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Abstract

Fast and reliable evaluation metrics are key to001
R&D progress. While traditional natural lan-002
guage generation metrics are fast, they are not003
very reliable. Conversely, new metrics based004
on large pretrained language models are much005
more reliable, but require significant computa-006
tional resources. In this paper, we propose Fru-007
galScore, an approach to learn a fixed, low cost008
version of any expensive NLG metric, while009
retaining most of its original performance. Ex-010
periments with BERTScore and MoverScore on011
summarization and translation show that Fru-012
galScore is on par with the original metrics (and013
sometimes better), while having several orders014
of magnitude less parameters and running sev-015
eral times faster. On average over all learned016
metrics, tasks, and variants, FrugalScore re-017
tains 96.8% of the performance, runs 24 times018
faster, and has 35 times less parameters than019
the original metrics. We make our trained met-020
rics publicly available 1, to benefit the entire021
NLP community and in particular researchers022
and practitioners with limited resources.023

1 Introduction024

Automatic evaluation metrics are the only way025

to monitor the training of, evaluate, and compare026

across models in a systematic, large-scale way, and027

are thus a critical component of the research and028

development ecosystem in machine learning. To029

get adopted in practice, evaluation metrics need to030

be both reliable and affordable, i.e., fast and easy031

to compute.032

While some metrics meet these criteria, such as033

precision and recall in information retrieval, root034

mean square error in regression, etc., finding suit-035

able metrics is still an open problem in the field036

of Natural Language Generation (NLG) (Novikova037

et al., 2017).038

Indeed, historical n-gram matching metrics such039

as ROUGE (Lin, 2004) for summarization, BLEU040

1Link will be provided upon acceptance.

(Papineni et al., 2002) and METEOR (Banerjee and 041

Lavie, 2005) for translation, while affordable, are 042

not very reliable, as they are based on surface-form 043

matching only, i.e., lexical similarity, and have thus 044

no sense of semantic similarity. For instance, it 045

makes little sense to use ROUGE for the evaluation 046

of abstractive summarization systems (which are 047

becoming the norm), or whenever the generated 048

text paraphrases the original text. 049

Following the advent of transfer learning in NLP, 050

new NLG metrics based on large pretrained lan- 051

guage models have recently been proposed, such as 052

BERTScore (Zhang et al., 2019) and MoverScore 053

(Zhao et al., 2019). By relying on contextual em- 054

beddings, these metrics capture semantics and are 055

therefore much more reliable. However, due to the 056

sheer size of the underlying models, these metrics 057

pose environmental issues (Strubell et al., 2019), 058

take time to compute, and require access to sig- 059

nificant computational resources, so they are not 060

accessible by everyone in the NLP community. 061

For example, we were not able to run some of the 062

best variants of BERTScore2, based on DeBERTa- 063

Large and DeBERTa-XLarge (He et al., 2020) on 064

a 12GB GPU. Even when enough GPU memory 065

is available, relying on such large models is still 066

associated with extended runtimes, which can im- 067

pede the progress of experiments when used once 068

or more per epoch for validation and monitoring 069

purposes. 070

To address this problem, we propose in this pa- 071

per FrugalScore, an approach to learn a lightweight 072

version of BERTScore, MoverScore, and more gen- 073

erally any metric based on a large pretrained lan- 074

guage model. 075

Our contributions can be summarized as follows: 076

1) Our compact models have several orders of mag- 077

nitude less parameters than the original metrics and 078

run several times faster, while retaining most of 079

their original performance. We even outperform 080

2From BERTScore’s authors: https://tinyurl.com/8cwyter2
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the original metrics in some cases3.081

2) Our metrics are not only faster because of the082

much smaller amount of parameters, but also be-083

cause they do not rely on any similarity function.084

3) Regardless of how expensive the original metric085

is, querying our trained metrics always has the086

same low, fixed cost. This decoupling is a major087

advantage as the size of the pretrained language088

models has recently been growing tremendously089

(e.g., Brown et al. (2020)).090

2 Background091

Related work falls into two categories: unsuper-092

vised and supervised metrics.093

2.1 Unsupervised metrics094

To address the limitations of ROUGE and BLEU,095

variants based on static word embeddings (Mikolov096

et al., 2013) were developed, e.g., ROUGE-WE097

(Ng and Abrecht, 2015), BLEU2VEC (Tättar and098

Fishel, 2017), and MEANT 2.0 (Lo, 2017). While099

using word vectors is a progress over strict n-gram100

matching, static embeddings are still very limited101

as they do not capture polysemy, i.e., the fact that102

words have different meanings in different con-103

texts.104

More recently, the focus has shifted to harness-105

ing the power of the contextualized embeddings106

produced by large pretrained language models. For107

instance, the Sentence Mover’s Similarity (Clark108

et al., 2019) represents sentences as the average of109

their ELMo word embeddings (Peters et al., 2018)110

and measures the minimum cost of transforming111

one summary into the other, using a modified ver-112

sion of the Word Mover’s Distance (Kusner et al.,113

2015). BERTR (Mathur et al., 2019) computes114

approximate recall based on the pairwise cosine115

similarity between the BERT embeddings (Devlin116

et al., 2018) of the words in automatic and refer-117

ence translations. Mark-Evaluate (Mordido and118

Meinel, 2020) is a family of metrics that consider119

contextualized word or sentence embeddings de-120

rived from BERT as population samples, to evalu-121

ate language generation with population estimation122

methods used in ecology.123

Finally, the recently introduced BERTScore124

(Zhang et al., 2019) and MoverScore (Zhao125

et al., 2019) are general-purpose NLG evaluation126

metrics that are becoming widely used. The main127

3Hence the name FrugalScore, as frugal engineering is
defined as “achieving more with fewer resources”.

