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Abstract
Imputation is a popular technique for handling
missing data. Variance estimation after imputa-
tion is an important practical problem in statistics.
In this paper, we consider variance estimation of
the imputed mean estimator under the kernel ridge
regression imputation. We consider a lineariza-
tion approach which employs the covariate bal-
ancing idea to estimate the inverse of propensity
scores. The statistical guarantee of our proposed
variance estimation is studied when a Sobolev
space is utilized to do the imputation, where

?
n-

consistency can be obtained. Synthetic data ex-
periments are presented to confirm our theory.

1. Introduction
With the development of technology, massive data is more
available and being analyzed by data analysts, which illu-
minates the way for big data era. Meanwhile, missing data
issue has become more serious than before. For example, in
web-based survey questionnaires, some people are reluctant
to report their household incomes, while they are more will-
ing to report other information such as education, gender,
age group and so on. In practice, ignoring the cases with
missing values can lead to misleading results (Kim & Shao,
2013; Little & Rubin, 2019).

Imputation is a popular technique for handling missing data.
After imputation, the imputed dataset can then be served
as a complete dataset with no missingness to be analyzed,
which in turn makes results from different analysis methods
consistent. However, treating imputed data as if observed
and applying the standard estimation procedure may result
in misleading inference, leading to underestimation of the
variance of imputed point estimators. As a result, how to do
statistical inference for the imputed estimator becomes an
arising issue.
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1.1. Related works

An overview of imputation method can be found in Haziza
(2009). Multiple imputation, proposed by Rubin (2004), is
a popular technique for imputation. However, the validity
of its variance estimation needs to satisfy certain conditions
(Fay, 1992; Wang & Robins, 1998; Kim et al., 2006; Yang
& Kim, 2016). An alternative method is the fractional impu-
tation, originally proposed by Kalton & Kish (1984). The
main idea of fractional imputation is to generate multiple im-
puted values and the corresponding fractional weights. Hot
deck imputation is a popular method of imputation where
the imputed values are taken from the observed values. In
this vein, Fay (1996); Kim & Fuller (2004); Fuller & Kim
(2005); Durrant et al. (2005); Durrant & Skinner (2006)
discussed fractional hot deck imputation. Further, Kim
(2011) and Kim & Yang (2014) employed fully parametric
approach to handling nonresponse items with fractional im-
putation. However, such parametric fractional imputation
relies heavily on the parametric model assumptions. To mit-
igate the effects of parametric model assumption, empirical
likelihood (Owen, 2001; Qin & Lawless, 1994) as a semi-
parametric approach was considered. In particular, Wang &
Chen (2009) employed the kernel smoothing approach to do
empirical likelihood inference with missing values. Chen
& Kim (2017) extended Müller et al. (2009)’s work to do
fractional imputation with a regression model assumption.
Cheng (1994) utilized the Kernel-based nonparametric re-
gression approach to do the imputation and established the
?
n-consistency of the imputed estimator.

The kernel ridge regression (KRR) (Friedman et al., 2001;
Shawe-Taylor et al., 2004) is a popular data-driven approach
which can alleviate the effect of model assumption. With
a regularized M-estimator in reproducing kernel Hilbert
space (RKHS), KRR can capture the hidden model with
complex RKHS while a regularized term makes the origi-
nal infinite dimentional estimation problem viable (Wahba,
1990). van de Geer (2000), Mendelson (2002), Zhang
(2005), Koltchinskii et al. (2006), and Steinwart et al. (2009)
studied the error bounds for the estimates of RKHS-based
method. Recently, Zhang et al. (2013) employed truncation
analysis to estimate the error bound in a distributed fash-
ion. Yang et al. (2017) considered randomized sketches for
KRR and studied projection dimension which can preserve
minimax optimal approximations for KRR.
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1.2. Our Work

In this paper, we apply KRR as a nonparametric imputation
method and develop a method to establish the consistent
variance estimation for KRR imputation estimator under
missing at random (MAR) assumption. To the best of our
knowledge, this is the first paper which considers KRR tech-
nique and discusses its variance estimation in the imputation
framework. Specifically, we first prove

?
n-consistency of

the KRR imputation estimator and obtain influence function
for linearization. After that, we employ a covariate balanc-
ing method (Wong & Chan, 2018) to get a valid estimate of
the inverse of the propensity scores. The consistency of our
variance estimator can thus be established. We additionally
conducted a numerical experiment to confirm the validity
of our proposed estimators.

