sharing their data. However, in order for FL algorithms to ensure
rigorous privacy guarantees against data privacy attacks (Hitaj et al., 2017; Rigaki & García, 2020; Wang
et al., 2019; Zhu et al., 2019; Geiping et al., 2020), they are reinforced with DP (Dwork et al., 2006b;a; Dwork,
2011; Dwork & Roth, 2014). This is done in the presence of a trusted server (McMahan et al., 2018; Geyer
et al., 2017) as well as its absence (Zhao et al., 2020; Duchi et al., 2013; 2018). In the latter case and for
sample-level DP, each client runs DPSGD (Abadi et al., 2016) locally and shares its noisy model updates with
the server at the end of each round.

A key challenge in FL settings is ensuring an acceptable performance across clients under heterogeneous data
distributions. Several existing works focus on accuracy parity across clients with a single common model by
agnostic FL (Mohri et al., 2019) and client reweighting (Li et al., 2020b;a; Zhang et al., 2023). However, a
single global model often fails to adapt to the data heterogeneity across clients (Dwork et al., 2012), especially
when a high data heterogeneity exists. Furthermore, when using a single model and augmenting FL with DP,
different subgroups of clients are unevenly affected - even with loose privacy guarantees (Farrand et al., 2020;
Fioretto et al., 2022; Bagdasaryan & Shmatikov, 2019). In fact, subgroups with minority clients experience a
larger drop in model utility, due to the inequitable gradient clipping in DPSGD (Abadi et al., 2016; Bagdasaryan
& Shmatikov, 2019; Xu et al., 2021; Esipova et al., 2023). Accordingly, some works proposed to use model
personalization by multi-task learning (Smith et al., 2017; Li et al., 2021; Marfoq et al., 2021; Wu et al.,
2023), transfer learning (Li & Wang, 2019; Liu et al., 2020) and clustered FL (Ghosh et al., 2020; Mansour
et al., 2020; Ruan & Joe-Wong, 2021; Sattler et al., 2019; Werner et al., 2023; Briggs et al., 2020). The latter
has been proposed for vanilla FL and is suitable when “structured data heterogeneity" exists across clusters of
clients (as in this work): subsets of clients can be naturally grouped together based on their data distributions
and one model is learned for each group (cluster). However, as discussed in (Werner et al., 2023), the existing
non-private clustered FL approaches are vulnerable to errors in clustering due to their sensitivity to: 1. model
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initialization 2. randomness in clients’ model updates due to stochastic noise. The DP noise existing in DPFL
systems’ training mechanism exacerbates this vulnerability by injecting more randomness.

To address the aforementioned gap, we propose a differentially private clustered FL algorithm (Algorithm 1),
which uses both clients’ model updates and loss values for clustering clients, making it more robust to
DP/stochastic noise: 1) Justified by our theoretical analysis (Lemma 4.1 and 4.2) and in order to cluster
clients correctly, our proposed algorithm uses a full batch size in the first FL round and a small batch size in
the subsequent rounds, to reduce the noise in clients’ model updates at the end of the first round. 2) Then,
the server soft clusters clients based on these less noisy model updates using a Gaussian Mixture Model (GMM).
Depending on the “confidence" of the learned GMM, the server keeps using it to soft cluster clients during the
next few rounds (Section 4.3). 3) Finally, the server switches the clustering strategy to local clustering of
clients based on their train loss/accuracy values in the remaining rounds. These altogether make our DP
clustered FL algorithm effective and robust. The highlights of our contributions are as follows:

• We propose a DP clustered FL algorithm (R-DPCFL), which combines information from both clients’
model updates and their loss values. The algorithm is robust and achieves high-quality clustering of
clients, even in the presence of DP noise in the system (Algorithm 1).

• We theoretically prove that increasing clients’ batch sizes in the first round (and decreasing them in
the subsequent rounds) improves the server’s ability to cluster clients based on their model updates
at the end of the first round (Lemma 4.2).

• We show that utilizing sufficiently large batch sizes in the first round (and sufficiently small batch
sizes in the next rounds) enables super-linear convergence rate for learning a GMM by the server on
the clients’ model updates at the end of the first round. This leads to soft clustering of clients using
a GMM with a low computational overhead (Theorem 4.3).

• We extensively evaluate the proposed algorithm across diverse datasets and scenarios and demonstrate
the effectiveness of our robust DP clustered FL algorithm in detecting the underlying cluster structure
of clients, which leads to an overall utility improvement for the system (Section 6).