difference between BERTScore and MoverScore 128

lies in the function used to compute the similarity 129

between the representations of the two sequences 130

x = ⟨x1, ...,xk⟩ and y = ⟨y1, ...,yl⟩. We 131

experimented with these two metrics, so we 132

provide more details about them in what follows. 133

134

BERTScore first computes the pairwise cosine sim- 135

ilarity between the representations of the tokens 136

in each sequence, and uses greedy matching to 137

match each token to the most similar one in the 138

other sequence. Given two pre-normalized vector 139

sequences x and y, BERTScore computes: 140

RBERT =
1

|x|
∑
xi∈x

max
yj∈y

xT
i yj (1) 141

and: 142

PBERT =
1

|y|
∑
yi∈y

max
xj∈x

yT
i xj (2) 143

The F1-score is classically obtained as: 144

FBERT = 2
PBERTRBERT

PBERT +RBERT
(3) 145

MoverScore uses an n-gram generalization of the 146

Word Mover’s Distance (WMD) (Kusner et al., 147

2015) as their (dis)similarity function. More specif- 148

ically, they solve for the optimal transportation flow 149

matrix F ∈ R|x|×|y| between the two weighted se- 150

quences of n-grams: 151

WMD(x,y) = minF ⟨C,F ⟩ (4) 152

s.t. F1 = fx, F T1 = fy

Where C is the transportation cost matrix (Cij is 153

the Euclidean distance between xi and yj) and 154

fx ∈ R
|x|
+ and fy ∈ R

|y|
+ are the n-gram weight 155

vectors. 156

157

Note that by directly learning BERTScore’s 158

and MoverScore’s full internal mapping (from se- 159

quence pairs to final scalar scores), FrugalScore 160

internalizes their similarity functions. This does 161

not only provide a speedup at inference time, but 162

also improves performance, as shown in section 5. 163

2.2 Supervised metrics 164

Related to our work are also supervised metrics, 165

which are directly trained on human evaluations. 166

ROSE (Conroy and Dang, 2008) is a linear com- 167

bination model of different variants of ROUGE 168

using canonical correlation. BEER (Stanojević and 169
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Sima’an, 2014) is a learning-to-rank approach us-170

ing word and character n-gram matching, and token171

ordering, as features to maximize correlation with172

human rankings of machine translation systems. S3173

(Peyrard et al., 2017) trains a regression model that174

takes the evaluation scores of several existing met-175

rics and many hand-crafted features as input, and176

learns the best combination of them to approximate177

human summary judgments. DPMFcomb (Yu et al.,178

2015) and Blend (Ma et al., 2017) are combined179

metrics incorporating a vast amount of lexical, syn-180

tactic and semantic based translation evaluation181

metrics using ranking and regression SVMs respec-182

tively. RUSE (Shimanaka et al., 2018) evaluates183

machine translation with a neural regressor based184

on universal sentence embeddings (e.g., InferSent185

(Conneau et al., 2017)). NUBIA (Kane et al., 2020)186

consists of three modules: a feature extractor based187

on RoBERTa (Liu et al., 2019) and GPT-2 (Rad-188

ford et al., 2019) fine-tuned on language evaluation189

tasks, an aggregator trained to predict the qual-190

ity of the hypothesis given the reference using the191

extracted features, and a calibrator mapping all pre-192

dictions between 0 and 1.193

Differences. Like the aforementioned efforts, Fru-194

galScore is a learned metric. However, it does not195

rely on any intermediate or handcrafted features,196

and, most importantly, it does not require training197

on human annotations. Supervision in FrugalScore198

is conducted on a synthetic dataset, as a trick to199

expose and learn the internal mapping of the unsu-200

pervised metrics to be learned. Last but not least,201

unlike all aforementioned methods, compression is202

central to FrugalScore, which is based on miniature203

versions of the models used by the original metrics.204

2.3 Knowledge distillation205

Knowledge distillation (KD) (Hinton et al., 2015) is206

the process of transferring knowledge from a large207

teacher model to a smaller student model to accom-208

plish model compression (Buciluǎ et al., 2006). It209

was originally proposed in the domain of computer210

vision and speech recognition, then successfully211

adapted to NLP (Sanh et al., 2019). Distillation212

can be accomplished in three ways: (1) offline,213

where a teacher is first pre-trained, then a student is214

trained under the guidance of the teacher (Hinton215

et al., 2015); (2) online, where the student and the216

teacher are trained simultaneously (Zhang et al.,217

2018); and (3) self, where the same model plays218

the role of student and teacher, e.g., transferring the219

knowledge of a later exit layer into an earlier one of 220

the same multi-exit network (Phuong and Lampert, 221

2019). Previous studies on KD mainly focused on 222

classification problems (Gou et al., 2021). A few 223

attempts have been made on regression problems 224

(Chen et al., 2017; Saputra et al., 2019; Takamoto 225

et al., 2020), in which special losses were proposed 226

to train the student with respect to both the teacher’s 227

regression outputs and ground truth scores. Differ- 228

ent from conventional distillation, our work is more 229

similar to data-free KD (Kang and Kang, 2021), 230

where the student is trained in the absence of the 231

dataset used to train the teacher. To transfer knowl- 232

edge, we first create a synthetic dataset by anno- 233

tating sequence pairs with a large model (teacher), 234

and then train a miniature model (student) on that 235

dataset, in an offline and regression setting. 236

2.4 Differences with BLEURT 237

A work closely related to ours is BLEURT (Sellam 238

et al., 2020). However, there are a number of signifi- 239

cant differences with our approach. First, BLEURT 240

continues the pretraining of an already pretrained 241

BERT-based model on a synthetic dataset in a self- 242

supervised way, whereas FrugalScore is directly 243

trained to learn the scores of the metric of interest, 244

in a supervised fashion. 245

Also, BLEURT’s synthetic dataset is made by 246

perturbing Wikipedia sentences with mask-filling, 247

backtranslation, and word dropping, whereas we 248

use other data sources than Wikipedia such as sum- 249

marization and translation datasets, and only NLG 250

models to induce perturbations. 251

When creating its synthetic dataset, BLEURT 252

automatically annotates the (original, perturbed) 253

sequence pairs with numerical and categorical “sig- 254

nals”: BLEU, ROUGE, BERTscore, backtransla- 255

tion likelihood, textual entailment (probability of 256

three labels: entail, contradict, and neutral, given 257

by BERT fine-tuned on MNLI), and backtransla- 258

tion flag. On the other hand, FrugalScore simply 259

and directly annotates the sequence pairs with the 260

metric to be learned. 261

After pretraining, BLEURT is fine-tuned on hu- 262

man judgments, in a way similar to the supervised 263

metrics described in subsection 2.2. BLEURT does 264

not learn to generate a scalar until that final fine- 265

tuning phase, so it cannot be used as a metric before 266

that. Conversely, FrugalScore is trained from the 267

start to be a metric, and the fine-tuning phase is 268

optional. 269
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Also, BLEURT was designed for the evaluation270

