

000 CONREC: CONTEXT-DISCERNING NEGATIVE 001 RECOMMENDATION WITH LLMs 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009
010
011 Understanding what users like is relatively straightforward; understanding what
012 users dislike, however, remains a challenging and underexplored problem. Re-
013 search into users' negative preferences has gained increasing importance in mod-
014 ern recommendation systems. Numerous platforms have introduced explicit neg-
015 ative feedback mechanisms and leverage such signals to refine their recom-
016 mendation models. Beyond traditional business metrics, user experience-driven met-
017 rics, such as negative feedback rates, have become critical indicators for eval-
018 uating system performance. However, most existing approaches primarily use
019 negative feedback as an auxiliary signal to enhance positive recommendations,
020 paying little attention to directly modeling negative interests, which can be highly
021 valuable in offline applications. Moreover, due to the inherent sparsity of neg-
022 ative feedback data, models often suffer from context understanding biases in-
023 duced by positive feedback dominance. To address these challenges, we propose
024 the first large language model (LLM) framework for negative feedback modeling
025 with special designed context-discriminating modules. We use hierarchical semantic
026 ID Representation to replaces text-based item descriptions and introduce an
027 item-level alignment task that enhances the LLM's understanding of the semantic
028 context behind negative feedback. Furthermore, we design a Progressive Group
029 Relative Policy Optimization (GRPO) training paradigm that enables the model to
030 dynamically balance the positive and negative behavioral context utilization. Be-
031 sides, our investigation further reveals a fundamental misalignment between the
032 conventional next-negative-item prediction objective and users' true negative pref-
033 erences, which is heavily influenced by the system's recommendation order. To
034 mitigate this, we propose a novel reward function and evaluation metric grounded
035 in multi-day future negative feedback and their collaborative signals. Extensive
036 experiments on a real-world industry-scale dataset from Taobao demonstrate that
037 our method achieves state-of-the-art performance. Our work offers meaningful
038 insights not only for the emerging field of negative feedback modeling but also for
039 the broader recommendation community.

040 1 INTRODUCTION

041 In today's recommendation systems, empowering users to express negative preferences has become
042 increasingly prevalent. Major e-commerce platforms such as Taobao, Pinduoduo, TikTok Shop, as
043 well as video platforms like YouTube and TikTok, have implemented user-facing dislike buttons,
044 allowing users to indicate items they do not like and thereby helping the system reduce similar
045 recommendations in the future. This shift is driven by a growing emphasis on user experience,
046 which is now considered equally important as traditional efficiency metrics such as Clickthrough
047 rate and Gross Merchandise Value (Konovalova, 2024; Wang et al., 2023). In particular, negative
048 feedback rates have emerged as a critical indicator of user satisfaction (Christian & Utama, 2021).

049 Meanwhile, in the domain of positive recommendation, advances in generative models and large lan-
050 guage models have enabled the development of end-to-end recommendation systems, effectively ad-
051 dressing cold-start issues for both users and items (Deng et al., 2025; Wang et al., 2024a). Nonethe-
052 less, even with models as large as 1.8B parameters, these approaches still face severe response-time
053 challenges. As a result, it appears more practical to deploy LLMs in offline settings, where negative
item filtering emerges as a promising application to reduce the negative feedback rate.

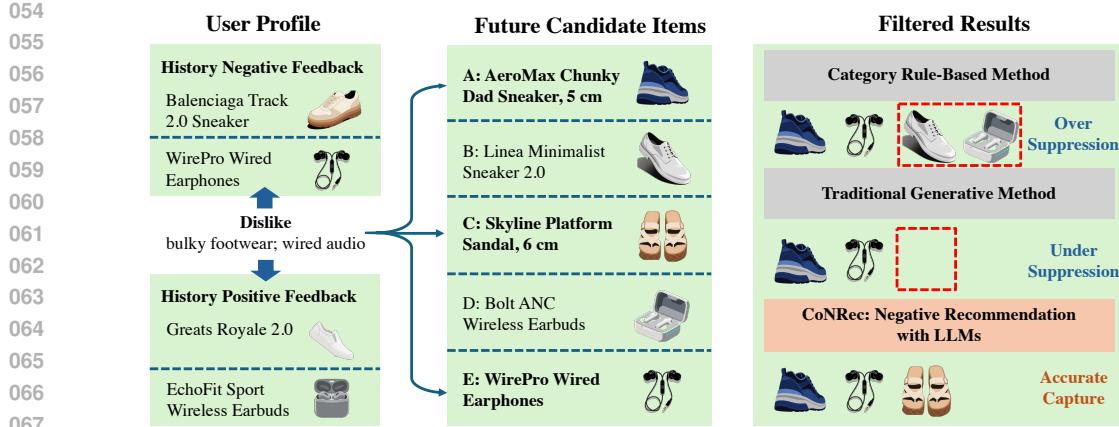


Figure 1: User Negative-Interest Modeling (icon generated by Doubao): For a user who dislikes bulky footwear and wired audio (A, C, E in bold), rule-based methods lead to over-suppression (red box represents wrong results) while traditional models perform poorly on cold-start items like bulky slippers (C), which never appear before. CoNRec effectively captures users’ negative interests.

However, dedicated research on modeling users’ negative interests remains limited. As shown in Fig. 1, Rule-based filtering strategies adopted by many platforms—such as completely blocking categories of items previously disliked by a user—often lead to excessive suppression. While the traditional generative method cannot deal well with the ID or embeddings it never sees and lacks of induction ability (Ding et al., 2024). To address these limitations, we propose a novel approach that leverages the world knowledge of LLMs to generate item list a user is likely to dislike, based on their historical behavior sequence—including both negatively rated items and positively interacted items (e.g., clicks, favorites, purchases). Our method replaces coarse rule-based filtering with a more nuanced, context-aware modeling of user dispreference. To the best of our knowledge, it is the first work to apply LLMs to the modeling of negative feedback in recommendation systems.

Directly applying current methods designed for positive recommendation to negative fields introduces several critical issues. First, reversing a positive recommendation model does not effectively create a negative recommendation model, because the absence of positive feedback usually indicates neutrality rather than explicit dislike (Cena et al., 2023). Second, while negative feedback sequences are far sparser than positive ones, they carry disproportionately high importance in shaping user experience. Existing models tend to be dominated by long sequences of positive interactions, causing them to overlook the critical signals in sparse negative feedback (Pan et al., 2023; Frolov & Osledets, 2016). Lastly, standard fine-tuning objectives such as next-item prediction and evaluation metrics like hit rate are ill-suited for negative feedback tasks. In positive recommendation, the next interaction is often a strong indicator of user interest, reinforced by the system’s feedback loop (Mansouri et al., 2020). However, in negative feedback scenarios, items previously disliked are typically filtered out permanently by current systems, eliminating any chance of re-appearance and subsequent user feedback. As a result, the next negatively interacted item is more influenced by the system’s exposure mechanism than by the user’s true negative preference, introducing significant noise into the training task and undermining the reliability of conventional evaluation metrics.