2 Related work

Model personalization is a technique for improving utility under data heterogeneity (Li et al., 2021; Liu et al.,
2022a), which usually leverages extra computations, e.g., extra local iterations (Li et al., 2021). On the other
hand, clustered FL has been proposed for personalized FL under a high “structured" data heterogeneity, where
clients can be naturally partitioned into clusters: clients in the same cluster have similar data distributions,
while there is a significant heterogeneity across various clusters. Existing clustered FL algorithms group
clients based on their loss values (Ghosh et al., 2020; Mansour et al., 2020; Ruan & Joe-Wong, 2021; Dwork
et al., 2012; Liu et al., 2022b) or their model updates (based on e.g., their euclidean distance (Werner et al.,
2023; Briggs et al., 2020) or cosine similarity (Sattler et al., 2019)). As shown by Werner et al. (2023), the
algorithms are prone to clustering errors in the early rounds of FL training –due to gradient stochasticity,
model initialization or the form of loss functions far from their optima– which can even propagate in the
subsequent rounds. This vulnerability is exacerbated in DPFL systems, due to the existing extra DP noise.
Without addressing this vulnerability, Luo et al. (2024) proposed a DP clustered FL algorithm with a limited
applicability, which clusters clients based on the labels that they do not have in their local data. In contrast,
our DP clustered FL algorithm is applicable to any setting characterized by a number of clients, where
each client holds many data samples and needs sample-level privacy protection. Cross-silo FL systems can
be considered as an instance. The closest study to this setting was recently done by Liu et al. (2022a),
which considers silo-specific sample-level DP for cross-silo FL and studies the interplay between privacy and
data heterogeneity. More specifically, they show that when clients have large datasets and “moderate"
data heterogeneity exits across them: 1. participation in FL by clients is encouraged over local training,
as the FL model averaging on the server diminishes the effect of DP noise 2. under the same total privacy
budget, model personalization - through mean regularized multi-task learning (MR-MTL) - leads to a better
performance compared to training a single global model or local training by clients (see Appendix C.4 about
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MR-MTL formulation). Complementing the work, we show that, under “structured" data heterogeneity, model
personalization (with MR-MTL), local training and even loss-based clustered FL are not efficient for DPFL.
Accordingly, we propose our new clustered DPFL algorithm.

3 Definitions, notations and assumptions

There are multiple definitions of DP. We adopt the following definition to be satisfied by every client:

Definition 3.1 ((ϵ, δ)-DP (Dwork et al., 2006a)). A randomized mechanism M : A → R with domain A and
range R satisfies (ϵ, δ)-DP if for any two adjacent inputs D, D′ ∈ A, which differ by only a single record (by
replacement), and for any measurable subset of outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

The gaussian mechanism randomizes the output of a query f as M(D) ≜ f(D) +N (0, σ2). The randomized
output satisfies (ϵ, δ)-DP for a continuum of pairs (ϵ, δ): for all ϵ, δ ∈ (0, 1) and σ >

√
2 ln(1.25/δ)

ϵ ∆2f , where
∆2f ≜ maxD,D′ ∥ f(D) − f(D′) ∥2 is the l2-sensitivity of the query f with respect to its input. Also, the
ϵ and δ privacy parameters resulting from running Gaussian mechanism depend on the quantity z = σ

∆2f

(called “noise scale"). We consider a DPFL system (see Figure 2, left), where there are n clients running DPSGD
with the same “sample-level" privacy parameters (ϵ, δ): the set of information (including model updates and
cluster selections) sent by client i to the server satisfies (ϵ, δ)-DP for all adjacent datasets Di and D′

i of the
client i differing in one sample (by replacement).

Let x ∈ X ⊆ Rd and y ∈ Y = {1, . . . , C} denote an input data point and its target label. Client i holds dataset
Di with Ni samples from distribution Pi(x, y) = Pi(y|x)Pi(x). Let h : X × θ → RC be the predictor function,
which is parameterized by θ ∈ Rp. Also, let ℓ : RC × Y → R+ be the used loss function (cross-entropy loss).
Client i in the system has empirical train loss fi(θ) = 1

Ni

∑
(x,y)∈Di

[ℓ(h(x,θ), y)], with minimum value f∗
i .

There are E communication rounds indexed by e and K local epochs with learning rate ηl during each round.
There are M clusters of clients indexed by m, and the server holds M cluster models {θe

m}M
m=1 for them at

the beginning of round e. The value of M maybe unknown at the beginning. Clients i and j belonging to the
same cluster have the same data distributions Pi(x, y) = Pj(x, y), while there is a high data heterogeneity
across clusters. s(i) denotes the true cluster of client i and Re(i) denotes the cluster assigned to it at the
beginning of round e. Let us assume the batch size used by client i in the first round e = 1 is b1

i , which may
differ from the batch size b>1

i that it uses in the rest of the rounds e > 1. At the t-th gradient update during
the round e, client i uses batch Be,t

i with size be
i , and computes the following DP noisy batch gradient:

g̃e,t
i (θ) = 1

be
i

[( ∑
j∈Be,t

i

ḡij(θ)
)

+N (0, σ2
i,DPIp)

]
, (1)

where ḡij(θ) = clip(∇ℓ(h(xij ,θ), yij), c), and c is a clipping threshold to clip sample gradients: for a given
vector v, clip(v, c) = min{∥v∥, c} · v

∥v∥ . Also, N is the Gaussian noise distribution with variance σ2
i,DP,

where σi,DP = c · zi(ϵ, δ, b1
i , b

>1
i , Ni,K,E), and zi is the noise scale needed for achieving (ϵ, δ)−DP by client

i, which can be determined with a privacy accountant, e.g., Rényi-DP accountant (Mironov et al., 2019)
used in this work, which is capable of accounting composition of heterogeneous DP mechanisms (Mironov,
2017). The privacy parameter δ is fixed to 10−4 in this work with δ < N−1

i for every client i. For a random
v = (v1, . . . , vp)⊤ ∈ Rp×1, we define Var(v) :=

∑p
j=1 E[(vj − E[vj ])2], i.e., variance of v is the sum of the

variances of all its random elements. Table 1 in the appendix summarizes the used notations. Finally, we
have the following assumption:

Assumption 3.2. The stochastic gradient ge,t
i (θ) = 1

be
i

∑
j∈Be,t

i
gij(θ) is an unbiased estimator of ∇fi(θ)

with a bounded variance: ∀θ ∈ Rp : Var(ge,t
i (θ)) ≤ σ2

i,g(be
i ). The tight bound σ2

i,g(be
i ) is a constant depending

only on the used batch size be
i : the larger be

i , the smaller σ2
i,g(be

i ).

