
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFREE: TEXT-GUIDED SHAPE FREE OBJECT IN-
PAINTING WITH DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses an important problem of object addition for images with
only text guidance. It is challenging because the new object must be integrated
seamlessly into the image with consistent visual context, such as lighting, texture,
and spatial location. While existing text-guided image inpainting methods can add
objects, they either fail to preserve the background consistency or involve cumber-
some human intervention in specifying bounding boxes or user-scribbled masks.
To tackle this challenge, we introduce Diffree, a Text-to-Image (T2I) model that
facilitates text-guided object addition with only text control. To this end, we cu-
rate OABench, an exquisite synthetic dataset by removing objects with advanced
image inpainting techniques. OABench comprises 74K real-world tuples of an
original image, an inpainted image with the object removed, an object mask, and
object descriptions. Trained on OABench using the Stable Diffusion model with
an additional mask prediction module, Diffree uniquely predicts the position of the
new object and achieves object addition with guidance from only text. Extensive
experiments demonstrate that Diffree excels in adding new objects with a high
success rate while maintaining background consistency, spatial appropriateness,
and object relevance and quality.

1 INTRODUCTION

With the recent remarkable success of Text-to-Image (T2I) models (e.g., Stable Diffusion (Podell
et al., 2023), Midjourney (Midjourney, 2022), and DALL-E (Betker et al., 2023; Ramesh et al.,
2022)), creators can quickly generate high-quality images with text guidance. The rapid develop-
ment has driven various text-guided image editing techniques (Brooks et al., 2023; Geng et al., 2023;
Zhang et al., 2024; 2023; Sheynin et al., 2023). Among these techniques, text-guided object addition
which inserts an object into the given image has attracted much attention due to its diverse applica-
tions, such as advertisement creation, visual try-on, and renovation visualization. While important,
object addition is challenging because the object must be integrated seamlessly into the image with
consistent visual context, such as illumination, texture, and spatial location.

Existing techniques for object addition in images can be broadly categorized into mask-guided and
text-guided approaches, as depicted in Figure 2. Mask-guided algorithms typically require the spec-
ification of a region where the new object will be inserted. For example, traditional image inpainting
methods (Bertalmio et al., 2000; Suvorov et al., 2022; Lugmayr et al., 2022; Yu et al., 2018; Pathak
et al., 2016) focus on seamlessly filling user-defined masks within an image to match the surrounding
context. Recent advancements, such as PowerPaint (Zhuang et al., 2024), have effectively incorpo-
rated objects into images given their shape and textual descriptions while maintaining background
consistency. However, manually delineating an ideal region for all objects, considering shape, size,
and position, can be labor-intensive and typically requires drawing skills or professional knowledge.
On the other hand, text-guided object addition methods, such as InstructPix2Pix (Brooks et al.,
2023), attempt to add new objects using only text-based instructions. Despite this, these methods
have a low success rate and often result in background inconsistencies, as demonstrated in Figure 2
and Figure 7. Additionally, when employing text-guided methods for iterative object addition, the
quality of the inpainted image tends to degrade progressively with each step, as depicted in Figure 8.

To tackle the above challenges, we introduce Diffree, a diffusion model with an additional object
mask predictor module that can predict an ideal mask for a candidate inpainting object and achieve
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Figure 1: Diffree iteratively generates object additions, ensuring text-guided objects are reasonably
added while maintaining background consistency. Refer to Figure A1 for the complete process.

shape-free object addition with only text guidance. Compared with previous works (Xie et al.,
2023; Zhuang et al., 2024; Brooks et al., 2023), our Diffree has three appealing properties. First,
Diffree can achieve impressive text-guided object addition results while keeping the background
unchanged. In contrast, previous text-guided methods (Brooks et al., 2023) struggle to guarantee
this. Second, Diffree does not require additional mask input, which is necessary for traditional mask-
guided methods (Xie et al., 2023). In real scenarios, high-quality masks are hard to obtain. Third,
Diffree can generate the instance mask, helping prevent quality degradation of iterative addition (i.e.,
Figure 8) or can be used to combine with various existing works to develop exciting applications. For
example, Diffree can achieve image-prompted object addition when combined with AnyDoor (Chen
et al., 2023) and plan to add objects suggested by GPT4V (OpenAI, 2023), as shown in Figure 9.

Towards high-quality text-guided object addition, we curate a synthetic dataset named Object Ad-
dition Benchmark (OABench) which consists of 74K real-world tuples including an original image,
an inpainted image, a mask image of the object, and an object description. The data curation process
is illustrated in Figure 5. Note that object addition can be deemed as the inverse process of object
removal. We build OABench by removing objects in the image using advanced image inpainting
algorithms such as PowerPaint (Zhuang et al., 2024). In this way, we can obtain an original image
containing the object, an inpainted image with the object removed, the object mask, and the object
descriptions. We use instance segmentation dataset COCO (Gupta et al., 2019; Lin et al., 2014)
as the source data, which has two benefits. First, the source image captures comprehensive natu-
ral scenes where the location and shape of one individual object often exhibit intrinsic alignment
with the overall scene. It helps guarantee the reasonability of new objects’ location. For instance, a
monitor is commonly situated behind computer peripherals. Second, the ground-truth mask of the
object already exists in the instance segmentation dataset, which can be directly utilized to remove
objects with background consistency preserved. By contrast, InstructPix2Pix (Brooks et al., 2023)
collects image pairs using proprietary T2I model (Rombach et al., 2022) under prompt pair with
subtle modifications. While this approach maintains new objects’ reasonability, it poses difficulties
in preserving background consistency.

With OABench, Diffree is trained to predict masks and images containing the new object given the
original image and object description. Thanks to the extensive coverage of objects in natural scenes
in OABench, Diffree can add various objects to the same image while matching the visual context
well as shown in Figure 3. Moreover, Diffree can iteratively insert objects into a single image while
preserving the background consistency using the generated mask as shown in Figures 1 and 4.

For evaluation, we propose a set of evaluation rules through existing metrics (Hessel et al., 2021;
Zhang et al., 2018; Heusel et al., 2017; Xie et al., 2023; OpenAI, 2023), including consistency of
background, reasonableness of object location, quality, diversity and correlation of generated ob-
ject, and success rate. Extensive experiments show that Diffree performs better in object addition
than previous mask-guided and text-guided techniques. For instance, Diffree obtains a significantly
higher success rate than InstructPix2Pix. For successful cases, Diffree still outperforms Instruct-
Pix2Pix in various quantitative metrics.
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Figure 2: Qualitative comparisons of Diffree and various other methods.