To address these challenges, this paper proposes the Context-Discerning Negative Recommendation with LLMs (CoNRec) framework. In order to enable the model to better understand negative-feedback contexts, CoNRec introduces an additional item-level fine-tuning task. This allows the model to focus more on potential negative factors of items without giving complex user historical behavior sequences. To prevent the model from being overly influenced by long sequences of positive feedback, CoNRec adopts a Progressive GRPO training paradigm that incrementally incorporates contextual information, ensuring that performance does not degrade compared to training solely with negative feedback. Furthermore, to address the inconsistency between a user’s true interests and next negative feedback, CoNRec innovatively introduces the concepts of future and collaboration to transform the conventional next-item prediction into next-items. Based on this, we design a novel reward function and evaluation metrics tailored for the negative-feedback setting. CoNRec is particularly suited for the offline application for negative-feedback filtering, where the

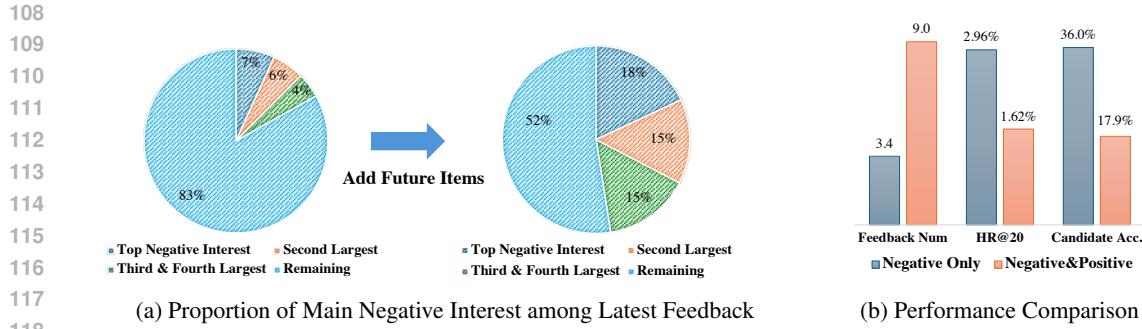


Figure 2: Illustration of motivational studies. (a) The next negative feedback item covers only 7% of the user’s top negative interest (17% for Top-4), causing a lot of noise; while extending to a future 7-day horizon can raise Top-4 coverage to 48%. (b) Adding extra positive interactions (3x longer than negative) unexpectedly causes a large performance drop.

system screens target items by reconstructing to embedding representations and checks whether the maximum embedding similarity compared with the set generated by the model exceeds the threshold. In summary, the contributions of this paper are:

- To the best of our knowledge, CoNRec is the first large language model framework designed for negative item generation that models users’ negative interests in the recommendation scenarios.
- To address current challenges in discerning context in negative recommendation, CoNRec introduces item-level alignment prior to the generation task and a progressive GRPO training paradigm. Our approach achieves state-of-the-art performance on real-world, industry-scale Taobao dataset.
- We break the limitation of predicting the next item in recommendation systems by extending to future items and collaborative items, and introduce new reward functions and evaluation metrics tailored to negative-feedback tasks, which also provide insights for general recommendation tasks.

2 MOTIVATIONAL STUDIES

As mentioned earlier, directly applying existing LLM methods in recommendation can lead to numerous issues. This section provides a quantitative analysis of the two critical problems, which also serve as key motivations for the following design of the CoNRec framework.

Misalignment between User Negative Interest and Next Feedback Item. The training data we collected in the negative feedback domain is biased. Under the existing negative feedback mechanism, items that have received multiple negative feedback from a user are likely to have been filtered out, making it difficult for the model to effectively capture the user’s negative interests. As shown on the left of Fig. 2a, only 7% of the next negative feedback corresponds to the user’s primary negative interest (approximated by categories), and even when considering the top four negative interests, the coverage rises to just 17%, introducing substantial noise into model fine-tuning. In contrast, when we expand the scope to include all negative feedback within the next 7 days, the coverage of the primary negative interest increases to 18%, and the top four interests reach 48%. This effectively mitigates the bias in negative feedback data and informs the design of CoNRec.

Performance Drop with Extra Context. Furthermore, we were surprised to find that adding a user’s historical positive feedback sequences actually leads to a significant drop in model performance, which contradicts original intention of providing additional information to aid training. Due to the sparsity of negative feedback data, the length of positive feedback sequences is generally at least five times that of negative feedback sequences. This causes the model’s attention to be disproportionately focused on the positive sequences, while the negative feedback sequences, which should be emphasized, are largely ignored. As shown in Fig. 2b, when using the LC-Rec framework (Zheng et al., 2024), incorporating both positive and negative feedback results in a 45% decrease in HR@20 compared to using only negative feedback sequences, and a 50% drop in candidate set accuracy in a simulated online environment. This indicates existing models cannot reasonably handle the relationship between negative and positive feedback sequences. Therefore, we aim to design a model that at least avoids performance degradation when additional information is introduced.

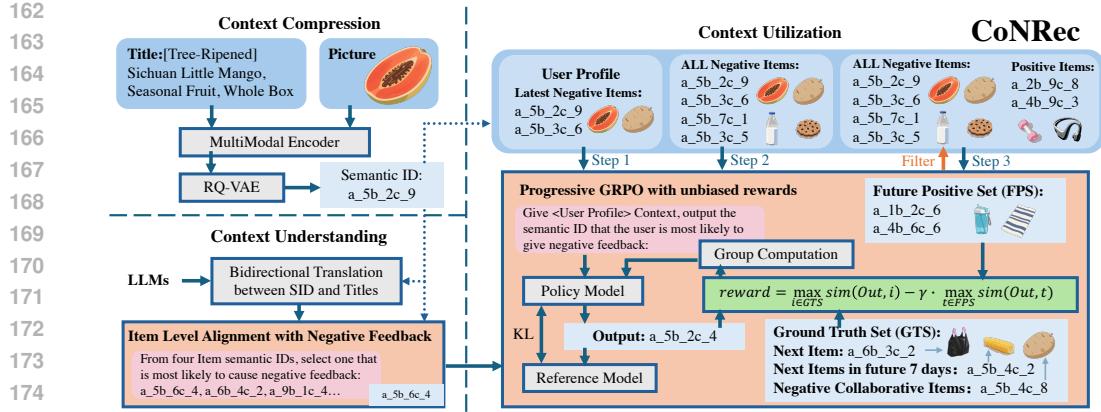


Figure 3: Overview of CoNRec framework. CoNRec first compresses the item information into semantic IDs, which are used in both Context Understanding stage and Context Utilization stage. Context Understanding includes the LoRA finetuning of traditional bidirectional translation, as well as proposed item-level alignment. Then, the model is post-trained using GRPO, where we progressively increase the complexity of the context during training, with a novel reward design that utilizes future negative, positive feedback and collaborative items to create an unbiased environment.

3 CONREC

In this section, we formally define the task scenario of Negative Recommendation. Then we introduce our proposed framework, CoNRec, elaborating on its architecture and the mechanisms it employs to discern the complex contexts inherent in negative recommendation.

Problem Formulation. Let \mathcal{U} denote the set of users and \mathcal{I} the set of items. For each user $u \in \mathcal{U}$, we denote the sequence of items with which u has interacted negatively as $\mathcal{N}_u = \{i_1, i_2, \dots, i_m\}$ and the sequence of items with which u has interacted positively as $\mathcal{P}_u = \{j_1, j_2, \dots, j_n\}$, where all items are represented only by their semantic IDs. Given \mathcal{N}_u and \mathcal{P}_u , the goal is to predict the set of items that user u will most likely give negative feedback to in the future. Formally, we aim to learn a function $f : (\mathcal{N}_u, \mathcal{P}_u) \mapsto \hat{\mathcal{N}}_u^K$, where $\hat{\mathcal{N}}_u^K = \{\hat{i}_1, \hat{i}_2, \dots, \hat{i}_K\}$ denotes the top- K candidate items generated by the model (e.g., via beam search). We evaluate performance by comparing the generated set $\hat{\mathcal{N}}_u^K$ with the ground-truth negative feedback events observed in the future.