3



Under review as submission to TMLR

4 Methodology and proposed algorithm

As discussed by Werner et al. (2023), clustered FL algorithms which cluster clients based on their loss
values (Mansour et al., 2020; Ghosh et al., 2020; Ruan & Joe-Wong, 2021), i.e., assign client i to cluster
Re(i) = arg minm fi(θe

m) at the beginning of round e, are prone to clustering errors in the first few rounds,
mainly due to random initialization of cluster models {θ0

m}M
m=1. On the other hand, clustering clients based

on their model updates (gradients) (Werner et al., 2023; Briggs et al., 2020; Sattler et al., 2019) makes sense
only when the updates are obtained on the same model initialization. Additionally, even if we assume these
algorithms can initially cluster clients perfectly in each round e, the clients’ model updates (gradients) will
approach zero as the clusters’ model parameters converge. Hence, clients from different clusters may appear
to belong to the same cluster, which again results in clustering mistakes.

Figure 1: Loss-based clustering algorithms miscluster in the initial rounds, due to model initialization. Also,
even with the assumption of perfect clustering of clients in the first rounds, clustering algorithms based on
gradients (model updates) leads to clustering errors in the last rounds, due to the gradients approaching zero.

We now provide an example to elaborate on why clustering clients based on their losses (model updates) is
prone to errors in the first (last) rounds. For example, consider Figure 1, where there are M = 2 clusters
(red and blue) and n = 4 clients. The clients in the red cluster have loss functions f1(θ) = 4(θ + 6)2 and
f2(θ) = 4(θ + 5)2 with optimum cluster parameter θ∞

1 = −5.5. Also, the the clients in the blue cluster have
loss functions f3(θ) = 4(θ − 5)2 and f4(θ) = 4(θ − 6)2 with optimum cluster parameter θ∞

2 = 5.5. Clustering
algorithms, which cluster clients based on their loss values on clusters’ models, are vulnerable to model
initialization. For example, if we initialize the clusters’ parameters with θ0

1 = −11 and θ0
2 = 0 (shown in the

figure), all four clients will initially select cluster 2, since they have smaller losses on its parameter. At θ0
2 = 0,

the average of clients’ gradients (model updates) is zero, so all clients will remain stuck at θ0
2 and will always

select cluster 2.

On the other hand, clustering clients based on their model updates (gradients) (Werner et al., 2023; Briggs
et al., 2020; Sattler et al., 2019) have clearly issues. One of these issues appears after some rounds of training.
For instance, even if we assume these algorithms can initially cluster clients “perfectly" in each round e,
the clients’ model updates (gradients) will approach zero as the clusters’ models converge to their optimum
parameters. Hence, clients from different clusters may appear to belong to the same cluster, which results in
clustering mistakes. For example, as shown in Figure 1, let us assume after T rounds of “correct" clustering
of clients, the clusters’ parameters get to θT

1 = −4.5 and θT
2 = 5.5. At these parameters, clients 1 and 2

(which have been “correctly" assigned to cluster 1 so far) will have gradients f ′
1(θT

1 ) = 12 and f ′
2(θT

1 ) = 4.
Similarly, clients 3 and 4 (which have been “correctly" assigned to cluster 2 so far) will have f ′

3(θT
2 ) = 4 and

f ′
4(θT

2 ) = −4. We see that f ′
2 is closer to f ′

3 and f ′
4 than to f ′

1, and in the next round it will be wrongly
assigned to cluster 2 (with clients 3 and 4). This happens while the clients are clearly distinguishable based
on their losses, as some progress in training has been made after T rounds: f2(θT

1 ) = 1, while f2(θT
2 ) = 212,

which clearly means that client 2 correctly belongs to cluster 1. Therefore, after making some progress in
training the clusters’ models, it makes more sense to use a loss-based clustering strategy than using a strategy
based on clients’ gradients (model updates).
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Figure 2: Left: Considered threat model in this work, where client i has local train data Di and “sample-level"
DP privacy parameters (ϵ, δ), and does not trust any external party. Right: Three main stages of R-DPCFL.

Motivated by this vulnerability, which will get exacerbated by DP noise, we next propose a DP clustered FL
algorithm which starts with clustering clients based on their model updates for the first several rounds and
then switches its strategy to cluster clients based on their loss values. We augment this idea with some other
non-obvious techniques to enhance the clustering accuracy.

4.1 R-DPCFL algorithm

Our proposed R-DPCFL algorithm has three main steps (also see Figure 2, right and Algorithm 1):

1. In the first round, clients train the initial model θinit locally. They use full batch sizes in this round
to make their model updates {∆θ̃1

i }n
i=1 less noisy. Note that even when clients have a limited

memory budget, they can still perform DPSGD with full batch size and no computational
overhead by using gradient accumulation technique (see Appendix G). Then, the server
soft clusters them by learning GMM on their model updates. The number of clusters (M) is either
given or can be found by maximizing the confidence of the learned GMM (Section 4.3).