The contributions of this work are three-fold. 1) We proposed Diffree, a model that can achieve text-
guided shape-free object addition to free users from drawing the appropriate mask of objects. The
inpainted image from Diffree includes the new objects with reasonable shapes and consistent visual
context. 2) We introduced OABench, an exquisite synthetic dataset for object addition. OABench
comprises 74K real-world training data for the task of object addition. 3) We evaluate this task with
a set of rules for comprehensive assessment. Extensive experiments demonstrate the effectiveness
of Diffree. For example, Diffree achieves a high success rate (e.g., 98.5% in COCO) and superior
unified score (e.g., 38.92 versus 4.48) compared with other methods.

2 RELATED WORK

Text-to-Image Diffusion Models Recently, text-to-image (T2I) diffusion models (Nichol et al.,
2022; Ramesh et al., 2022; Betker et al., 2023), have shown exceptional capability in image gen-
eration quality and extraordinary proficiency in accurately following text prompts, under the dual
support of large-scale text-image dataset (Schuhmann et al., 2022; Zhao et al., 2024) and model op-
timizations (Dhariwal & Nichol, 2021; Ho et al., 2020; Rombach et al., 2022). DALLE-2 (Ramesh
et al., 2022) enhances text-image alignment via CLIP (Radford et al., 2021) joint feature space,
DALLE-3 (Betker et al., 2023) further improves the prompt following abilities by training on highly
descriptive generated image captions. Stable Diffusion (Rombach et al., 2022), which is well-
established and widely adopted, garners significant attention and application within and beyond
the research community. Given that T2I models generate comprehensive images from text prompts,
even minor alterations in prompts can result in substantial changes to the resultant image (Brooks
et al., 2023). Consequently, there has been an increased focus not only on T2I generation but also
on image editing based on additional conditions such as text inputs, masks, et al.

Text-Guided Image Editing The effectiveness of the text-guided image editing methods (Brooks
et al., 2023; Zhang et al., 2024; Sheynin et al., 2023) largely depends on the composition of its
dataset and how it is collected. InstructPix2Pix (Brooks et al., 2023) combines two large pretrained
models, a large language model (Mann et al., 2020) and a T2I model (Rombach et al., 2022), to
generate a dataset for training a diffusion model to follow written image editing text prompts. Its
innovative data collection method allows InstructPix2Pix to follow instructions and shows amaz-
ing effects while making its consistency difficult to guarantee due to both input and output being
generated by the T2I model. Emu Edit (Sheynin et al., 2023) adapts its architecture for multi-task
learning by framing an extensive array of tasks as generative tasks, demonstrating robust and ver-
satile performance. MagicBrush (Zhang et al., 2024) introduces a manually annotated dataset in
which the T2I model generates both input and output. The image editing performance of fine-tuning
InstructPix2Pix on MagicBrush shows better. Unlike the previous methods, we propose a novel
and easily expandable collection method, thanks to the existing instance segmentation dataset, we
use real images as output and synthetic images without a specific object as input. SmartMask Singh
et al. (2024) predicts masks for added objects but relies on additional segmentation and mask-guided
inpainting models, along with detailed scene descriptions. In contrast, our approach uses a single
model with an object description, eliminating complexity, resource dependency, and potential limi-
tations stemming from external models or detailed input requirements. Our work closely relates to
the concurrent work PIPE (Wasserman et al., 2024), which independently explores similar concepts
and methodologies. Both studies involve removing objects to collect an object addition dataset and
train a diffusion model for text-guided object addition. Our approach additionally trains an Ob-
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Figure 3: Diffree adds objects to the same image, with different spatial relationships.

ject Mask Predictor (OMP) module to predict the mask of objects. We believe that the concurrent
exploration of these ideas underscores the significance and timeliness of this research direction.

Mask-Guided Image Inpainting Mask-guided image inpainting methods (Xie et al., 2023; Zhuang
et al., 2024; Chen et al., 2023) alter the image in specific areas under additional conditions (e.g.,
text), while maintaining the background in its original state. SmartBrush (Xie et al., 2023) achieves
precise object inpainting guided by text and mask through a novel training and sampling strategy.
AnyDoor (Chen et al., 2023) employs a discriminative ID extractor and a frequency-aware detail
extractor to characterize the target object, thereby facilitating effective object addition given an area
and corresponding object image. Powerpaint (Zhuang et al., 2024) demonstrates superior perfor-
mance on various inpainting benchmarks attributed to introducing learnable tokens to distinguish
different tasks. Although these methods have achieved amazing image inpainting effects, their com-
monality is the need for a mask. For ordinary users, drawing an object mask with an appropriate
shape, size, and aspect ratio, corresponding accurately to the object and image, presents an unig-
norable challenge. Certain mask-guided methods (Nichol et al., 2022; Li et al., 2023) eschew the
need for precise mask conditions, utilizing instead approximate masks (e.g., Glide (Nichol et al.,
2022)) or bounding boxes (e.g., GLIGen (Li et al., 2023)). While these approaches relax constraints
on specific shapes, they still necessitate the specification of reasonable size and position, thereby
introducing challenges, as discussed in Section A7 of the Appendix.

3 METHODOLOGY

Given an image and the object description, our goal is to add the object to the image while preserving
the background consistency. Following this, we initially introduce OABench, a synthetic dataset for
this task, comprising image-text pairs with corresponding object masks and images containing the
object. We provide an overview of our data collection pipeline in Section 3.1. We next present
Diffree, an architecture amalgamating a Stable Diffusion model with an Object Mask Predictor
(OMP) module in Section 3.2. The evaluation procedure is presented in Section 3.3.

3.1 OABENCH

We combine existing instance segmentation dataset (Gupta et al., 2019; Lin et al., 2014) with pow-
erful image inpainting method (Zhuang et al., 2024) to generate the OABench. Unlike other in-
structions follow methods (Brooks et al., 2023; Zhang et al., 2024), generating both data pairs using
existing text-to-image (T2I) models (Rombach et al., 2022; Ramesh et al., 2022) with prompt pairs
and filtering, we use the real image with objects to synthesize the image without the object, as de-
picted in Figure 5. Furthermore, an object in the real image naturally aligns with its background, i.e.,
it is appropriate for generating the corresponding image without the same object. The tri-phase data
generation process is described in the following sections, with comprehensive procedural specifics
detailed in Section A5 of the Appendix.

Collection and Filtering We gather and refine instances suitable for image inpainting by applying
a set of rules from the LVIS dataset (Gupta et al., 2019), a large instance segmentation dataset an-
notated for COCO (Lin et al., 2014) dataset. As depicted in Figure 5, in images containing multiple
instances, we enforce size constraints to exclude instances that are too big or too small (typically re-
lated to object components or background elements like buttons on clothing or rivers). Subsequently,
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Figure 4: Diffree iteratively generates results. Objects added later can relate to the earlier.

incomplete instances are filtered out using edge detection and integrity assessments. Instances that
are partially obscured are identified through cavity inspection, iterative IOU algorithm application,
and common part comparison among various instances. Additionally, objects with exceptionally
high aspect ratios, which tend to yield subpar inpainting outcomes, are also eliminated.