of translation. The authors only test whether it271

can be applied to a different task by experimenting272

on the WebNLG (data-to-text) dataset (Gardent273

et al., 2017). Conversely, we focus on learning274

general text similarity metrics (e.g., BERTscore275

and MoverScore), so FrugalScore is task-agnostic276

by design.277

Finally, and above all, the objective of Fru-278

galScore is model compression, whereas that of279

BLEURT is metric learning.280

3 Our Approach281

Developing FrugalScore requires three phases, one282

of which is optional.283

Phase 1. We create a synthetic dataset (see subsec-284

tion 3.1) by sampling pairs of more or less related285

sequences and annotating them with the expensive286

metrics to be learned. This is a one-time operation287

that does not need to be repeated regardless of the288

model used in Phase 2.289

Phase 2. We continue the pretraining (subsection290

3.2) of a miniature pretrained language model on291

the synthetic dataset built by Phase 1. Here, the292

miniature model learns the internal mapping of the293

expensive metric, including any similarity function294

applied to the representations. Note that a different295

miniature is trained for each metric to be learned296

(we leave learning metric combinations as future297

work).298

The miniature can then be used in inference299

mode to generate scores for any never-seen pair300

of sequences.301

Phase 3 (optional). We fine-tune the miniature on302

human annotations, which, as shown in section 6,303

can boost performance.304

305

3.1 Synthetic dataset306

The objective here was to generate pairs of se-307

quences mimicking the (reference, candidate) pairs308

found in NLG datasets, which are usually semanti-309

cally related and in many cases paraphrasing one310

another. We sampled our sequences from a variety311

of data sources, listed next.312

Summarization. For each document in the well-313

known CNN/DailyMail dataset (Nallapati et al.,314

2016), our goal was to generate several summaries315

differing in terms of structure and quality. To this316

purpose, we used different pretrained seq2seq sum-317

marization models: BART-base and BART-large318

(Lewis et al., 2019), mBART (Liu et al., 2020), and 319

BARThez (Kamal Eddine et al., 2021). BART is a 320

seq2seq autoencoder with a Transformer architec- 321

ture. 322

The four models were fine-tuned for one epoch 323

on 50k examples randomly sampled from the train- 324

ing set of CNN/DM, and were used to generate 325

summaries for the whole training set of 287,112 326

documents, using greedy decoding. 327

Note that we kept the 50K documents used for 328

fine-tuning in the final generation pool, in order to 329

create quality differences among summaries. In- 330

deed, models are expected to better summarize the 331

documents used for training than never-seen docu- 332

ments. 333

We also used the human reference summaries, so 334

that in the end, each document was associated with 335

5 summaries, resulting in 10 pairs of summaries 336

per document. 337

Backtranslation. We also generated paraphrases 338

with backtranslation, by sampling sentences from 339

the OpenSubtitle English monolingual corpus (Li- 340

son and Tiedemann, 2016), and translating them 341

to French, Arabic and German with OPUS-MT 342

(Tiedemann and Thottingal, 2020), before trans- 343

lating them back to English. We used OPUS-MT 344

because of its ready-to-use checkpoints available 345

for many language pairs. We ended up with 4 varia- 346

tions for each sentence (including the original one), 347

resulting in 6 paraphrase pairs per sentence. 348

Denoising. To avoid bias towards summarization 349

and translation, we also generated pairs of related 350

sequences such that the first element in the pair was 351

a Wikipedia segment and the second element was 352

a BART-denoised version of it (Lewis et al., 2019). 353

More precisely, we sampled 2M segments from 354

Wikipedia such that the number of unigrams in 355

these segments was uniformly distributed between 356

1 and 200. Our assumption was that enforcing vari- 357

ations in sequence length would help the learned 358

metric to generalize. 359

We then applied BART’s text infilling and sen- 360

tence permutation perturbation strategies to each 361

segment. That is, multiple text spans were sampled 362

and replaced with a [MASK] special token. The 363

lengths of the spans were sampled from a Poisson 364

distribution (λ = 3). 50% of the tokens within 365

the input segment were masked and 20% of the 366

masked text was replaced with random tokens (cre- 367

ating pathological examples to increase the robust- 368

ness of the learned metric). The sentences in the 369
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input segment were then shuffled.370

We finally used a BART-Base checkpoint4 from371

the Fairseq library (Ott et al., 2019) to try to re-372

construct the perturbed versions of the original se-373

quences, hence creating variants of them.374

Annotating pairs. We sampled 4.5M sequence375

pairs uniformly from each aforelisted source.376

These pairs were then annotated with the metrics377

to be learned. Note that this is a one-time opera-378

tion that does not need to be repeated regardless of379

which models are trained downstream.380

In this work, we experimented with two recent381

expensive NLG metrics that rely on large pretrained382

language models, BERTScore (Zhang et al., 2019)383

and MoverScore (Zhao et al., 2019), presented in384

section 2. However, it is important to note that our385

method can be used with any other NLG metric.386

Note that for BERTScore, we used the F-1 score387

FBERT , as recommended by the authors (Zhang388

et al., 2019). For MoverScore, still following the389

authors (Zhao et al., 2019), we used the variant390

operating on unigrams and the IDF to compute the391

vectors of weights.392

3.2 Metric learning393

We continue the pretraining of three BERT minia-394

tures5 on our synthetic dataset: BERT-Tiny (L = 2,395

H = 128), BERT-Small (L = 4, H = 512) and396

BERT-Medium (L = 8, H = 512), where L is the397

number of layers and H is the dimension of the em-398

bedding space. These models have respectively 25399

times, 3.78 times, and 2.64 times less parameters400

than BERT-base. The concept of BERT miniatures401

was introduced by Turc et al. (2019) to test whether402

pretraining small models from scratch was compet-403

itive to distilling very large models. The miniature404

models have already been pretrained on masked405

language model and next sentence prediction ob-406

jectives.407

We continue pretraining using the standard408

method introduced by Devlin et al. (2018). We con-409

catenate the two sequences x = ⟨x1, ..., xk⟩ and410

y = ⟨y1, ..., yl⟩ in a given pair, separating them411

with a special [SEP] token. A special [CLS] to-412

ken is also added at the beginning of the resulting413

sequence. The sequence of contextualised embed-414

dings ⟨z[CLS],x1, ...xk, z[SEP],y1, ...,yl⟩ is then415

obtained. We finally add a fully connected layer416

on top, that linearly projects the z[CLS] vector to a417

4https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz
5https://huggingface.co/google