Context Compression with Semantic ID. In practical e-commerce, item titles are often redundant. To attract user attention, sellers tend to insert repeated fields or irrelevant information such as shipping details. This redundancy not only inflates the textual representation but also leads to excessively long contexts when fed into LLMs, exceeding their input limits. Moreover, models based solely on titles are restricted to discriminative tasks, since they lack a global notion of the item space, making them unsuitable for generative tasks (Singh et al., 2024). To represent items with compact and informative discrete codes, we introduce the concept of Semantic ID. As illustrated in the top-left of Fig. 3, a multimodal encoder integrates heterogeneous signals from the item title and image into unified embeddings, ensuring diverse content features are effectively captured (Radford et al., 2021).

These embeddings are passed through a Residual Quantized Variational Autoencoder (RQ-VAE) (Lee et al., 2022), which maps the multimodal input x into a latent representation $X \in \mathbb{R}^d$ and discretizes it via multi-level residual quantization. At each level d , the residual $R^{(d)} = X - \sum_{i=1}^{d-1} Z^{(i)}$ is quantized by selecting the nearest codeword $Z^{(d)} \in \mathcal{C}^{(d)}$, yielding the final representation $\hat{X} = \sum_{d=1}^D Z^{(d)}$, from which the decoder reconstructs the embedding. The training objective combines reconstruction and quantization terms (van den Oord et al., 2018):

$$\mathcal{L} = \|X - \hat{X}\|_2^2 + \lambda \sum_{d=1}^D (\|R^{(d)} - \text{sg}[Z^{(d)}]\|_2^2 + \|\text{sg}[R^{(d)}] - Z^{(d)}\|_2^2) \quad (1)$$

where $\text{sg}[\cdot]$ denotes the stop-gradient operator, λ is a balancing weight for the quantization loss. This design yields a hierarchical structure analogous to a category hierarchy in the form of Semantic IDs, which are going to be used in later Context Understanding and Context Utilization Stage.

216 **Context Understanding with Item Level Alignment.** CoNRec builds upon a general-purpose large
 217 language model (LLM) and initially employs a bidirectional translation task between Semantic IDs
 218 (SIDs) and item titles, a commonly adopted approach in methods leveraging SIDs, to help the LLM
 219 associate discrete SIDs with their corresponding textual meanings. However, we argue that this
 220 translation task alone does not adequately adapt to the negative feedback scenario, as the factors that
 221 make an item undesirable are not simply the inverse of those that make it attractive; much of the
 222 intervening space is neutral. To address this gap, we design an intermediate item-level alignment
 223 task using a LoRA-based supervised fine-tuning objective (Hu et al., 2021), which modifies LLM
 224 weight matrices W by introducing low-rank matrices A and B such that the adapted weight becomes

$$W' = W + \Delta W = W + BA, \quad (2)$$

226 where $A \in \mathbb{R}^{r \times d}$ and $B \in \mathbb{R}^{d \times r}$ with rank $r \ll d$, enabling efficient adaptation with minimal
 227 additional parameters. Item Level Alignment focuses solely on item semantics without incorporating
 228 user profiles of historical behavior sequences. This approach reduces context length, making the
 229 training fast and lightweight. Concretely, we prompt the model as follows:

230 **[Prompt]** A user has negative feedback item A by clicking ‘not interested’, while simultaneously
 231 purchasing three other items B, C, and D. All items are represented by their Semantic IDs. Given
 232 four candidate Semantic IDs, determine which one most likely corresponds to the negative item A.
 233

234 Through this task, the model is encouraged to contrast positive and negative signals, thereby learning
 235 to capture potential negative attributes of items at the semantic level.

236 **Context Utilization with Progressive GRPO and Unbiased Rewards.** After the Context Under-
 237 standing stage, the model has acquired a certain level of awareness regarding the semantics of
 238 negative feedback. However, it still cannot fully address two key issues highlighted in motivational
 239 studies: the inconsistency between a user’s next negative feedback and their genuine negative
 240 interests, and the performance interference introduced by positive sequence. In fact, all preceding
 241 modules are designed to better support the Context Utilization stage, where we introduce the Pro-
 242 gressive GRPO module with an unbiased reward function to resolve the aforementioned problems.

243 In GRPO (Shao et al., 2024), given a context c , the previous policy model $\pi_{\theta_{\text{old}}}$ produces a set of
 244 G candidate outputs $\{y_i\}_{i=1}^G$, for which the corresponding rewards $\{r_i\}_{i=1}^G$ are computed by the
 245 reward function. The optimization objective of the updated policy model π_{θ} is then formulated as:

$$\begin{aligned} \mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{c \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | c)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(\min \left(\frac{\pi_{\theta}(y_{i,t} | c, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | c, y_{i,<t})} \right) A_{i,t}, \right. \right. \right. \\ \left. \left. \left. \text{clip} \left(\frac{\pi_{\theta}(y_{i,t} | c, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | c, y_{i,<t})}, 1 - \epsilon, 1 + \epsilon \right) A_{i,t} \right) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right) \right] \end{aligned} \quad (3)$$

252 where the advantage of $y_{i,t}$ is derived by applying a normalization over the rewards at group level:

$$A_{i,t} = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)} \quad (4)$$

253 Note that the loss function in GRPO includes a KL divergence term, which prevents the model from
 254 deviating excessively from the original policy. Inspired by the concept of curriculum learning—from
 255 simple to complex—we divide the GRPO training process into three stages, where the length of
 256 context provided gradually increases. Specifically, in the first stage, we train the model using only
 257 the user’s negative feedback sequence from the past three days. Then we expand the input to include
 258 the entire negative feedback sequence. Finally, we incorporate both negative and positive feedback
 259 contexts. By adjusting the value of β , we ensure that the model continues to gain performance
 260 improvements. Moreover, the model from earlier stages is used to assist in data cleaning for later
 261 stages. For instance, if the generated items are found to be overly similar to those receiving future
 262 positive feedback, CoNRec applies data augmentation to such samples.

266 As shown on the right of Fig. 2a, when the ground truth is extended from the next negative feedback
 267 item to the next items within the following 7 days, the coverage of the user’s top-4 negative interests
 268 reaches 48%, significantly reducing the inconsistency between the ground truth and the user’s actual
 269 negative interests. In the GRPO reward computation, we further expand the set to include high-
 270 collaboration items from the user’s actual negative feedback, obtained using the Swing algorithm

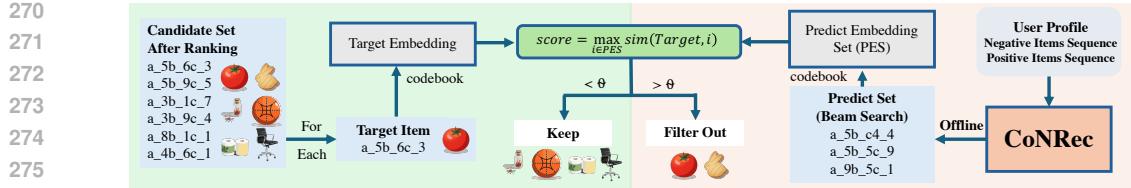


Figure 4: Illustration of CoNRec’s offline industrial application. The target item from the ranking stage and the items predicted by CoNRec are reconstructed into embeddings via the stored codebook. A similarity score is then computed as the maximum embedding similarity between the target and predicted items. Items with scores exceeding the threshold are filtered out.