Data Synthesis We next employ a powerful image inpainting method, PowerPaint (Zhuang et al.,
2024), to eliminate specific instances obtained in the preceding stage. Therefore, we can generate a
synthetic image without specific objects with background consistency with the original image. Si-
multaneously, the object mask and corresponding name can be extracted from the LVIS and COCO.

Post-Processing In the post-processing stage, we filter out the results with poor effects in image in-
painting. For some special cases (e.g., one of many dense and adjacent small cakes), image inpaint-
ing cannot effectively remove objects due to the complexity of the background. Thus we calculate
the clip score (Hessel et al., 2021) using the object name and the region of the inpainted image, set-
ting a threshold to remove images with higher scores that are deemed suboptimal. Finally, OABench
includes 74,774 high-quality data pairs, each data pair includes a synthetic image and object caption
as input, object masks and original images as output.

3.2 DIFFREE

For an image x and a text prompt d, Diffree predicts a binary mask m that specifies the region in
x and generates an image x̃. The masked region x̃ ⊙m aligns with the text prompt d. To this end,
Diffree is instantiated with a pre-trained T2I diffusion model (e.g. Stable Diffusion (Rombach et al.,
2022)) with an object mask prediction (OMP) module as shown in Figure 6.

Diffusion Model learns to generate data samples by iteratively applying denoising autoencoders
that estimate the score function (Song et al., 2020) of a given data distribution (Sohl-Dickstein et al.,
2015). Stable Diffusion (Rombach et al., 2022) apply them in the latent space of powerful variational
autoencoder (Kingma & Welling, 2013), including encoder E and decoder D, to reduce computing
resources while maintaining quality and flexibility. Stable Diffusion encompasses both forward and
reverse processes. Given an image x̃, the forward process adds noise to the encoded latent z̃ = E(x̃):

z̃t =
√
ᾱtz̃ +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

where z̃t is the noisy latent at timestep t, ᾱt denotes the associated noise level.

In the reverse process, we learn a network ϵθ that predicts the noise added to the noisy latent z̃t,
conditioned on both the image x and text d. To fine-tune Stable Diffusion for inpainting, we extend
the channel of the first convolution layer to concatenate latent z = E(x) of image x with z̃t. This
allows Diffree to generate images by denoising step by step from Gaussian noise concatenated with
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Figure 5: The data collection process of OABench.

the latent of the input image. At the same time, the denoising process is guided by the associated
feature Enctxt(d) of text d encoded through the CLIP text encoder (Radford et al., 2021). The
network ϵθ is optimized by minimizing the following objective function:

LDM = EE(x̃),E(x),d,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(z̃t, z,Enctxt(d), t)∥22

]
. (2)

OMP Module and diffusion model are trained simultaneously and used to predict the binary mask
m. The OMP module, which maintains a generally symmetric structure, comprises two convolu-
tional layers, two ResBlocks, and an attention block, as illustrated in Figure 6. First, we calculate
the predicted noise-free latent õt using the output of the diffusion model:

õt =
z̃t −

√
1− ᾱtϵθ(z̃t, z,Enctxt(d), t)√

ᾱt
. (3)

Here, the concatenation of z = E(x) with õt serves as inputs to the OMP module. The gradient
of õt is detached to optimize the two models without affecting each other. We conduct bilinear
interpolation downsampling on the mask m to obtain m′, preserving its size identical to the input
latent. The OMP module’s network τθ is optimized according to the following objective function:

LOMP = EE(x̃),E(x),d,m

[
∥m′ − τθ(õt, z)∥22

]
. (4)

It is noteworthy that the OMP module can predict the mask through the reverse process of diffusion
rather than after it, as õt is available at each step, enabling mask prediction in the initial steps, as
illustrated in Figure A4 in the Appendix. We train both the diffusion model and the OMP module
simultaneously. Combining Equations (2) and (4), our final training objective can be expressed as:

L = LDM + λLOPS, (5)

where λ is a hyper-parameter which balances the two losses.

Classifier-free Guidance Classifier-free diffusion guidance (Ho & Salimans, 2022) is a method that
involves the joint training of a conditional diffusion model and an unconditional diffusion model. By
combining the output score estimates from both models, this approach achieves a balance between
sample quality and diversity. Training for the unconditional diffusion model is achieved by fixing the
conditioning value to a null variable intermittently throughout the training process. We follow the
approach of Brooks et al. (2023) by stochastically and independently defining our input conditions
x and d as null variables with a probability of 5%.

3.3 EVALUATION METRIC

Due to the absence of robust quantitative metrics for shape-free object inpainting except the success
rate, we propose a set of evaluation rules leveraging exits metrics (Hessel et al., 2021; Zhang et al.,
2018; Heusel et al., 2017; OpenAI, 2023) to evaluate different methods in different aspects.

We first randomly select and manually inspect 1,000 evaluation data pairs from COCO (Lin et al.,
2014) and OpenImages (Kuznetsova et al., 2020) independently to ensure the validity of the object
in the image and generalizability of the evaluation dataset. Each data pair comprises an original
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Figure 6: Diffree framework overview: The framework predicts the synthetic image with added
objects and their masks. During training, diffusion model takes a concatenation of the input latent
z and the noisy output latent z̃t to estimate the noise at each timestep. The estimated noise is then
used to denoise z̃t, producing a noise-free latent õt (Equation (3)). The concatenation of z and õt,
including input and denoised output information, is passed to OMP to generate the object mask m.

image xori, a text prompt of an object d, and an inpainted image x. The resulting output image
xoutput and the corresponding object mask moutput are outcomes derived from distinct methods.

Background Consistency We adapt LPIPS (Zhang et al., 2018), a widely adopted and robust metric
for assessing the similarity between images, to evaluate this aspect:

scon (x, xoutput,moutput) = LPIPS (x, x⊙moutput + xoutput ⊙ (1−moutput)) . (6)

Location Reasonableness Assessing the object’s location’s reasonableness is challenging due to its
inherent subjectivity. Surprisingly, we note GPT4V (OpenAI, 2023) demonstrates strong discrimi-
native abilities in assessing variations and evaluating different locations by providing x, d, xoutput

and an instruction T as illustrated in Figure A5 in the Appendix. GPT4V rates the appropriateness
of the object’s position on a scale from 1 to 5, while also providing justifications for these ratings:

srea (x, xoutput, d, T ) = GPT4V (x, xoutput, d, T ) (7)

Object Correlation To quantify this relationship, we utilize CLIP Score (Hessel et al., 2021), a
metric to assess the correlation between text and image, by calculating the cosine similarity of their
embeddings from CLIP (Radford et al., 2021). we measure CLIP Score between the object area of
xoutput and d, which is referred to as “Local CLIP Score”:

scor(d, xoutput,moutput) = CLIPScore (d,Local(xoutput,moutput)) . (8)

where Local(x,m) denotes obtaining a cropped region from x using m. To mitigate influences from
background or mask shape, we compute an average of two Local CLIP Scores (one with background
removal and another without).