scalar s. 418

The model is trained to minimize the mean 419

square error (MSE) loss between the learned metric 420

si and the metric to be learned ŝi (i.e., the annota- 421

tion of the pair): 422

l =
1

N

N∑
n=1

||si − ŝi||2 (5) 423

When pretraining is over, the models can be further 424

fine-tuned on smaller human-annotated datasets 425

as shown in section 6, or directly used to generate 426

scores for unseen examples as shown in section 4. 427

428

Setup. We use a batch size of 32 and the Adam op- 429

timizer (Kingma and Ba, 2014) with a learning rate 430

of 3 × 10−5, linear decay, and a warm-up for 6% 431

of the total training steps, and we train the model 432

for three epochs. We conducted the pretraining on 433

a single TITAN RTX GPU (24GB). It took 10, 24 434

and 33 hours, respectively for the tiny, small, and 435

medium miniatures. We rely on the Transformers 436

library (Wolf et al., 2019) for all pretraining and 437

fine-tuning experiments. 438

4 Experiments 439

In this section, FrugalScore is used in inference 440

mode to generate scores directly after pretraining, 441

i.e., no fine-tuning is performed (see section 6 for 442

fine-tuning results). 443

We evaluate on two text generation tasks: sum- 444

marization and translation. We use evaluation 445

datasets containing (reference, candidate) sequence 446

pairs annotated with human scores assessing the 447

quality of the candidates given the references. We 448

measure the effectiveness of FrugalScore by mea- 449

suring the Pearson correlation of its scores with 450

the human judgments and comparing it to that of 451

the original metrics. We also take the number of 452

parameters and the runtime into account. 453

Text summarization. We use 4 different multi- 454

document summarization datasets from the Text 455

Analysis Conference (TAC)6: TAC-2008, TAC- 456

2009, TAC-2010 and TAC-2011. 457

These datasets respectively contain 48, 44, 46 458

and 44 clusters of documents and 58, 55, 43 and 459

51 systems are used to generate summaries. Each 460

cluster forms a topic to be summarized and has 4 461

reference summaries. There are approximately 10k 462

pairs in each dataset. Each pair is annotated with 463

6https://tac.nist.gov/
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Metric Model Scores
(TAC)

Runtime
(TAC)

Scores
(WMT)

Runtime
(WMT) Params

a BERTScore BERT-Tiny 55.4/47.5 1m 27s 37.6 1m 22s 4.4M
b BERTScore BERT-Small 61.6/51.5 2m 20s 39.1 1m 42s 29.1M
c BERTScore BERT-Medium 62.7/52.4 2m 28s 39.8 2m 04s 41.7M
d BERTScore BERT-Base 64.7/54.7 3m 28s 41.9 2m 09s 110M
e BERTScore RoBERTa-Large 64.2/55.4 5m 17s 43.2 3m 03s 355M
f BERTScore DeBERTa-XLarge 64.5/56.0 6m 20s 44.5 3m 49s 900M
g MoverScore BERT-Base 66.5/55.4 301m 29s 44.0 64m 32s 110M

i FrugalScored BERT-Tiny 64.9/53.5 1m 28s 38.4 1m 18s 4.4M
ii FrugalScored BERT-Small 64.7/53.7 2m 29s 41.3 1m 35s 29.1M
iii FrugalScored BERT-Medium 64.8/54.2 3m 41s 41.9 1m 55s 41.7M
iv FrugalScoree BERT-Tiny 60.0/50.1 1m 28s 37.5 1m 18s 4.4M
v FrugalScoree BERT-Small 64.1/53.8 2m 29s 40.5 1m 35s 29.1M
vi FrugalScoree BERT-Medium 63.9/52.1 3m 41s 41.7 1m 55s 41.7M
vii FrugalScoref BERT-Tiny 61.7/51.0 1m 28s 38.0 1m 18s 4.4M
viii FrugalScoref BERT-Small 66.0/54.9 2m 29s 41.5 1m 35s 29.1M
ix FrugalScoref BERT-Medium 65.5/54.9 3m 41s 43.0 1m 55s 41.7M
x FrugalScoreg BERT-Tiny 67.3/55.1 1m 28s 39.8 1m 18s 4.4M
xi FrugalScoreg BERT-Small 65.9/54.7 2m 29s 42.8 1m 35s 29.1M
xii FrugalScoreg BERT-Medium 66.2/55.1 3m 41s 43.6 1m 55s 41.7M

Table 1: Scores are summary-level (TAC) and segment-level (WMT) Pearson correlations averaged over 2008 to
2011 for TAC (pyramid score/responsiveness) and over all source languages for WMT-2019. Runtimes include
preprocessing. Subscripts refer to row labels and indicate which metric-model combination was used to annotate
pairs (e.g., for FrugalScored, it is row d, i.e., BERTScore-BERT-Base).