(Yang et al., 2020) from the negative feedback data:

$$\begin{aligned}
 \text{Swi}(i, j) = & \sum_{u \in U(i) \cap U(j)} \sum_{v \in U(i) \cap U(j), v \neq u} \frac{1}{(|I(u)| + \alpha_1)^\theta (|I(v)| + \alpha_1)^\theta} \cdot \frac{|I(u) \cap I(v)|}{|I(u) \cap I(v)| + \alpha_2} \cdot \frac{1}{\sqrt{N_j}} \\
 \text{Id}(x) = & \begin{cases} 1, & x > 5 \\ 0, & x \leq 5 \end{cases} \quad (5)
 \end{aligned}$$

where $U(i)$ and $U(j)$ are the sets of users who interacted with items i and j ; $I(u)$ is the set of negative-feedback items for user u ; $\text{Id}(x)$ is a threshold function to filter out low-collaboration user pairs; and $\alpha_1, \alpha_2, \theta$ are smoothing or weighting hyperparameters. With this expansion, the coverage of the user’s top-1 negative interest reaches 25%, and top-4 reaches 64%, greatly reducing noise interference. As shown in bottom-right of Fig. 3, we first map all semantic IDs back to embedding representations via the codebook. The reward is then calculated using cosine similarity between the generated output and the Ground Truth Set, while penalizing similarity with the Future Positive Set:

$$\text{reward} = \max_{i \in GTS} \text{sim}(\text{Out}, i) - \gamma \cdot \max_{t \in FPS} \text{sim}(\text{Out}, t) \quad (6)$$

Through progressive input and improved reward function, CoNRec successfully avoids two major issues highlighted in motivational studies, achieving precise modeling of users’ negative interests.

Industrial Application. One key advantage of CoNRec lies in its capability to generate results offline, allowing it to function as a filtering mechanism and thus avoiding excessive latency during online inference. As illustrated in Fig. 4, given a user’s sequence of positive and negative interactions, CoNRec first generates a Predict Set via beam search. Subsequently, both the ranking-stage target item and the predicted items are reconstructed into embedding representations using the stored codebook. The maximum similarity between these embeddings is then computed and used as the score, and any item with a score exceeding a predefined threshold is discarded.

4 EXPERIMENTS

This section presents comprehensive experimental results, providing evidence that the challenges outlined in the motivational studies have been effectively addressed, leading to SOTA performance.

Evaluation Metrics. Performance is assessed by verifying whether the generated item set matches ground-truth negative feedback in future interactions. As motivational studies note, relying solely on the first future negative feedback introduces bias from existing negative feedback filtering mechanisms and recommendation order. To mitigate this, similar to the reward setting, we define ground truth as any negative feedback within the next seven days and propose FHR@20, counting a hit if any such item is predicted. Furthermore, for practical and stability reasons, platforms often adopt LLM-based models as incremental enhancements rather than replacements, mainly benefiting cold-start scenarios. Hence, full-sample evaluation is less meaningful in such scenario. We therefore introduce two additional FHR@20 metrics: LUF@20 for long-tail users (fewer than three negative-feedback instances; 20% of data) and LIF@20 for long-tail items (fewer than five instances; 12% of data). We also report Candidate Accuracy, where the model selects the true negative-feedback item from 20 candidates (one true and 19 distractors) (Kim et al., 2024), closely simulating online deployment. Traditional NDCG (Järvelin & Kekäläinen, 2002) is excluded, as it is unsuitable for negative-feedback tasks where ranking relevance is undefined and irrelevant to filtering task.

324 Table 1: Performance comparison on the Real-world Taobao Dataset. The best results are shown
 325 in **bold**, and the best baseline is underlined. HR@20 denotes the top-20 Hit Ratio against the next
 326 feedback. FHR@20 denotes the top-20 Hit Ratio against the user’s feedback in the following 7 days.
 327 LUF@20 refers to FHR@20 measured on long-tail users with fewer than three historical negative
 328 feedbacks. LIF@20 refers to FHR@20 measured on long-tail items with fewer than five historical
 329 negative feedbacks. Candidate Acc. indicates the accuracy of a selection task simulating the online
 330 scenario where 20 items are presented and only one corresponds to the user’s negative feedback.

Model	HR@20	FHR@20	LUF@20	LIF@20	Candidate Acc.
Item ID based Generative Methods					
Caser	0.0098	0.0128	0.0085	0.0135	N/A
SASRec	0.0180	0.0262	0.0169	0.0280	N/A
BERT4Rec	0.0186	0.0260	0.0173	0.0311	N/A
Item Feature based Generative Methods					
FDSA	0.0284	0.0374	0.0232	0.0362	N/A
S ³ -Rec	0.0268	0.0329	0.0206	0.0382	N/A
Semantic ID based Generative Methods					
P5-CID	0.0262	0.0381	0.0220	0.0356	N/A
TIGER	0.0264	<u>0.0388</u>	0.0232	0.0360	N/A
Item Title based LLM Methods					
TALLRec	N/A	N/A	N/A	N/A	0.2686
InstructRec	N/A	N/A	N/A	N/A	<u>0.3453</u>
Semantic ID based LLM Methods					
LC-Rec (Neg.&Pos.)	0.0159	0.0381	0.0199	0.0351	0.1333
LC-Rec (Neg. Only)	<u>0.0296</u>	0.0385	<u>0.0258</u>	<u>0.0397</u>	0.2892
CoNRec	0.0330	0.0441	0.0297	0.0496	0.6950
Improv.	+11.5%	+13.7%	+15.1%	+24.9%	+101.3%

353
 354
 355 **Experiment Setup.** We utilize real-world, industrial-level data derived from user behavior logs
 356 on Taobao and discarding dislikes because of repetition and price factors to simply model inter-
 357 ests. For Context Compression, we use a three-level codebook with 8192 dimensions at each level.
 358 For following SFT and Post-training, we use Qwen3-14B as a backbone. During the Bidirectional
 359 Translation stage, a corpus of 10 million pairs of commonly used semantic IDs and product titles is
 360 employed. For the Item-level Alignment stage, 4 million multiple-choice samples are constructed; in
 361 each sample, one item is selected as the correct option if it appears in the user’s historical negative-
 362 feedback list more than three times, while three distractor options are randomly drawn from the
 363 user’s historical purchase sequence. In the Progressive GRPO stage, we first perform a warm-up
 364 SFT using 200K samples, followed by 100K samples for post-training in each subsequent stage. To
 365 evaluate Candidate Accuracy, a 100K-sample test set is created where each user’s actual negative-
 366 feedback item is the correct answer, and 19 distractors are randomly sampled from the user’s daily
 367 exposure, forming a 20-choice task to assess the model’s ability to capture negative preferences.

368 **Compared Methods.** We compare our approach against five categories of sequence recom-
 369 mendation methods: (1) generative models based on item IDs, including Caser (Tang & Wang, 2018),
 370 SASRec (Kang & McAuley, 2018), and BERT4Rec (Sun et al., 2019); (2) models that additionally
 371 incorporate item features such as text or images, represented by FDSA (Zhang et al., 2019) and
 372 S³-Rec (Zhou et al., 2020); (3) generative methods leveraging semantic IDs, such as TIGER (Rajput
 373 et al., 2023) and P5-CID (Geng et al., 2023); (4) LLM-based methods utilizing product titles, in-
 374 cluding TALLRec (Bao et al., 2023) and InstructRec (Zhang et al., 2023), which are evaluated only
 375 on discriminative tasks due to their lack of item-space awareness; and (5) the latest LLM approach
 376 integrating semantic IDs, LC-Rec (Zheng et al., 2024).

