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ABSTRACT

Understanding what users like is relatively straightforward; understanding what
users dislike, however, remains a challenging and underexplored problem. Re-
search into users’ negative preferences has gained increasing importance in mod-
ern recommendation systems. Numerous platforms have introduced explicit neg-
ative feedback mechanisms and leverage such signals to refine their recommen-
dation models. Beyond traditional business metrics, user experience-driven met-
rics, such as negative feedback rates, have become critical indicators for eval-
uating system performance. However, most existing approaches primarily use
negative feedback as an auxiliary signal to enhance positive recommendations,
paying little attention to directly modeling negative interests, which can be highly
valuable in offline applications. Moreover, due to the inherent sparsity of neg-
ative feedback data, models often suffer from context understanding biases in-
duced by positive feedback dominance. To address these challenges, we propose
the first large language model (LLM) framework for negative feedback modeling
with special designed context-discerning modules. We use hierarchical seman-
tic ID Representation to replaces text-based item descriptions and introduce an
item-level alignment task that enhances the LLM’s understanding of the semantic
context behind negative feedback. Furthermore, we design a Progressive Group
Relative Policy Optimization (GRPO) training paradigm that enables the model to
dynamically balance the positive and negative behavioral context utilization. Be-
sides, our investigation further reveals a fundamental misalignment between the
conventional next-negative-item prediction objective and users’ true negative pref-
erences, which is heavily influenced by the system’s recommendation order. To
mitigate this, we propose a novel reward function and evaluation metric grounded
in multi-day future negative feedback and their collaborative signals. Extensive
experiments on a real-world industry-scale dataset from Taobao demonstrate that
our method achieves state-of-the-art performance. Our work offers meaningful
insights not only for the emerging field of negative feedback modeling but also for
the broader recommendation community.

1 INTRODUCTION

In today’s recommendation systems, empowering users to express negative preferences has become
increasingly prevalent. Major e-commerce platforms such as Taobao, Pinduoduo, TikTok Shop, as
well as video platforms like YouTube and TikTok, have implemented user-facing dislike buttons,
allowing users to indicate items they do not like and thereby helping the system reduce similar
recommendations in the future. This shift is driven by a growing emphasis on user experience,
which is now considered equally important as traditional efficiency metrics such as Clickthrough
rate and Gross Merchandise Value (Konovalova, 2024; Wang et al., 2023). In particular, negative
feedback rates have emerged as a critical indicator of user satisfaction (Christian & Utama, 2021).

Meanwhile, in the domain of positive recommendation, advances in generative models and large lan-
guage models have enabled the development of end-to-end recommendation systems, effectively ad-
dressing cold-start issues for both users and items (Deng et al., 2025; Wang et al., 2024a). Nonethe-
less, even with models as large as 1.8B parameters, these approaches still face severe response-time
challenges. As a result, it appears more practical to deploy LLMs in offline settings, where negative
item filtering emerges as a promising application to reduce the negative feedback rate.
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Figure 1: User Negative-Interest Modeling (icon generated by Doubao): For a user who dislikes
bulky footwear and wired audio (A, C, E in bold), rule-based methods lead to over-suppression (red
box represents wrong results) while traditional models perform poorly on cold-start items like bulky
slippers (C), which never appear before. CoNRec effectively captures users’ negative interests.

However, dedicated research on modeling users’ negative interests remains limited. As shown in
Fig. 1, Rule-based filtering strategies adopted by many platforms—such as completely blocking
categories of items previously disliked by a user—often lead to excessive suppression. While the
traditional generative method cannot deal well with the ID or embeddings it never sees and lacks of
induction ability (Ding et al., 2024). To address these limitations, we propose a novel approach that
leverages the world knowledge of LLMs to generate item list a user is likely to dislike, based on
their historical behavior sequence—including both negatively rated items and positively interacted
items (e.g., clicks, favorites, purchases). Our method replaces coarse rule-based filtering with a more
nuanced, context-aware modeling of user dispreference. To the best of our knowledge, it is the first
work to apply LLMs to the modeling of negative feedback in recommendation systems.

Directly applying current methods designed for positive recommendation to negative fields intro-
duces several critical issues. First, reversing a positive recommendation model does not effectively
create a negative recommendation model, because the absence of positive feedback usually indicates
neutrality rather than explicit dislike (Cena et al., 2023). Second, while negative feedback sequences
are far sparser than positive ones, they carry disproportionately high importance in shaping user ex-
perience. Existing models tend to be dominated by long sequences of positive interactions, causing
them to overlook the critical signals in sparse negative feedback (Pan et al., 2023; Frolov & Os-
eledets, 2016). Lastly, standard fine-tuning objectives such as next-item prediction and evaluation
metrics like hit rate are ill-suited for negative feedback tasks. In positive recommendation, the next
interaction is often a strong indicator of user interest, reinforced by the system’s feedback loop
(Mansoury et al., 2020). However, in negative feedback scenarios, items previously disliked are
typically filtered out permanently by current systems, eliminating any chance of re-appearance and
subsequent user feedback. As a result, the next negatively interacted item is more influenced by the
system’s exposure mechanism than by the user’s true negative preference, introducing significant
noise into the training task and undermining the reliability of conventional evaluation metrics.