Object Quality and Diversity Following (Xie et al., 2023), we employ Local FID, measuring
Fréchet Inception Distance (FID) (Heusel et al., 2017) on the local regions, to evaluate the qual-
ity and diversity of generated object:

sqd(LXorg, LXoutput) =||µLXorg − µLXoutput ||
2
+

Tr(ΣLXorg
+ΣLXoutput

− 2 ∗ (ΣLXorg
∗ ΣLXoutput

)
1
2 )

(9)

where LXorg and LXoutput respectively denote the sets comprising all local regions of the original
images and output images, µ and Σ represent the mean and variance of the feature vectors obtained
through a particular network (Heusel et al., 2017).

Unified Metric Drawing upon the evaluation metrics delineated above (Equations (6) to (9)), we
compute a unified score to holistically assess text-guided shape-free object inpainting. We treat the
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Figure 7: InstructionPix2Pix exhibits a low success rate in object addition, achieving 17.4% on (a)
COCO and 18.9% on (b) OpenImages. Foreground Error refers to the failure in adding new objects
or mistransforming existing ones, while Background Error indicates background inconsistencies.

derivative of inverse metric results (LPIPS and Local FID) as positive metrics and normalized the
outcomes across different methods for each metric. Ultimately, we average these normalized scores
and multiply them by the success rate as a unified score. The Unified metric not only considers
success rate but also focuses on quantitative performances.

4 EXPERIMENT

We comprehensively evaluated our model, Diffree, by conducting experiments on two benchmark
datasets: COCO (Lin et al., 2014), and OpenImages (Kuznetsova et al., 2020). Given the distinct
input-output characteristics of our method compared to previous approaches, a quantitative compar-
ison proves challenging. We align previous methods by adding auxiliary conditions, as depicted in
Section 4.1, and provide quantitative comparison results (Section 4.2) to prove the effectiveness of
Diffree more intuitively. We then showcase visualizations of generated images and give correspond-
ing analyses to offer an intuitive assessment of Diffree’s capabilities and comparisons in Section 4.3.
Finally, we demonstrate some applications to prove that Diffree is highly compatible with existing
methods (Section 4.4). Limitations and failure cases of Diffree are discussed in Section A4 of the
Appendix, with further comparisons to other methods provided in Section A7 of the Appendix.

4.1 EXPERIMENTAL SETTINGS

Training Setups we employ OABench to train Diffree, initializing the diffusion model with the
Stable Diffusion 1.5 (Rombach et al., 2022) weights. We set λ = 2 in Equation (5) and set a batch
size of 64. Our model was trained around 10K steps on 4 A100 GPUs.

Evaluation Datasets and Metrics As outlined in Section 3.3, we employ LPIPS (Zhang et al.,
2018), GPT4V Score, Local CLIP Score and Local FID (Xie et al., 2023) alongside the unified
metric to assess performance on COCO (Lin et al., 2014) and OpenImages (Kuznetsova et al., 2020).

Baselines To facilitate comparison with prior methods (Brooks et al., 2023; Zhuang et al., 2024),
we manually check and annotate the object masks for InstructPix2Pix (Brooks et al., 2023) (text-
guided method with a low success rate, only considering successful instances), and utilize Diffree’s
mask output to assist PowerPaint (Zhuang et al., 2024) generation (mask-guided method). It is
important to note that neither of these methods can complete evaluations independently. Thus, their
quantitative metrics should be used as references only.

4.2 MAIN RESULTS

Table 1 shows the main results of Diffree with baselines. We report the results of four powerful
metrics and a Unified Metric. It is worth highlighting that only successful cases of InstructPix2pix
are computed for these four metrics and PowerPaint (Mask-guided method) is utilized for image
inpainting under the masks provided by our approach Diffree.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Main results on COCO and OpenImages. *: only calculate the successful cases’ results. †:
use the masks from our Diffree as PowerPaint’s input.

InstructPix2pix PowerPaint Diffree
(Brooks et al., 2023) (Zhuang et al., 2024) (Ours)

Success rate 17.4 N/A 98.5

LPIPS ↓ 0.11* 0.06 0.07
COCO GPT4V Score ↑ 3.13* N/A 3.47
(Lin et al., 2014) Local CLIP Score ↑ 29.30* 28.74 28.96

Local FID ↓ 156.25* 58.08 57.43

Unified Metric ↑ 4.48 37.20† 35.92

Success rate 18.9 N/A 98.0

LPIPS ↓ 0.11* 0.06 0.07
OpenImages GPT4V Score↑ 3.36* N/A 3.50
(Kuznetsova et al., 2020) Local CLIP Score ↑ 29.21* 28.57 28.81

Local FID ↓ 143.82* 62.40 60.07

Unified Metric ↑ 5.04 36.41† 35.47

Success Rate We achieved a success rate of over 98% on different datasets, while InstructPix2pix
shows a lower success rate in object addition (17.2% and 18.9%). As shown in Figure 7, most of the
results of InstructPix2pix involve replacing existing objects, without adding or significant changes
to the background. This demonstrates our excellent ability to complete this task. Meanwhile, it is
not applicable to PowerPaint as it necessitates a mask input.

Consistency of Background Diffree significantly outperforms InstructPix2pix in the LPIPS scores
across all datasets (all decreased by 36% than InstructPix2pix). In particular, only scores from care-
fully chosen successful cases of InstructPix2pix were computed, potentially leading to an overesti-
mation. Furthermore, Diffree, as a shape-free inpainting method, yields LPIPS results comparable
to PowerPaint, as a shape-required inpainting method. As discussed in Section 3.1, we expect to
achieve consistency of background like the image inpainting methods that necessitate masks. These
methods inherently excel in this aspect, given that their input and ground truth are the same image
during the training process. Therefore, we believe that we have a strong capability in this aspect.

Reasonableness of object location The results of GPT4V’s assessment demonstrate that Diffree
has a considerable advantage in the reasonableness of object location (e.g., 0.34 higher than only
successful cases from InstructPix2pix). This is not available for PowerPaint due to it requires object
location through a mask. We additionally present user study results in Figure A6 in the Appendix.

Correlation, Quality and Diversity of Generated Object We evaluate the generated object across
these three dimensions, utilizing both Local CLIP Score and Local FID. Although Diffree exhibits
a slightly lower Local CLIP Score in comparison to InstructPix2pix (e.g., 28.96 versus 29.30 on
the COCO), this discrepancy can be rationalized by the fact that its successful results are inherently
highly correlated while ours encompass all outcomes without any specific selection. Intriguingly,
we demonstrate superiority over PowerPaint in terms of correlation. Furthermore, our performance
according to the Local FID metric indicates a distinct advantage relative to all other methods.