377 **Quantitative Results.** As shown in Table 1, on Taobao’s real-world user negative-feedback dataset,
 378 generative methods incorporating both item IDs and item features outperform those using only item
 379 IDs, particularly on cold-start metrics LUF@20 and LIF@20, due to the richer semantic information

378 Table 2: Ablation study evaluating the effectiveness of each module in CoNRec. The table is
 379 incremental, with each row adding one additional module on top of the previous configuration.
 380

381 CoNRec	382 HR@20	383 FHR@20	384 LUF@20	385 LIF@20	386 Candidate Acc.
383 baseline	384 0.0286	385 0.0364	386 0.0246	387 0.0382	388 0.2764
384 + Item Level Alignment	385 0.0294	386 0.0382	387 0.0262	388 0.0410	389 0.5088
385 + Progressive-Context GRPO	386 0.0308	387 0.0393	388 0.0262	389 0.0428	390 0.5476
386 + Negative Future Rewards	387 0.0330	388 0.0434	389 0.0268	390 0.0452	391 0.6532
387 + Positive Future Rewards	388 0.0330	389 0.0441	390 0.0297	391 0.0496	392 0.6950

388
 389
 390 provided by item features. Among generative approaches, encoder–decoder models based on semantic
 391 IDs achieve the best performance, demonstrating the strong information compression capability
 392 of semantic IDs, which makes them highly suitable for recommendation tasks. Under settings where
 393 item sequences are constructed using semantic IDs, LLM-based models leverage reasoning ability to
 394 consistently surpass encoder–decoder methods on cold-start metrics. Our proposed CoNRec model
 395 combines the strengths of semantic IDs and LLMs while avoiding the limitations observed in LC-
 396 Rec under negative-feedback scenarios, achieving 11.5% improvement on HR@20 and 13.7% on
 397 FHR@20—indicating that FHR is a more generalizable metric. In the most advantageous cold-
 398 start scenario, CoNRec yields 15.1% improvement for long-tail users and 24.9% for long-tail items.
 399 Finally, in Candidate Accuracy—simulating an online deployment setting—CoNRec demonstrates
 400 exceptional performance, doubling the results of the previous best model, InstructRec, highlighting
 401 its strong potential for possible online application.

401 **Ablation Studies.** As shown in Table 2, we incrementally add the modules proposed in CoNRec to
 402 the baseline LLM model trained with bidirectional translation to validate their effectiveness. Incorpor-
 403 ating Item-level Alignment yields a 4–8% improvement on generative metrics while substantially
 404 boosts discriminative task accuracy. Introducing progressive context input does not underperform
 405 compared to using only negative sequences and even delivers a slight gain. Expanding the ground
 406 truth from the first future negative feedback to a seven-day window as well as high-collaboration
 407 items further improves HR@20 series metrics by 5–10%. Finally, applying a penalty based on fu-
 408 ture positive-feedback similarity leads to the best overall performance with the full CoNRec model.

409 **Forgetting Rate for Item-Level Alignment.**

410 From the perspective of transfer learning, the
 411 higher the alignment between the target task
 412 and the intermediate task, the lower the forget-
 413 ting rate of the intermediate task (Lin et al.,
 414 2024). The Item-Level Alignment task iden-
 415 tifies items that users strongly dislike and
 416 strongly like, with high confidence and minimal
 417 noise. Therefore, if the model forgets a large
 418 portion of the intermediate task during target
 419 task training, we can infer that the target task contains considerable noise that interferes with the
 420 intermediate task. We compared the traditional predict-next-item SFT with the GRPO that calcu-
 421 lates reward similarity based solely on the first negative feedback. As shown in Table 3, CoNRec
 422 exhibits the lowest forgetting rate, indicating our design can substantially reduce task noise.

423 **Reward Schemes Analysis.** The design of
 424 the reward is critical for GRPO. We explored
 425 several reward schemes based on an extended
 426 Ground Truth Set. For approaches using em-
 427 bedding similarity, we considered:(a) reward-
 428 ing the similarity between the generated out-
 429 put and future negative feedback; (b) reward-
 430 ing only high similarity, setting rewards below
 431 0.6 to zero; (c) rewarding similarity with future
 432 negative feedback while simultaneously penal-
 433 izing similarity with future positive feedback;

Table 3: Forgetting Rate at Different Tasks.

Task	Acc.	Forget Rate
Item Level Alignment	0.755	N/A
Traditional PNI SFT	0.518	31.4%
Traditional GRPO	0.540	28.5%
CoNRec	0.652	13.6%

Table 4: Performance on Different Rewards.

Scheme	FHR@20	LUF@20	LIF@20
a	0.0434	0.0268	0.0452
b	0.0421	0.0268	0.0450
c	0.0441	0.0297	0.0496
d	0.0438	0.0297	0.0496
e	0.0397	0.0264	0.0432

432 (d) truncating rewards for both future negative and positive feedback. For approaches using hit-
 433 based rewards, we tested: (e) rewarding 1 for hitting a level-3 semantic ID, 0.1 for level-2, and 0.01
 434 for level-1. As shown in Table 4, reward truncation has minimal impact on the results, whereas
 435 incorporating penalties for future positive feedback leads to a notable improvement in the LUF met-
 436 ric. In scheme (e), due to the sparsity of rewards, both convergence speed and final performance are
 437 suboptimal. Based on overall performance, we selected scheme (c) as the preferred reward design.

440 5 RELATED WORK

441
 442 **LLM-based Recommendation.** Recent advances in recommendation systems increasingly leverage
 443 large language models (LLMs) to improve item retrieval and ranking by incorporating richer con-
 444 textual signals. Text-based methods rely on product descriptions, reviews, or metadata to capture
 445 semantic relationships between users and items, taking advantage of LLMs’ ability to understand
 446 natural language and learn context-aware representations (Wang et al., 2024a; Bao et al., 2023; Dong
 447 et al., 2024). However, these approaches often suffer from high computational costs and sensitiv-
 448 ity to noisy or sparse text, particularly in large-scale settings. An alternative line of work employs
 449 semantic IDs—compact dense vectors that encode item semantics using multimodal information
 450 and user interaction data (Zheng et al., 2024; Wang et al., 2024c). These representations enhance
 451 efficiency, scalability, and response speed in real-time recommendations while avoiding heavy re-
 452 liance on textual data. Despite these advantages, most existing studies primarily address positive-
 453 feedback scenarios (Zhang et al., 2024). Extending LLM-based and semantic ID-based methods to
 454 negative-feedback modeling remains non-trivial due to the inherent sparsity, noisiness, and distinct
 455 characteristics of negative signals, which pose unique challenges for model training and evaluation.

456 **Negative-aware Recommendation.** Recent years have seen increasing interest in leveraging nega-
 457 tive feedback to enhance the quality and robustness of recommender systems. Existing approaches
 458 incorporate signals such as dislikes, skips, low ratings, or survey responses in various ways (Yu
 459 et al., 2025). Some methods integrate explicit negative feedback into training objectives, introduc-
 460 ing loss functions that penalize ranking negatively interacted items too highly (Wang et al., 2023).
 461 Others refine feedback interpretation by using large language models (LLMs) to distinguish true
 462 negatives from mislabeled ones, improving label accuracy (Pei et al., 2024; Shimizu et al., 2025).
 463 Graph-based models have also adopted negative-feedback-aware message passing, where interac-
 464 tion polarity guides information propagation (Wang et al., 2024b). These strategies demonstrate that
 465 negative signals can improve user modeling and overall recommendation performance. However,
 466 most methods still treat negative feedback as auxiliary information for refining positive preference
 467 modeling, rather than directly capturing user dissatisfaction or aversion. Even when explicitly incor-
 468 porated, negative signals often reweight training samples or adjust positive representations instead of
 469 addressing distinct drivers of dislikes. This leaves a critical gap: few approaches directly model neg-
 470 ative user experiences as a primary objective to proactively prevent undesirable recommendations
 and improve long-term satisfaction.