2. During the subsequent rounds e ∈ {2, . . . , Ec}, the server uses the learned GMM to soft-cluster clients:
client i uses a small batch size b>1

i and contributes to the training of each cluster (m) model
proportional to the probability of its assignment to that cluster (πi,m). The number of rounds Ec is
set based on “confidence level" of the learned GMM (Section 4.3).

3. After some progress during the first Ec rounds, clients’ train loss/accuracy values on cluster models
{θEc

m }M
m=1 are meaningful. Accordingly, clients use them locally during the remaining rounds to

privately select a cluster using exponential mechanism (with parameter ϵselect, Equation (8)).

In Sections 4.2 and 4.4, we provide theoretical justifications for the usage of full batch size in the first round.

4.2 Reducing GMM uncertainty via using full (small) batch sizes in the first (next) round(s)

It is the DP noise in {∆θ̃1
i }n

i=1 that makes it hard for the server to cluster clients by learning a GMM on the
model updates. Lemma 4.1 extends a similar result in (Malekmohammadi et al., 2024) and shows that the
amount of noise in ∆θ̃e

i at the end of each round e rapidly declines when be
i increases.

Lemma 4.1. Let us assume θe,0
i is the starting model parameter for client i at the beginning of round e.

After K local epochs with step size ηl, the client generates the noisy DP model update ∆θ̃e
i (be

i ) at the end of
the round. The amount of noise in the resulting model update can be quantified as:

(σe
i (be

i ))2 := Var(∆θ̃e
i (be

i )|θe,0
i ) ≈ K ·Ni · η2

l ·
pc2z2

i (ϵ, δ, b1
i , b

>1
i , Ni,K,E)

(be
i )3 . (2)
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Algorithm 1: R-DPCFL
Input: Initial parameter θinit, dataset sizes {N1, . . . , Nn}, batch sizes {b>1

1 , . . . , b>1
n }, clip bound c, local

epochs K, global round E, number of clusters M (optional)
Output: cluster models {θE

m}M
m=1

1 for each client i ∈ {1, . . . , n} do
2 b1

i ← Ni ; // full batch size
3 zi ← RDP(ϵ, δ, b1

i , b
>1
i , Ni,K,E)

4 for e ∈ {1, . . . , E} do
5 if e = 1 then
6 for each client i ∈ {1, . . . , n} in parallel do
7 ∆θ̃1

i ← DPSGD (θinit, b1
i , Ni,K, zi, c)

8 on server:
9 if M is unknown then

10 M = arg maxM ′ MSS
(

GMM(∆θ̃1
1, . . . ,∆θ̃1

n;M ′)
)

; // set M (Section 4.3)

11 {π1, . . . , πn, MPO} = GMM(∆θ̃1
1, . . . ,∆θ̃1

n;M) ; // 1st stage: GMM
12 set Ec(MPO) ; // set Ec (Section 4.3)
13 Initialize cluster models uniformly: θ2

1 = . . . = θ2
M = θinit

14 continue ; // go to round e = 2
15 else if e ∈ {2, . . . , Ec} then
16 for each client i ∈ {1, . . . , n} do
17 Re(i)← m with probability πi[m] ; // 2nd stage: soft clustering

18 else
19 on server: broadcast cluster models {θe

m}M
m=1 to all clients to run clustering locally

20 for each client i ∈ {1, . . . , n} do
21 Re(i) = arg minm fi(θe

m) ; // 3rd stage: private loss/accuracy-based clustering

22 for each client i ∈ {1, .., n} in parallel do
23 ∆θ̃e

i ←DPSGD (θe
Re(i), b

>1
i , Ni,K, zi, c) ; // batch size b>1

i

24 on server:
25 for each client i ∈ {1, . . . , n} do
26 we

i ← 1∑n

j=1
1Re(j)=Re(i)

27 for m ∈ {1, . . . ,M} do
28 θe+1

m ← θe
m +

∑
i∈{1,...,n} 1Re(i)=mw

e
i ∆θ̃e

i

The first conclusion from the lemma is that the noise level in ∆θ̃e
i rapidly declines as be

i increases: See
Figure 3 and the effect of batch size b1

i on Var(∆θ̃1
i |θinit

i ) (on the left); and the effect of batch size b>1
i on

Var(∆θ̃e
i |θ

e,0
i ) (e > 1) (on the right). Let us consider e = 1 especially: If all clients use full batch sizes in the

first round (i.e., b1
i = Ni for every client i), it becomes much easier for the server to cluster them at the end

of the first round by learning a GMM on {∆θ̃1
i }n

i=1, as their updates become more separable. An illustration of
this is shown in Figure 5. As the second key takeaway, Figure 3 left shows that in order to make {∆θ̃1

i }n
i=1

less noisy, we have to make {b1
i }n

i=1 as large as possible and also keep {b>1
i }n

i=1 small1. In the next
section, we will provide a theoretical justification for the observation in Figure 5.

4.2.1 Effect of batch sizes {b1
i }n

i=1 on the separability of clusters

In order to theoretically understand the reason behind the observation in Figure 5, let us assume clients have the
same dataset sizes and first batch sizes for simplicity: ∀i : Ni = N, b1

i = b1. Also, remember that θ1,0
i = θinit.