Unified Metric of Diffree We combine the success rate with diverse metrics across various aspects
to calculate a unified metric, thereby facilitating a more comprehensive comparison with extant text-
guided methods. It is discernible that Diffree exhibits a substantial superiority over InstructPix2pix,
for instance, ours’ 35.92 as opposed to InstructPix2pix’s 4.48 on the COCO. PowerPaint achieves
superior results (e.g., 37.20 on the COCO dataset), however, a necessary input condition for its
performance is the masks generated by our Diffree model. This further underscores the excellent
scalability of Diffree when integrated with other methods.

4.3 VISUALIZATION

We provide different types of visualizations to more intuitively evaluate Diffree’s capabilities Fig-
ures 1 to 4, 8 and 9, please refer to the respective image captions for detailed explanations. For
additional visualization results, please refer to the Section A1 of the Appendix.
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(11)(1)
… …

(5)

Add

(5) (11)
…

(1)
…

Without use object masks 
from OMP to mix the 
added object area with 
the background of the 
input image at each step 

(1) Fabric sofa 
(7) Poster 

(6) Potted (2) Table 
(8) Teddy bear 

(3) Cute dog 
(9) Wall cabinet 

(4) Photo frame 
(10) Rug 

(5) Carpet 
(11) birthday cake 

Results 
with OMP 

Background 
armchair

Figure 8: Ablation study on whether to use OMP module in Diffree’s iterative results. Consecutive
vanilla inpainting iterations (i.e., without OMP Module) lead to substantial image degradation.

Add a
dog

Diffree Anydoor

Wooden 
house +

Diffree

(a) (b)
Figure 9: Applications combined with Diffree. (a): AnyDoor integrates Diffree’s object position
mask to add a specific object. (b): using GPT4V to plan what should be added.

4.4 APPLICATION

Diffree can be well combined with other methods for more expansion.

With GPT4V GPT4V (OpenAI, 2023) has a good ability to perceive and understand images, there-
fore we can use GPT4V for planning an object suitable for the image scene, seeing Figure 9. How-
ever, when tasked with adding the corresponding object without altering the background, DALL-E-
3 (Betker et al., 2023) in GPT4, falls short.

Post-Processing AnyDoor (Chen et al., 2023) can insert a specific object into a designated area
using a mask and object image. As depicted in Figure 9, Diffree provides a reasonable object mask
to AnyDoor, facilitating the specific addition. DIffree also can effectively leverage the continuous
progress in the mask-guided inpainting to generate superior images, as demonstrated in Table 1.

Iterative Operation In Figures 1 and 8, we present the results of iterative inpainting. Leveraging the
predicted mask from the OMP module, Diffree can preserve the image background from cumulative
degradation during successive inpainting. This holds potential applications within architectural and
interior design domains. See more applications in Section A6 of the Appendix.

5 CONCLUSION

We propose a novel method, Diffree, that leverages a diffusion model with an object mask predic-
tor for text-guided object addition. Beyond the method, we build a high-quality synthetic dataset,
OABench, through a novel data collection method for this task. Diffree distinguishes itself by pre-
serving background consistency without requiring additional masks, which solves shortcomings of
previous text-guided and mask-guided object addition methods. The quantitative and qualitative
results demonstrate the superiority of our method.
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In this appendix, we present comprehensive elucidations as follows:

• Section A1: Additional results from our Diffree.
• Section A2: Visualizations of OMP-generated masks at various steps of Diffree’s inference.
• Section A3: Detailed evaluation information of the reasonableness of object locations.
• Section A4: Analysis of the limitations of Diffree, including illustrative failure cases.
• Section A5: Data processing details for OABench.
• Section A6: Additional potential applications of Diffree.
• Section A7: Discussion of imprecise mask-guided methods and qualitative comparisons.
• Section A8: In-depth discussion of OMP module.
• Section A9: User study on overall satisfaction.
• Section A10: Generalization analysis of Diffree model.

A1 MORE RESULTS

In Figure A1, we present the complete iterative process of Figure 1. Due to the ability to mix
inpainted results with previous images using OMP masks, Diffree can perform multiple iterations.
Additionally, we provide further visualization results of Diffree in Figures A2 and A3.

+ Sofa + Curtain + Armchair + Cabinet + Fireplace

+ Cat + A pot of flowers + Pizza + Table + Rug

+ Trash can + Painting + Chandelier + Teddy bear

+ Floor lamp

+ Blanket

+ Fabric sofa + Table + Cute dog + Photo frame + Carpet

+ Rug + Wall cabinet + Teddy bear + Poster + Potted

+ Toy car + Floor lamp + Curtain + Dragon

+ Birthday cake 

+ Ice cream 

Figure A1: The complete iterative process of Diffree yields inpainted outcomes. The objects from
text-guided are reasonably added in images while ensuring background consistency.
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+ bird + boat + safety helmet

+ necklace

+ shoes + spectacles

+ waffle

+ fedora + skirt

+ stop sign

+ dog + juice

Figure A2: More visualization results of Diffree. In each pair, the image on the left is the input
image, and the image on the right is generated by diffree.

+ black and white suit + sunglasses + blue medical mask + yellow schoolbag + red bow tie

+ reflective sunglasses + shiny golden crown + diamond necklace + gorgeous yellow gown + beautiful tattoo

Figure A3: Diffree iteratively generates outputs that closely adhere to objects’ descriptive attributes.
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A2 MASK AT DIFFERENT STEPS

The OMP module predicts the mask via the reverse diffusion process, enabling early-stage mask
prediction, as demonstrated in Figure A4. This significantly reduces computational time when inte-
grating the mask generated by Diffree with other models (e.g., combined with AnyDoor (Chen et al.,
2023) as illustrated in Figure 9).

Different steps results of OMP ModuleAdd a pair of sunglasses Final output

99 79 59

39 19 0

Figure A4: Visualization of masks from OMP at different steps of the diffusion inference process
(totaling 100 steps) reveals that the mask of added objects can be initially obtained, such as during
the first denoising step (step 99 out of 100).

A3 OBJECT LOCATION EVALUATION

We use GPT4V to assess the reasonableness of the object’s location. For each item evaluation, we
provide input images and model-generated images, as well as a required caption and an evaluation
instruction for GPT4V. The output comprises a dictionary a dictionary that includes assessment
scores and rationale as demonstrated in Figure A5.

As an Object Placement Evaluator, your 
primary function is to assess the rationality and 

integration of an object‘s placement within a 
scene, using a pair of images: an original 

version and a modified version with the object 
added. Users will provide these images 
alongside the description of the object 

added.Your task is to evaluate whether the 
object's placement conforms to the physical 
laws and aligns with the overall context, and 

integration within the scene, strictly providing 
your evaluation in a dict format. This evaluation 

should rate the object's placement suitability 
on a scale from 1 to 5, where 1 signifies poor 
integration and 5 excellent integration, e.g., 

{"score": 5, "reason": "The reason."}. It's crucial 
to focus solely on offering insightful feedback 

through the specified dictionary output, 
without including any extraneous content.