two human judgment scores: the Pyramid Score464

(Harnly et al., 2005) and the Responsiveness (Dang465

et al., 2008). The former measures the proportion466

of important semantic units (SCUs) in the refer-467

ence summaries captured by the system summary,468

while the latter reflects the content coverage and469

the readability of each summary.470

Machine translation. Our evaluation corpus is471

from the WMT-20197 shared task (Li et al., 2019).472

We consider all the to-English pairs: Chinese,473

Czech, German, Finnish, Russian, Lithuanian474

and Kazakh to English. For each language, we475

use the test set that contains several thousands of476

reference-candidate pairs annotated with human477

ratings that assess the translation quality.478

479

5 Results480

Table 1 reports the results averaged over the 4 TAC481

datsets and the 7 WMT to-English language pairs.482

Details are provided in Appendices A and B.483

We benchmarked the metrics in terms of Pear-484

son correlations with human scores, runtimes, and485

numbers of parameters. We used two approaches to486

compute the Pearson correlations: summary-level487

7http://www.statmt.org/wmt19/

(or segment-level) and system-level. 488

In the former approach, a score is attributed to 489

each of the output candidates, while in the latter 490

approach, one single overall score is attributed to 491

the system (by averaging its individual scores). 492

Rows a to c correspond to BERTScore with 493

BERT miniatures as the underlying model. They 494

are simple baselines added for the sake of com- 495

parison, to see what we get when BERTScore is 496

used with the same number of parameters as Fru- 497

galScore. 498

Rows d to g correspond to the expensive metrics 499

that are learned by FrugalScore (in the respective 500

sections of the bottom half of the table). They 501

are BERTScore and MoverScore metrics where 502

the underlying model is a large pretrained lan- 503

guage model: BERT-Base (L = 12, H = 512), 504

RoBERTa-Large (L = 24, H = 1024) (Liu 505

et al., 2019), and DeBERTa-XLarge (L = 24, 506

H = 1536) (He et al., 2020). 507

Finally, rows i to xii correspond to Fru- 508

galScore. Subscripts refer to row labels and in- 509

dicate which metric-model combination was used 510

to annotate pairs. I.e., FrugalScored learned the 511

metric of row d, i.e., BERTScore with BERT-Base. 512

First, results show that all FrugalScores, regard- 513

less of which metric they learned, significantly out- 514
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perform the BERTScores with miniature models.515

These results suggest that FrugalScore is a better516

approach than using an existing metric with an517

already-compressed underlying model. The reason518

for this is probably that in FrugalScore, the knowl-519

edge of the original unsupervised metric (based520

on a large model) is explicitly transferred to the521

miniature via the continuation of its pretraining522

on the synthetic dataset. That is, the miniature is523

actually learning a metric. Whereas, on the other524

hand, plugging a compressed version of a general-525

purpose language model into the original unsuper-526

vised metric just makes it lose expressiveness and527

capacity.528

Second, we can clearly see that FrugalScore re-529

tains most of the performance of the original metric,530

while running several times faster and reducing the531

number of parameters by several orders of mag-532

nitude. On average over all metrics, tasks, and533

miniatures, FrugalScore retains 96.8% of the origi-534

nal performance, runs 24 times faster, and has 35535

times less parameters.536

More precisely, on average across all met-537

rics, FrugalScore-Tiny retains 97.7/94.7% of538

the original performance on TAC (pyramid539

score/responsiveness), while running 54 times540

faster and having 84 times less parameters. Its541

small and medium versions retain near full perfor-542

mance in terms of responsiveness (98 and 97.7%)543

and even slightly outperform the original metrics544

in terms of pyramid score, while at the same time545

reducing the runtime and the number of parameters546

by 32 (resp. 21) and 13 (resp. 9) times.547

On WMT, FrugalScore-Tiny retains 88.58% of548

the performance of the original metrics, while run-549

ning 14 times faster (and still having 84 times less550

parameters), while the small and medium versions551

of FrugalScore retain 95.71 % and 98.06% of the552

original performance while still offering a 32 times553

(resp. 21) speedup and having 13 times (resp. 9)554

less parameters, on average.555

Interestingly, FrugalScore even improves the per-556

formance of the original metrics in some cases.557

For example, on TAC, FrugalScoreg with BERT-558

Tiny (row x) improves the performance of the559

original MoverScore metric based on BERT-Base560

(row g) from 66.5 to 67.3 in terms of pyramid561

score, while reducing the number of parameters562

by 25 and running 50 times faster. Other exam-563

ples, also for TAC with the pyramid score, include564

FrugalScoref with BERT-Small (row viii, +1.5565

point) and FrugalScoref with BERT-medium (row 566

ix, +1 point). 567

Finally, the results of FrugalScore for different 568

miniature sizes show that, on WMT, using larger 569

models always improves performance (e.g., row x 570

→ xi→ xii). But interestingly, on TAC, this ob- 571

servation does not hold (e.g., row vi→ viii→ 572

ix), and sometimes, FrugalScore with the smallest 573

miniature (BERT-Tiny) is superior (e.g. rows i 574

and x). This finding suggests that the impact of the 575

pretrained language model size is task-dependent. 576

To sum up, results clearly show the effective- 577

ness of FrugalScore in learning a cheaper, lighter, 578

and faster version of the original metrics, while 579

retaining most of their original performance. The 580

system-level correlations, provided in Appendices 581

C and D, corroborate these positive results. 582

We also provide the correlations between the 583

original and the learned metrics in Appendices E 584

and F. It is interesting to note that a greater cor- 585

relation with the original metric is not always as- 586

sociated with a better performance. E.g., the tiny 587

version of FrugalScoreg is the best (row x), while 588

it is the less correlated with the original metric. 589

6 Fine-tuning on Human Annotations 590

We test two hypotheses in this section: (1) whether 591

fine-tuning on a human-annotated dataset is bene- 592

ficial, and (2) when fine-tuning on human annota- 593

tions, whether continuing pretraining on our syn- 594

thetic dataset is useful. 595

Because we cannot use the same dataset for fine- 596

tuning and evaluation, we fine-tune a BERT-Small 597

on each year of TAC 2008-2011 for 4 epochs, us- 598

ing two other years as the validation set, and the 599

remaining year as the test set. The best epoch 600

is selected based on validation performance. We 601

use a batch size of 32 and a learning rate of 2e-5 602

that linearly decreases to zero. Finally, we experi- 603

ment with two scenarios: fine-tuning the miniature 604

directly without continuing its pretraining on our 605

synthetic dataset, and fine-tuning it after the pre- 606

training continuation (with annotations generated 607

by BERTScore-BERT-Base). 608

Results. Results are reported in Table 2 in terms 609

of summary-level Pearson correlations with human 610

evaluations (Pyramid), averaged over 3 runs with 611

different random seeds. 612

First, it is obvious that everywhere, continuing 613

the pretraining on our synthetic dataset leads to a 614

significant boost in performance. This is in accor- 615
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Pretraining
Continued TAC-2008 TAC-2009 TAC-2010 TAC-2011 Average