Having uniform privacy parameters (ϵ, δ), we have: ∀i : (σ1
i (b1))2 := Var[∆θ̃1

i (b1)|θinit] = (σ1(b1))2. Hence,

1There is a close relation between the result of Lemma 4.1 and the law of large numbers. See Appendix F for more details
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Figure 3: Plot of Var(∆θ̃1
i (b1

i )|θinit
i ) (left) and Var(∆θ̃e

i (be
i )|θe,0

i ) (e > 1) (right) v.s. both b1
i and b>1

i .
There are two clear takeaways: 1) for all e ∈ {1, · · · , E}, Var(∆θ̃e

i (be
i )|θe,0

i ) decreases with be
i steeply (from

Lemma 4.1). 2) The effect of b>1
i on Var(∆θ̃1

i (b1
i )|θinit

i ) (left figure) is considerable (see Figure 4 for the
plot of zi(ϵ, δ, b1

i , b
>1
i , Ni,K,E) v.s. b1

i and b>1
i ). The results are obtained on CIFAR10 from Rényi-DP

accountant (Mironov et al., 2019) in a setting with Ni = 6600, ϵ = 5, δ = 10−4, c = 3,K = 1, E = 200, p =
11, 181, 642, ηl = 5× 10−4.

Figure 4: Plot of zi(ϵ, δ, b1
i , b

>1
i , Ni,K,E) v.s. b1

i and b>1
i obtained from Rényi-DP Accountant (Mironov et al.,

2019) in a setting with Ni = 6600, ϵ = 5, δ = 10−4,K = 1, E = 200. As observed, zi is a sublinearly increasing
function of both b1

i and b>1
i . Also, the effect of b>1

i is much more than the effect of b1
i . The reason is that

b>1
i is used in E − 1 rounds, while b1

i is used only in the first round. So the value of b>1
i affects zi the most.

we can consider the model updates {∆θ̃1
i (b1)}n

i=1 as the samples from a mixture of M Gaussians with mean,
covariance matrix, prior probability parameters: ψ∗(b1) = {µ∗

m(b1),Σ∗
m(b1), α∗

m}M
m=1, where ∀m : α∗

m > 0
and µ∗

m(b1) ̸= µ∗
m′(b1) (m ̸= m′) (due to data heterogeneity across clusters):

µ∗
m(b1) := E

[
∆θ̃1

i (b1
i )

∣∣∣∣θinit, b1
i = b1, s(i) = m

]
, (3)

Σ∗
m(b1) := E

[(
∆θ̃1

i (b1
i )− µ∗

m(b1)
)(

∆θ̃1
i (b1

i )− µ∗
m(b1)

)⊤
∣∣∣∣θinit, b1

i = b1, s(i) = m

]
= (σ1(b1))2

p
Ip, (4)

where the last equality is from Var[∆θ̃1
i |θinit, b1

i = b1] = E[∥∆θ̃1
i − µ∗

s(i)(b1)∥2] = (σ1(b1))2 and that the
noises existing in each of the p elements of ∆θ̃1

i are i.i.d (hence, Σ∗
m(b1) is a diagonal covariance matrix with
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Figure 5: 2D PCA visualization of updates {∆θ̃1
i }n

i=1. Left: ϵi = 10, be
i = 32 for all i and e. Right: ϵi = 10,

b1
i = b1 = N = 6600, i.e., full batch sizes (assuming Ni = N = 6600 for all clients), and b>1

i = 32 for all i.
The empty markers show the centers of the Gaussian components. The model updates are obtained from
clients running DPSGD for K = 1 epochs locally on CIFAR10 with covariate shift (rotation) across clusters.

equal diagonal elements). Intuitively, we expect more separation between the true Gaussian components
{N

(
µ∗

m(b1),Σ∗
m(b1)

)
}M

m=1, from which clients’ updates {∆θ̃1
i }n

i=1 are sampled, to make the model updates
more distinguishable for the server. Next, we show that the overlap between the Gaussian components
{N (µ∗

m(b1),Σ∗
m(b1))}M

m=1 decreases fast with b1:
Lemma 4.2. Let ∆m,m′(b1) := ∥µ∗

m(b1) − µ∗
m′(b1)∥ when ∀i : b1

i = b1. The overlap between com-
ponents N

(
µ∗

m(b1),Σ∗
m(b1)

)
and N

(
µ∗

m′(b1),Σ∗
m′(b1)

)
is Om,m′ = 2Q(

√
p∆m,m′ (b1)

2σ1(b1) ), where (σ1(b1))2 :=
Var[∆θ̃1

i |θinit, b1
i = b1] and Q(·) is the Q function. Furthermore, if we increase b1

i = b1 to b1
i = kb1 ≤ N (for

all i), we have Om,m′ ≤ 2Q(
√

kp∆m,m′ (b1)
2ρσ1(b1) ), where 1 ≤ ρ ∈ O(1) is a small constant.

The terms ∆m,m′(b1) and σ1(b1) represent the “data heterogeneity level across clusters m and m′" and “privacy
sensitivity of their clients", respectively. We define their “separation score" as SS(m,m′) :=

√
p∆m,m′ (b1)

2σ1(b1) =
∆m,m′ (b1)
2σ1(b1)/

√
p . The larger SS(m,m′), the smaller overlap Om,m′ = 2Q(SS(m,m′)). Based on the form of the Q

function, an SS(m,m′) above 3 can be considered as a complete separation of the components.