To address these challenges, this paper proposes the Context-Discerning Negative Recommenda-
tion with LLMs (CoNRec) framework. In order to enable the model to better understand negative-
feedback contexts, CoNRec introduces an additional item-level fine-tuning task. This allows the
model to focus more on potential negative factors of items without giving complex user histori-
cal behavior sequences. To prevent the model from being overly influenced by long sequences of
positive feedback, CoNRec adopts a Progressive GRPO training paradigm that incrementally incor-
porates contextual information, ensuring that performance does not degrade compared to training
solely with negative feedback. Furthermore, to address the inconsistency between a user’s true
interests and next negative feedback, CoNRec innovatively introduces the concepts of future and
collaboration to transform the conventional next-item prediction into next-items. Based on this, we
design a novel reward function and evaluation metrics tailored for the negative-feedback setting.
CoNRec is particularly suited for the offline application for negative-feedback filtering, where the
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Negative Only Negative&Positive
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Figure 2: Illustration of motivational studies. (a) The next negative feedback item covers only 7% of
the user’s top negative interest (17% for Top-4), causing a lot of noise; while extending to a future
7-day horizon can raise Top-4 coverage to 48%. (b) Adding extra positive interactions (3× longer
than negative) unexpectedly causes a large performance drop.

system screens target items by reconstructing to embedding representations and checks whether the
maximum embedding similarity compared with the set generated by the model exceeds the thresh-
old. In summary, the contributions of this paper are:

• To the best of our knowledge, CoNRec is the first large language model framework designed for
negative item generation that models users’ negative interests in the recommendation scenarios.

• To address current challenges in discerning context in negative recommendation, CoNRec intro-
duces item-level alignment prior to the generation task and a progressive GRPO training paradigm.
Our approach achieves state-of-the-art performance on real-world, industry-scale Taobao dataset.

• We break the limitation of predicting the next item in recommendation systems by extending to
future items and collaborative items, and introduce new reward functions and evaluation metrics
tailored to negative-feedback tasks, which also provide insights for general recommendation tasks.

2 MOTIVATIONAL STUDIES

As mentioned earlier, directly applying existing LLM methods in recommendation can lead to nu-
merous issues. This section provides a quantitative analysis of the two critical problems, which also
serve as key motivations for the following design of the CoNRec framework.

Misalignment between User Negative Interest and Next Feedback Item. The training data we
collected in the negative feedback domain is biased. Under the existing negative feedback mecha-
nism, items that have received multiple negative feedback from a user are likely to have been filtered
out, making it difficult for the model to effectively capture the user’s negative interests. As shown on
the left of Fig. 2a, only 7% of the next negative feedback corresponds to the user’s primary negative
interest (approximated by categories), and even when considering the top four negative interests, the
coverage rises to just 17%, introducing substantial noise into model fine-tuning. In contrast, when
we expand the scope to include all negative feedback within the next 7 days, the coverage of the
primary negative interest increases to 18%, and the top four interests reach 48%. This effectively
mitigates the bias in negative feedback data and informs the design of CoNRec.

Performance Drop with Extra Context. Furthermore, we were surprised to find that adding a
user’s historical positive feedback sequences actually leads to a significant drop in model perfor-
mance, which contradicts original intention of providing additional information to aid training. Due
to the sparsity of negative feedback data, the length of positive feedback sequences is generally at
least five times that of negative feedback sequences. This causes the model’s attention to be dis-
proportionately focused on the positive sequences, while the negative feedback sequences, which
should be emphasized, are largely ignored. As shown in Fig. 2b, when using the LC-Rec framework
(Zheng et al., 2024), incorporating both positive and negative feedback results in a 45% decrease in
HR@20 compared to using only negative feedback sequences, and a 50% drop in candidate set ac-
curacy in a simulated online environment. This indicates existing models cannot reasonably handle
the relationship between negative and positive feedback sequences. Therefore, we aim to design a
model that at least avoids performance degradation when additional information is introduced.

3
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Figure 3: Overview of CoNRec framework. CoNRec first compresses the item information into
semantic IDs, which are used in both Context Understanding stage and Context Utilization stage.
Context Understanding includes the LoRA finetuning of traditional bidirectional translation, as well
as proposed item-level alignment. Then, the model is post-trained using GRPO, where we progres-
sively increase the complexity of the context during training, with a novel reward design that utilizes
future negative, positive feedback and collaborative items to create an unbiased environment.

3 CONREC

In this section, we formally define the task scenario of Negative Recommendation. Then we in-
troduce our proposed framework, CoNRec, elaborating on its architecture and the mechanisms it
employs to discern the complex contexts inherent in negative recommendation.