2. Method
Consider the problem of estimating θ “ EpY q from an
independent and identically distributed (IID) sample of
pxi, yiq, i “ 1, ¨ ¨ ¨ , n. Instead of observing yi, suppose
that we observe yi only if δi “ 1, where δi is the response
indicator function of unit i taking values on t0, 1u. We as-
sume that the response mechanism is MAR (Rubin, 1976)
in the sense of

δ K Y | x.

Under MAR, we can develop a nonparametric estimator
pmpxq of mpxq “ EpY | xq and construct the following
imputation estimator:

pθI “
1

n

n
ÿ

i“1

tδiyi ` p1´ δiqpmpxiqu . (1)

If pmpxq is constructed by the Kernel-based nonparametric
regression method, we can express

pmpxq “

řn
i“1 δiKhpxi,xqyi
řn
i“1 δiKhpxi,xq

(2)

whereKhp¨q is the Kernel function with bandwidth h. Under
some suitable choice of the bandwidth h, Cheng (1994) first
established the

?
n-consistency of the imputation estimator

(1) with nonparametric function in (2).

In this paper, we extend the work of Cheng (1994) by consid-
ering a more general type of the nonparametric imputation,
called Kernel ridge regression (KRR) imputation. The KKR
technique can be understood using the reproducing Kernel
Hilbert space (RKHS) theory (Aronszajn, 1950) and can be
described as

pm “ arg min
mPH

«

n
ÿ

i“1

δi tyi ´mpxiqu
2
` λ }m}

2
H

ff

, (3)

where }m}2H is the norm of m in the Hilbert space H. Here,
the inner product x¨, ¨yH is induced by such kernel function,
i.e.,

xf,Kp¨,xqyH “ fpxq,@x P X , f P H, (4)

namely, the reproducing property of H. Naturally, such
reproducing property implies the H norm of f : }f}H “

xf, fy
1{2
H .

By the representer theorem for RKHS (Wahba, 1990), the
estimate in (3) must lie in the linear span of tKp¨,xiq, i “
1, . . . , nu. Specifically, we have

pmp¨q “
n
ÿ

i“1

pαi,λKp¨,xiq, (5)

where

pαλ “ p∆nK` λInq
´1

∆ny,

∆n “ diagpδ1, . . . , δnq, K “ pKpxi,xjqqij P Rnˆn, y “
py1, . . . , ynq

T and In is the nˆn identity matrix. Using the
KRR imputation in (3), we aim to establish the following
two goals:

1. Find the sufficient conditions for the
?
n-consistency

of the imputation estimator pθI using (5) and give a
formal proof.

2. Find a linearization variance formula for the imputation
estimator pθI using the KRR imputation.

The first part is formally presented in Theorem 1 in Section
3. For the second part, we employ the covariate balancing
idea of Wong & Chan (2018) to get a consistent estimator
of ωpxq “ tπpxqu´1 in the linearized version of θ̂I . By
Theorem 1, we use the following estimator to estimate the
variance of pθI in (2):

pVppθIq “
1

npn´ 1q

n
ÿ

i“1

pη̂i ´ η̄q
2 (6)

where
η̂i “ pmpxiq ` δipωi tyi ´ pmpxiqu ,

and pωωω “ ppω1, . . . , pωnq
T P Rn is estimated by

pωωω “ arg min
ωωωě1

„

max
uP rHn

!

Snpωωω, uq ´ λ }u}
2
H

)

` τVnpωωωq



.

(7)

In (7), Snpωωω, uq “ tn´1
řn
i“1pδiωi ´ 1qupxiqu

2 de-
notes the empirical validity measure for covariate-balancing
between complete cases and all samples via function
u P rHn “ tu P H : }u}n “ 1u, where }u}2n “
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Algorithm 1 Variance Estimation for KRR Imputation
Input: observed a data set tpδi,xi, δiyiquni“1, where vec-
tor length of xi is d, r “

řn
i“1 δi kernel function Kp¨, ¨q,

regularization parameters λptq, for t “ 1, . . . , T , regu-
larization parameters τ psq for s “ 1, . . . , S, threshold
parameter ζ.
Select optimal pλ in (5) from tλptquTt“1 which minimizes
the GCV criterion in (8).
for s “ 1 to S ´ 1 do

Optimize (7) with tuning parameters pλ and τ ps`1q and
get ωωωps`1q.
if Bnppωωω

ps`1q
q ą ζ then

Set pτ “ τ psq.
Stop the for loop.