4.3 Tuning hyper-parameters of R-DPCFL

As we observed in Lemma 4.2, the separation score SS(m,m′) (the overlap Om,m′) increases (decreases) as b1

increases. Remember that SS(m,m′) = ∆m,m′ (b1)
2σ1(b1)/

√
p , and note that (σ1(b1))2/p is the value of diagonal elements

of covariance matrices of Gaussian components, which the GMM aims to learn (see Equation (4)). Therefore,
when the GMM is learned, we can use its parameters to get an estimate score ŜS(m,m′) for every pair of clusters
m and m′. Then, we can define the “minimum pairwise separation score" as MSS(ϵ, δ, {b1

i }n
i=1, {b>1

i }n
i=1) =

minm,m′ ŜS(m,m′) ∈ [0,+∞) as a measure of confidence of the learned GMM in its identified clusters. The
larger the MSS of a learned GMM, the more “confident" it is in its clustering decisions. For instance, if we learn
a GMM on Figure 5 left, it will have a much smaller MSS than when we learn a GMM on Figure 5 right. We can
similarly define the estimated “maximum pairwise overlap" for a learned GMM as MPO = 2Q(MSS) ∈ [0, 1), as a
measure of uncertainty of the learned GMM. As we will explain, we can use MSS and MPO of the learned GMM
to set the hyper-parameters of R-DPCFL, namely b>1

i , Ec and M (when the number of clusters is unknown).

4.4 Convergence rate of EM for learning GMM

Let us define the maximum pairwise overlap between the components in ψ∗(b1) = {µ∗
m(b1),Σ∗

m(b1), α∗
m}M

m=1,
as Omax(ψ∗(b1)) = maxm,m′ Om,m′(ψ∗(b1)). According to Lemma 4.2, when b1 is large enough, Omax(ψ∗(b1))
decreases (like in Figure 5, right) and we can expect EM to converge to the true GMM parameters ψ∗(b1). Next,
we analyze the local convergence rate of EM around ψ∗(b1).
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Theorem 4.3. (Ma et al., 2000) Given model updates {∆θ̃1
i (b1)}n

i=1, as samples from a true mixture of
Gaussians ψ∗(b1) = {N

(
µ∗

m(b1),Σ∗
m(b1)

)
, α∗

m}M
m=1, if Omax(ψ∗(b1)) is small enough, then:

lim
r→∞

∥ψr+1 − ψ∗(b1)∥
∥ψr − ψ∗(b1)∥ = o

([
Omax(ψ∗(b1))

]0.5−γ
)
, (5)

as n increases. ψr is the GMM parameters returned by EM after r iterations. γ is an arbitrary small positive
number, and o(x) means it is a higher order infinitesimal as x→ 0 : limx→0

o(x)
x = 0.

This means that convergence rate of EM around the true solution ψ∗(b1) is faster than how
[
Omax(ψ∗(b1))

]0.5−γ

decreases with b1 (from Lemma 4.2). Hence, as an important consequence, the computational complexity of
learning the GMM in the first round also decreases fast as b1 increases.

5 Formal privacy guarantee of R-DPCFL

The privacy guarantee of R-DPCFL for each client i in the system comes from the fact that the client runs DPSGD
with a fixed DP noise variance σ2

i,DP = c2 · z2
i (ϵ, δ, b1

i , b
>1
i , Ni,K,E) for all of its batch gradient computations.

In the following theorem, we provide a formal privacy guarantee for the algorithm to show the sample-level
privacy guarantees provided to each client i. We defer the proof to Appendix E.
Theorem 5.1. The set of model updates {∆θ̃e

i }E
e=1, which are uploaded to the server by each client i ∈

{1, · · · , n} during the training time, as well as their private local model cluster selections satisfy (ϵ, δ)-DP,
where the parameters ϵ and δ depend on the DP noise variance σ2

i,DP used by the client for DPSGD (Equation (1))
and the parameter ϵselect used for its private cluster selections using exponential mechanism (Equation (8)).

6 Evaluation

Datasets, models and baseline algorithms: We evaluate our proposed method on three benchamark
datasets, including: MNIST (Deng, 2012), FMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky, 2009),
with heterogeneous data distributions from covariate shift (rotation; Pi(x) varies across clusters) (Kairouz
et al., 2021; Werner et al., 2023) and concept shift (label flip; Pi(y|x) varies across clusters) (Werner et al.,
2023), which are the commonly used data splits for clustered FL (see Appendix C). We consider four clusters
of clients indexed by m ∈ {0, 1, 2, 3} with {3, 6, 6, 6} clients, where the smallest cluster is considered as the
minority cluster. We compare our method with most recent related DPFL algorithms under an equal total
sample-level privacy budget ϵ: 1. Global (Noble et al., 2021): clients run DPSGD locally and send their model
updates to the server for aggregation and learning one global model 2. Local (Liu et al., 2022a): clients do
not participate FL and learn a local model by running DPSGD on their local data 3. A DP extension of IFCA
(Ghosh et al., 2020; Liu et al., 2022a): local loss/accuracy-based clustering performed by clients on existing
cluster models 4. MR-MTL (Liu et al., 2022a): uses model personalization to learn one model for each client 5.
O-DPCFL: an oracle algorithm which has the knowledge of the true clusters from the first round. For R-DPCFL
and IFCA, we use exponential mechanism (Rogers & Steinke, 2021), which satisfies zero concentrated DP
(z-CDP) (Bun & Steinke, 2016), to privatize clients’ local cluster selections. See also Appendix B.3 for details.