Problem Formulation. Let U denote the set of users and I the set of items. For each user u ∈ U ,
we denote the sequence of items with which u has interacted negatively as Nu = {i1, i2, . . . , im}
and the sequence of items with which u has interacted positively as Pu = {j1, j2, . . . , jn}, where
all items are represented only by their semantic IDs. Given Nu and Pu, the goal is to predict the
set of items that user u will most likely give negative feedback to in the future. Formally, we aim to
learn a function f : (Nu,Pu) 7→ N̂K

u , where N̂K
u = {̂i1, î2, . . . , îK} denotes the top-K candidate

items generated by the model (e.g., via beam search). We evaluate performance by comparing the
generated set N̂K

u with the ground-truth negative feedback events observed in the future.

Context Compression with Semantic ID. In practical e-commerce, item titles are often redundant.
To attract user attention, sellers tend to insert repeated fields or irrelevant information such as ship-
ping details. This redundancy not only inflates the textual representation but also leads to excessively
long contexts when fed into LLMs, exceeding their input limits. Moreover, models based solely on
titles are restricted to discriminative tasks, since they lack a global notion of the item space, mak-
ing them unsuitable for generative tasks (Singh et al., 2024). To represent items with compact and
informative discrete codes, we introduce the concept of Semantic ID. As illustrated in the top-left
of Fig. 3, a multimodal encoder integrates heterogeneous signals from the item title and image into
unified embeddings, ensuring diverse content features are effectively captured (Radford et al., 2021).

These embeddings are passed through a Residual Quantized Variational Autoencoder (RQ-VAE)
(Lee et al., 2022), which maps the multimodal input x into a latent representation X ∈ Rd and dis-
cretizes it via multi-level residual quantization. At each level d, the residual R(d) = X−

∑d−1
i=1 Z(i)

is quantized by selecting the nearest codeword Z(d) ∈ C(d), yielding the final representation
X̂ =

∑D
d=1 Z

(d), from which the decoder reconstructs the embedding. The training objective
combines reconstruction and quantization terms (van den Oord et al., 2018):

L = ∥X − X̂∥22 + λ

D∑
d=1

(∥R(d) − sg[Z(d)]∥22 + ∥sg[R(d)]− Z(d)∥22) (1)

where sg[·] denotes the stop-gradient operator, λ is a balancing weight for the quantization loss. This
design yields a hierarchical structure analogous to a category hierarchy in the form of Semantic IDs,
which are going to be used in later Context Understanding and Context Utilization Stage.

4
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Context Understanding with Item Level Alignment. CoNRec builds upon a general-purpose large
language model (LLM) and initially employs a bidirectional translation task between Semantic IDs
(SIDs) and item titles, a commonly adopted approach in methods leveraging SIDs, to help the LLM
associate discrete SIDs with their corresponding textual meanings. However, we argue that this
translation task alone does not adequately adapt to the negative feedback scenario, as the factors that
make an item undesirable are not simply the inverse of those that make it attractive; much of the
intervening space is neutral. To address this gap, we design an intermediate item-level alignment
task using a LoRA-based supervised fine-tuning objective (Hu et al., 2021), which modifies LLM
weight matrices W by introducing low-rank matrices A and B such that the adapted weight becomes

W ′ = W +∆W = W +BA, (2)

where A ∈ Rr×d and B ∈ Rd×r with rank r ≪ d, enabling efficient adaptation with minimal
additional parameters. Item Level Alignment focuses solely on item semantics without incorporating
user profiles of historical behavior sequences. This approach reduces context length, making the
training fast and lightweight. Concretely, we prompt the model as follows:

[Prompt] A user has negative feedback item A by clicking ‘not interested‘, while simultaneously
purchasing three other items B, C, and D. All items are represented by their Semantic IDs. Given
four candidate Semantic IDs, determine which one most likely corresponds to the negative item A.

Through this task, the model is encouraged to contrast positive and negative signals, thereby learning
to capture potential negative attributes of items at the semantic level.

Context Utilization with Progressive GRPO and Unbiased Rewards. After the Context Un-
derstanding stage, the model has acquired a certain level of awareness regarding the semantics of
negative feedback. However, it still cannot fully address two key issues highlighted in motivational
studies: the inconsistency between a user’s next negative feedback and their genuine negative in-
terests, and the performance interference introduced by positive sequence. In fact, all preceding
modules are designed to better support the Context Utilization stage, where we introduce the Pro-
gressive GRPO module with an unbiased reward function to resolve the aforementioned problems.