{
"score": 3, 
"reason": "The car placement in the scene appears somewhat 
suitable, as cars can be driven onto wide open spaces like the one 
depicted. However, it slightly lacks coherence with the setting due 
to the car's scale appearing somewhat off when compared to the 
surrounding environment, creating a slight sense of disproportion. ”
}

{
"score": 1, 
"reason": "The car is floating in the air which defies the laws of 
physics as it does not show any support or means to stay afloat, 
making the placement highly unrealistic in the context of the 
physical world.”
}

𝑻: 

Figure A5: GPT4V shows good distinguishability in the reasonableness between objects.

We further conducted a user study to verify this ability. A random selection of 100 successful
cases from InstructPix2Pix (Brooks et al., 2023) is compared with our outcomes. The comparison
in Figure A6 demonstrates our significant advantage, with the win rate defined as the ratio of our
wins to the total wins by either our method or InstructPix2pix. We observe that Diffree exhibits
advantages in the reasonableness of the object’s location, akin to the results presented in Table 1. It
is worth noting that we only calculated the successful cases of InstructPix2pix, which only account
for a small part of the complete results for InstructPix2pix.

0 20 40 60 80 100

Our WinTieInstructPix2Pix Win Win rate

85%COCO: 56%34%10%

Figure A6: User study of location reasonableness on COCO dataset.
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A4 LIMITATION DISCUSSION

While Diffree has demonstrated remarkable performance across various metrics, several limitations
remain. Firstly, the quality of our model is constrained by the visual fidelity of the inpainted dataset
and thus by the inpainting model used for data generation. For instance, when specific objects
both exist and require inpainting, our model occasionally exhibits a replacement phenomenon, as
depicted in Figure A7. This is due to the presence of inferior partial data containing new objects
after the inpainting stages, using the existing image inpainting model, of our data processing process.
Secondly, this study primarily focuses on shape-free object inpainting (requiring only text), implying
that users have no control over the shape. In future work, we aim to improve data quality and
integrate benefits from mask-based methods to provide a transition from both.

+ blueberry + strawberry

Figure A7: Failure cases. When the anticipated object is already present in the image, Diffree may
occasionally fail to add the new object and instead replace the existing one.

A5 DATA PROCESSING DETAILS OF OABENCH

This section delineates the data processing details for generating the synthetic dataset termed Object
Addition Benchmark (OABench), comprising 74K real-world tuples, each containing an original
image, an inpainted image, an object mask, and an object description.

A5.1 COLLECTION AND FILTERING

We gather and refine instances suitable for image inpainting by applying a set of rules from the
LVIS dataset (Gupta et al., 2019), a large and diverse instance segmentation dataset annotated for
COCO (Lin et al., 2014) dataset. For an instance segmentation data item (i.e., one image containing
multiple instances), we apply the following criteria to filter the appropriate cases:

Table A1: List of instance categories to be filtered out in our data processing.
Category Subcategory and Items (instance categories)

Clothing
and Acces-
sories

Tops: polo shirt, sweatshirt, tank top (clothing), shirt, blouse, turtleneck (clothing), cardi-
gan, blazer, jacket, sweater, dress hat, nightshirt; Bottoms: short pants, skirt, trousers, jean;
Outerwear: coat, parka, trench coat, ski parka, wet suit; Underwear and Sleepwear: un-
derwear, brassiere, nightshirt; Jewelry: anklet, necklace, bracelet, ring, broach, choker, bar-
rette; Belts and Ties: belt buckle, necktie, bolo tie, suspenders; Headwear: bandanna, tur-
ban, veil; Footwear: shoe, boot, arctic (type of shoe); Other Accessories: bolo tie, tassel,
wig; Other Clothing Items: breechcloth, dress, bridal gown, ballet skirt, vest, dress hat.

Food and
Beverages Beverages: fruit juice, cider, cocoa (beverage), orange juice, root beer, lemonade, mar-

tini, cappuccino; Sweets and Snacks: brownie, lollipop, bubble gum, jelly bean, truf-
fle (chocolate), chocolate mousse; Ingredients and Condiments: hummus, beef (food),
crabmeat, egg yolk, salsa, cayenne (spice), peanut butter, crouton, string cheese, broccoli,
sausage, batter (food), pea (food), pepper, legume, hot sauce, Tabasco sauce, jam; Main
Dishes and Sides: stew, lasagna, coleslaw, grits, mashed potato, steak (food), applesauce.

Household
Items Kitchenware: plate, paper plate, drawer, garbage; Cleaning Supplies: cleans-

ing agent, gargle; Linens and Textiles: blanket, bath mat, tablecloth, bath towel, pa-
per towel, towel, bedspread; Paper Products: tissue paper, napkin, envelope, plas-
tic bag, tape (sticky cloth or paper), toilet tissue; Packaging and Stationery: envelope,
tape (sticky cloth or paper), plastic bag, tissue paper, tinfoil; Other Household Items:
mirror, place mat, tarp, pacifier, bandage, surfboard, drumstick, mound (baseball), wet suit.
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Category filtering Initially, we manually annotate a list of categories which are typically considered
parts of complete instances, as detailed in Table A1. We then remove the data from these categories,
as they are typically challenging to remove from images and tend to produce unnatural inpainting
results. Surprisingly, even after excluding these categories from the dataset, our model retains the
capability to add such instances (e.g., shirts) to images.

Size limitation We limit the size of the instance mask at the pixel level through a maxi-
mum/minimum size ratio. Instances below the minimum size threshold are still highly probable
to represent segments of complete instances. At the same time, instances that exceeded the max-
imum size threshold are very likely to be background (e.g., sky or grass). In our case, we set the
maximum size ratio to 0.95 and the minimum size ratio to 0.01.

Non-edge contact Considering that instances touching the image boundaries are predisposed to
incompleteness and pose challenges in background reconstruction, we exclude this subset of the
data. We directly filter based on whether the mask information exists at the image edge.

Integrity detection To ensure the completeness of instance masks, we initially applied dilation
and erosion operations to refine slightly separated mask segments. Subsequently, using OpenCV’s
connectedComponentsWithStats (Itseez, 2015), we analyze and sort the connected regions by size.
If the ratio of the largest region’s area to any other region’s area exceeds a predefined integrity ratio
threshold (set at 18), this largest region is considered representative of the instance.

Non-hollow detection We employ contour analysis to identify any potential hollow structures within
the mask to ensure the non-occlusion of instance masks. Utilizing OpenCV’s findContours function,
we extract both the external and internal contours and designate instances with masks containing
child contours as hollow. The hollow instances are considered to be partially obscured, while non-
hollow masks are retained for further instance filtering.