6.1 Results

Liu et al. (2022a) observed that under sample-level differential privacy (as in this work) and “mild" data
heterogeneity, federation is more beneficial than local training, because, despite the data heterogeneity across
clients, the model aggregation (averaging) on the server diminishes the effect of the DP noise in clients’ model
updates. However, when there is a “structured" data heterogeneity across clients, the level of heterogeneity is
remarkable. Hence, learning one global model through FL is not beneficial, as one single model can barely
adapt to the high level of data heterogeneity across the clusters. Therefore, in DP clustered FL systems, local
training and model personalization can be better options than global training, as they diminish the adverse
effect of the high data heterogeneity. Furthermore, if one can detect the underlying clusters, one can perform

9
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Figure 6: Top: Average test accuracy across all clients for different total privacy budgets ϵ. Results are from
four different runs. 10% means performing local clustering by clients only in 10% of the total number of
rounds; i.e., rounds Ec ≤ e ≤ Ec +⌊ E

10⌋ for R-DPCFL and rounds 1 ≤ e ≤ 1+⌊ E
10⌋ for IFCA (see Appendix C.6).

Figure 11 in the appendix includes the “Global" baseline too. Bottom: Number of times that R-DPCFL
and IFCA successfully detect the underlying cluster structure of all existing clients (out of 4 runs).

Figure 7: Top: Average test accuracy across clients belonging to the minority cluster for different total
privacy budgets ϵ, and four different runs. Bottom: Number of times that R-DPCFL and IFCA successfully
detect the minority cluster as a separate cluster (out of 4 runs).

FL in them in parallel and will simultaneously benefit from 1. eliminating the effect of data heterogeneity
across clusters; 2. diminishing the effect of DP noise by running FL aggregation on the server within each
cluster (as observed by (Liu et al., 2022a)). Hence, if the clustering task is done correctly, we can expect a
further improvement over local training and model personalization. This is exactly what R-DPCFL aims to do.

RQ1: How does R-DPCFL perform in practice? Figure 6 shows the average test accuracy across clients for
four datasets. As can be observed, R-DPCFL outperforms the baseline algorithms, and this can be attributed
to the more efficient clustering method of R-DPCFL, which improves the clustering accuracy (Figure 6, bottom
row). While R-DPCFL performs close to the oracle algorithm, IFCA has a lower performance due to its errors
in detecting the underlying true clusters. For instance, IFCA has a clearly low clustering accuracy on MNIST
and FMNIST, which leads it to perform even worse than Local and MR-MTL. In contrast, it has a better
clustering performance on CIFAR10 (covariate and concept shifts) and outperforms the two baselines. On
the other hand, the reason behind the low performance of MR-MTL is that it performs personalization on
a global model, which in turn has a low quality due to being obtained from federation across “all" clients
(hence adversely affected by the high data heterogeneity). Similarly, Local, which performs close to MR-MTL,
cannot outperform R-DPCFL, as it does not benefit from diminishing the effect of DP noise by FL aggregation
within each cluster.

10
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Figure 8: The effect of increasing the batch size b>1
i , on the model updates {∆θ̃1

i }n
i=1 at the end of the

first round with full batch sizes in the first round (∀i : b1
i = Ni). For a fixed ϵ = 10, the model updates

scatter further in space as b>1
i increases and different clusters get less separable. This leads to a decline in

the confidence level (MSS score) of the resulting GMM (written on the top of each plot). All the results are
obtained on CIFAR10 with covariate shift (rotation) across clusters.

RQ2: How does the minority cluster benefit from R-DPCFL? Figure 7 compares different algorithms
based on the average test accuracy of the clients belonging to the minority cluster. R-DPCFL leads to a better
overall performance for the minority clients, by virtue of its correct and robust cluster detection. Correct
detection of the minority cluster prevents it from getting mixed with other majority clusters and leads to a
utility improvement for its clients. In contrast, IFCA has a lower success rate in detecting the minority cluster
(Figure 7, bottom row) and provides a lower overall performance for them. Similarly, Local and MR-MTL
lead to a low performance for the minority, as they are conditioned on a global model that is learned from
federation across “all" clients and provides a low performance for the minority. Correct detection of minority
clusters is important, as failure in detecting them correctly leads to a low performance for the smaller clusters.

RQ3: How can we set the hyper-parameters of R-DPCFL?