In GRPO (Shao et al., 2024), given a context c, the previous policy model πθold produces a set of
G candidate outputs {yi}Gi=1, for which the corresponding rewards {ri}Gi=1 are computed by the
reward function. The optimization objective of the updated policy model πθ is then formulated as:

LGRPO(θ) = Ec∼D,{yi}G
i=1∼πθold (·|c)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min

( πθ(yi,t|c, yi,<t)

πθold(yi,t|c, yi,<t)
Ai,t,

clip
( πθ(yi,t|c, yi,<t)

πθold(yi,t|c, yi,<t)
, 1− ϵ, 1 + ϵ

)
Ai,t

)
− βDKL

(
πθ∥πref

))] (3)

where the advantage of yi,t is derived by applying a normalization over the rewards at group level:

Ai,t =
ri −mean

(
{ri}Gi=1

)
std
(
{ri}Gi=1

) (4)

Note that the loss function in GRPO includes a KL divergence term, which prevents the model from
deviating excessively from the original policy. Inspired by the concept of curriculum learning—from
simple to complex—we divide the GRPO training process into three stages, where the length of
context provided gradually increases. Specifically, in the first stage, we train the model using only
the user’s negative feedback sequence from the past three days. Then we expand the input to include
the entire negative feedback sequence. Finally, we incorporate both negative and positive feedback
contexts. By adjusting the value of β, we ensure that the model continues to gain performance
improvements. Moreover, the model from earlier stages is used to assist in data cleaning for later
stages. For instance, if the generated items are found to be overly similar to those receiving future
positive feedback, CoNRec applies data augmentation to such samples.

As shown on the right of Fig. 2a, when the ground truth is extended from the next negative feedback
item to the next items within the following 7 days, the coverage of the user’s top-4 negative interests
reaches 48%, significantly reducing the inconsistency between the ground truth and the user’s actual
negative interests. In the GRPO reward computation, we further expand the set to include high-
collaboration items from the user’s actual negative feedback, obtained using the Swing algorithm

5
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Figure 4: Illustration of CoNRec’s offline industrial application. The target item from the ranking
stage and the items predicted by CoNRec are reconstructed into embeddings via the stored codebook.
A similarity score is then computed as the maximum embedding similarity between the target and
predicted items. Items with scores exceeding the threshold are filtered out.

(Yang et al., 2020) from the negative feedback data:

Swi(i, j) =
∑

u∈U(i)∩U(j)

∑
v∈U(i)∩U(j),v ̸=u

1

(|I(u)|+ α1)θ(|I(v)|+ α1)θ
· Id(|U(i) ∩ U(j)|)
|I(u) ∩ I(v)|+ α2

· 1√
Nj

Id(x) =

{
1, x > 5

0, x ≤ 5
(5)

where U(i) and U(j) are the sets of users who interacted with items i and j; I(u) is the set of
negative-feedback items for user u; Id(x) is a threshold function to filter out low-collaboration user
pairs; and α1, α2, θ are smoothing or weighting hyperparameters. With this expansion, the coverage
of the user’s top-1 negative interest reaches 25%, and top-4 reaches 64%, greatly reducing noise
interference. As shown in bottom-right of Fig. 3, we first map all semantic IDs back to embedding
representations via the codebook. The reward is then calculated using cosine similarity between the
generated output and the Ground Truth Set, while penalizing similarity with the Future Positive Set:

reward = max
i∈GTS

sim(Out, i)− γ · max
t∈FPS

sim(Out, t) (6)

Through progressive input and improved reward function, CoNRec successfully avoids two major
issues highlighted in motivational studies, achieving precise modeling of users’ negative interests.

Industrial Application. One key advantage of CoNRec lies in its capability to generate results
offline, allowing it to function as a filtering mechanism and thus avoiding excessive latency during
online inference. As illustrated in Fig. 4, given a user’s sequence of positive and negative interac-
tions, CoNRec first generates a Predict Set via beam search. Subsequently, both the ranking-stage
target item and the predicted items are reconstructed into embedding representations using the stored
codebook. The maximum similarity between these embeddings is then computed and used as the
score, and any item with a score exceeding a predefined threshold is discarded.

4 EXPERIMENTS

This section presents comprehensive experimental results, providing evidence that the challenges
outlined in the motivational studies have been effectively addressed, leading to SOTA performance.

Evaluation Metrics. Performance is assessed by verifying whether the generated item set matches
ground-truth negative feedback in future interactions. As motivational studies note, relying solely
on the first future negative feedback introduces bias from existing negative feedback filtering mech-
anisms and recommendation order. To mitigate this, similar to the reward setting, we define ground
truth as any negative feedback within the next seven days and propose FHR@20, counting a hit if
any such item is predicted. Furthermore, for practical and stability reasons, platforms often adopt
LLM-based models as incremental enhancements rather than replacements, mainly benefiting cold-
start scenarios. Hence, full-sample evaluation is less meaningful in such scenario. We therefore
introduce two additional FHR@20 metrics: LUF@20 for long-tail users (fewer than three negative-
feedback instances; 20% of data) and LIF@20 for long-tail items (fewer than five instances; 12%
of data). We also report Candidate Accuracy, where the model selects the true negative-feedback
item from 20 candidates (one true and 19 distractors) (Kim et al., 2024), closely simulating online
deployment. Traditional NDCG (Järvelin & Kekäläinen, 2002) is excluded, as it is unsuitable for
negative-feedback tasks where ranking relevance is undefined and irrelevant to filtering task.
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Table 1: Performance comparison on the Real-world Taobao Dataset. The best results are shown
in bold, and the best baseline is underlined. HR@20 denotes the top-20 Hit Ratio against the next
feedback. FHR@20 denotes the top-20 Hit Ratio against the user’s feedback in the following 7 days.
LUF@20 refers to FHR@20 measured on long-tail users with fewer than three historical negative
feedbacks. LIF@20 refers to FHR@20 measured on long-tail items with fewer than five historical
negative feedbacks. Candidate Acc. indicates the accuracy of a selection task simulating the online
scenario where 20 items are presented and only one corresponds to the user’s negative feedback.