471 6 CONCLUSION

472
 473 In this work, we introduced CoNRec, a novel recommendation framework that integrates semantic
 474 IDs with large language models to address the limitations of existing methods in negative-feedback
 475 scenarios. Comprehensive experiments on large-scale industrial datasets demonstrate that CoNRec
 476 consistently improves both standard and cold-start offline metrics, achieving substantial gains over
 477 state-of-the-art baselines. Furthermore, the proposed reward functions and evaluation metrics miti-
 478 gate noise by extending the prediction objective beyond the immediate next item to encompass future
 479 items and their collaborative counterparts, providing a more generalizable and practical framework
 480 applicable across diverse recommendation settings, including those involving negative feedback. In
 481 addition, CoNRec exhibits strong potential in enhancing candidate accuracy metrics designed to
 482 approximate online performance. Future work will focus on investigating the feasibility and effec-
 483 tiveness of deploying negative-feedback-aware models in real-world production environments, both
 484 offline and online.

486 REFERENCES
487

488 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
489 effective and efficient tuning framework to align large language model with recommendation. In
490 *Proceedings of the 17th ACM Conference on Recommender Systems*, RecSys '23, pp. 1007–1014.
491 ACM, September 2023. doi: 10.1145/3604915.3608857. URL <http://dx.doi.org/10.1145/3604915.3608857>.
492

493 Federica Cena, Luca Console, and Fabiana Verner. How to deal with negative preferences in
494 recommender systems: a theoretical framework. *Journal of Intelligent Information Systems*, 60
495 (1):23–47, 2023. ISSN 1573-7675. doi: 10.1007/s10844-022-00705-9. URL <https://doi.org/10.1007/s10844-022-00705-9>.
496

497 Yustinus Christian and Yakob Utama. Issues and determinant factors of customer feedback on
498 e-commerce (e-marketplace). In *2021 International Conference on Information Management
499 and Technology (ICIMTech)*, volume 1, pp. 234–239, 2021. doi: 10.1109/ICIMTech53080.2021.
500 9535075.
501

502 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
503 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
504 alignment, 2025. URL <https://arxiv.org/abs/2502.18965>.
505

506 Yijie Ding, Yupeng Hou, Jiacheng Li, and Julian McAuley. Inductive generative recommendation
507 via retrieval-based speculation, 2024. URL <https://arxiv.org/abs/2410.02939>.
508

509 Qian Dong, Yiding Liu, Qingyao Ai, Zhijing Wu, Haitao Li, Yiqun Liu, Shuaiqiang Wang, Dawei
510 Yin, and Shaoping Ma. Unsupervised large language model alignment for information retrieval
via contrastive feedback, 2024. URL <https://arxiv.org/abs/2309.17078>.
511

512 Evgeny Frolov and Ivan Oseledets. Fifty shades of ratings: How to benefit from a negative feedback
513 in top-n recommendations tasks. In *Proceedings of the 10th ACM Conference on Recommender
514 Systems*, RecSys '16, pp. 91–98. ACM, September 2016. doi: 10.1145/2959100.2959170. URL
515 <http://dx.doi.org/10.1145/2959100.2959170>.
516

517 Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
518 language processing (rlp): A unified pretrain, personalized prompt predict paradigm (p5), 2023.
519 URL <https://arxiv.org/abs/2203.13366>.
520

521 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
522 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
523

524 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. *ACM
525 Trans. Inf. Syst.*, 20(4):422–446, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582418.
526 URL <https://doi.org/10.1145/582415.582418>.
527

528 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation, 2018. URL
529 <https://arxiv.org/abs/1808.09781>.
530

531 Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung
532 Park. Large language models meet collaborative filtering: An efficient all-round llm-based rec-
533 ommender system, 2024. URL <https://arxiv.org/abs/2404.11343>.
534

535 Elizaveta Konovalova. The case for the dislike button. *Financial Times*, March 31 2024. URL
536 <https://www.ft.com/content/ff262755-0117-4860-a155-f610874727b4>.
537

538 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive im-
539 age generation using residual quantization, 2022. URL <https://arxiv.org/abs/2203.01941>.
540

541 Pin-Jie Lin, Miaoran Zhang, Marius Mosbach, and Dietrich Klakow. Exploring the effectiveness
542 and consistency of task selection in intermediate-task transfer learning, 2024. URL <https://arxiv.org/abs/2407.16245>.
543

540 Masoud Mansouri, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin
 541 Burke. Feedback loop and bias amplification in recommender systems, 2020. URL <https://arxiv.org/abs/2007.13019>.

542

543 Yunzhu Pan, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Kun Gai, Depeng Jin, and Yong
 544 Li. Understanding and modeling passive-negative feedback for short-video sequential recom-
 545 mendation. In *Proceedings of the 17th ACM Conference on Recommender Systems*, RecSys
 546 '23, pp. 540–550. ACM, September 2023. doi: 10.1145/3604915.3608814. URL <http://dx.doi.org/10.1145/3604915.3608814>.

547

548 Yingchi Pei, Yi Wei Pang, Warren Cai, Nilanjan Sengupta, and Dheeraj Toshniwal. Leveraging llm
 549 generated labels to reduce bad matches in job recommendations. In *Proceedings of the 18th ACM*
 550 *Conference on Recommender Systems*, RecSys '24, pp. 796–799, New York, NY, USA, 2024.
 551 Association for Computing Machinery. ISBN 9798400705052. doi: 10.1145/3640457.3688043.
 552 URL <https://doi.org/10.1145/3640457.3688043>.

553

554 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 555 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 556 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
 557 <https://arxiv.org/abs/2103.00020>.

558

559 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan, Trung Vu, Lukasz
 560 Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and
 561 Maheswaran Sathiamoorthy. Recommender systems with generative retrieval, 2023. URL
 562 <https://arxiv.org/abs/2305.05065>.

563

564 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 565 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 566 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

567

568 Ryotaro Shimizu, Takashi Wada, Yu Wang, Johannes Kruse, Sean O'Brien, Sai HtaungKham,
 569 Linxin Song, Yuya Yoshikawa, Yuki Saito, Fugee Tsung, Masayuki Goto, and Julian McAuley.
 570 Disentangling likes and dislikes in personalized generative explainable recommendation, 2025.
 571 URL <https://arxiv.org/abs/2410.13248>.

572

573 Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan Keshavan, Maheswaran Sathiamoorthy, Yilin
 574 Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon, Ed Chi, and Xinyang Yi. Better
 575 generalization with semantic ids: A case study in ranking for recommendations. In *Proceedings*
 576 *of the 18th ACM Conference on Recommender Systems*, RecSys '24, pp. 1039–1044, New York,
 577 NY, USA, 2024. Association for Computing Machinery. ISBN 9798400705052. doi: 10.1145/
 578 3640457.3688190. URL <https://doi.org/10.1145/3640457.3688190>.

579

580 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Se-
 581 quential recommendation with bidirectional encoder representations from transformer, 2019. URL
 582 <https://arxiv.org/abs/1904.06690>.