As explained earlier, R-DPCFL has three hyperparameters, which we explain how to set in the following:

Batch size b>1
i : The batch size used by R-DPCFL during rounds e > 1 has to be set to a small value, as

observed in Figure 3 right. R-DPCFL is not sensitive to this parameter, as long as a small value is chosen
for it. For the results reported so far, we used b>1

i = 32 for all experiments with R-DPCFL. As we observed
in Lemma 4.1 and Figure 3 left, Var(∆θ̃1

i (b1
i )|θinit) is an increasing function of b>1

i . More generally, the
effect of increasing b>1

i is threefold: 1) increasing noise variance Var(∆θ̃1
i (b1

i )|θinit) (as shown in Figure 3,
left) 2) decreasing noise variance Var(∆θ̃1

i (be
i )|θe,0

i ) (as shown in Figure 3, right) 3) decreasing number of
gradient steps during each round e for e > 1. While the first one is only limited to the first round e = 1, the
last two affect the remaining E − 1 rounds and have conflicting effects on the final accuracy. However, an
important point about the problem of DP clustered FL is that finding the true structure of clusters in the
first round is a prerequisite for making progress in the next rounds. Therefore, increment in noise variance
Var(∆θ̃1

i (b1
i )|θinit) (the first effect) is the most important one. We have demonstrated this effect in Figure 8,

which shows that how increasing b>1
i adversely affects the clustering done at the end of the first round. Note

how MSS score of the learned GMM increases as b>1
i increases. Therefore, in order to have a reliable client

clustering at the end of the first round, we need to keep the value of b>1
i small: the smaller total privacy

budget ϵ, the smaller value should be used for b>1
i . Following this observation, we have fixed b>1

i to 32 in all
our experiments with R-DPCFL.

The strategy switching time Ec: The strategy switching time Ec can also be set by using the uncertainty
metric MPO ∈ [0, 1). Intuitively, if the learned GMM is not certain about its clustering decisions, R-DPCFL should
not rely on its decisions for a large Ec, and vice versa. Hence, we can set Ec as a decreasing function of MPO.
For instance, Ec = (1− MPO) E

2 , which is used in this work, means that if a GMM is completely confident about
its clusterings, e.g., what happens in Figure 5 right, the server changes the clustering strategy to loss-based
after the first half of rounds. As the uncertainty increases, this change happens earlier (e.g., when ϵ is small),
and R-DPCFL slowly gets close to the existing loss-based clustering methods like IFCA (Ghosh et al., 2020).
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Figure 9: Left: The number of EM iterations needed for learning the GMM decreases as b1
i increases. Especially,

at full batch size (∀i : b1
i = Ni), very few iterations of EM are needed. The results are obtained on CIFAR10

with covariate shift across M = 4 clusters. According to Lemma 4.2, using a large enough batch size b1
i in

the first round makes the underlying clusters in {∆θ̃1
i }n

i=1 more distinguishable. Consequently, according to
Theorem 4.3, convergence rate of EM algorithm for learning the GMM increases with b1

i . Right: MSS score v.s.
ϵ for two different local dataset sizes. A small local dataset size can be compensated for by using smaller
batch sizes {b>1

i }n
i=1 to get a larger MSS score.

Number of clusters M : Finally, we can use MSS score of the learned GMM to set the number of underlying
clusters M when it is unknown at the beginning. More specifically, we use the value of M for which the
uncertainty of the learned GMM is minimized. We refer to Appendix C.9 for further details.

RQ4: How does b1
i affect the convergence rate of EM for learning the GMM at round e = 1? The

results in Figure 9 (left) supports Theorem 4.3 by showing that if b1
i is large enough, the convergence rate of

EM algorithm for learning the GMM at the end of the first round increases with b1
i . This means that using large

batch sizes in the first round reduces the computational complexity of learning the GMM.

RQ5: What if clients have small local datasets? While we envision the proposed approach being
more applicable to cross-silo FL, where datasets are large, it is still worth exploring how beneficial it can
be under scarce local data. In the previous sections, we analyzed the benefits of using a full batch size
(b1

i = Ni) in the first round and found that it leads to a GMM with a higher MSS confidence score. The score of
the learned GMM can strongly predict whether the underlying true clusters will be detected: an MSS above 2
almost always yields to correct detection of the underlying clusters (see Figure 13 for experimental results).
On the other hand the MSS score depends on four sets of parameters: ϵ, δ, {b1

i }n
i=1, and {b>1

i }n
i=1. For fixed

(ϵ, δ), larger {b1
i }n

i=1 and smaller {b>1
i }n

i=1 increase MSS (Lemma 4.1). When we ue full batch sizes in the first
round, we have b1

i = Ni (for all i). Hence, smaller local datasets result in lower confidence in the learned GMM.
Nevertheless, this can be compensated for by using even smaller {b>1

i }n
i=1. Figure 9 (right) compares two

different dataset sizes under varying ϵ. As observed, for smaller local dataset sizes, reducing {b>1
i }n

i=1 can
help obtain less noisy model updates {∆θ̃i1}n

i=1, improve the MSS score of the learned GMM and consequently,
enable a successful client clustering.

7 Conclusion

We proposed a DP clustered FL algorithm, which addresses sample-level privacy in FL systems with structured
data heterogeneity. By clustering clients based on both their model updates and training loss/accuracy
values, and mitigating noise impacts with large initial batch sizes, our approach enhances clustering accuracy
and mitigates the disparate impact of DP on utility, all with minimal computational overhead. Moreover,
the robustness to noise and easy parameter selection of the proposed approach shows its applicability to DP
clustered FL settings. While envisioned for DPFL systems with large clients’ datasets, the method is capable
of compensating for moderate dataset sizes by using smaller batch sizes after the first round. In the future,
we aim to extend this approach to be suitable for scarce data scenarios.
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