Model HR@20 FHR@20 LUF@20 LIF@20 Candidate Acc.

Item ID based Generative Methods
Caser 0.0098 0.0128 0.0085 0.0135 N/A
SASRec 0.0180 0.0262 0.0169 0.0280 N/A
BERT4Rec 0.0186 0.0260 0.0173 0.0311 N/A

Item Feature based Generative Methods
FDSA 0.0284 0.0374 0.0232 0.0362 N/A
S3-Rec 0.0268 0.0329 0.0206 0.0382 N/A

Semantic ID based Generative Methods
P5-CID 0.0262 0.0381 0.0220 0.0356 N/A
TIGER 0.0264 0.0388 0.0232 0.0360 N/A

Item Title based LLM Methods
TALLRec N/A N/A N/A N/A 0.2686
InstructRec N/A N/A N/A N/A 0.3453

Semantic ID based LLM Methods
LC-Rec (Neg.&Pos.) 0.0159 0.0381 0.0199 0.0351 0.1333
LC-Rec (Neg. Only) 0.0296 0.0385 0.0258 0.0397 0.2892

CoNRec 0.0330 0.0441 0.0297 0.0496 0.6950
Improv. +11.5% +13.7% +15.1% +24.9% +101.3%

Experiment Setup. We utilize real-world, industrial-level data derived from user behavior logs
on Taobao and discarding dislikes because of repetition and price factors to simply model inter-
ests. For Context Compression, we use a three-level codebook with 8192 dimensions at each level.
For following SFT and Post-training, we use Qwen3-14B as a backbone. During the Bidirectional
Translation stage, a corpus of 10 million pairs of commonly used semantic IDs and product titles is
employed. For the Item-level Alignment stage, 4 million multiple-choice samples are constructed; in
each sample, one item is selected as the correct option if it appears in the user’s historical negative-
feedback list more than three times, while three distractor options are randomly drawn from the
user’s historical purchase sequence. In the Progressive GRPO stage, we first perform a warm-up
SFT using 200K samples, followed by 100K samples for post-training in each subsequent stage. To
evaluate Candidate Accuracy, a 100K-sample test set is created where each user’s actual negative-
feedback item is the correct answer, and 19 distractors are randomly sampled from the user’s daily
exposure, forming a 20-choice task to assess the model’s ability to capture negative preferences.

Compared Methods. We compare our approach against five categories of sequence recommen-
dation methods: (1) generative models based on item IDs, including Caser (Tang & Wang, 2018),
SASRec (Kang & McAuley, 2018), and BERT4Rec (Sun et al., 2019); (2) models that additionally
incorporate item features such as text or images, represented by FDSA (Zhang et al., 2019) and
S3-Rec (Zhou et al., 2020); (3) generative methods leveraging semantic IDs, such as TIGER (Rajput
et al., 2023) and P5-CID (Geng et al., 2023); (4) LLM-based methods utilizing product titles, in-
cluding TALLRec (Bao et al., 2023) and InstructRec (Zhang et al., 2023), which are evaluated only
on discriminative tasks due to their lack of item-space awareness; and (5) the latest LLM approach
integrating semantic IDs, LC-Rec (Zheng et al., 2024).

Quantitative Results. As shown in Table 1, on Taobao’s real-world user negative-feedback dataset,
generative methods incorporating both item IDs and item features outperform those using only item
IDs, particularly on cold-start metrics LUF@20 and LIF@20, due to the richer semantic information
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Table 2: Ablation study evaluating the effectiveness of each module in CoNRec. The table is incre-
mental, with each row adding one additional module on top of the previous configuration.

CoNRec HR@20 FHR@20 LUF@20 LIF@20 Candidate Acc.

baseline 0.0286 0.0364 0.0246 0.0382 0.2764
+ Item Level Alignment 0.0294 0.0382 0.0262 0.0410 0.5088
+ Progressive-Context GRPO 0.0308 0.0393 0.0262 0.0428 0.5476
+ Negative Future Rewards 0.0330 0.0434 0.0268 0.0452 0.6532
+ Positive Future Rewards 0.0330 0.0441 0.0297 0.0496 0.6950

provided by item features. Among generative approaches, encoder–decoder models based on seman-
tic IDs achieve the best performance, demonstrating the strong information compression capability
of semantic IDs, which makes them highly suitable for recommendation tasks. Under settings where
item sequences are constructed using semantic IDs, LLM-based models leverage reasoning ability to
consistently surpass encoder–decoder methods on cold-start metrics. Our proposed CoNRec model
combines the strengths of semantic IDs and LLMs while avoiding the limitations observed in LC-
Rec under negative-feedback scenarios, achieving 11.5% improvement on HR@20 and 13.7% on
FHR@20—indicating that FHR is a more generalizable metric. In the most advantageous cold-
start scenario, CoNRec yields 15.1% improvement for long-tail users and 24.9% for long-tail items.
Finally, in Candidate Accuracy—simulating an online deployment setting—CoNRec demonstrates
exceptional performance, doubling the results of the previous best model, InstructRec, highlighting
its strong potential for possible online application.