583

584 Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
 585 embedding, 2018. URL <https://arxiv.org/abs/1809.07426>.

586

587 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 588 ing, 2018. URL <https://arxiv.org/abs/1711.00937>.

589

590 Jianling Wang, Haokai Lu, Yifan Liu, He Ma, Yueqi Wang, Yang Gu, Shuzhou Zhang, Ningren Han,
 591 Shuchao Bi, Lexi Baugher, Ed Chi, and Minmin Chen. Llms for user interest exploration in large-
 592 scale recommendation systems, 2024a. URL <https://arxiv.org/abs/2405.16363>.

593

594 Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi Suzuki, and Dongjin Yu. Nfarec: A nega-
 595 tive feedback-aware recommender model, 2024b. URL <https://arxiv.org/abs/2404.06900>.

594 Yidan Wang, Zhaochun Ren, Weiwei Sun, Jiyuan Yang, Zhixiang Liang, Xin Chen, Ruobing Xie,
 595 Su Yan, Xu Zhang, Pengjie Ren, Zhumin Chen, and Xin Xin. Content-based collaborative gen-
 596 eration for recommender systems. In *Proceedings of the 33rd ACM International Conference on*
 597 *Information and Knowledge Management*, CIKM '24, pp. 2420–2430. ACM, October 2024c. doi:
 598 10.1145/3627673.3679692. URL <http://dx.doi.org/10.1145/3627673.3679692>.

599 Yueqi Wang, Yoni Halpern, Shuo Chang, Jingchen Feng, Elaine Ya Le, Longfei Li, Xujian Liang,
 600 Min-Cheng Huang, Shane Li, Alex Beutel, Yaping Zhang, and Shuchao Bi. Learning from neg-
 601 ative user feedback and measuring responsiveness for sequential recommenders. In *Proceed-
 602 ings of the 17th ACM Conference on Recommender Systems*, RecSys '23, pp. 1049–1053. ACM,
 603 September 2023. doi: 10.1145/3604915.3610244. URL <http://dx.doi.org/10.1145/3604915.3610244>.

604 Xiaoyong Yang, Yadong Zhu, Yi Zhang, Xiaobo Wang, and Quan Yuan. Large scale product graph
 605 construction for recommendation in e-commerce, 2020. URL <https://arxiv.org/abs/2010.05525>.

606 Chenghui Yu, Peiyi Li, Haoze Wu, Yiri Wen, Bingfeng Deng, and Hongyu Xiong. Usm: Unbiased
 607 survey modeling for limiting negative user experiences in recommendation systems, 2025. URL
 608 <https://arxiv.org/abs/2412.10674>.

609 Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong Wen. Rec-
 610 ommendation as instruction following: A large language model empowered recommendation ap-
 611 proach, 2023. URL <https://arxiv.org/abs/2305.07001>.

612 Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Deqing Wang, Guan-
 613 feng Liu, and Xiaofang Zhou. Feature-level deeper self-attention network for sequential rec-
 614 ommendation. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial*
 615 *Intelligence*, IJCAI-19, pp. 4320–4326. International Joint Conferences on Artificial Intelligence
 616 Organization, 7 2019. doi: 10.24963/ijcai.2019/600. URL <https://doi.org/10.24963/ijcai.2019/600>.

617 Zijian Zhang, Shuchang Liu, Ziru Liu, Rui Zhong, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang,
 618 Qidong Liu, and Peng Jiang. Llm-powered user simulator for recommender system, 2024. URL
 619 <https://arxiv.org/abs/2412.16984>.

620 Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong
 621 Wen. Adapting large language models by integrating collaborative semantics for recom-
 622 mendation, 2024. URL <https://arxiv.org/abs/2311.09049>.

623 Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang,
 624 and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual
 625 information maximization. In *Proceedings of the 29th ACM International Conference on Infor-
 626 mation amp; Knowledge Management*, CIKM '20, pp. 1893–1902. ACM, October 2020. doi:
 627 10.1145/3340531.3411954. URL <http://dx.doi.org/10.1145/3340531.3411954>.

628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Motivational Studies	3
654		
655	3 CoNRec	4
656		
657	4 Experiments	6
658		
659	5 Related Work	9
660		
661		
662	6 Conclusion	9
663		
664	A RQ-VAE Implementation	14
665		
666	A.1 RQ-VAE Architecture and Training	14
667	A.2 Implementation Notes	15
668		
669	B More Experimental Details	15
670		
671	B.1 Data Cleaning	15
672	B.2 Baseline Models	15
673		
674	C LLM backbone setting	16
675		
676	D Limitation	16
677		
678	E The Use of Large Language Models	16
679		
680		
681		
682		
683		
684		
685		
686		
687		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		

702 **A RQ-VAE IMPLEMENTATION**
703

704 This appendix provides the technical implementation details and algorithmic procedure for the
705 Residual Quantized Variational Autoencoder (RQ-VAE) used for generating Semantic IDs, com-
706plementing the high-level overview in Section 3.
707

708 **A.1 RQ-VAE ARCHITECTURE AND TRAINING**
709

710 The RQ-VAE consists of three primary components: a multimodal encoder E , a residual quantizer
711 Q , and a decoder D . The encoder E maps the input data (e.g., multimodal item features) to a
712 continuous latent representation $X = E(x)$. The core of the model is the residual quantization
713 process, which iteratively approximates X through a series of vector quantizations.
714

715 Given a hierarchy of D codebooks $\{\mathcal{C}^{(1)}, \mathcal{C}^{(2)}, \dots, \mathcal{C}^{(D)}\}$, each containing K codewords, the quan-
716 tization proceeds layer-by-layer. The quantization process is defined recursively. At each step d , the
717 algorithm quantizes the residual from the previous step and updates the residual for the next iteration.
718 This hierarchical approach allows the model to capture details at multiple levels of abstraction.
719

720 The training objective combines two loss components:
721

722 **Reconstruction Loss:** Ensures the quantized representation \hat{X} accurately reconstructs the original
723 input embedding.
724

725 **Quantization Loss:** Consists of two terms that (1) bring the codewords closer to the residual repre-
726 sentations and (2) encourage the residuals to align with their corresponding codewords.
727

728 The stop-gradient operator ($\text{sg}[\cdot]$) is crucial for stable training, preventing the quantization loss from
729 distorting the encoder’s representations.
730

731 **Algorithm 1** RQ-VAE Forward Pass and Training

732 **Require:** Multimodal input x , encoder E , codebooks $\{\mathcal{C}^{(1)}, \dots, \mathcal{C}^{(D)}\}$, decoder D

733 **Ensure:** Quantized representation \hat{X} , reconstruction \hat{x} , loss \mathcal{L}

734 1: **Step 1: Encode Input**

735 2: $X \leftarrow E(x)$ {Encode to continuous representation}

736 3: **Step 2: Hierarchical Quantization**

737 4: Initialize residual: $R^{(1)} \leftarrow X$

738 5: Initialize quantized representation: $\hat{X} \leftarrow \mathbf{0}$

739 6: Initialize semantic ID: $S \leftarrow []$ {Empty list for codeword indices}

740 7: **for** $d = 1$ to D **do**

741 8: Find nearest codeword: $k^{(d)} \leftarrow \arg \min_k \|R^{(d)} - c_k^{(d)}\|_2$ where $c_k^{(d)} \in \mathcal{C}^{(d)}$