TAC-2008
no

-
67.70.57 66.10.18 63.60.36 65.8

yes 74.40.13 71.30.04 67.30.13 71.0

TAC-2009
no 61.40.41 -

66.90.24 62.70.55 63.7
yes 65.80.25 70.70.32 66.00.18 67.5

TAC-2010
no 59.70.47 67.30.7 -

62.40.47 63.1
yes 64.70.19 74.30.24 67.20.11 68.7

TAC-2011
no 57.61.39 64.71.03 66.50.66 -

62.9
yes 63.90.31 72.00.44 71.60.44 69.2

Table 2: Summary-level Pearson correlations with human judgments (Pyramid scores), averaged over 3 runs
(standard deviation as subscript). Rows correspond to the training sets and columns to the test sets.

dance with Sellam et al. (2020), who found that616

pretraining was beneficial even in a supervised set-617

ting.618

Second, even if a direct comparison is not pos-619

sible, we can remark when looking at the TAC620

Pyramid score of row ii) in Table 1 (FrugalScored-621

BERT-Small) that fine-tuning after pretraining622

seems very beneficial too. Indeed, after fine-tuning,623

we reach on average 71, 67.5, 68.7, and 69.2 (de-624

pending on the split), which represents overall a625

gain of 4.4 points over the non-fine-tuned model626

(score of 64.7).627

7 Impact of Data Sources628

To test the importance of each data source intro-629

duced in subsection 3.1, we created a training set630

containing sequence pairs uniformly and equally631

sampled from each source. We annotated these632

pairs with the BERTScore-BERT-Base metric and633

we used them to continue the pretraining of a BERT-634

Small miniature.635

We also considered pairs drawn at random from636

the pairs generated with the other strategies. The637

motivation for random pairs was to sample “nega-638

tive examples”, as seeing only “positive examples”639

(pairs of related sequences) could bias the learned640

metric towards considering any two unrelated se-641

quences as similar.642

We then continued the pretraining of the BERT-643

Small miniature four times, excluding each time644

the pairs coming from a specific data source. We645

evaluated the learned metric on TAC-2008 to 2011646

and on WMT-2019. Figure 1 shows the average647

improvements in the Pearson correlation with hu-648

man judgments relative to training a model on all649

sources. Note that when training on all four sources,650

we sampled 30k pairs from each source (120k to-651

tal), and when excluding a source, we sampled 40k652

pairs from each source (120k total).653

no_summ.

no_translation

no_denoising
no_random

0.5

0.0

0.5

1.0

1.5

2.0

no_summ.

no_translation

no_denoising
no_random

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1: Relative improvement in Pearson correlation
compared to a dataset covering all sources. Left: TAC.
Right: WMT.

We can clearly see that excluding the random 654

pairs improves performance while excluding any 655

of the other data sources decreases performance. 656

In other words, all our data sources are beneficial, 657

and it is not necessary to add “negative examples”. 658

We hypothesise that this is due to the fact that 659

NLG datasets typically do not contain completely 660

unrelated pairs of sentences. Interestingly, the 661

pairs generated with the backtranslation strategy 662

have the greatest impact on performance. 663

664

8 Conclusion 665

We proposed FrugalScore, an approach to learn 666

a fixed, low-cost version of any expensive NLG 667

evaluation metric. Experiments on summarization 668

and translation tasks show that our FrugalScore ver- 669

sions of BERTScore and MoverScore retain most 670

of the original performance in terms of the correla- 671

tion with human judgments, while running several 672

times faster and having several orders of magnitude 673

less parameters. On average over all learned met- 674

rics, tasks, and variants, FrugalScore retains 96.8% 675

of the performance, runs 24 times faster, and has 676

35 times less parameters than the original metrics. 677
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A Detailed TAC Evaluation per Year951

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 52.1/44.4 62.2/51.9 54.6/49.9 52.7/43.6 55.4/47.5 1m 27s 4.4M

b BERTScore BERT-Small 56.0/47.8 70.0/54.6 61.1/54.5 59.1/49.2 61.6/51.5 2m 20s 29.1M

c BERTScore BERT-Medium 57.3/48.5 70.6/55.3 63.1/56.2 59.7/49.5 62.7/52.4 2m 28s 41.7M

d BERTScore BERT-Base 61.3/52.2 73.2/58.7 63.3/56.8 61.0/51.2 64.7/54.7 3m 28s 110M

e BERTScore RoBERTa-Large 56.4/50.9 71.1/58.3 69.1/61.4 60.3/50.8 64.2/55.4 5m 17s 355M

f BERTScore DeBERTa-XLarge 60.9/54.5 73.9/60.4 62.6/56.0 61.5/53.0 64.5/56.0 6m 20s 900M

g MoverScore BERT-Base 64.7/54.2 73.9/58.2 64.7/57.0 62.6/52.5 66.5/55.4 301m 29s 110M

i FrugalScored BERT-Tiny 60.9/50.0 72.5/56.4 64.8/57.5 61.4/50.0 64.9/53.5 1m 28s 4.4M

ii FrugalScored BERT-Small 61.9/51.8 73.0/57.3 62.6/55.8 61.3/50.0 64.7/53.7 1m 35s 29.1M

iii FrugalScored BERT-Medium 62.0/52.2 73.3/58.1 62.6/56.0 61.3/50.6 64.8/54.2 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 54.8/46.4 66.8/54.2 61.8/53.1 56.4/46.7 60.0/50.1 1m 28s 4.4M

v FrugalScoree BERT-Small 59.1/49.6 72.7/55.7 68.1/59.8 63.0/50.1 64.1/53.8 2m 29s 29.1M

vi FrugalScoree BERT-Medium 57.9/48.4 71.8/54.4 65.7/57.0 60.3/48.5 63.9/52.1 3m 41s 41.7M

vii FrugalScoref BERT-Tiny 57.8/48.5 68.6/55.7 63.0/54.8 57.5/47.8 61.7/51.0 1m 28s 4.4M

viii FrugalScoref BERT-Small 60.1/51.0 73.5/57.5 67.3/59.5 63.1/51.7 66.0/54.9 2m 29s 29.1M

ix FrugalScoref BERT-Medium 59.0/50.3 73.3/57.4 67.2/60.2 62.4/51.5 65.5/54.9 3m 41s 41.7M

x FrugalScoreg BERT-Tiny 63.6/51.7 74.4/57.3 68.0/60.1 63.2/51.2 67.3/55.1 1m 28s 4.4M

xi FrugalScoreg BERT-Small 63.2/52.5 73.1/57.1 65.1/57.6 62.3/51.5 65.9/54.7 2m 29s 29.1M

xii FrugalScoreg BERT-Medium 63.8/53.2 73.6/57.7 65.3/57.5 62.1/51.8 66.2/55.1 3m 41s 41.7M

Table 3: Summary-level Pearson correlation (pyramid score/responsiveness).