Ablation Studies. As shown in Table 2, we incrementally add the modules proposed in CoNRec to
the baseline LLM model trained with bidirectional translation to validate their effectiveness. Incor-
porating Item-level Alignment yields a 4–8% improvement on generative metrics while substantially
boosts discriminative task accuracy. Introducing progressive context input does not underperform
compared to using only negative sequences and even delivers a slight gain. Expanding the ground
truth from the first future negative feedback to a seven-day window as well as high-collaboration
items further improves HR@20 series metrics by 5–10%. Finally, applying a penalty based on fu-
ture positive-feedback similarity leads to the best overall performance with the full CoNRec model.

Table 3: Forgetting Rate at Different Tasks.

Task Acc. Forget Rate

Item Level Alignment 0.755 N/A
Traditional PNI SFT 0.518 31.4%
Traditional GRPO 0.540 28.5%
CoNRec 0.652 13.6%

Forgetting Rate for Item-Level Alignment.
From the perspective of transfer learning, the
higher the alignment between the target task
and the intermediate task, the lower the forget-
ting rate of the intermediate task (Lin et al.,
2024). The Item-Level Alignment task iden-
tifies items that users strongly dislike and
strongly like, with high confidence and minimal
noise. Therefore, if the model forgets a large
portion of the intermediate task during target
task training, we can infer that the target task contains considerable noise that interferes with the
intermediate task. We compared the traditional predict-next-item SFT with the GRPO that calcu-
lates reward similarity based solely on the first negative feedback. As shown in Table 3, CoNRec
exhibits the lowest forgetting rate, indicating our design can substantially reduce task noise.

Table 4: Performance on Different Rewards.

Scheme FHR@20 LUF@20 LIF@20

a 0.0434 0.0268 0.0452
b 0.0421 0.0268 0.0450
c 0.0441 0.0297 0.0496
d 0.0438 0.0297 0.0496
e 0.0397 0.0264 0.0432

Reward Schemes Analysis. The design of
the reward is critical for GRPO. We explored
several reward schemes based on an extended
Ground Truth Set. For approaches using em-
bedding similarity, we considered:(a) reward-
ing the similarity between the generated out-
put and future negative feedback; (b) reward-
ing only high similarity, setting rewards below
0.6 to zero; (c) rewarding similarity with future
negative feedback while simultaneously penal-
izing similarity with future positive feedback;
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(d) truncating rewards for both future negative and positive feedback. For approaches using hit-
based rewards, we tested: (e) rewarding 1 for hitting a level-3 semantic ID, 0.1 for level-2, and 0.01
for level-1. As shown in Table 4, reward truncation has minimal impact on the results, whereas
incorporating penalties for future positive feedback leads to a notable improvement in the LUF met-
ric. In scheme (e), due to the sparsity of rewards, both convergence speed and final performance are
suboptimal. Based on overall performance, we selected scheme (c) as the preferred reward design.

5 RELATED WORK

LLM-based Recommendation. Recent advances in recommendation systems increasingly leverage
large language models (LLMs) to improve item retrieval and ranking by incorporating richer con-
textual signals. Text-based methods rely on product descriptions, reviews, or metadata to capture
semantic relationships between users and items, taking advantage of LLMs’ ability to understand
natural language and learn context-aware representations (Wang et al., 2024a; Bao et al., 2023; Dong
et al., 2024). However, these approaches often suffer from high computational costs and sensitiv-
ity to noisy or sparse text, particularly in large-scale settings. An alternative line of work employs
semantic IDs—compact dense vectors that encode item semantics using multimodal information
and user interaction data (Zheng et al., 2024; Wang et al., 2024c). These representations enhance
efficiency, scalability, and response speed in real-time recommendations while avoiding heavy re-
liance on textual data. Despite these advantages, most existing studies primarily address positive-
feedback scenarios (Zhang et al., 2024). Extending LLM-based and semantic ID-based methods to
negative-feedback modeling remains non-trivial due to the inherent sparsity, noisiness, and distinct
characteristics of negative signals, which pose unique challenges for model training and evaluation.