end if
end for
Output: variance estimator computed from (6) with pλ
and pτ .

n´1
řn
i“1 upxiq

2, and Vnpωωωq “ n´1
řn
i“1 δiω

2
i which

serves as a penalizer to control the wiggliness of ωωω. The
constraint ωωω ě 1 indicates that ωi ě 1 element-wisely. It is
noted that we can set pωi “ 1 where δi “ 0 and only opti-
mize (7) on tωi : δi “ 1u. Roughly speaking, the optimiza-
tion problem (7) can be solved by limited-memory Broy-
den–Fletcher–Goldfarb–Shanno with bound constraints (L-
BFGS-B) algorithm and computational details can be re-
ferred to Wong & Chan (2018). Unlike Wong and Chan
(2018), we fixed the tuning parameter pλ selected via gen-
eralized cross-validation (GCV) in KRR in order to keep
similar complexity of RKHS in both optimization problem
and we only tune τ , where the GCV criterion is

GCVpλq “
n´1 }t∆n ´Apλquy}

2
2

n´1Tracep∆n ´Apλqq
, (8)

and Apλq “ ∆nKp∆nK`λInq
´1∆n. For tuning param-

eter selection, define

Bnpωωωq “ sup
uPH̃n

 

Snpωωω, uq ´ λ}u}
2
H
(

,

which measures the covariate balancing error. As τ in-
creases, the corresponding Bnppωωωq would increase. Take a
sequence of τ as 0 ă τ p1q ă . . . ă τ pSq, let pωωωpsq “ pωωωpτ psqq

be the minimizer of (7) given the tuning parameter ppλ, τ psqq
for s “ 1, . . . , S. Our choice is s‹ such that s‹ is the largest
in t1, . . . , Su such that Bnppωωω

ps‹
q
q ď ζ. We take ζ “ 10´6

in our synthetic data analysis. The whole algorithm for
imputation is summarized in Algorithm 1.

3. Theoretical Guarantee
We first make the following assumptions.

Assumption 1. For some k ě 2, there is a constant ρ ă 8
such that ErφjpXq2ks ď ρ2k for all j P N, where tφju8j“1

are orthonormal basis by expansion from Mercer’s theorem.
Assumption 2. The function m P H, and for x P X , we
have ErtY ´mpxqu2s ď σ2, for some σ2 ă 8.
Assumption 3. The propensity score πp¨q is uniformly
bounded away from zero. In particular, there exists a posi-
tive constant c ą 0 such that πpxiq ě c, for i “ 1, . . . , n.
Assumption 4. The ratio d{` ă 2 for d-dimensional
Sobolev space of order `, where d is the dimension of co-
variate x.

The first assumption is a technical assumption which con-
trols the tail behavior of tφju8j“1. Assumption 2 simply
assumes that the noises have bounded variance. Assump-
tion 1 and Assumption 2 together aim to control the error
bound of the KRR estimate pm. Further, Assumption 3 is
used to make tπpxqu´1 bounded above and it is a standard
assumption in the missing data literature. Assumption 4 is a
technical assumption for entropy analysis. Intuitively, when
the dimension is large, the corresponding Sobolev space
should be large enough to capture the true model.
Theorem 1. Suppose Assumption 1 „ 4 hold for a Sobolev
kernel of order `, λ — n1´`, we have

?
nppθI ´ rθIq “ opp1q, (9)

where

rθI “
1

n

n
ÿ

i“1

„

mpxiq ` δi
1

πpxiq
tyi ´mpxiqu



(10)

and
?
n
´

θ̃I ´ θ
¯

L
ÝÑ Np0, σ2q,

with

σ2 “ V tEpY | xqu ` EtV pY | xq{πpxqu.

In Theorem 1, the notation — means that there exists con-
stants c1 ą c2 ą 0, such that c2n1´` ă λ ă c1n

1´`.
Theorem 1 guarantees the asymptotic equivalence of pθI and
rθI in (10). Specifically, the reference distribution is a com-
bination of outcome model and sampling mechanism. The
variance of rθI achieves the semiparametric lower bound
of Robins et al. (1994). Additionally, (10) suggests a lin-
earization form of variance estimation of pθI . To estimate
ω‹i “ πpxiq

´1, we can use employ the covariate balancing
idea of Wong & Chan (2018) to obtain ω̂ωω as provided in (7).
The proof of Theorem 1 is presented in the Appendix.