B Detailed WMT Evaluation per Language952

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 29.7 32.5 33.9 52.0 40.5 30.7 44.2 37.6 1m 22s 4.4M

b BERTScore BERT-Small 30.0 33.6 34.6 52.4 42.3 31.8 49.1 39.1 1m 42s 29.1M

c BERTScore BERT-Medium 30.8 34.4 35.2 52.8 42.8 32.4 50.3 39.8 2m 04s 41.7M

d BERTScore BERT-Base 32.8 37.4 37.1 54.0 44.7 33.7 53.7 41.9 2m 09s 110M

e BERTScore RoBERTa-Large 35.3 38.7 38.7 52.0 45.3 34.3 58.3 43.2 3m 03s 355M

f BERTScore DeBERTa-XLarge 37.6 39.2 40.3 53.4 47.3 35.7 57.8 44.5 3m 49s 900M

g MoverScore BERT-Base 36.5 39.1 39.3 55.0 46.5 35.6 56.0 44.0 64m 32s 110M

i FrugalScored BERT-Tiny 30.2 32.8 34.6 52.4 39.9 31.2 47.7 38.4 1m 18s 4.4M

ii FrugalScored BERT-Small 32.6 35.9 37.1 54.1 43.5 33.6 52.3 41.3 1m 35s 29.1M

iii FrugalScored BERT-Medium 32.9 37.0 37.4 54.4 44.3 34.1 53.2 41.9 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 30.6 32.8 33.0 49.8 38.7 29.8 48.1 37.5 1m 18s 4.4M

v FrugalScoree BERT-Small 33.7 35.4 35.4 51.6 42.6 32.6 52.5 40.5 1m 35s 29.1M

vi FrugalScoree BERT-Medium 35.2 37.1 35.6 52.0 44.0 33.8 54.4 41.7 1m 55s 41.7M

vii FrugalScoref BERT-Tiny 30.8 33.1 34.4 50.8 39.4 30.4 47.1 38.0 1m 18s 4.4M

viii FrugalScoref BERT-Small 34.5 36.4 37.0 52.7 43.9 33.4 52.6 41.5 1m 35s 29.1M

ix FrugalScoref BERT-Medium 35.8 38.3 37.7 53.4 45.7 34.8 55.1 43.0 1m 55s 41.7M

x FrugalScoreg BERT-Tiny 33.0 34.0 36.2 53.6 40.5 32.7 48.6 39.8 1m 18s 4.4M

xi FrugalScoreg BERT-Small 35.6 37.4 38.9 55.0 44.8 34.8 52.8 42.8 1m 35s 29.1M

xii FrugalScoreg BERT-Medium 36.2 38.3 39.1 55.6 45.8 35.3 54.7 43.6 1m 55s 41.7M

Table 4: Segment-level Pearson correlation.
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C Detailed TAC Evaluation per Year (System Level) 953

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 82.5/77.6 87.4/81.8 77.5/75.0 82.1/79.2 82.4/78.4 1m 27s 4.4M

b BERTScore BERT-Small 84.4/81.4 95.8/84.0 81.3/78.0 87.6/85.3 87.3/82.2 2m 20s 29.1M

c BERTScore BERT-Medium 86.3/82.7 96.0/84.6 84.0/80.6 87.8/85.5 88.5/83.3 2m 28s 41.7M

d BERTScore BERT-Base 90.6/87.5 96.5/87.5 83.7/80.9 88.3/86.4 89.8/85.6 3m 28s 110M

e BERTScore RoBERTa-Large 80.0/80.9 94.7/87.7 92.7/89.8 88.9/89.2 89.1/86.9 5m 17s 355M

f BERTScore DeBERTa-XLarge 88.0/89.8 97.5/89.8 85.7/84.0 90.7/91.8 90.5/88.9 6m 20s 900M

g MoverScore BERT-Base 95.4/89.5 96.9/85.9 85.7/84.0 88.6/86.0 91.7/86.3 301m 29s 110M

i FrugalScored BERT-Tiny 91.6/85.3 95.8/84.7 86.2/82.9 88.3/84.4 90.5/84.3 1m 28s 4.4M

ii FrugalScored BERT-Small 90.9/86.8 96.2/85.4 82.8/79.6 87.8/84.3 89.4/84.0 1m 35s 29.1M

iii FrugalScored BERT-Medium 90.6/87.0 96.6/86.3 82.5/79.6 87.6/84.9 89.3/84.5 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 86.3/81.1 95.1/87.1 84.5/80.2 84.5/80.9 87.6/82.3 1m 28s 4.4M

v FrugalScoree BERT-Small 85.1/81.7 95.7/83.6 91.2/87.5 91.7/87.5 90.9/85.1 2m 29s 29.1M

vi FrugalScoree BERT-Medium 81.6/80.7 95.7/84.1 90.9/87.5 87.6/85.3 89.0/84.4 3m 41s 41.7M

vii FrugalScoref BERT-Tiny 89.7/84.5 95.3/87.6 85.1/81.4 84.8/81.2 88.7/83.7 1m 28s 4.4M

viii FrugalScoref BERT-Small 86.8/85.1 96.7/85.4 89.5/86.2 91.6/88.7 91.2/86.3 2m 29s 29.1M

ix FrugalScoref BERT-Medium 85.4/86.3 97.2/87.2 91.1/88.9 92.3/91.0 91.5/88.3 3m 41s 41.7M

x FrugalScoreg BERT-Tiny 93.7/86.1 96.2/83.9 90.1/87 89.4/84.8 92.3/85.5 1m 28s 4.4M

xi FrugalScoreg BERT-Small 93.2/87.6 96.4/84.2 85/81.7 87.9/84.9 90.6/84.6 2m 29s 29.1M

xii FrugalScoreg BERT-Medium 93.7/87.5 96.5/84.5 84.8/81.6 87.3/84.7 90.6/84.6 3m 41s 41.7M

Table 5: System-level Pearson correlation (pyramid/responsiveness).