Negative-aware Recommendation. Recent years have seen increasing interest in leveraging nega-
tive feedback to enhance the quality and robustness of recommender systems. Existing approaches
incorporate signals such as dislikes, skips, low ratings, or survey responses in various ways (Yu
et al., 2025). Some methods integrate explicit negative feedback into training objectives, introduc-
ing loss functions that penalize ranking negatively interacted items too highly (Wang et al., 2023).
Others refine feedback interpretation by using large language models (LLMs) to distinguish true
negatives from mislabeled ones, improving label accuracy (Pei et al., 2024; Shimizu et al., 2025).
Graph-based models have also adopted negative-feedback-aware message passing, where interac-
tion polarity guides information propagation (Wang et al., 2024b). These strategies demonstrate that
negative signals can improve user modeling and overall recommendation performance. However,
most methods still treat negative feedback as auxiliary information for refining positive preference
modeling, rather than directly capturing user dissatisfaction or aversion. Even when explicitly incor-
porated, negative signals often reweight training samples or adjust positive representations instead of
addressing distinct drivers of dislikes. This leaves a critical gap: few approaches directly model neg-
ative user experiences as a primary objective to proactively prevent undesirable recommendations
and improve long-term satisfaction.

6 CONCLUSION

In this work, we introduced CoNRec, a novel recommendation framework that integrates semantic
IDs with large language models to address the limitations of existing methods in negative-feedback
scenarios. Comprehensive experiments on large-scale industrial datasets demonstrate that CoNRec
consistently improves both standard and cold-start offline metrics, achieving substantial gains over
state-of-the-art baselines. Furthermore, the proposed reward functions and evaluation metrics miti-
gate noise by extending the prediction objective beyond the immediate next item to encompass future
items and their collaborative counterparts, providing a more generalizable and practical framework
applicable across diverse recommendation settings, including those involving negative feedback. In
addition, CoNRec exhibits strong potential in enhancing candidate accuracy metrics designed to
approximate online performance. Future work will focus on investigating the feasibility and effec-
tiveness of deploying negative-feedback-aware models in real-world production environments, both
offline and online.
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A RQ-VAE IMPLEMENTATION

This appendix provides the technical implementation details and algorithmic procedure for the
Residual Quantized Variational Autoencoder (RQ-VAE) used for generating Semantic IDs, com-
plementing the high-level overview in Section 3.

A.1 RQ-VAE ARCHITECTURE AND TRAINING

The RQ-VAE consists of three primary components: a multimodal encoder E, a residual quantizer
Q, and a decoder D. The encoder E maps the input data (e.g., multimodal item features) to a
continuous latent representation X = E(x). The core of the model is the residual quantization
process, which iteratively approximates X through a series of vector quantizations.

Given a hierarchy of D codebooks {C(1), C(2), . . . , C(D)}, each containing K codewords, the quan-
tization proceeds layer-by-layer. The quantization process is defined recursively. At each step d, the
algorithm quantizes the residual from the previous step and updates the residual for the next iteration.
This hierarchical approach allows the model to capture details at multiple levels of abstraction.

The training objective combines two loss components:

Reconstruction Loss: Ensures the quantized representation X̂ accurately reconstructs the original
input embedding.

Quantization Loss: Consists of two terms that (1) bring the codewords closer to the residual repre-
sentations and (2) encourage the residuals to align with their corresponding codewords.

The stop-gradient operator (sg[·]) is crucial for stable training, preventing the quantization loss from
distorting the encoder’s representations.

Algorithm 1 RQ-VAE Forward Pass and Training

Require: Multimodal input x, encoder E, codebooks {C(1), . . . , C(D)}, decoder D
Ensure: Quantized representation X̂ , reconstruction x̂, loss L

1: Step 1: Encode Input
2: X ← E(x) {Encode to continuous representation}
3: Step 2: Hierarchical Quantization
4: Initialize residual: R(1) ← X
5: Initialize quantized representation: X̂ ← 0
6: Initialize semantic ID: S ← [ ] {Empty list for codeword indices}
7: for d = 1 to D do
8: Find nearest codeword: k(d) ← argmink ∥R(d) − c

(d)
k ∥2 where c

(d)
k ∈ C(d)

9: Z(d) ← c
(d)

k(d) {Select codeword}
10: Append to semantic ID: S.append(k(d))
11: Update quantized representation: X̂ ← X̂ + Z(d)

12: Compute next residual: R(d+1) ← R(d) − Z(d)

13: end for
14: Step 3: Decode and Compute Loss
15: x̂← D(X̂) {Reconstruct input from quantized representation}
16: Lrecon ← ∥x− x̂∥22 {Reconstruction loss}
17: Lquant ← 0

18: R(1) ← X {Reset residual for loss calculation}
19: for d = 1 to D do
20: Lquant ← Lquant + ∥R(d) − sg[Z(d)]∥22 {Codebook loss}
21: Lquant ← Lquant + ∥sg[R(d)]− Z(d)∥22 {Commitment loss}
22: R(d+1) ← R(d) − sg[Z(d)] {Update residual}
23: end for
24: L ← Lrecon + λ · Lquant {Total loss}
25: return X̂, S, x̂,L {Return quantized representation, semantic ID, reconstruction, and loss}
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A.2 IMPLEMENTATION NOTES

The algorithm generates Semantic ID S as a sequence of codeword indices [k(1), k(2), . . . , k(D)],
forming a hierarchical discrete representation. During inference, only steps 1-2 are needed to gen-
erate the Semantic ID for an item. The hyperparameter λ balances reconstruction fidelity and quan-
tization regularity. Codebooks are updated using exponential moving averages during training, fol-
lowing standard vector quantization practices (van den Oord et al., 2018).