Aspect ratio filtering We exclude instances with extreme aspect ratios, defined as those exceeding
a threshold of 10 in either the horizontal or vertical dimension, due to their propensity to pose
challenges for inpainting and their higher likelihood of representing partial objects.

Non-occlusion detection algorithm To ensure that the instances in our dataset are free from oc-
clusions, we implement an occlusion detection algorithm based on the spatial relationships between
instance masks. For each pair of instances with overlapping bounding boxes, determined by an Inter-
section over Union (IoU) exceeding a predefined threshold (set at 0.05), we compute the proportion
of the overlapping area covered by each instance’s mask. Specifically, we calculate the intersection
area of their bounding boxes and assess how much of this area is occupied by each mask.

If the maximum of these coverage ratios is below an occlusion threshold (set at 0.15), the instances
are considered non-occluding and are retained for further processing. However, if the minimum
coverage ratio exceeds an area ratio threshold (set at 0.45), indicating significant mutual occlusion,
both instances are discarded to prevent incomplete objects. In cases where one instance significantly
occludes the other (evidenced by a larger coverage ratio), we discard the instance with the smaller
coverage ratio. This selective filtering ensures that only non-occluded, fully visible instances are
included in the dataset, enhancing the quality and reliability of the OABench.

A5.2 DATA SYNTHESIS

We subsequently utilize the advanced mask-guided image inpainting method, PowerPaint (Zhuang
et al., 2024), to remove targeted instances filtered in the prior phase. Before performing inpainting,
we apply a dilation operation to the instance masks, as overly precise masks are insufficient for
effective inpainting, using a slightly enlarged mask typically results in superior inpainting outcomes.

A5.3 POST-PROCESSING

In the post-processing stage, our objective is to systematically filter out inpainting results that exhibit
suboptimal object removal performance during the data synthesis phase. We then calculate the clip
score using the instance name and the corresponding region of the inpainted image, where higher
scores denote suboptimal removal efficacy. A preset threshold of 0.65 filters out instances with
higher scores, thereby optimizing data quality and maintaining a reasonable data volume.
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A6 MORE APPLICATIONS

Recently, the popularity of image-to-video tools (e.g., Kling (Kuaishou AI, 2024)) has surged, allow-
ing users to generate videos from single images. Due to Diffree’s ability to reasonably add objects
while maintaining the consistency of the image, the inpainted images remain suitable for image-to-
video generation. Consequently, utilizing inpainted images from Diffree can enhance the flexibility
of the generated video content and expand editing possibilities, as illustrated in Figure A8.

Diffree

Figure A8: Using Kling video model to create videos from images inpainted with Diffree. The
added objects seamlessly integrate into the generated video content.

A7 DISCUSSION OF IMPRECISE MASK-GUIDED METHODS

Some mask-guided approaches do not require an exact mask condition, opting instead for imprecise
masks (e.g., Glide (Nichol et al., 2022)) or bounding boxes (e.g., GLIGen (Li et al., 2023)).

These mask-guided methods only relax constraints on particular shapes, the necessity to specify
reasonable size and position also requires inherent challenges. For instance, the results generated
by GLIGen using masks that are not the appropriate size (either too large or too small) are clearly
unexpected, as provided in Figure A9.

Add a trash can Add a trash can

Figure A9: GLIGen’s inpainting results under bounding box conditions with unexpected size. GLI-
Gen still necessitates a predefined bounding box with reasonable size and position for inpainting.
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Due to the additional mask condition of mask-guided methods compared to text-guided methods,
we conduct a fair comparison of these methods by providing a complete mask or bounding box for
methods necessitating additional conditions. As shown in Figure A10, although some mask-guided
methods do not require precise mask information, they all fail without providing mask information.
At the same time, InstructPix2pix exhibits a low success rate in adding an object while maintaining
an unchanged background, as detailed in Figure 7.

Add a trash can

PowerPaint InstructPix2PixGLIGen Diffree (ours)SD Inpainting Glide

TextText + Mask Text + Bounding box TextText + Imprecise maskText + Mask

Mask-guided methods Text-guided methods

Figure A10: Qualitative comparison with other methods. The bottom represents the additional con-
ditions required for each method. We provide comprehensive masks or bounding boxes for methods
requiring them, thereby ensuring a fair and consistent comparison. All mask-guided methods fail in
adding new objects only through text.

A8 IN-DEPTH DISCUSSION OF OMP MODULE

In this section, we provide an in-depth discussion summarizing its role:

1. The OMP module ensures background consistency, which is crucial for iterative additions.

In mask-guided methods (e.g., PowerPaint Zhuang et al. (2024)), the instance mask is a required
input. Typically, a post-processing step involves mix the synthesized object into the input image’s
background using the instance mask, ensuring the background remains unchanged.

In contrast, text-guided methods (e.g., InstructPix2pix Brooks et al. (2023) and our Diffree) do
not require an instance mask as input, making this mix operation unavailable. This limitation can
lead to quality degradation, especially in iterative additions. To the best of our knowledge, we are
the first to introduce an output mask through the OMP module in text-guided shape free methods.
This enables the mix operation and allows for iterative additions. We provided an ablation study
(i.e., Figure 8) to evaluate the impact of omitting the OMP module on Diffree’s iterative results.
Without the OMP module, the background deteriorates rapidly after multiple steps, rendering further
additions infeasible.

2. The instance mask generated by the OMP module can be integrated with various existing
works to develop exciting applications.

As explained in the Appendix A6, the instance mask can be used in many applications that require a
mask as input. For example, when combined with AnyDoor Chen et al. (2023), Diffree can achieve
image-prompted object addition. We highlight a few additional points:

(1) Combining with shadow generation methods to produce realistic shadows

The task, shadow generation, aims to create plausible shadows for a composite foreground, given
a composite image without foreground shadows and the foreground object mask Liu et al. (2024).
However, existing mask-guided and text-guided inpainting methods pose challenges for shadow
generation, especially for objects casting long shadows. These challenges arise for two reasons:
first, there is a misalignment between the data masks and the actual shadows of objects (e.g., long
shadows); second, for mask-guided method, it is difficult for users to draw the estimated masks of
long shadow area with objects , in addition it is challenging for the model understands the respective
parts of shadows and objects in the mask. Therefore, combining inpainting works with shadow
generation works can lead to better results. In mask-guided methods, the shadow generation input
can be derived from the input mask and output image. Thanks the OMP module’s output mask,
Diffree, as a text-guided method, effectively integrates with such methods to generate coherent
objects and realistic shadows, as depicted in Figure A11.

(2) Providing a starting point for user or designer adjustments
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Diffree SGDiffusion

Add a brown horse

Figure A11: Diffree integrates with shadow generation work SGDiffusion Liu et al. (2024) to gen-
erate coherent objects and realistic shadows

In standard image processing, users or designers often need to make adjustments to achieve desired
results. Diffree’s output mask serves as a good starting point, making it easier for designers to refine
the outcome. We emphasize that the OMP’s mask output can be combined with evolving mask-based
methods, serving as input for better results or continuous adjustments.