D Detailed WMT Evaluation per Language (System Level) 954

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 74.1 97.9 93.1 99.77 87.9 94.5 91.7 91.3 1m 22s 4.4M

b BERTScore BERT-Small 82.6 97.5 88.2 99.87 95.3 96.4 93.0 93.3 1m 42s 29.1M

c BERTScore BERT-Medium 83.7 97.7 88.2 99.86 94.4 96.2 93.5 93.4 2m 04s 41.7M

d BERTScore BERT-Base 89.1 97.8 89.7 99.72 96.9 96.9 95.8 95.1 2m 09s 110M

e BERTScore RoBERTa-Large 94.0 98.4 98.1 98.00 96.1 91.0 98.2 96.3 3m 03s 355M

f BERTScore DeBERTa-XLarge 93.9 98.3 98.2 99.18 98.7 97.1 98.4 97.7 3m 49s 900M

g MoverScore BERT-Base 88.1 99.1 91.2 98.58 96.0 97.2 96.4 95.2 64m 32s 110M

i FrugalScored BERT-Tiny 81.1 98.6 94.4 99.80 92.2 95.4 93.8 93.6 1m 18s 4.4M

ii FrugalScored BERT-Small 86.5 98.5 93.6 99.82 95.9 97.1 94.7 95.2 1m 35s 29.1M

iii FrugalScored BERT-Medium 88.3 98.3 92.1 99.79 96.4 97.2 95.4 95.4 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 80.2 97.7 94.9 99.73 86.4 94.6 93.7 92.5 1m 18s 4.4M

v FrugalScoree BERT-Small 83.9 98.0 95.2 99.79 92.4 97.0 95.1 94.5 1m 35s 29.1M

vi FrugalScoree BERT-Medium 88.1 97.9 93.0 99.78 94.9 97.8 96.1 95.4 1m 55s 41.7M

vii FrugalScoref BERT-Tiny 81.3 97.9 96.1 99.81 89.8 94.7 93.7 93.3 1m 18s 4.4M

viii FrugalScoref BERT-Small 85.8 97.7 96.2 99.85 95.3 97.3 95.7 95.4 1m 35s 29.1M

ix FrugalScoref BERT-Medium 89.9 97.9 90.8 99.85 97.6 97.8 96.9 95.8 1m 55s 41.7M

x FrugalScoreg BERT-Tiny 81.8 98.9 95.6 99.73 92.1 95.6 94.4 94.0 1m 18s 4.4M

xi FrugalScoreg BERT-Small 85.4 98.8 95.8 99.52 94.9 96.8 95.3 95.2 1m 35s 29.1M

xii FrugalScoreg BERT-Medium 87.0 98.8 93.5 99.29 95.6 97.0 95.9 95.3 1m 55s 41.7M

Table 6: System-level Pearson correlation.
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E Correlation with Learned Metric (TAC)955

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Average

i FrugalScored BERT-Tiny 91.7 94.7 97.2 95.1 94.7

ii FrugalScored BERT-Small 96.9 97.9 99.0 98.0 98.0

iii FrugalScored BERT-Medium 98.3 98.8 99.4 99.0 98.9

iv FrugalScoree BERT-Tiny 77.9 82.4 87.5 75.9 80.9

v FrugalScoree BERT-Small 86.9 90.7 91.6 89.2 89.6

vi FrugalScoree BERT-Medium 87.1 90.7 86.3 90.9 88.8

vii FrugalScoref BERT-Tiny 80.0 85.5 89.4 81.3 84.0

viii FrugalScoref BERT-Small 88.9 92.8 92.6 91.4 91.4

ix FrugalScoref BERT-Medium 89.9 92.9 92.1 93.6 92.1

x FrugalScoreg BERT-Tiny 91.1 94.8 95.7 94.8 94.1

xi FrugalScoreg BERT-Small 94.8 97.4 98.4 98.0 97.1

xii FrugalScoreg BERT-Medium 96.4 98.0 98.9 98.6 98.0

Table 7: Summary-level Pearson correlation between the FrugalScored,e,f,g and the metrics d, e, f, g used to
generate the annotations.

F Correlation with Learned Metric (WMT)956

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

i FrugalScored BERT-Tiny 90.2 89.6 91.3 92.5 92.4 92.4 92.3 91.5

ii FrugalScored BERT-Small 96.3 96.1 96.8 97.2 97.2 97.3 97.3 96.9

iii FrugalScored BERT-Medium 97.5 97.5 98.0 98.2 98.3 98.3 98.3 98.0

iv FrugalScoree BERT-Tiny 71.0 74.6 78.6 82.0 82.1 82.0 81.8 78.9

v FrugalScoree BERT-Small 81.4 83.7 84.7 86.9 87.1 87.1 87.2 85.4

vi FrugalScoree BERT-Medium 85.0 87.6 87.5 89.2 89.5 89.5 89.6 88.3

vii FrugalScoref BERT-Tiny 71.6 76.4 81.3 83.9 83.7 83.6 83.5 80.6

viii FrugalScoref BERT-Small 82.2 85.5 88.6 90.1 90.1 90.1 90.1 88.1

ix FrugalScoref BERT-Medium 85.9 89.4 91.7 92.7 92.7 92.7 92.7 91.1

x FrugalScoreg BERT-Tiny 89.3 89.1 90.8 91.7 91.6 91.8 91.5 90.8

xi FrugalScoreg BERT-Small 94.5 94.7 95.7 96.1 96.0 96.1 95.9 95.6

xii FrugalScoreg BERT-Medium 95.7 96.1 96.9 97.2 97.1 97.1 97.0 96.7

Table 8: Segment-level Pearson correlation between the FrugalScored,e,f,g and the metrics d, e, f, g used to generate
the annotations.
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