B MORE EXPERIMENTAL DETAILS

B.1 DATA CLEANING

The user behavior log data from Taobao Mobile contains the reasons for users’ negative feedback,
which are as follows: ”Not wanting to see this product”, ”Not wanting to see this category”, ”Have
viewed/purchased”, ”Not wanting to see this store”, ”Uncomfortable with product images”, ”Sus-
pected AI-generated images”, ”Low price to trick clicks”, and ”Suspected counterfeit goods”.

Since CoNRec is designed to capture users’ negative interests, we only retain negative feedback
samples related to user interests, namely ”Not wanting to see this product”, ”Not wanting to see
this category”, ”Not wanting to see this store”, and ”Uncomfortable with product images”. Other
negative feedback caused by repeated recommendations or product quality issues is not used for
CoNRec training. Filtering such negative feedback (which does not stem from negative interests) is
the responsibility of other methods based on user fatigue or rule-based mechanisms.

B.2 BASELINE MODELS

Here, we briefly introduce the principles of various models that are used to compare with CoNRec
in the experimental section of the main text.

• Caser (Tang & Wang, 2018) is a CNN-based approach that models user behaviors through the
application of horizontal and vertical convolutional filters.

• SASRec (Kang & McAuley, 2018) is a unidirectional self-attentive sequential recommendation
method that captures long-range dependencies in user behavior sequences using Transformer ar-
chitectures.

• BERT4Rec (Sun et al., 2019) is a bidirectional Transformer model that leverages BERT-like pre-
training to capture both forward and backward dependencies in user behavior sequences.

• FDSA (Zhang et al., 2019) is a hybrid method combining both items and item features with self-
attentive layers to model sequential patterns in user-item interactions.

• S3-Rec (Zhou et al., 2020) employs mutual information maximization for pre-training a self-
supervised sequential recommendation model, capturing the associations between items and their
attributes.

• P5-CID (Geng et al., 2023) structures a variety of recommendation tasks into a text-to-text frame-
work and uses the T5 model to uniformly handle different tasks. The research team then inves-
tigates the development of item indexing mechanisms for sequential recommendation scenarios,
such as sequential indexing and collaborative indexing. In our work, we adopt P5 with collabora-
tive indexing as a reference model.

• TIGER (Rajput et al., 2023) employs a generative retrieval framework for sequential recommen-
dation tasks, incorporating the semantic id to provide unique item recognition.

• TALLRec (Bao et al., 2023) is an efficient tuning framework that aligns LLMs with recommenda-
tion tasks via fine-tuning on recommendation data—addressing gaps from LLM-recommendation
task mismatches and insufficient pre-training data.

• InstructRec (Zhang et al., 2023) is a instruction-tuned recommendation framework that aligns
model behavior with natural language instructions for better controllability.

• LC-Rec (Zheng et al., 2024) is an LLM-based recommendation model that integrates language
and collaborative semantics by using learning-based vector quantization for meaningful item in-
dexing and specially designed tuning tasks to enhance collaborative semantic integration, enabling
direct item generation from the entire set without relying on candidates.
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C LLM BACKBONE SETTING

Table 5: FHR@20 on Different Backbones.

Backbone LC-Rec CoNRec

TBStars007-13B 0.0381 0.0439
Qwen3-8B 0.0362 0.0410
Qwen3-14B 0.0385 0.0441

We compared the performance of CoNRec on
TBStars007-13B, Qwen3-8B, and Qwen3-14B.
Experiments show that in the task of captur-
ing users’ negative interests, the performance
of the TBStars007-13B model and the Qwen3-
14B model is roughly comparable; meanwhile,
the Qwen3-14B model achieves a slight perfor-
mance improvement compared to the smaller-
parameter Qwen3-8B model. However, regard-
less of which LLM backbone is adopted, CoNRec consistently demonstrates stable performance
enhancement, which reflects the generalization capability of the CoNRec model.

D LIMITATION

Although CoNRec has achieved state-of-the-art (SOTA) performance across a range of offline met-
rics and demonstrates a particularly significant improvement effect for users with a small number of
historical negative feedback, it performs poorly for users who have no historical negative feedback
at all and only have historical positive feedback. For this specific user group, we are attempting to
enhance the effectiveness of contrastive learning in the phase of Context Understanding with Item
Level Alignment, as well as adjust the penalty settings for future positive feedback in the GRPO
phase. Our aim is to enable the model to learn from historical positive feedback and summarize
predictions of potential negative future feedback.

E THE USE OF LARGE LANGUAGE MODELS

No large language models (LLMs), including but not limited to ChatGPT, GPT-4, Claude, and
Llama, were utilized in any stage of the research and writing process of this paper. All content pre-
sented in this work—encompassing the formulation of research questions, design of methodology,
analysis of experimental data, drafting of the main text, compilation of references, and preparation
of appendices—was independently conceived, developed, and written by the authors.
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