3. OMP module outputs masks during the initial decoding steps, rather than after generation,
under the proposed training process.

OMP module’s input is a concatenation of the latent representation of the input image and the ex-
pected output image’s latent representation at each step, to output the object’s mask area. If we only
use the image pairs and object masks from our dataset to train OMP, it would generate masks only
after the diffusion model’s denoising process is completed during inference (e.g., after 100 steps).
Therefore, we synchronize the training inputs of OMP with the diffusion training.

OMP module computes the predicted noise-free latent õt using the output from the diffusion model:

õt =
z̃t −

√
1− ᾱtϵθ(z̃t, z,Enctxt(d), t)√

ᾱt
,

This õt can be derived from the denoising process and is available at each step, enabling mask
prediction in the initial steps (i.e., Appendix A4). This allows us to quickly obtain a reasonable
mask of the added objects without waiting for complete generation, facilitating integration with
various applications. Training the OMP solely on image pairs and object masks would limit mask
generation to after full denoising at inference time. By aligning the OMP’s training inputs with those
of the diffusion model and detaching gradients of õt, we ensure independent optimization without
interference. The independence of their loss functions and input consistency make separate training
theoretically equivalent to joint training.

A9 USER STUDY ON OVERALL SATISFACTION

We further conduct a user study on the overall satisfaction with all results between InstructPix2Pix
and our Diffree in 1000 cases of COCO and OpenImages. As shown in Figure A12, the comparison
results demonstrate that Diffree significantly outperforms InstructPix2Pix in user satisfaction. We
believe this comprehensive user study effectively showcases the advantages of our method.

0 200 400 600 800 1000

Our WinTieInstructPix2Pix Win Win rate

85%

Same selection rate 
compared GPT4V

51%

Win rate

97.2%

98.5%

Our WinTieInstructPix2Pix Win

OpenImages

COCO

23 187 790

13 110 877

Figure A12: User study of overall satisfaction in 1000 cases of COCO Lin et al. (2014) and Open-
Images Kuznetsova et al. (2020) dataset, with the win rate defined as the ratio of our Diffree wins to
the total wins by either Diffree or InstructPix2pix.
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A10 GENERALIZATION ANALYSIS OF DIFFREE MODEL

A10.1 DISCUSSION ON ARTIFACTS IN SYNTHETIC DATASETS

Original Image 
(Ground Truth)

Inpainted Image
(Input)

Diffree
(Output)

InstructPix2Pix 
(Output)

Add Swan

Add lemon

Add goat

Add vase 

Add armchair 

Add flower

Add pillow

Add tomato

Add cookie

Figure A13: Diffree’s results of objects were removed using an inpainting model (e.g., PowerPaint)
from an image containing multiple identical objects and then added back using Diffree to see if it
would be added onto the same position and size. The added objects appeared at different positions
and sizes, indicating no overfitting to artifacts and demonstrating generalization.
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we conduct additional experiments where objects were removed using an inpainting model (e.g.,
PowerPaint Zhuang et al. (2024)) from an image containing multiple identical objects and then
added back using Diffree to see if it would be added onto the same position and size. As shown in
Figure A13, the added objects appeared at different positions and sizes, indicating no overfitting to
artifacts and demonstrating generalization.

A10.2 DISCUSSION ON OUT-OF-DISTRIBUTION (OOD) OBJECTS OF OABENCH

Diffree demonstrates strong performance when handling out-of-distribution (OOD) objects not in-
cluded in our OABench dataset. As detailed in Appendix A5.1, our model is capable of adding
various objects absent from the training data. For example, Figures A1 to A3 illustrate that Diffree
can successfully add objects like “dragon”, ”necklace” or other OOD items.

This generalization capability stems from our fine-tuning approach based on the pre-trained SD1.5,
which inherently can generate various objects from text descriptions. Therefore, even objects not
present in our dataset can be added by Diffree. This reflects Diffree’s robustness and adaptability to
different image styles and unseen objects, making it applicable to a wide range of scenarios.

A10.3 DISCUSSION OF RESPONSES TO SPECIFIC OR INTERACTIVE PROMPTS

1. specific object attributes

Despite the generic labels during training, Diffree demonstrates strong generalization and effectively
responds to detailed, fine-grained prompts. As shown in Figure A3, Diffree successfully follows in-
structions such as “add shiny golden crown” and “add reflective sunglasses,” producing appropriate
additions that match the detailed descriptions. This capability stems from our fine-tuning based on
the pre-trained SD1.5, which inherently generates objects with specific attributes from text descrip-
tions. This reflects Diffree’s robustness and adaptability, making it applicable to more scenarios.

2. context-based interactions

To enhance precise control in object addition, we extended our model by re-labeling our dataset with
accurate location descriptions using GPT-4o-mini OpenAI (2024) and retrained our model based on
pre-trained SD1.5 with these detailed annotations and original annotations.

We provide the following inputs from our OABench to GPT-4o-mini for precise re-labeling: (1)
Cropped area image of the object to help GPT-4o-mini understand the object’s attributes. (2) Origi-
nal image containing the object to establish context and correspondence. (3) object label description.
(4) A Prompt of the object to guide the task: ”You will be provided with the following: 1.A real im-
age of a scene. 2.A cropped image of a specific object from the scene. 3.The category text of the
object (e.g., ‘cup’, ‘chair’). Based on this information, generate a concise description of the object’s
appearance and its spatial position in the scene. The description should be no longer than 20 words
and focus solely on the object and its immediate spatial relationship. Example: ‘A transparent cup
on the table.’ Avoid adding unnecessary context or details beyond the object’s appearance and po-
sition.” We followed the training process outlined in the Section 3, with the exception that we used
both the original descriptions and the relabeled descriptions as text prompts for training.

We conducted experiments using contextually detailed prompts specifying different locations within
the same scene or involving multiple similar objects. As shown in Figure A14, our model can
accurately add objects based on context-related descriptions. This demonstrates that Diffree can be
extended to handle more precise control. We plan to further enhance this capability by constructing
larger datasets with precise annotations.
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+ a green avocado on the table + a green avocado on the white plate on 
the left

+ a red knitted wool hat is on the head of 
the doll on the left

+ a brown knitted tie on the right boy 
doll

+ a silver metal trash can on the wooden 
floor

+ a silver metal trash can on the table

Input image

Input image

Input image

+ a black dragon flying in the room + a brown dragon sitting on the groundInput image

Figure A14: Diffree’s results were obtained using contextually detailed prompts specifying different
locations within the same scene or involving multiple similar objects. We extended our model by
re-labeling our dataset with accurate location descriptions using GPT-4o-mini OpenAI (2024) and
retrained Diffree with these detailed annotations and original annotations.
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