4. Experiments
We conducted a simulation study to test our proposed
method. Generally, our synthetic data consists of a super-
population model and a propensity score model. We also
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compare them in two scenarios with different superpopula-
tion model: a linear case and a nonlinear case. In both cases,
we keep the response rate around 70% and VarpY q « 10.
For the linear case, let xi “ pxi1, xi2, xi3, xi4qT be gener-
ated IID element-wisely from uniform distribution on the
support p1, 3q. The responses for linear case (Model A) are
generated by

yi “3` 2.5xi1 ` 2.75xi2 ` 2.5xi3 ` 2.25xi4 ` σεi,

where tεiuni“1 are generated from standard normal distribu-
tion and σ “

?
3. For the nonlinear case (Model B), we

use

yi “ 3` 0.2xi1xi2x
2
i3 ` 0.3xi3xi4 ` σεi

to generate data with nonlinear structure.

As for the propensity score model, the response indica-
tor variable δ are independently generated from Bernoulli
distribution with probability logit pXβββ ` 2.5q, where
X “ rxT

1 ; . . . ;xT
n s, βββ “ p´1, 0.5,´0.25,´0.1qT and

logitppq “ logtp{p1´ pqu. We simulated data with sample
size n “ 200, n “ 500 and n “ 1000 with 1000 Monte
Carlo replications. The RKHS we employed is the second-
order Sobolev space.

We also compare different methods for imputation: KRR,
B-spline, linear model (LM). The corresponding results are
presented in the Table 1. In Table 1, the performance of the
three imputation estimators are presented. In the linear case
(Model A), the three methods show similar results. In the
nonlinear case (Model B), KRR imputation shows the best
performance in terms of MSE. Linear regression imputation
still provides unbiased estimates, because the residual terms
in the linear regression model are approximately unbiased
to zero. However, use of linear regression model for im-
putation leads to efficiency loss because it is not the best
model.

In addition, we have computed the proposed variance es-
timator under KRR imputation. The behavior of variance
estimation for KRR is presented in Table 2. In Table 2, the
RB pV̂ q denotes the relative bias of the proposed variance
estimator. The relative bias of the variance estimator de-
creases as the sample size increases, which confirms the
validity of the proposed variance estimator.

We also compute the confidence intervals using the asymp-
totic normality of the KRR imputed estimator. The proposed
variance estimator is used in computing the confidence in-
tervals. Table 3 shows the coverage rates of the confidence
intervals. The realized coverage probabilities are close to
the nominal coverage probabilities, confirming the validity
of the proposed interval estimator.

Table 1. Biases, Variances and Mean Squared Errors (MSEs) of
three imputation estimators

Model n KRR B-spline LM

A

200
Bias -0.0113 0.0027 0.0023
Var 0.0682 0.0679 0.0682

MSE 0.0684 0.0679 0.0682

500
Bias -0.0032 0.0038 0.0038
Var 0.0263 0.0263 0.0263

MSE 0.0263 0.0263 0.0263

1000
Bias -0.0037 0.0002 0.0002
Var 0.0128 0.0128 0.0129

MSE 0.0128 0.0128 0.0129

B

200
Bias -0.0011 0.0134 0.0117
Var 0.0674 0.0697 0.0697

MSE 0.0674 0.0699 0.0699

500
Bias 0.0024 0.0114 0.0107
Var 0.0253 0.0262 0.0262

MSE 0.0253 0.0264 0.0263

1000
Bias -0.0007 0.0071 0.0066
Var 0.0123 0.0127 0.0128

MSE 0.0123 0.0128 0.0128

Table 2. Relative biases of the proposed variance estimator under
kernel ridge regression imputation

Model Sample Size
200 500 1000

A -0.0698 -0.0376 -0.0033
B 0.0593 0.0238 0.0120

Table 3. Coverage rates (%) of the proposed confidence intervals
Model Nominal Sample Size

Coverage 200 500 1000

A 90 88.7 89.5 89.8
95 94.3 94.6 95.1

B 90 88.1 89.5 89.3
95 93.6 93.8 94.3

5. Conclusion
We consider Kernel ridge regression as a tool for nonpara-
metric imputation and establish its asymptotic properties.
In addition, we propose a linearized approach for variance
estimation of the imputed estimator. Theoretical vailidity of
our linearized variance estimator is established. Numerical
studies confirm our theoretical results.
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