742 9: $Z^{(d)} \leftarrow c_{k^{(d)}}^{(d)}$ {Select codeword}

743 10: Append to semantic ID: $S.append(k^{(d)})$

744 11: Update quantized representation: $\hat{X} \leftarrow \hat{X} + Z^{(d)}$

745 12: Compute next residual: $R^{(d+1)} \leftarrow R^{(d)} - Z^{(d)}$

746 13: **end for**

747 14: **Step 3: Decode and Compute Loss**

748 15: $\hat{x} \leftarrow D(\hat{X})$ {Reconstruct input from quantized representation}

749 16: $\mathcal{L}_{\text{recon}} \leftarrow \|x - \hat{x}\|_2^2$ {Reconstruction loss}

750 17: $\mathcal{L}_{\text{quant}} \leftarrow 0$

751 18: $R^{(1)} \leftarrow X$ {Reset residual for loss calculation}

752 19: **for** $d = 1$ to D **do**

753 20: $\mathcal{L}_{\text{quant}} \leftarrow \mathcal{L}_{\text{quant}} + \|R^{(d)} - \text{sg}[Z^{(d)}]\|_2^2$ {Codebook loss}

754 21: $\mathcal{L}_{\text{quant}} \leftarrow \mathcal{L}_{\text{quant}} + \|\text{sg}[R^{(d)}] - Z^{(d)}\|_2^2$ {Commitment loss}

755 22: $R^{(d+1)} \leftarrow R^{(d)} - \text{sg}[Z^{(d)}]$ {Update residual}

756 23: **end for**

757 24: $\mathcal{L} \leftarrow \mathcal{L}_{\text{recon}} + \lambda \cdot \mathcal{L}_{\text{quant}}$ {Total loss}

758 25: **return** $\hat{X}, S, \hat{x}, \mathcal{L}$ {Return quantized representation, semantic ID, reconstruction, and loss}

756 A.2 IMPLEMENTATION NOTES
757

758 The algorithm generates Semantic ID S as a sequence of codeword indices $[k^{(1)}, k^{(2)}, \dots, k^{(D)}]$,
759 forming a hierarchical discrete representation. During inference, only steps 1-2 are needed to gen-
760 erate the Semantic ID for an item. The hyperparameter λ balances reconstruction fidelity and quan-
761 tization regularity. Codebooks are updated using exponential moving averages during training, fol-
762 lowing standard vector quantization practices (van den Oord et al., 2018).

763
764 B MORE EXPERIMENTAL DETAILS
765766 B.1 DATA CLEANING
767

768 The user behavior log data from Taobao Mobile contains the reasons for users’ negative feedback,
769 which are as follows: “Not wanting to see this product”, “Not wanting to see this category”, “Have
770 viewed/purchased”, “Not wanting to see this store”, “Uncomfortable with product images”, “Sus-
771 pected AI-generated images”, “Low price to trick clicks”, and “Suspected counterfeit goods”.

772 Since CoNRec is designed to capture users’ negative interests, we only retain negative feedback
773 samples related to user interests, namely “Not wanting to see this product”, “Not wanting to see
774 this category”, “Not wanting to see this store”, and “Uncomfortable with product images”. Other
775 negative feedback caused by repeated recommendations or product quality issues is not used for
776 CoNRec training. Filtering such negative feedback (which does not stem from negative interests) is
777 the responsibility of other methods based on user fatigue or rule-based mechanisms.

778 B.2 BASELINE MODELS
779

780 Here, we briefly introduce the principles of various models that are used to compare with CoNRec
781 in the experimental section of the main text.
782

- 783 • **Caser** (Tang & Wang, 2018) is a CNN-based approach that models user behaviors through the
784 application of horizontal and vertical convolutional filters.
- 785 • **SASRec** (Kang & McAuley, 2018) is a unidirectional self-attentive sequential recommendation
786 method that captures long-range dependencies in user behavior sequences using Transformer ar-
787 chitectures.
- 788 • **BERT4Rec** (Sun et al., 2019) is a bidirectional Transformer model that leverages BERT-like pre-
789 training to capture both forward and backward dependencies in user behavior sequences.
- 790 • **FDSA** (Zhang et al., 2019) is a hybrid method combining both items and item features with self-
791 attentive layers to model sequential patterns in user-item interactions.
- 792 • **S³-Rec** (Zhou et al., 2020) employs mutual information maximization for pre-training a self-
793 supervised sequential recommendation model, capturing the associations between items and their
794 attributes.
- 795 • **P5-CID** (Geng et al., 2023) structures a variety of recommendation tasks into a text-to-text frame-
796 work and uses the T5 model to uniformly handle different tasks. The research team then investi-
797 gates the development of item indexing mechanisms for sequential recommendation scenarios,
798 such as sequential indexing and collaborative indexing. In our work, we adopt P5 with collabora-
799 tive indexing as a reference model.
- 800 • **TIGER** (Rajput et al., 2023) employs a generative retrieval framework for sequential recom-
801 mendation tasks, incorporating the semantic id to provide unique item recognition.
- 802 • **TALLRec** (Bao et al., 2023) is an efficient tuning framework that aligns LLMs with recom-
803 mendation tasks via fine-tuning on recommendation data—addressing gaps from LLM-recommendation
804 task mismatches and insufficient pre-training data.
- 805 • **InstructRec** (Zhang et al., 2023) is a instruction-tuned recommendation framework that aligns
806 model behavior with natural language instructions for better controllability.
- 807 • **LC-Rec** (Zheng et al., 2024) is an LLM-based recommendation model that integrates language
808 and collaborative semantics by using learning-based vector quantization for meaningful item in-
809 dexing and specially designed tuning tasks to enhance collaborative semantic integration, enabling
direct item generation from the entire set without relying on candidates.

810
811

C LLM BACKBONE SETTING

812 We compared the performance of CoNRec on
 813 TBStars007-13B, Qwen3-8B, and Qwen3-14B.
 814 Experiments show that in the task of capturing
 815 users' negative interests, the performance
 816 of the TBStars007-13B model and the Qwen3-
 817 14B model is roughly comparable; meanwhile,
 818 the Qwen3-14B model achieves a slight per-
 819 formance improvement compared to the smaller-
 820 parameter Qwen3-8B model. However, regard-
 821 less of which LLM backbone is adopted, CoNRec
 822 consistently demonstrates stable performance
 823 enhancement, which reflects the generalization
 824 capability of the CoNRec model.

825
826

D LIMITATION

827 Although CoNRec has achieved state-of-the-art (SOTA) performance across a range of offline
 828 metrics and demonstrates a particularly significant improvement effect for users with a small number of
 829 historical negative feedback, it performs poorly for users who have no historical negative feedback
 830 at all and only have historical positive feedback. For this specific user group, we are attempting to
 831 enhance the effectiveness of contrastive learning in the phase of Context Understanding with Item
 832 Level Alignment, as well as adjust the penalty settings for future positive feedback in the GRPO
 833 phase. Our aim is to enable the model to learn from historical positive feedback and summarize
 834 predictions of potential negative future feedback.

835
836

E THE USE OF LARGE LANGUAGE MODELS

837 No large language models (LLMs), including but not limited to ChatGPT, GPT-4, Claude, and
 838 Llama, were utilized in any stage of the research and writing process of this paper. All content pre-
 839 sented in this work—encompassing the formulation of research questions, design of methodology,
 840 analysis of experimental data, drafting of the main text, compilation of references, and preparation
 841 of appendices—was independently conceived, developed, and written by the authors.

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: FHR@20 on Different Backbones.

Backbone	LC-Rec	CoNRec
TBStars007-13B	0.0381	0.0439
Qwen3-8B	0.0362	0.0410
Qwen3-14B	0.0385	0.0441